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Abstract 

We consider quantum mechanical Yang-Mills theories with 
eight supercharges and a Spin(5) x SU(2)R flavor symmetry. 
We show that all normalizable ground states in these gauge the- 
ories are invariant under this flavor symmetry. This includes, 
as a special case, all bound states of DO-branes and D4-branes. 
As a consequence, all bound states of DO-branes are invariant 
under the Spin(9) flavor symmetry. When combined with in- 
dex results, this implies that the bound state of two DO-branes 
is unique. 
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1    Introduction 

The existence of normalizable vacua in supersymetric Yang-Mills theo- 
ries is a question that arises in many different contexts in string theory 
and field theory. Index arguments can be used to determine whether 
any vacua exist, but not exactly how many vacua. An index only counts 
the difference between the number of bosonic and fermionic vacua. To 
count the actual number of vacua, we need more information such as 
how the vacua transform under the global symmetries of the theory. 

In this paper, we consider quantum mechanical Yang-Mills theories 
with eight supercharges and an Spin(5) x SU(2)R symmetry. We take 
our theories to be dimensional reductions of d = 6 N=l Yang-Mills 
theories coupled to matter. The question of normalizable ground states 
in these models arises in the study of bound states of DO-branes and D4- 
branes [1], [2]; for example, a single DO-brane and a single D4-brane can 
be shown to bind using L2 index arguments [3] generalized to theories 
without a gap. Other examples from string theory involve DO-branes 
moving on orbifolds [4], and the question of counting H-monopoles in 
the heterotic string [5], [3]. 

In the following section, we describe the field content and sym- 
metries of these gauge theories. We then show that all normalizable 
ground states in these theories must be invariant under the SU(2)R 

symmetry. The argument we give is suggested by recent work on the 
Z/2-cohomology of hyperKahler spaces by Hitchin [6]. Our result should 
have implications for defining and computing the L2-cohomology of 
instanton moduli spaces. Certain instanton moduli spaces appear as 
Higgs branches in gauge theories of the kind under consideration. For 
example, the moduli space of U(N) instantons in R4 appears as the 
Higgs branch of the quantum mechanics describing D0-D4 systems. 
Although these spaces can be singular, their embedding into quantum 
mechanical gauge theory provides a natural regularization of the singu- 
larities. Heuristically, the wavefunction for a state corresponding to a 
form on the Higgs branch is smoothed out by leaking onto the Coulomb 
branch. It would be interesting to explore this connection further. 

There is a second jR-symmetry in these theories which comes from 
the dimensional reduction of the Lorentz group. For reductions of d = 6 
N=l Yang-Mills theories, this is a Spin(5) symmetry. Using basically 
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the same argument as in the case of the SU(2)R symmetry, we show 
that all normalizable ground states in these theories are invariant un- 
der this Spin(5) symmetry. For reductions of d = 10 N=l Yang-Mills 
theories [7], the i?-symmetry group is Spin(9). It is quite straightfor- 
ward to argue that as a consequence of the SU(2)R x Spin(5) invariance 
theorem, all ground states in these theories with sixteen supercharges 
must be invariant under the Spin(9) symmetry. 

We can couple these invariance theorems with results from L2 index 
theory [8], [9]. The L2 index for the non-Fredholm theory1 of two 
DO-branes is proven to be one [8]. We also know that the L2 index 
for the theory of a single DO-brane and a single D4-brane is one [3]. 
Our invariance results imply that all bound states in these theories are 
bosonic, and therefore unique. These results can also be combined with 
other interesting but heuristic attempts to study the L2 index by either 
deforming the Yang-Mills theory [10], [11], or by using insights from 
string theory [12] to compute the bulk and defect terms. The bulk 
terms for various Yang-Mills theories have been directly computed in 
[13], [14], [15]. There have also been a number of comments on the 
implications of invariance for the asymptotic form of particular bound 
state wavefunctions [16], [17]. 

2    The Field Content and Symmetries 

2.1    The vector multiplet supercharge 

The argument we wish to make requires reasonably little explicit knowl- 
edge of the gauge theory. There is a Spin(5) x SU(2)R symmetry which 
commutes with the Hamiltonian H. Since we are considering a gauge 
theory, we must have at least one vector multiplet. It contains five 
scalars x^ with fi = 1,..., 5 transforming in the (5,1) of the symme- 
try group. These scalars transform in the adjoint representation of the 
gauge group G. Let p^ be the associated canonical momenta obeying, 

K,p"B}=i5^5AB, (2.1) 

whdre the subscript A is a group index. 
1By non-Fredholm, we mean a theory without a gap. 
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Associated to these bosons are eight real fermions Aa where a = 
1, ...,8 transforming in the (4,2) representation of the symmetry 
group. These fermions are also in the adjoint representation of the 
gauge group. The eight supercharges also transform in the (4,2) rep- 
resentation. These fermions obey the usual quantization relation, 

{AaA, A^B} = SabSAB- (2-2) 

Let 7^ be hermitian real gamma matrices which obey, 

{'f,'f} = 25'u'. (2.3) 

Appendix A includes an explicit basis for these gamma matrices 
along with a discussion of the symmetry group action. 

