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Abstract 

We investigate blowup formulae in Donaldson-Witten the- 
ory with gauge group SU(N), using the theory of hyperelliptic 
Kleinian functions. We find that the blowup function is a hy- 
perelliptic a-function and we describe an explicit procedure to 
expand it in terms of the Casimirs of the gauge group up to ar- 
bitrary order. As a corollary, we obtain a new expression for the 
contact terms and we show that the correlation functions involv- 
ing the exceptional divisor are governed by the KdV hierarchy. 
We also show that, for manifolds of simple type, the blowup 
function becomes a r-function for a multisoliton solution. 

1    Introduction 

Blowup formulae [1] have played an important role in Donaldson-Witten 
theory. First of all, they relate the Donaldson invariants of a manifold 
X with those of its blownup X, and they have been a crucial ingredi- 
ent in the derivation of explicit expressions for these invariants, their 
wall-crossings [2], [3], and their structural properties in the case of non- 
simple type manifolds [4]. Another important aspect of these formulae 
is that they give an explicit connection between the mathematical and 
the physical approach to Donaldson invariants. For example, in the 
derivation of the blowup formula for SU(2) Donaldson invariants given 
in [1], the elliptic curve of the Seiberg-Witten solution [5], [6] appears 
in a natural way. Conversely, the result of [1] can be derived in a very 
elegant way within the framework of the it-plane integral of Moore and 
Witten [7]. 

Donaldson-Witten theory can be generalized to higher rank gauge 
groups using the approach of [7]. A detailed analysis of this theory for 
SU(N) has been made in [8], and also in [9] from a slightly different 
point of view. In particular, one of the results of [8], [9] is a blowup 
formula for SU(N) Donaldson theory, which is written in terms of 
theta functions1. It was already noticed in [8] that the blowup function 

1In [9], the blowup formula was also derived in the SU(2) case. The general 
formula for SU(N) is implicit in the results presented there, and it was in fact used 
to obtain expressions for the contact terms. 
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is essentially a r-function of the Toda-KP hierarchy, and reflects the 
underlying integrable structure of the low-energy effective theory [10], 
[11], [12], [13]. This relation between blowup functions and integrable 
hierarchies has been explored in [14], [15], [16]. 

In this paper, we shall analyze in full detail the properties and 
structure of the blowup formulae in SU(N) Donaldson-Witten theory. 
As we will review below, an important aspect of blowup functions is 
that they must admit an expansion whose coefficients are polynomials 
in the Casimirs of the gauge group (equivalently, in the local observables 
of the corresponding topological theory). In the case of SU(2), the fact 
that the expression for the blowup formula in terms of theta functions 
admits such an expansion is a result of the theory of elliptic functions, 
which also provides an explicit way of performing the expansion by 
using elliptic cr-functions. 

In the case of SU(N), it was argued in [8] that such an expansion 
should exist on physical grounds, but no recipe was given to perform 
the expansion. In this paper we solve this problem by using the hy- 
perelliptic generalization of a-functions and the theory of hyperelliptic 
Kleinian functions. This theory was developed at the end of nineteenth 
century by Klein, Baker, Bolza, and many others, but has completely 
dropped out of the textbooks. There has been recently some revival 
of this theory in connection with the algebro-geometric approach to 
integrable hierarchies [17], [18], [19], and as we will show in this paper, 
the theory of hyperelliptic Kleinian functions is the right framework to 
address the properties of the blowup functions in SU(N) Donaldson- 
Witten theory. For example, the contact terms of two-observables are 
deeply related to the blowup function, as it was first realized in [9]. 
We will show that the theory of hyperelliptic Kleinian functions gives 
a simple expression for these contact terms as periods of certain mero- 
morphic forms. 

Another interesting aspect of this approach is that it makes possi- 
ble to clarify further the connection to integrable hierarchies. We will 
show in detail that the blowup function, after a linear transformation 
of the coupling constants appearing in the ^-plane integral, satisfies 
the differential equations of the KdV integrable system. As a corol- 
lary, the correlation functions involving the exceptional divisor on the 
blownup manifold are governed by the KdV hierarchy.   This gives a 
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formal connection to two-dimensional topological gravity [20]. 

As it is well-known, in the 577(2) case the blowup formula has a 
simple structure when the manifold is of simple type, and it corresponds 
to the degeneration of elliptic functions to trigonometric functions [1]. 
In the SU(N) case, the simple type condition corresponds to a maximal 
degeneration of the hyperelliptic curve. These degenerations are well- 
known in the algebro-geometric approach to integrable systems, and 
correspond to multisoliton solutions of the hierarchy (see, for example, 
[21], [22]). We will then show that the blowup function of SU(N) 
becomes a r-function for an (N — l)-soliton solution of the underlying 
KdV hierarchy. As a corollary of this analysis we will give explicit 
expressions for some physical quantities at the J\f = 1 points of J\f = 2 
SU(N) Yang-Mills theory. 

The paper is organized as follows: in section 2, we review the basic 
results on blowup formulae in Donaldson-Witten theory for the gauge 
group SU(N)J following the results of [8], [9], [16]. In section 3, we 
introduce Kleinian functions and hyperelliptic a-functions and some 
of their properties. In particular, we give a detailed account of the 
differential equations that they satisfy and we present a systematic 
way to solve them for any genus g. We apply these results to the 
Seiberg-Witten curve for SU(N) in section 4, and we derive some new 
results on the contact terms of the twisted theory. We present explicit 
results for the expansion of the blowup functions for g = 2 and g = 3. 
In section 5, we explain the relation between the blowup function and 
the KdV hierarchy. We then consider, in section 6, the important 
case of manifolds of simple type, and we compute in full detail the 
blowup function at the A/" = 1 points. Finally, in section 7 we state our 
conclusions and prospects for future research in this subject. 

2    The blowup function in twisted J\f = 2 
super Yang-Mills 

In this section we give a brief review of the blowup formula in twisted 
J\f — 2 Yang-Mills theory. A detailed account can be found in [8], [16]. 

Twisted J\f = 2 theories have a finite set of gauge-invariant opera- 
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tors called observables which can be understood as BRST cohomology 
classes. For SU(N) gauge theories, the simplest observables are the 
N — 1 Casimirs of the gauge group, which give a basis for the ring 
of local, BRST invariant operators of the theory. We will take these 
observables to be the elementary symmetric polynomials in the eigen- 
values of the complex scalar field (/) in the J\f = 2 vector multiplet: 

Ok = Skfa) = ^Tr<j)k + • • •       k - 2,..., N . (2.1) 

The advantage of these operators is that their vacuum expectation val- 
ues are precisely the Uk that parametrize the Coulomb branch of the 
physical theory. 

