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Abstract 

We continue to explore the conjectural expressions of the 
Gromov-Witten potentials for a class of elliptically and K3 fiber- 
ed Calabi-Yau 3-folds in the limit where the base P1 of the K3 
fibration becomes infinitely large. At least in this limit we argue 
that the string partition function (= the exponential generating 
function of the Gromov-Witten potentials) can be expressed as 
an infinite product in which the Kahler moduli and the string 
coupling are treated somewhat on an equal footing. Technically 
speaking, we use the exponential lifting of a weight zero Jacobi 
form to reach the infinite product as in the celebrated work of 
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Borcherds. However, the relevant Jacobi form is associated with 
a lattice of Lorentzian signature. A major part of this work 
is devoted to an attempt to interpret the infinite product or 
more precisely the Jacobi form in terms of the bound states of 
D2- and .DO-branes using a vortex description and its suitable 
generalization. 

1    Introduction 

The Gromov-Witten invariants and their potentials have been vigor- 
ously investigated in recent years mainly due to their mathematical 
soundness. See [6-8, 69, 73] for their fundamental properties. How- 
ever the Gromov-Witten potentials emerge somewhat indirectly in the 
conventional physical approaches. Indeed, for Calabi-Yau 3-folds, it is 
believed [10] that they should appear in the "topological limits" of the 
naturally defined closed topological A string amplitudes the explicit 
evaluations of which are prohibitively difficult in general. 

In the tests of heterotic/type IIA string duality conjectures, it was 
desirable to develop the one-loop calculation scheme on the heterotic 
string side to extract the objects which might correspond to the Gro- 
mov-Witten potentials on the type IIA string side. In the pioneering 
work of Harvey and Moore [49] this task was taken up and certain 
integrals involving indefinite theta functions were explicitly evaluated 
on the heterotic string side extending the calculation in [25]. In the 
course of the calculations they curiously pointed out the relevance of 
Borcherds' work [12] on holomorphic infinite products. The Harvey- 
Moore method has revealed the presence of a new interesting subject on 
the theta correspondence and has an advantage when discussing auto- 
morphic properties. However several steps were necessary [49] in order 
to extract the candidate of the genus zero Gromov-Witten potential 
from the evaluated integral. Recently, the method was extended [78] 
to cover the Gromov-Witten potentials in higher genera for a particu- 
lar model using the result of [13] which was itself the extension of the 
calculations in [49]. In this case also it was necessary to take the limit 
of a relatively complicated expression to obtain the candidates of the 
Gromov-Witten potentials. 
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Another approach to investigate some features of the Gromov-Wit- 
ten potentials of Calabi-Yau 3-folds has been advocated by Gopakumar 
and Vafa [43] using an M-theory interpretation and there have been 
some related works [53,67]. 

If the Gromov-Witten potentials are of our sole concern, are there 
any possibilities in which we might directly reach their expressions in 
all genera? The previous work [65] as well as the present one attempt, 
albeit in a conjectural and limited sense, to answer this question in 
the affirmative for a class of elliptically and K3 fibered Calabi-Yau 
3-folds in the limit where the base P1 of the K3 fibration becomes 
infinitely large. In [65] we tried to interpret the genus g Gromov-Witten 
potential in terms of the lifting of a Jacobi form of weight 2g — 2 so 
that it can be expressed in terms of the "polylogarithm" Li3_2^(^). 
There the cases of genus zero and one were discussed in detail while 
the higher genus cases were briefly speculated upon in the concluding 
section. The present work further pursues this line of interpretation. 
Our basic strategy is simple: rather than dealing with the Gromov- 
Witten potentials individually we consider the string partition function 

Z = exp(J2x^Fg\ , (1.1) 

where Fg is the genus g Gromov-Witten potential of the fibered Calabi- 
Yau 3-fold Y and x is the string coupling parameter. We argue that, in 
the pertinent limit, Z can be constructed by the exponential lifting [12] 
of a weight zero Jacobi form associated with a lattice of Lorentzian 
signature. Indeed this construction solves the problem at one blow : 
Fg can be expressed as the lifting of a weight 2g — 2 (quasi) Jacobi form, 
thus making the statement in [65] precise. 