The supercharge takes the form, 

Ql = (7WA). + ^ABC Cr A^afc). + DabAXbA, (2.4) 

where /ABC are the structure constants and 7^ = (1/2) (7^7^ — 7^7M). 
The real anti-symmetric matrix D does not involve momenta. The D- 
term transforms in the (1,3) representation of the symmetry group, 
and in the adjoint representation of the gauge group. The precise form 
of D is not important for our argument. In general, there can be many 
vector multiplets. In that case, the terms in the supercharge (2.4) 
generalize in an obvious way. 

2.2    The hypermultiplet supercharge 

A hypermultiplet contains four real scalars which we can package into 
a quaternion q with components q1 where i = 1,2,3,4. This field trans- 
forms as (1,2) under the symmetry group, and in some representation 
T of the gauge group. We again introduce canonical momenta pi sat- 
isfying the usual commutation relations. Now SU(2)R ~ SP(1)R is 
the group of unit quaternions. We choose SU(2)R to act on a hyper- 
multiplet q by right multiplication by a unit quaternion. The gauge 
symmetry commutes with the SU(2)R symmetry and acts by left mul- 
tiplication on q. See Appendix A for a more detailed discussion. 
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The superpartner to q is a real fermion tpa with a = 1,..., 8 satis- 
fying, 

{i>*,i>bS} = 8ab8l (2.5) 

These fermions transform in the (4,1) representation, and the i?, S 
subscripts index the T representation of G. For n hypermultiplets, the 
gauge group G acts via a subgroup of the Sp(n)L symmetry. In terms of 
the s* operators given in Appendix A, the hypermultiplet charge takes 
the form 

Qa = 4bll>bPi+Iabll>b- (2.6) 

We have lumped all the interactions into the non-derivative opera- 
tor / which transforms in the 2 of SU(2)R. We also need to note that / 
is proportional to x^j^ with a proportionality constant that commutes 
with the Spin(5) generators. We have also suppressed gauge indices. 
Note that since the sj implement right multiplication by a quaternion, 
they commute with 7/x. Again, there can be many hypermultiplets in 
different representations of the gauge group. In that case, the hyper- 
multiplet supercharge (2.6) generalizes in a straightforward way. The 
full Hermitian supercharge is the sum of the vector and hypermultiplet 
supercharges, 

Qa = Q: + Qh
a. 

2.3    The SU{2)R currents 

The three generators of SU(2)R correspond to right multiplication by 
/, J, K and are given in terms of the gauge invariant rotation generators, 

Wij = QiPj - qjPi- (2.7) 

Again here and in the subsequent discussion, we generally suppress 
gauge indices. In accord with prior notation, we denote the three 
SU(2)ii generators by s1: 

s2 = Wn - WS4 + I Xs2X 

s3 = Wxz + WM + ^ As3A 

t = Wu - W23 + l- As4A. (2.8) 
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As they should, these generators act on the bosons of the hyper- 
mult iplet and the fermions of the vector multiplet. Adding either more 
vector multiplets or more hypermultiplets is straightforward: we sim- 
ply need to sum the contributions to the three currents (2.8) from each 
multiplet. 

2.4    The Spin(5) currents 

The ten generators of Spin(5) act on the bosons of the vector multiplet 
and all fermions in the problem. The generators are given by: 

T"" = sV - s-y - i-yft (AaA6 + Mfc). (2.9) 

Adding either more vector multiplets or more hypermultiplets is 
again straightforward. 

3    An Invariance Argument for the SU(2)R 

Symmetry 

3.1    Relating the SU(2)R currents to the 
supercharge 

A key point in the argument is a relation between the supercharge and 
the SU(2)ji currents. For some choice of vl

a, we want to show that: 

Let us start with the vector multiplet. We take a candidate gauge 
singlet, 

(vi)ia={sY\)ax\ (3.2) 

First note that this choice anti-commutes with Qh because A anti- 
commutes with ip. It also anti-commutes with the ZMerm in (2.4). To 
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see this, we compute: 

J2 {D-»^ (vit} = a$tr {J-fDZ) , (3.3) 

However, we can immediately see that (3.3) vanishes by noting that 
the operator sl/yuDT does not contain a singlet under Spin(b). The 
trace of the operator therefore vanishes. Our choice for vi anti-com- 
mutes with |/AB<7 (l^^A^^^a ^or ^e same reason: the resulting 
trace does not contain a singlet of Spin(5). 