From the above operators one can generate the rest of the observ- 
ables using the descent procedure. We will consider only simply con- 
nected manifolds, for simplicity. In this case, the other observables of 
the theory are associated to integrals over two-cycles S in the manifold 
X of differential forms constructed by acting on the Casimirs with a 
spin one (descent) operator G^, 

Ik(S) =  f G2Ok = i f Tr^-'F) + ■■■ (2.2) 

Here, F is the Yang-Mills field strength. In general, S will be an ar- 
bitrary linear combination of basic two-cycles Si, i = 1,..., 62(X), i.e., 

S = E?=iX) USi, therefore 

62 (X) 

Ik(S) = Y, tMSi) • (2.3) 
1=1 

In total, we have (N — 1) • 62(-X") independent operators Ik(Si). The 
basic problem now is to compute the generating function for correlators 
involving the observables that we have just described, that is: 

Z(Pk,fk,S) = (exp ]^(/*4(S)+P^) (2.4) 
J / x 

As it has been explained in [7] for 577(2), and generalized in [8] to 
SU(N), the computation of (2.4) can be done by using the low-energy 
exact solution of J\f = 2, SU(N) Yang-Mills theory.   This solution 
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is encoded in the hyperelliptic curve describing a genus g = N — 1 
Riemann surface E^ [23], [24]: 

y2 = I#(x) - 4A2" , (2.5) 

where 
N 

PN(x) = xN-Y,UkXN-k (2.6) 
k=2 

is the characteristic polynomial of SU(N), and Uk = (Ok) are the 
VEVs of the Casimir operators (2.1). Associated to this curve there is 
a meromorphic differential of the second kind (also known as Seiberg- 
Witten differential), with a double pole at infinity, that can be explicitly 
written as: 

dSsw = Pifix)—. (2.7) 
y 

This one-form satisfies the equation: 

ddSsw      , /0 0x — = dvk , (2.8) 
duk+l 

where 
x^~ dx 

dvk =  ,        fc = l,...,flf, (2.9) 
y 

is a basis of holomorphic differentials for hyperelliptic curves of genus 
g. Given a symplectic basis of homology cycles A% Bi E ifi(E^, Z) one 
may compute the period integrals of these differentials: 

Aik=27dT- dVk ' Bik=27ri?   dVk ' ^'^ 

(Notice that, in contrast to [25], [26], [27], we have explicitly included 
the 271% factors). Using these quantities we can define the period matrix 
of Ep as 

m = B^A-1)^ . (2.11) 

The low-energy J\f = 2 theory is described by a prepotential ^(a2, A), 
where the a1 variables, associated to the cycles A\ are given by the 
integrals over these cycles of dSsw 

aUuk.A) = — <[     l   
XP^X)      -- dx . (2.12) 
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The same expression holds for the dual variables a^j = dF/da1, with 
Bi instead of A1. The effective gauge couplings are given by (2.11). It 
follows from (2.8), (2.10) and (2.12) that 

da? 
du 

= # 
fe+i du 

= B., ik 
k+1 

(2.13) 

The blowup formula arises in the following context. Suppose that 
we have a four-manifold X, and we consider the blownup manifold at 
a point p, X = Blp(X). Under this operation, the homology changes 
as follows (see, for example, [28]): 

H2(X) -+ H2(X) = H2(X) 0 Z • B , (2.14) 

where 5, the class of the exceptional divisor, satisfies B2 = — 1. Since 
the blownup manifold X has an extra two-homology class, there are 
extra operators Ik(B) that must be included in the generating function. 
We will then write S = S + tB. There is also the possibility of having 
a non-Abelian magnetic flux through the new divisor, and this flux is 
specified by a vector ft with components of the form [8]: 

/?' = (c-1)*,^; (2.15) 

where the nJ are integers, and (C 1)1- is the inverse of the Cartan matrix 

for SU(N). The generating function for the correlation functions on X 
is 

Z§{PkJk,tk,S) - (exp Y,Wk(S) + tkIk(B)+pkOk) 
X,I3 

(2.16) 
where £*.=£•/*.. The blowup formula states that this generating 
function is given by 

Zg(Pkifk,tk>S) = ( exp J2(fMS)+PkOk) 
L   k 

Tg(tk\Ok) )     ,  (2.17) 

where Tg(tk\Ok) will be called the blowup function. This function is a 
series in the tk whose coefficients are polynomials in the operators Ok: 

r0(tk\Ok) = J2 PBtfiO,, ...,ON), (2.18) 
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where n = (712,..., n^) is an (JV — l)-uple of nonnegative integers, and 
tn = t7^2 - • • £$*. The order of the terms in the expansion (2.18) is given 
by |n| = J2ini- The fact that such a formula exists can be justified 
intuitively by thinking about the blowup as a punctual defect which 
can be represented by an infinite series of local operators [7]. Since the 
ring of local, BRST invariant operators is generated by the Ok, one 
would expect a factor like (2.18) relating the generating functions. 

The precise expression for the blowup function Tg(tk\Ok) was de- 
rived in [7] for the gauge group SU(2), and in [8], [9] in the general 
case of SU(N), using the u-plane integral. To write the formula for 
this function, we will need to introduce the Riemann theta function 
6[a, /?]0?|T) with characteristics a = (ai,..., oig) and $ = (/5i,..., ^), 
which we will take as: 

e[dj}(z\r) 

= Y^ exp [iTTTijirii + A)(% + Pj) + 27ri(Tii + &)(* + a*)] •     (2-19) 

Then, the blowup function has the following form: 

TM.^.) = e-Ew*t«.rwQ!^M!l) | (2.20) 
0{  l   ' e[A,0](0|r) 

where 

a-E tk duk 

27r da* 
k=2 

l,...,Ar-l. (2.21) 

We will consider (3 = 0 most of the time (notice that, in general, the 
Pi won't be half-integers). The corresponding blowup function will be 
simply denoted by r(ti\ui). In (2.20), we have introduced the symbol 
Tk,i to denote the contact terms associated to the observables 4(5). 
They are given by [9]: 

Tw = -^,..oge[A,0l(0W^. (2.22) 

As first noticed in [9], the explicit expression for the contact terms can 
be deduced from the blowup function by requiring invariance under 
Sp(2r, Z) transformations, and taking also into account that they must 
vanish semiclassically [7]. In the 5/7(2) case one recovers precisely the 
blowup formula of Fintushel and Stern [1].  As remarked in [16], one 
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of the consequences of the semiclassical vanishing of the contact terms 
(or, equivalently, of the expression (2.22)) is that the quadratic terms 
in the "times" ti in the blowup function vanish for (3 = 0, i.e., the 
expansion (2.18) has the structure: 

TiUlUi) = l+Yl B(n2^nN)(Ui) t? • • .#* + • • • . (2.23) 
1*1=4 

This will be important later on. 

3    A survey of the theory of hyperelliptic 
Kleinian functions 

In the first half of this section we will review in some detail the basic 
constructions in the theory of hyperelliptic Kleinian functions. A very 
good modern survey is [17]. We will also rely heavily on the results 
by Bolza [29], [30], [31] and Baker [32], [33]. In the last subsection, we 
will develop a constructive procedure to expand an even half-integer 
hyperelliptic a-function up to arbitrary order in the moduli of the curve 
following the centenarian footsteps of [31]. 

3.1    Hyperelliptic curves and Abelian differentials 

The basic objects we need to develop the theory are Abelian differentials 
on a hyperelliptic curve. Although we will concentrate most of the time 
on the curve (2.5), we will attempt to give a summary of the general 
story and consider hyperelliptic curves of the "even" form 

2g+2 

y2 = fix) = J2 W* t3-1) 

describing a Riemann surface of genus g. The curve is said to be in 
canonical form when \2g+2 — 0 and \2g+i = 4, and any curve of the form 
(3.1) can be put in such a form by a fractional linear transformation. 
A basis of Abelian differentials of the first kind is given by the set of 
g holomorphic 1-forms (2.9).   To construct hyperelliptic a-functions, 
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we will also need a basis of Abelian differentials of the second kind. 
To introduce these differentials we construct a generating functional 
as follows. First, we consider a function F(xiJX2) (sometimes called a 
Weierstrass polynomial) which is at most of degree g +1 both in xi and 
#2, and satisfies the following conditions: 

F(xuX2) = F(x2,x1) ,     F(x,x) = 2f(x) , 

fdF(x1,X2y 2^-) = f'M . (3.2) 
1 /   XI =X'>. 

\      dx 
\ ■»• /   xi=X2 

One then defines a basis of Abelian differentials of the second kind, 
drk(x) through the identity: 

^2dvk(x1)drk(x2) 
k=l 

2yidx2 \xi -X2' 4:(x1-X2y   ym 

and also a global Abelian differential form of the second kind 

2y1y2 + F(xuX2) dx1dx2 ,0 A. 
du){xi,X2) = —T7 ro , (3.4) 

4(xi - X2)2 yi y2 

which has a double pole at xi = X2 with coefl&cient normalized to 1. 
We will consider three different choices of F(xi, X2) in this paper: 

1) The function used, for example, in [32], [17] is given by 

9 

F{i)(x1,x2) = 2\29+2Xg
1
+1xg2+2 + 5^xi4(2Aw + A2<+i(a;i + x2)) , 

2=0 

(3.5) 
and the corresponding basis is 

v^ xkdx 
drJ =    22   (k + J -9) xk-j+g+2 -^— , (3.6) 

k=g+l-j y 

where j ranges from 1 to g. 
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2) A second choice expresses F(xi,X2) in a way which is "covariant" 
with respect to an S1(2,M) transformation of the ^-coordinate, as we 
will explain in more detail in section 5. A convenient way to express 
this polynomial is through the use of a "symbolic" notation as follows. 
The equation for the hyperelliptic curve (3.1) is written as 

y2 = (ax + a2x)^+2 , (3.7) 

2^ + 2 \     2g+2-p   p 
so that 

Ap=CV la^~Pa"- (3-8) 

Of course the notation is symbolic in the sense that ai and a2 are not 
defined as complex numbers. One now defines the so-called (g + 1)- 
polar of the hyperelliptic curve as: 

^(2)^1, X2) = 2{a1 + a2^i)^+1(^i + a2X2)9+1 

g+l    /g+l\/g+l\ 

= 2 2^        (2g+2\        ^P+Q X1X2  ' W-9) 
p,q=l        V p+q / 

We are not aware of the existence of a simple and closed expression for 
the corresponding meromorphic differentials though they can be easily 
computed case by case. 

3) A third choice, due to Baker [34], and studied in detail by Bolza 
[31], will be particularly useful in this paper. It is well known that, for 
hyperelliptic curves, even and non-singular half-integer characteristics 
are in one to one correspondence with the factorizations of (3.1) in two 
polynomials of degree g+l, say y2 = Q(x)R(x). To this factorization 
we will associate the Weierstrass polynomial: 

F(3)(xi,X2) - Q(xl)R(x2) + Q(x2)R(x1) . (3.10) 

In the case of Seiberg-Witten hyperelliptic curves (2.5), the dr^ basis 
acquires a simple expression that will be discussed below. 

It is not difficult to prove that two different choices of Weierstrass 
polynomial, F(xi,X2), ^(xi,^), both satisfying (3.2), are related by 
(see [33], p. 315) 

F(xu X2) - F(xu X2) = 4(xi - X2)2^(xux2) , (3.11) 
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where ^(xi,^) is a polynomial symmetric in ^1,^2? and of degree at 
most g — 1 in each variable. It can therefore be written as 

9 

^(xux2)=J2dijx
9

1-
ix9

2-
j , (3.12) 

where d^ is symmetric in z, j. Inserting (3.11) in (3.3) we also obtain 
the relation between the different basis of second kind differentials 

9 

drj = drj + ^2 d3kdvk . (3.13) 
k=i 

Given a basis of differentials of the second kind drk, constructed 
from a Weierstrass polynomial F(xi,X2), we define the following ma- 
trices of periods: 

i^-hi^'     -rt—£«£**•   (314) 

These matrices generalize the usual ^ = ((uja) of an elliptic curve, to 
a hyperelliptic curve. Notice that the biperiods of the global Abelian 
differential (3.4) can be written as 

du = ATT
2
 A\ r}kj . (3.15) 

A1 J A3 

One can also prove a generalization of Legendre's relation (see, for 
example, [17]): 

77 = 2KA , rf = 2KB - UA-
1
)

1
 , (3.16) 

where K is a symmetric matrix. 

3.2    Hyperelliptic cr-functions and Kleinian func- 
tions 

We are now ready to introduce the key objects:  the hyperelliptic cr- 
functions.    To motivate the definition, recall that the usual elliptic 
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cr-functions can be written as quotients of theta functions with an ex- 
tra exponential involving the //-periods (see, for example, [35]). This 
property suggests to define the hyperelliptic cr-functions in terms of 
theta functions. We need to choose a characteristic [3,13] for these 
functions, and a Weierstrass polynomial F(xi,X2) to define a set of 
meromorphic Abelian differentials with their corresponding ry-periods. 
The a-function is then defined as: 

^[^(tO = ^exp{t;i«^}e[a)/3]((27ri)-S(A-1)Mr) .      (3.17) 

In the above equation, the matrix K (see (3.16)) is given by 

«<, = i»?«(A-iyi> (3.18) 

and C is a nonzero modular form of weight (1/2,0) with respect to the 
action of Sp(2y,Z). When the characteristic [a,/?] is even and non- 
singular, a useful choice is the one made in [29]: 

C = e[a,mr) = (det^^A^Af , (3.19) 

where we have used Thomae's formula [36] for the even characteristic 
associated to the splitting y2 = Q(x)R(x), and AQ^ are the discrimi- 
nants of the Q, R factors. 

An important property of the cr-functions is that they are invariant 
under the action of the modular group Sp(2#, Z). On the other hand, for 
a fixed characteristic, cr-functions corresponding to different Weierstrass 
polynomials are related by 

ap[aj}(v) = exp (^ X>^ ) ^fofiW , (3-20) 

where aF has been defined with F(xi, £2) and aF has been defined with 
F(xi,x2). 

We are now ready to introduce the hyperelliptic Kleinian functions 
as derivatives of the cr-function: 

cf is, m = ""gyw    ^ m _ _a»wyo- 

' (3.21) 
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These functions generalize the Weierstrass ((z) and p(z) to the hyper- 
elliptic case, and in some cases they provide an explicit solution for 
Jacobi's inversion problem. Notice that they depend, again, on the 
choice of Weierstrass polynomial. In particular, one has that 

pfilaJW) = pfjiaj}^) - dkj . (3.22) 

One of the key aspects of the hyperelliptic Kleinian functions pfj [a, (3} (v) 
and of the a-functions is that they satisfy differential equations which 
generalize those of the elliptic case like, for example, Weierstrass' cubic 
relation (pf(u))2 = 4p(n)3 - g2p(u) - #3. This will be the subject of 
the next subsection. 

3.3    Differential equations for the hyperelliptic 
Kleinian functions 

The relations involving the hyperelliptic Kleinian functions pfj[a, P\{v) 
and their derivatives were originally studied by Baker in [32], [33]. The 
case of g = 2 was investigated in full detail in [32]. A generalization of 
this construction has been recently worked out in [17]. In this approach, 
one obtains a set of second order partial differential equations for the 
pfjla,l3}(v) with respect to the "times" v^ that in principle could be 
solved in a series expansion. This would give the series expansion for 
the cr-function in terms of the "times" and the moduli of the curve. 
The main difficulty to extend this method to higher genus is that the 
relevant differential equations are given in an implicit way, and even 
for g = 3 a lot of work is needed in order to extract the first few terms 
of the expansion (see, for example, [17] where the first two terms have 
been obtained for a special -singular- characteristic). It is important 
to notice that these differential equations, being of second order, are 
the same for the different characteristics. The choice of characteristic 
shows up in the choice of initial conditions for the equations. 

For the derivatives of pn one can, however, write an explicit equa- 
tion for arbitrary genus which will be useful later: 

1 1 
pnu = (6pii + \2g)pu + -A2^+i(6pi+i5i - 2pi2 + -5ii\2g-i)    (3.23) 

1 1 
+ ^20+2(6^+2,1 - 6^+1,2 + 2pi3 - 5ii\2g-2 - X^^-s)  • 
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The hyperelliptic Kleinian functions which are used in this equation 
are defined by means of the Weierstrass polynomial (3.5). Any other 
choice will amount, by (3.22), to a ^-independent shift. In (3.23), the 
extra subindices denote derivatives with respect to the components Vi. 
This equation follows from [17], eq.(5.3), and when the curve is written 
in the canonical way, it reduces to Proposition 4.1 of the same paper. 