What remains is the following anti-commutator which is not hard 
to compute, 

a 

The exact proportionality constant does not matter for this argu- 
ment. The important point is that we can use (3.2) to generate the 
terms in the SU{2)R currents which act on vector multiplets. 

For the hypermultiplet, we take the following candidate gauge sin- 
glet: 

Ma^is^J. (3.5) 

Note that V2 anti-commutes with Qv because A anti-commutes with 
%l). It is also not too hard to argue that the anti-commutator of i^ with 
the interaction term / in (2.6) must vanish. We see that, 

53 l7^' Ma) ~ fa («V/) , (3-6) 
a 

but 5*5'/ does not contain a singlet under the Spin(5) action on fermi- 
ons because / is proportional to 7^ so the trace vanishes. 

Again what remains is the anti-commutator, 

EK^i'M-}- (3-7) 

It is easy to check that the ifjip terms in the anti-commutator vanish 
because, 

^2<ij;{sk}Tsisk<i/; = 0. 
k 
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With a little additional work, we find that (3.7) gives precisely the 
bosonic terms in (2.8) up to an overall non-vanishing constant. We 
therefore conclude that for appropriately chosen constants ai and o^ 
the choice 

ti = ai(«i)i + aa(t*)'B (3-8) 

satisfies (3.1). 

3.2    Rotating a ground state 

We assume there exists a normalizable ground state ^ which is not 
a singlet under SU(2)R. Under some SU(2)JI rotation, we obtain an- 
other non-trivial L2 zero-energy state. What does L2 imply? Let us 
collectively denote all the bosonic coordinates x and q by y1 where 
i = 1,..., D. Normalizability requires that, 

(y,y) = JdDy¥(yi)y(yi) < 00. 

For some s\ the state 5*$ is a non-trivial ground state. It satisfies the 
relation, 

Qa(Si*)=Qa* = 0, (3.9) 

for each a by definition of a ground state. Using (3.1), we find that 

a 

=X;««K*)- (3-10) 

The new ground state looks Q-trivial. To show that it really is 
physically trivial, we need to check that it has zero norm. Since Q is 
Hermitian and kills S1^, the norm of 3*\I> vanishes if we can integrate 
by parts. To integrate by parts, we argue as in Jost and Zuo [18], [6]: 
in terms of y = \yl\, we can cutoff of the integral using a smooth bump 
function pR(y) which vanishes for y > 2R, satisfies \dpR\ < 4/i? and is 
one for y < R, 

<?*,?*>= lim (PR{y)?*,$*). 
H-»oo 
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Using (3.9) and (3.10), we see that 

a 

= lim Y,([Qa,PR(y)]#*A*). (3.11) 
R-+oo < 

a 

We see that [Qa,pR{y)] is 0(l/y) and vanishes for y < R and 
y > 2R. Since vf is 0{y) at worst, the right hand side of (3.11) van- 
ishes. The SU(2)R symmetry therefore acts trivially on all normalizable 
ground states. 

4    Invariance Under the Spin(b) Symmetry 

4.1    Relating the Spin(5) currents to the 
supercharge 

We want to use essentially the same argument as in the SU(2)R case. 
For some choice of vj^, we want to show that: 

T^ = j2{Qa,vn- (4-1) 

Let us start with the vector multiplet. We take a candidate gauge 
singlet, 

(viW^bw-r^uh. (4.2) 
Again this choice anti-commutes with Qh because A anti-commutes 

with ip. The anti-commutator with \fABC {l^^A^B
X

C)a resu^s in a 
trace of three gamma matrices and so vanishes. It also anti-commutes 
with the J9-term in (2.4). To see this, we compute: 

X) P****. Mr} = Dab {-/V - 7"^}^. (4.3) 

However, this combination does not contain a singlet under Spin(5) 
so (4.3) vanishes. 
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We are left with the following anti-commutator which we need to 
compute quite carefully, 

E {(^A)a > (^n = 8 (sV - afiT) + 2iXYv\. (4.4) 

This computation is sensitive to the size of the 7 matrix. We obtain 
precisely the right ratio between the bosonic and fermion terms in (4.4) 
because the theory is reduced from six dimensions. We would not obtain 
the right ratio had we considered a theory reduced from ten dimensions 
with a Spin(9) symmetry. Again, we can use (4.2) to generate the terms 
in the Spin(5) currents which act on vector multiplets. 