A different approach to this problem has been taken in a series 
of papers by Bolza [29], [30], [31], who obtained a partial differen- 
tial equation for even hyperelliptic tr-functions which can be explicitly 
written for any genus. First, Bolza derived an equation for the log- 
arithmic derivative of the Kleinian functions pfj. Let us consider a 
a-function defined by the Weierstrass polynomial F, and by the -even 
and non-singular- characteristic [a, /3] associated to the factorization 
y2 = f(x) = Q(x)R(x). Then one has [29]: 

V^W R]ff)\^-i^9-3 _ Ffru^) - Q(x1)R(x2) - Q(x2)R(x1) 
z^pij^pmxi ^2  - ^Xi_X2)2 • 

(3.24) 
This equation will be important later in order to identify the a-function 
which is relevant to the blowup formula. Notice, in particular, that it 
tells us that p^[a,/3](0) vanishes when the Weierstrass polynomial is 

We can now state Bolza's differential equation for an even cr-func- 
tion. Let a be one of the 2g + 2 zeroes of (3.1). We first define the 
following functions: 

{x - z)9-1 = ]£ xf-'hjiz) , (3.25) 
j 

and also the matrices Py(a), 9y (a) through the relations: 

2-,M")*     M*)-2     x_a j     /'(a)     (s-a)" 

± g5(a)^^ = I (_L- + J_) ZM (3 26) 
1,3 = 1 v / 

1      1      dF(x,z)     1      F(x,a)F{z,a) 
4(x-z)2     da Sfiajix-a^iz-a)2 



518      J.D. EDELSTEIN, M. GOMEZ-REINO AND M. MARINO 

In this equation, the ' denotes derivative w.r.t. x. We can now state 
the differential equation satisfied by oF[oi.,l3\(v) [29]: 

d(JF A   F( .    daF     1   F J-^   F 

9        2g-i-j  , pfi^F x 

+ E^r(fe+^(o)).       (^ 
where we have dropped the characteristic to gain in clarity. This equa- 
tion endowes recursive relations for the Taylor expansion of (jF. In fact, 
the appearance of a set of recursive relations is immediate provided we 
replace our even cr-function by its Taylor expansion 

oo 

vF[*,m = Y.T5nu*^' (3-28) 
71=0   ^ '' 

where Cn(#) are homogeneous polynomials of degree 2n in vi, 

JZ^d-5^- = 2n^v). (3.29) 

The recursive relation for the ?n polynomials reads 

iiri / (a) 0^i 

+ £ ^S^^^T + (n ~ 1)(2n " 3) ^-2 £ vfji^ViVj \ • 

The main difficulty of these equations is that they involve the deriva- 
tives of <J

F
 or <;n with respect to a branch point a, which is of little 

practical use. However, as we will see in what follows, one can deduce 
from (3.27) a differential equation involving the coefficients of the curve 
(3.1), which will allow us to give recursive relations for the expansion 
of the cr-functions relevant to the blowup formula. A final comment is 
in order. Due to the fact that £o = 1, one can already obtain a set of 
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differential equations for the quadratic term from (3.30) that yields 

9 

&(*) = - E pjw^i • (3-31) 

Thus, after (3.24), the quadratic contribution to the a-function vanishes 
when F = F^y 

Let us fix for future convenience the Weierstrass polynomial to be 
F(3) (3.10) . This implies no lack of generality as long as (3.20) allows to 
go from a given polynomial to any other. The corresponding matrices 
Pij{a) and qij (a) get further simplified to: 

W^irt-M - (g-^"l5(fl>Q)^(fl-^"l5(g»Q) 
l^PijWx     n,(z)- 2S(ala)(x-a) 

y>gV)a-V- = 5(Y25(a,a)-5(xa)5(g,a) 
i^i SSCcaKaj-aKz-a) V      ; 

where we have introduced the quantity E(x, z), 

Q(x)R(z) - Q(z)R(x) 
^{x,z) =  , (3.33) 

x — z 

that can be easily seen to be a symmetric polynomial of degree at most 
g in its variables. We shall assume in what follows that a is a root of 
Q(x). Notice then that S(x, a) = Q(x)R(a)/(x-a) = -R(a)dQ(x)/da 
and H(a,a) = /'(a) = Qf(a)R(a). We also have that pif(0) vanishes. 
The recursive equation (3.30) can be written as 

tf-'^ - M2n - 1) H(0,a) {^ + ± P«W^ 

9 \ 

+ (n - l)(2n - 3) ?n_2 ^ ^V)^^ \ ■   (3-34) 

Now, let (p(x) be a polynomial of degree g+p. Then, one has 

p-i 
5(g,o) 

(a)   H(a'a) 
E ^H\ VW = ^ - E ^Q^) . (3-35) 
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for appropriate /^ defined in such a way that the polynomial of the 
r.h.s. has degree g. This result comes immediately from the fact that 
both sides of (3.35) are equal when evaluated at any of the g + 1 roots 
of Q(x). Consider now the function 

9-1 

M{x, z) = S(a?, z)Qf(z) - ^ iJti(x)ziQ{z) , (3.36) 
2=0 

where, again, /i»(x) are chosen in such a way that M(x, z) is of degree 
g in variable z, 

M{x, z) = J2 rm^z9*1-' . (3.37) 
2=1 

It can be written, after (3.35), as 

(a) (a) 

9+1   o 

(a) 2=0 

where <& are the coefficients of Q(x). For a given function £, we can 
replace ^+1"i by 5^/% in (3.37)(3.38) with the result 

^rmW-jr- = -$^2(x,o)— . (3.39) 
2=1 a9i (a) ^ 

We now multiply (3.34) by £(#, a)/S(a, a) and sum over (a). The l.h.s. 
as well as the last two terms of the r.h.s. are poynomials in a, while the 
remaining term is the above referred problematic derivative that we can 
now handle by means of (3.39). Conversely, we can instead consider 
a root b of the polynomial R(x) and arrive to formulae analogous to 
(3.35)-(3.39) with 6, R and r* instead of a, Q and q^ whereas m^x) 
is replaced by, say, —ni(x) due to the change of sign of S(a;,6) with 
respect to S(x, a). At the end of the day, the recursive relation can be 
brought to the following form 

Z[x,<;n{v)} = -2n(2n - IjJA^i - Vfasn-^v)] (3.40) 

-(n-l)(2ra-3K-2 Q[M} > 
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where the polynomials Z[x,<;n(v)], V[x,<;n-i(v)] and Qfx, u], s 

z[x, urn = £ ^4 E ^-'iTTr + («^6)' 

V{x, ^_i(v)] = X!H(:r'a) E PiJ^Vi~^ - (a ^ 6) ' 
(a) i,j=l ^ 

9 

Q[x, v\ = ^ -(^ a) E (iij(a)vivj + (o -)• 6) , (3.41) 
(a) ij-1 

should be computed as explained in (3.35), and the differential operator 
A is given by 

9+1 Ft 9+1 f) 
A?n_1 = Vmi(x)^ +Vn^x)^ . (3.42) 

Notice that A involves derivatives with respect to all the coefficients 
of the hyperelliptic curve. Thus, when considering the setup provided 
by the Seiberg-Witten geometry, it will be necessary to retain the de- 
pendence of any quantity on the whole set of coefficients of the curve, 
provided one is interested in higher orders of the Taylor expansion. 
The procedure described above leads to a recursive computation of the 
hyperelliptic cr-function up to arbitrary order in time variables. 

4    Expansion of the blowup function 

We will show in this section that the formalism discussed above is 
the appropriate framework to address a detailed study of the blowup 
function. 

4.1    The Seiberg-Witten geometry 

We will be now more specific and focus on the hyperelliptic curve (2.5) 
describing the low-energy effective action of J\f = 2, SU(N) super Yang- 
Mills theory. This curve can be written as follows: 

y2(x) = Q(x)R(x) , (4.1) 
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where 
Q(x) = PN(x) - 2AN ,       R(x) - PN(x) + 2AN . (4.2) 

The Weierstrass polynomial which is relevant to our problem is, as 
will be clear below, F@) (3.10). It is not difficult to prove that the 
Abelian differentials of the second kind corresponding to this generating 
function are given by: 

1 dx 
dr> = -P>(X)PN(X)— , j = 1,... ,iV - 1 . (4.3) 

2 J y 

From now on, unless the contrary is stated, the drj will denote the above 
differentials, i.e., we will assume that the basis of Abelian differentials 
is given by the generating function (3.10) for the specific case of the 
Seiberg-Witten curve (2.5). Notice that 

drl = 2^^ " 2^ S(* + V*™*^ ■ ^ 
A;=l 

These Abelian differentials of the second kind are associated to the 
coordinates on the Jacobian v^ i = 1,..., iV — 1, that appear in the 
expression for the cr-function (3.17). In this sense, they play the role 
of the differentials that define a Whitham hierarchy and a prepotential 
theory [37]. 

The connection to the Whitham hierarchy can be made more con- 
crete by relating the differentials (4.3) to another basis of Abelian dif- 
ferentials of the second kind which will be useful later. This basis was 
introduced in [25], and is given by 

dSln = RntN{x)^^-i (4.5) 

where the polynomials Rn,N(%), of degree n, are given by RniN(x) = 
— n 

(PN(X))+- In thk equation, (PN(X))N denotes the n/N-th. power of 
the polynomial PN(X) understood as a Laurent series in x 

n 

m=—oo 

and the + suffix means that one only keeps the nonnegative powers of 
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x. One has, for example [25]: 

2 
RiMx) = x >        R2,N(

X
) = x  - JT

U
2 > 

3 3 
R3,N(

X
) = x3 - J{U2X - JY

U
3 • (4.7) 

So, in particular, dCli — dSsw- The relation between these polynomials 
and (4.3) is: 

2N   n N~l 

dQ,n =  ^ bn-N,p-N drN~P - ^ an,mdvm , (4.8) 
^ 1 1 p=l m=l 

where 

JV-m-l 

an,m=   Yl  (N-m-p) (4.9) 
p=0 

. ATA 
^Ti,p um+p H ^     bn-N-k Um+p-k uN-p 

71   k=l 

taking ^o — ~1? ^i — 0 and Uk>N = /^A;<o — 0. For N = 3, for example, 
one finds: 

d^i =6dri + 2u2dvi + 3usdv2 , 

dft2 =3dr2 + Swsdvi + -^^2 . (4.10) 

It is precisely the basis dQn the one that turns out to be relevant in the 
study of adiabatic deformations of the Seiberg-Witten solution within 
the framework of the Whitham hierarchy [25]. 

4.2    Blowup function and cr-functions. Contact 
terms revisited 

We will only consider in this section the case of zero magnetic flux, 
so P = 0 and the characteristic of the theta function is [A, 0J. This 
characteristic is the one associated to the splitting of the Seiberg-Witten 
curve given in (4.1) (see [25], [26]). In view of (3.17), we see that the 



524      J.D. EDELSTEIN, M. GOMEZ-REINO AND M. MARINO 

blowup function (2.20) has the form of a cr-function. To make this 
comparison more precise, notice that, in the Seiberg-Witten context, 

{A   ) * -   da*   ' 2^    dot   • (       ' 

This means that the "times" of the blowup function are related to 
the vector v in (3.17) just by vi = iti+i. We have to compare now 
the exponentials in (3.17) and (2.20). As we stressed at the end of 
section 2, when there is no non-Abelian magnetic flux through the 
exceptional divisor, i.e., the characteristic is [A, 0], the quadratic terms 
in the expansion of the blowup function vanish (2.23). But this is 
precisely the behavior of the cr-function associated to the generating 
function (3.10), as it follows from (3.24) and (3.31). We then obtain 
the following results: 

• The blowup function of SU(N) Donaldson theory in the absence of 
magnetic flux is a hyperelliptic cr-function with characteristic [A, 0] and 
with the Weierstrass polynomial given in (3.10), 

T(ti\ui)=aFw[&,d\(itl+1) . (4.12) 

This identity, combined with the results of section 3, gives a rather 
explicit realization of the expansion (2.18). We will give concrete results 
for the lower genus hyperelliptic surfaces in the next subsection. 

• The contact terms 7fe+i,/+i are given by 

T-^=^ = -^^£^w*)f.      ("3) 
where K, is the matrix introduced in (3.16), and we have used the explicit 
expression for the drk given in (4.3). This result gives yet another 
remarkably simple form of writing the contact terms of SU(N) twisted 
Yang-Mills theory, this time in terms of periods of Abelian differentials. 
Using (4.4), one obtains, for example: 



BLOWUP FORMULAE ... 525 

for I = 1,..., N — 1. One can in fact explicitly check some of these 
expressions by using the results of [25], [26]. The starting point are the 
Whitham equations 

f   duk   \ _ ,     _   iduk (^k\ _ _ i   duk 
Ulog A^rn>a=o "     "    a da* ' VdrB/rn>9=o "    C(n) da* ' 

(4.15) 
where, in the second equation, n = 2,..., iV, and 

cW=^£*»- (416) 

In (4.15), the slow times Tn are the "hatted times" introduced in [26]. 
The Whitham equations in the above form can be easily deduced from 
equation (3.18) of [25] and the redefinition of Whitham times in [26]. 
Notice that these equations have already the flavor of (4.13), since they 
express the derivatives of the moduli with respect to the slow times in 
terms of ^4-periods of Abelian differentials of the second kind. The 
derivatives of the moduli entering in (4.15) are in fact closely related 
to the contact terms. In the formalism of [25], the natural duality- 
invariant coordinates are not the moduli i^+i, but some combinations 
thereof: 

N        r k J-i 
ftfc+1,1+1 = ^resoo [(PN(x))*d(PN(x))Z\ . (4.17) 

The moduli Uk+i are substituted in this formalism by: 

Hk+i = ft*+i,2 = Uk+i + gk+i{y>2i..., u*-i) . (4.18) 

One has, for example: 

N — 2 
^2 = U2  , ^3 = ^3  , ^3,3 =U4+ ^  • (4-19) 

The RG equations of [25] give explicit results for the derivatives of the 

(™±±L) = -2iV^a^±il^.loge[A)0](0|r) , 
VdlogA/rn>2=o da'    da?   m   Z3   6   l      JV ' ' 

(^L =-(* + 0«iW (4-20) 
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Since the first equation in (4.20) also holds by substituting Hk+i -^ 
Uk+ii one can combine it with (2.22) and (4.15) to obtain precisely 
(4.14). In the same way, one can obtain expressions relating the Tkj 
to the periods of the family of Abelian differentials (4.5), and then use 
(4.8) to check (4.13). For example, for g = 2 one finds: 

_u2
2       1 dus    ■ 

Ts>3-J-12MCM' (4-21) 

Using now (4.10) one can explicitly check (4.13) for SU(3) twisted 
Yang-Mills theory. 

The expression (4.13) for the contact terms turns out to be very 
useful, since the differentials dr7 are rather explicit in comparison with 
the Abelian differentials dQn introduced in [25]. In particular, there 
are some cases in which (4.13) is more effective than the expression 
(2.22) involving theta functions. We will see an example in section 6. 
There, we treat in detail the case of manifolds of simple type, where 
contributions come only from those points of the moduli space where 
the maximal number of mutually local monopoles (dyons) get simulta- 
neously massless. 