For the hypermultiplet, we take the following choice: 

ter^-raVxy. (4.5) 

Again V2 anti-commutes with Qv because A anti-commutes with if). 
In much the same way as before, we can argue that the anti-commutator 
of V2 with the interaction term / in (2.6) must vanish. We see that, 

£ {Iabi>b, (v2)n ~ qHv (/y-V) , (4.6) 
a 

but I^s1 again does not contain a singlet under Spin(5) so the trace 
vanishes. 

The remaining anti-commutator involves the kinetic term in the 
hypermultiplet charge, 

£ {sLfrPi, Mr} = -i^r^. (4.7) 

Again we conclude that for appropriately chosen constants ai and 
a2j the choice 

tC = ai(«ir + a2(«2r (4-8) 
satisfies (4.1). A straightforward repeat of the argument given in sec- 
tion 3.2 then implies that the Spin(5) symmetry acts trivially on all 
normalizable ground states. 
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4.2    Theories with sixteen supercharges 

For theories obtained by reduction from ten dimensions, the previous 
argument does not apply directly to the Spin(9) symmetry for reasons 
mentioned earlier. These theories contain scalars y1 where i = 1,..., 9 
transforming in the adjoint representation of the gauge group. The 
superpartners to these scalars are real fermions r/a where a = 1,..., 16 
also in the adjoint representation. 

However, we can always view these theories as special cases of 
theories with eight supercharges. We choose any 5 of the 9 scalars 
yl to be the vector multiplet, and the remaining 4 scalars comprise 
an adjoint hypermultiplet. Of the original Spin(9) symmetry, only a 
Spin(5) x SU(2)L X SU(2)R subgroup is manifest. The scalars decom- 
pose in the following way, 

9    -+    (5,1,1) ©(1,2,2). (4.9) 

The fermions decompose according to, 

16    ->    (4,1,2)0(4,2,1). (4.10) 

Our invariance argument implies that all normalizable ground states 
are invariant under the Spin(5) x SU(2)R symmetry. However, this 
is true regardless of how we embed Spin(5) x SU(2)R into Spin(9). 
This is only possible if the full Spin(9) symmetry acts trivially on all 
normalizable ground states. 
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A    Quaternions and Symplectic Groups 

We will summarize some useful relations between quaternions and sym- 
plectic groups. Let us label a basis for our quaternions by {1, /, J, K} 
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where, 

I2 = J2 = K2 = -1,        UK = -1. 

A quaternion q can then be expanded in components 

q = qi + Iq* + Jq* + Kq4. 

The conjugate quaternion q has an expansion 

q = ql-Iq2- Jq3 - Kq\ 

The symmetry group 5^(1)^ ~ SU(2)R is the group of unit quater- 
nions. Let A be a field transforming in the 2 of 5^(1)^. If we view 
5^(1)^ acting on A as right multiplication by a unit quaternion g then, 

A^Ag. 

In this formalism, A is valued in the quaternions. Equivalently, we can 
expand A in components and express the action of g in the following 
way, 

Aa-^a6A6, 

where gab implements right multiplication by the unit quaternion g. For 
example, right multiplication by / on q gives 

q    -+ql    ^q1I-q2-qsK + q4J, 

which can be realized by the matrix 

/* = 

/0   -1 0 0\ 
10 0 0 
0    0 0 1 

\0     0 -1 0/ 

(A.l) 

acting on q in the usual way ga—^/^tjv   The matrices J^ and KR 

realize right multiplication by J, K while 1R is the identity matrix: 

J R 

/0   0 -1    0 \ 
0   0 0-1 
10 0      0 

\0   1 0      0 J 

KR = 

[0    0    0   -1^ 
0    0     10 
0-100 

\l     0     0    0 J 

(A.2) 
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We define operators s7 in terms of {l^, J^, JR, KR} 

s ' \ 0    1R) ' V 0    IR) ' 

,3-^ M   S*-(KR 0 
s
 ~ '  0    JR)'    s - { 0    if* 

In a similar way, the group Sp(2) ~ Spin(5) is the group of quater- 
nion-valued 2x2 matrices with unit determinant. We will view Sp(2) as 
acting by left multiplication on a field ^ in the defining representation. 
So an element U G 5^(2) acts in the following way: 

Equivalently, in terms of components 

*a ->• Uabyb. 

Lastly, we can give an explicit form for the gamma matrices (2.3) in 
terms of quaternions: 

i      A     0 \ 2      fO   1\ 3 _ / 0    / 
7  _ [o   -1   '        7       ll   OJ '        7       V-/   0 

4_ i  o    A 5     f 0     K 
7 _ l

v-j o)'     7    v-^ 0 

In turn, {/, J, if} can be expressed in terms of the Pauli matrices a1 

as 4 x 4 real anti-symmetric matrices: 

0     ^\ T _ Ai(T2     0  >\ xr - ^ 0     ^ 
-a1    Oh [    0      -ia2'        K- {-a3    0 
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