4L3    Expansion of the blowup function for lower 
genus 

It is instructive to consider in more detail the way in which the formal- 
ism of the previous section leads to an expansion of the blowup function 
as in (2.18) for hyperelliptic surfaces of lower genus. We already know 
the answer for the first two terms, since r(ti\ui) is an even a-function 
with generating function JF^: ^ = 1 and ^i = 0. The differential 
equations for the fourth order term are encoded in the relation 

Zsw[xMti)]-= 12 QswM , (4.22) 

where we use the subindex SW, to indicate that a given quantity has 
been evaluated in the Seiberg-Witten curve (4.1). The l.h.s. of (4.22) 
is given by 

9 0-3 

Zsw[x, ?2(t7)] = 2 J2 **-*-*<$* - Y.^iQW + ViRip))*? ,   (4.23) 
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where fa and z/; are constants (with respect to x though functions of 
the "times" v) that reduce the degree of (4.23) as explained in (3.35), 
and we have defined 

.(ij) -    ^Cn 
^n' = 

dvidvj 
(4.24) 

Notice that the second term of the r.h.s. in (4.23) vanishes for g = 2. 
We obtained, for example, 

4n)x2+2r)z+r)}, 
-(12) -(22) 2$" *> + {<£"+ 2#*>+ua#

L')x (13) .(")> 

-(23) -(H) (33) +(24zo,+u3,r)x+(,r'+u,4Ll,) -(ii)> (4.25) 

for g = 2 and # = 3 respectively. Concerning Qsjy[£,#], a closed 
expression does not seem to be feasible. In the cases of lower genus, we 
found 

Qswfa v] = -4A6(^ x2 + AV1V2 x + vl + U2VI) , 

Q5^[^, v] = -4.A8(4v2v3 x
s + (6^1^ + Avl - U2vl) x2 (4.26) 

+ (4viV2 + Susvl) x + (U4 + 1x2)^3 + ^i - 2^3(1x2^1 - ^3^2)). 

Inserting these polynomials in (4.22) results in a set of differential equa- 
tions for 52 that can be easily solved. For example, in the case of g = 3, 
i.e., iV = 4, the resulting expansion for the blowup function is 

TSU(4)(ti\Ui) = 1- 
A* 

12 
U2ot4A - 4,U2t\t2 + 4^3^*3 ^2^4 

*2,2 
+ 6t^4 + 12^*3*4 + 2*3 + (4.27) 

In the case g — 2, i.e., JV = 3 it is interesting to work out in detail 
the next-to-leading order in the expansion. Notice that it is only from 
the sixth order term in the Taylor expansion of the blowup function 
that the full complexity of (3.40) enters into the game. Thus, for the 
sake of checking the recursive procedure that we derived in the previous 
section we must compute 53. The relevant equation is 

ZswteMv)] = -SOJA^Isiy -Vsw[xMv)]} , (4-28) 

where we must include the full dependence of ^2 in the coefficients of a 
generic hyperelliptic curve before applying the differential operator A. 
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The second term of the r.h.s. in (4.28) vanishes for g = 2. On the other 
hand, the term in the l.h.s. is exactly as (4.25) provided we replace ^ 
by £3. The final answer for the blowup function up to sixth order in 
the "times" is 

A6r 
TsU(3)(U\Ui) = 1 - — |TZ2*3 + 6*2*3 

3*^ - 15^2*2*3 - 60^3*2*3 - 15^2*2*3 360 

- 12u2^3i2*3 - ^3 + Sujtl - 12A6t!jl + • • • .   (4.29) 

Notice that T(ti\ui) is homogeneous of degree zero provided we assign a 
negative weight 1 — i to variables U. We will use the expansions (4.27) 
and (4.29) in section 6 below to check the expressions for the blowup 
functions in the case of manifolds of simple type. 

5    Relation with the KdV hierarchy 

In this section, we will show that the blowup function satisfies the 
differential equations of the KdV hierarchy. More precisely, we will 
show that, after redefining the times through a linear transformation, 
we obtain a g-gap solution of the KdV hierarchy. This is essentially 
a consequence of Theorem 4.6 of [17] (which we review below), but 
some extra work is needed in order to adapt it to our context. We first 
analyze the effect of special linear transformations on the hyperelliptic 
a-functions, and then we establish the relation with the KdV hierarchy. 
A similar relation has been pointed out in [15]. 

5.1    S1(2,R) covariance of the cr-functions 

Consider a hyperelliptic curve of degree 2g + 2 written in the symbolic 
form (3.7), and perform an S1(2,M) transformation of the x-variable: 

x =  ,      be — ad = 1 . (5.1) 
c + dt' y     J 
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The curve (3.7) becomes 

20+2 

Y2 = (ft + /52i)29+2 = Y, V > (5-2) 

where 

Y = (c + dt)g+1y ,    /?i = cai + aas ,      ^2 = dax + 6^2 •       (5.3) 

It is clear that one can always choose the S1(2,E) transformation in 
such a way that the new curve is in canonical form, i.e., such that 

A2,+2 - $** = 0,       Aa^+i = Ml**1* = 4 • (5.4) 

We will now analyze the changes induced by this transformation in 
the rest of the objects defining the a-functions. First, we consider the 
Abelian differentials of the first kind (2.9). Since 

CIT di 
x*-*— = (a + bty-'ic + dty-1^ , (5.5) 

y y 

for i — 1,..., g, it follows that 

dviix) = Ardvm(t) , (5.6) 

where the matrix A/71 can be obtained from the Sl(2, R) matrix by using 
(5.5). This matrix is invertible, since one can explicitly construct an 
inverse by writing t = (ex — a)/(b — dx). It follows from (5.5) that the 
periods of the Abelian differentials of the first kind transform as: 

4 = ^mAf ,       By = BimA™ , (5.7) 

and therefore the period matrix r remains invariant under this trans- 
formation (in the above equations, the hat refers to the periods of the 
curve (5.2)). 

Let us now examine the 77-periods. We have to make now a choice 
of Weierstrass polynomial, and to achieve covariance under S1(2,R) we 
take (3.9). It is easy to check that 

F{2){xux2) = (c + dt1)-
9-\c + dhy^F^ituh) .        (5.8) 
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Therefore, the normalized global Abelian differential of the second kind 
(3.4) also remains invariant. From (3.15), one can then deduce the 
transformation properties of the 77-periods: 

^ = A^fei • (5.9) 

We can now examine the properties of the cr-function under these trans- 
formations. Define 

vt = (A-^rVm , (5.10) 

which is nothing but a linear transformation of the "evolution times". 
Using the above results, we find that 

aF[aJ](vi)iXiy) = aF[aJ](vi){t,Y) , (5.11) 

where F denotes here the polar Weierstrass polynomials associated to 
the corresponding curves. This is the key result that we will need. An 
important corollary of (5.11) is that, after substituting vi = Az

m?;m, the 
cr-function crF[a, /JK'ty )(*,</) satisfies the same differential equations than 
aF[a,f3](vi)(ty) with respect to the hatted times. 

5.2    The KdV hierarchy 

One of the key results of [17] is that the hyperelliptic Kleinian functions 
satisfy the equations of the KdV hierarchy, when the curve is written 
in a canonical form, and when the Weierstrass polynomial is given 
by (3.5). This can be easily deduced from (3.23). When \2g+2 = 0, 
A20+1 = 4, the equation becomes: 

pun = (6pii + ^2g)pii + Qpi+1,1 - 2p2i + 2^1^-1 • (5.12) 

1 — Take now U = 2pii + ^\2gi Put x = vi and let U = v^ be the higher 
evolution times. The equation (5.12) reads: 

di -1"'" - >■'       w 
where ' denotes derivatives w.r.t. x. (5.13) is precisely the KdV equa- 
tion. It is easy to prove that in fact U solves the KdV hierarchy, or, 
more precisely, that it is a #-gap solution of the hierarchy. To see this, 
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recall that the higher evolution equations of the KdV hierarchy are (for 
a review, see Appendix A of [38]): 

^7 = i2j(W>W
/
>...),       *>3, (5.14) 

where the functions in the right hand side are defined recursively as 
follows: 

**+! = \tii - (W + c)i2S - ^'Ri , (5.15) 

and c is a constant. The equations (5.14) and (5.15) with c = X^gjVl 
can be easily checked using again (5.12) and 

Pmpii - PiiiPn + Pii,*+i - Pi22 = 0 , (5.16) 

which is obtained from (5.12) by imposing dipww = ^ipun. 

We can now state our main result about the relation of the blowup 
function to the KdV hierarchy. Taking into account (4.12) and (5.11), 
we can write: 

T(ym = Ajv^Oi) = e^c^VF[A,0](^)(t,y) , (5.17) 

where the cr-function in the right hand side has been defined using the 
Weierstrass function (3.5), and the linear transformation A has been 
chosen in such a way that the hyperelliptic curve (£, Y) is written in a 
canonical form. The cy are constants depending on the parameters of 
the S1(2,R) transformation and the moduli of the curve, and they can 
be computed explicitly. They simply arise as in (3.20), by comparing 
cr-functions defined for different Weierstrass polynomials. Using the 
results above, we finally find that 

w = _2^fI+4cil + ^29 (5-18) 

is a g-gap solution of the KdV hierarchy. In other words, the blowup 
function is, up to a redefinition of the evolution times and the shift in 
(5.18), a r-function of the KdV hierarchy. Remember that the blowup 
function appears in fact in the generating function of the correlation 
functions involving the exceptional divisor. A corollary of the above 
is that these correlation functions on the manifold X are governed by 
the KdV hierarchy, and they have as initial conditions the generating 
function of the original manifold X. 
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In [1], the blowup function of SU(2) Donaldson-Witten theory was 
obtained precisely by solving a differential equation. The above result 
shows that the generalization to SU(N) involves the KdV hierarchy. 
In fact, we can now recognize a posteriori the differential equation of 
[1] as the reduction of the KdV equation, whose quasi-periodic solu- 
tions are of course elliptic functions. It is interesting to notice that the 
differential equations governing the blowup behavior of SU(N) topo- 
logical Yang-Mills theory in four dimensions turn out to be essentially 
the same than the equations governing the correlation functions of two- 
dimensional topological gravity [20]. This is yet another manifestation 
of the intimate relationship between 4d J\f = 2 theories and 2d physics2. 

6    Manifolds of simple type and multisoli- 
ton solutions 

6.1    Af = 1 points 

There are points in the moduli space of the hyperelliptic curve where 
one has maximal degeneration, i.e., all the Bi cycles collapse. These 
points are usually called, in the context of Af = 2 gauge theories, the 
Af = 1 points, since these are the confining vacua that one obtains after 
breaking Af = 2 down to Af = 1. The physics of these points in pure 
Yang-Mills theory has been studied in detail in [39], and some aspects 
have been addressed in [40] from the point of view of the Whitham 
hierarchy. In this subsection we will rederive some of the results of 
[39], [40] by using the approach of [21], section 4.4. In particular, we 
will obtain a compact expression for the leading contribution of the 
off-diagonal magnetic couplings near the Af = 1 points. 

The Af — 1 points of the Af = 2 gauge theory are described by 
Chebyshev polynomials. The polynomial PN(X) becomes 3, at a point 

2Although the integrable hierarchy is the same, the generating function of 2d 
topological gravity and the blowup function are of course very different. For ex- 
ample, the former contains an infinite number of times corresponding to the grav- 
itational cohomology classes, while the latter is a g-gap solution with only a finite 
number of times turned on. 

3We set for convenience A = 1 along this section. 



BLOWUP FORMULAE ... 533 

of maximal degeneration, 

PN(X) — 2cos ( ATarccos- j  , (6.1) 

and the other Af = 1 points are obtained using the Z^ symmetry of the 
theory. From now on we will focus on the J\f = 1 point corresponding 
to (6.1). The branch points of the curve are now the single branch 
points ei = —62^+2 = 2, and the double branch points are: 

e2k = 62^+1 = (t>k = 2 cos — ,       k = 1,..., g . (6.2) 

The values of the Casimirs at this degeneration are given by the ele- 
mentary symmetric polynomials of the eigenvalues 2 cos ^ ? k = 
l,...,iV [39]. For example, 

u2 = TV,    u3 = 0,    n4 = -(3-7V). (6.3) 

When the curve degenerates in the way specified by (6.1), the Bi cycles 
surround the points fa clockwise, while the A1 cycles become curves 
going from fa to 2 on the upper sheet and returning to fa on the lower 
sheet. The hyperelliptic curve (3.1) becomes 

    9 

y = Vx^ Y[(x - fa) . (6.4) 
k=i 

Consider now the normalized "magnetic" holomorphic differentials: 

<J> = {B-Tdvk = ^^ • (6.5) 
v 

Then, it follows from (2.10) that 

^-.£(0)' = -resT -r u* = 5) . (6.6) 

Using the explicit expressions (2.9) and (6.4), we find: 

^(aO = -2t8in^II(a;-?,), (6.7) 
ift 

and 

u3 =  N ^— (6.8) 
y/x2 -A{x- <f>j) . 
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Let So = 1, Sj = Ylii<...<i-Xii'"xij be the elementary symmetric 
polynomial of degree j. From (6.5), (6.7) and (4.11) one deduces: 

^tL = 2<(-l)'8in^5,_1(^m). (6.9) 

One can in fact check that this expression agrees with the results of 
[39]. Indeed, one can rederive from (6.9) equation (5.3) of [26]. 

Near the Af = 1 points, the diagonal components of the "magnetic" 
couplings diverge, but the off-diagonal components are finite. The lead- 
ing terms of the off-diagonal components have been investigated in [39], 
where an implicit expression for them was proposed in terms of an in- 
tegral involving a scaling trajectory. In [40] it was shown that the 
Whit ham hierarchy gives some nontrivial constraints on these terms, 
and an explicit expression satisfying the constraints was proposed. We 
will now derive a very simple expression for the leading terms of the 
off-diagonal couplings. Prom the above considerations it follows that 

r^ = l/2c/. (6.10) 

Taking into account (6.8), the computation of (6.10) reduces to an 
elementary integral [21]. Denoting: 

7i = -* 

we find 

\ 

^ = tan^, (6.11) 
&. + 2 2iV' y       ) 

rk
D
e = -log^-^ ,       k<£. (6.12) 

We have checked that this expression agrees with the proposal of [40] 
up to N = 5, although (6.12) is considerably simpler. Finally, notice 
that the diagonal couplings diverge logarithmically r^ —>• ioo [39]. 

6.2    The blowup function for manifolds of simple 
type 

We are now ready to compute the blowup function for manifolds of 
simple type. The first thing we have to do is to rewrite (2.20) in the 
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magnetic frame which is appropriate to the strong coupling regime, as in 
the related analysis of [40]. Since the blowup function is invariant under 
duality transformations, the only change will be in the characteristic, 
which is now [0, A], and in the substitution of all the variables by their 
duals (i.e., we will have r^ instead of r^, and duk/dan^ instead of 
duk/da*.) 

We now have all the ingredients to investigate the blowup function 
for manifolds of simple type. The dual theta function 6£>[(), A](£|T) 

vanishes at the Af = 1 point, but after quotienting by O^O, A](0|T) we 
get a finite result: 

(6.13) 

where 

sp=±lp<q   \^ + 7p/ 

and the values of the S-periods at the Af = 1 points are given in (6.9). 
To derive the above equation, we have used the explicit expression for 
the offdiagonal couplings (6.12). The values of the contact terms can 
be obtained from the logarithmic derivatives of (6.13) following (2.22), 
but it proves to be much more useful to use our new equation for the 
contact terms (4.13). We just have to compute the 5-periods of the 
Abelian differentials (4.3) at the Af = 1 point. This is easy to do by 
making the change of variables x = 2 cos# [39]. One has 

dr1 = iP^9) cot Ntf sin 6 d6 , (6.15) 

with periods: 

rfk = res^dr* = jjP'Mk) sin — , (6.16) 

where 0*. = kir/N. The contact terms are then given by: 

T^^-.WJs.n-^. (6.17) 
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One has, for example: 

i    .   myr   due £ 

i   .   2m7r  dui .      . 
%'t = Nsmi^d^;- (6-18) 

We have checked for low values of iV that the expression (6.17) agrees 
with the one obtained using (2.22). Clearly, (6.17) is much more com- 
pact in this case. The last expression in the first line of (6.18) actually 
follows from (4.14), but can be checked using the results of this section. 

Putting all the ingredients together, we find that the blowup func- 
tion at the A/" = 1 point is given by 

r(U) = ^ exp    - ^ tutt—P^fa) sm — — 

•Sn(^r-p{ETfe}-^ 
From the point of view of the underlying KdV hierarchy, this blowup 
function has a very simple interpretation: it is a r function for an 
(iV — l)-soliton solution, after making the linear transformation of times 
explained in section 5. This is a simple consequence of the fact that 
quasi-periodic solutions of the KdV hierarchy become multisoliton so- 
lutions in the limit of maximal degeneracy of the underlying Riemann 
surface (see, for example, [21], [22]). 

An important consistency check of (6.19) can be made by consider- 
ing the explicit expression of the Donaldson-Witten generating function 
for manifolds X of symple type with b^X) > 1 obtained in [8], which 
is trivially extended to include more general descent operators: 

'N-1 \ /-,   _-,.\-(*3,Xk)/2 

(6.20) 
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In this equation, we have only recorded the contribution of one of the 
M = 1 points, since the contributions of the other points follow from 
ZAT symmetry. For each z = l,...,7V — 1, the sum over Xi is over all 
the Seiberg-Witten basic classes of the manifold X [41], whose Seiberg- 
Witten invariants are denoted by SW(XJ). The values of the jB-periods 
and the contact terms are those given in (6.9) and (6.17), respectively. 
( , ) denotes the product in (co)homology. Finally, a and /5 are uni- 
versal constants that only depend on N. If we now perform a blowup, 
for every basic class x of X we will obtain the basic classes x ± B in 
X, where x denotes the pullback to X of the basic class of X [42]. The 
Seiberg-Witten invarians are SW(x ±5) = SW(x) [42]. If we now con- 
sider Z{pk) fk, 5),~'=1, we will have to substitute Xi —> Xi + SiB in (6.20), 

with Si = ±1. The sum over basic classes of the blownup manifold X 
factorizes into a sum over the Xi and a sum over the Si. Taking into 
account that (x, B) = 0 for any cohomology class x pulled back from 
X to the blownup manifold, and that B2 = — 1, we find that, under 
blowup, (6.20) gets an extra factor which exactly agrees with (6.19) 
up to an overall constant4. This is an important consistency check of 
the whole story and in particular of the expression (6.20). The check 
is not trivial since, when using (6.20), we have to rely on properties 
of the Seiberg-Witten invariants, while (6.19) was derived by means of 
the tx-plane integral. 

Let us finish this section by considering in detail the expression we 
obtained for the blowup function at the Af = 1 point (6.19) for the cases 
of lower genus. For g = 2, for example, 71 = l/y/3 and 72 = V3. After 
using the explicit values of the 5-periods given in (6.9), we obtained: 

Tstf(3)(*2,*3) = -e-^i-^|cosh(v/3t2) + 2coshes)} •        (6.21) 

Notice that the blowup function for simple type manifolds is given 
by a compact expression as (6.21), in contrast to the case of non-simple 
type manifolds that we analyzed above. This fact was already observed 
in the elliptic case [1], and is related to the degeneration of hyperelliptic 
functions to trigonometric functions. On the other hand, both expres- 
sions must coincide as long as the blowup function is duality invariant. 
This means that the whole expansion (2.18) must reorganize itself into 

4The overall normalization also agrees if one takes into account the universal 
constants of the w-plane integral in the definition of the blowup function. 
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(6.21) when U2 = 3 and us = 0. Indeed, in expanding (6.21) up to sixth 
order in the times 

TSU{S) (*2, *3) = 1 - 2*2*3 - 4*3 " ^20^ + 3*2*3 + g*2*3 + J^Q*3 + ' ' '  > 

(6.22) 
we find complete agreement with the expansion (4.29) in the nonsimple 
type case. This is an important consistency check of the results of this 
paper. 

For g = 3, one has 71 = y/2 — 1, 72 = 1 and 73 = \/2 + 1, and the 
blowup function turns out to be: 

= -^e-^'-^-^+^j^cosh^ + 2*3 - 2U) 

+ >/2 cosh(-t2 + 2*3 + 2*4) + (V2 - 1) cosh((V2 + 1)*2 + 2*4) 

+ (\/2 + l)cosh((\/2-l)i2-2i4)} . (6.23) 

Again, it is immediate to check that the leading terms of its expansion, 

TsU(4){t2, h, U) = 1 - -*3 - ^2*3*4 — 7^2*4 + o*2*4 ~ o*4 H J 

(6.24) 
are in agreement with the result obtained in the nonsimple type case, 
after taking into account that ^2 = 4 and u^ = 0 at the A/" = 1 point. 

7    Concluding Remarks 

In this paper we have carried out a detailed analysis of blowup for- 
mulae in SU(N) Donaldson-Witten theory. In particular, we have 
found an explicit procedure to expand it in terms of the Casimirs of the 
gauge group up to arbitrary order, by using the theory of hyperelliptic 
Kleinian functions. This theory clarifies in fact many other aspects of 
blowup formulae and the ^-plane integral, like contact terms and the 
relation with integrable hierarchies. 

Although higher rank generalizations of Donaldson-Witten theory 
seem to be rather intractable mathematically, it is likely that the be- 
havior of the higher rank invariants under blowup can be determined 
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by using only a limited amount of information, like in the work of Fin- 
tushel and Stern [1]. This article gives very precise predictions for this 
behavior. In particular, it implies that the higher rank generalization 
of the differential equations studied in [1] will be essentially the KdV 
hierarchy. 

Our work can be generalized in many different directions. First of 
all, we have analyzed only the case of /? = 0, and certainly this is only 
one particular case of the general blowup formula. More work is needed 
along this direction. In particular, it would require a generalization of 
the procedure developed in section 3 for other kind of a-functions 

It would be also interesting to work out the details for theories 
including massive hypermultiplets and/or other gauge groups. One of 
the most interesting aspects of the theories with matter is that the 
magnetic flux turns out to be fixed by topological constraints, and this 
gives a nonzero value of /? in the blowup function [7], [43]. 

Another direction to explore is the relation between the hyperellip- 
tic Kleinian functions and the theory of the prepotential. The blowup 
function gives a natural set of Abelian differentials of the second kind, 
and we know from general principles that such a set is one of the basic 
ingredients in the construction of a Whitham hierarchy [37]. It would 
be very interesting to develop this relation in general, at least for hi- 
erarchies associated to hyperelliptic curves. This would further clarify 
the relations between blowup functions in generalizations of Donaldson- 
Witten theory, and the construction of Whitham hierarchies for super- 
symmetric M =2 theories in [12], [13], [25], [26], [44]. 
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