More intriguingly and perhaps more significantly, the construction 
indicates that Z can be put (at least in the limit we consider) into an 
infinite product which resembles the Weyl-Kac-Borcherds denominator. 
As in [12] the most subtle point in this story is to determine the "Weyl 
vector" which, we find, should be interpreted as the constant map con- 
tributions of the genus zero and one Gromov-Witten potentials. How- 
ever we have already discussed this technically involved problem in [65] 
via a felicitous use of elliptic poly logarithms [9]. In fact, one of the 
motivations for [65] and the present work was a desire to better under- 
stand the relation between the Gromov-Witten potentials of the fibered 
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Calabi-Yau 3-folds and the original lifting approach of Borcherds [12]. 

In our construction and the resulting infinite product representa- 
tion, it turns out to be natural to view Z as a function (or possibly a 
section of the appropriate vacuum line bundle) on the "extended mod- 
uli space" whose tangent space is some domain of H2(Y, C)®H0(Y, C). 
The extended moduli space unifies the complexified Kahler moduli and 
the string coupling constant and it is natural from the philosophy of 
abrane democracy". It is also an appropriate setting for the homological 
mirror conjecture [68]. Thus we should like to have an interpretation of 
our proposal in terms of the bound states of JD2-branes and DO-branes. 
(In type IIA string theory on Calabi-Yau 3-folds, 126-, i?4-branes are 
electro-magnetic duals of DO-, Z?2-branes.) In this paper we will make 
some preliminary (and admittedly modest) efforts toward justification 
of such an interpretation. In particular, we argue that the bound states 
of a single jD2-brane and DO-branes are described by abelian vortices 
and their suitable generalizations. We use this interpretation to un- 
derstand some of the key expressions. In fact, we are able to give a 
relatively detailed and precise description when the D2-D0 bound sys- 
tem is in a fixed K3 surface. In such a case, we also point out that the 
bound state problem of a D2 brane and DO-branes is closely related to 
vertex operators and their two-point correlation functions. 

Presumably the benefit of the lifting procedure employed in this 
work resides in the very possibility that we may link together, in a 
rather explicit way, the string perturbative theory of the Gromov- 
Witten invariants (which is certainly not brane-democratic but rela- 
tively well-understood) and the inherently non-perturbative viewpoint 
of JD2-Z?0-branes about which we have yet to learn more. 

The organization of this paper is as follows. In §2, we review the 
fundamental properties of the Gromov-Witten potentials for Calabi- 
Yau 3-folds. In §3 we first recall the general definitions and properties 
of Jacobi forms as well as those of the Hecke operators. Then we 
consider the lifting procedure for a class of weight zero Jacobi forms 
associated with certain Lorentzian lattices and discuss its relation to 
infinite products. In §4 we give the main conjecture about the string 
partition functions of the fibered Calabi-Yau 3-folds. In §5 we attempt 
to interpret the proposed expression of the string partition function in 
terms of the bound states of DO- and JD2-branes. As mentioned above, 
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we devote most of this section to the case where the bound system 
of a single JD2-brane and collections of DO-branes is in a K3 surface. 
Technically the results in [108] turn out to be useful. In §6 we discuss 
the relevance of vertex operators and their two-point functions to the 
D2-D0 bound state problem. As a simple application of our proposal, 
we study in §7 the behavior of the string partition function near the 
conifold point and relate it to the SU(oo) Chern-Simons theory on 53 

thus reproducing the earlier obtained results [41-43,58,94,104]. In §8 
we raise some directions for further investigations. Several definitions 
of the functions used in this work and their necessary properties are 
summarized in Appendix A while Appendix B discusses a conjectural 
formula of the elliptic genera of the higher order Kummer varieties 
introduced in [4]. 

While pursuing the subject of this paper, a paper [62] appeared in 
which the authors discuss some relevance of the relative Hilbert schemes 
in conjunction with the proposal of [43]. In our approach the relative 
Hilbert schemes appear naturally in the Z)2-D0-brane bound state in- 
terpretation. 

Part of this work was presented at the 1998 Kinosaki Symposium on 
Algebraic Geometry and thenceforth repeated on several occasions. We 
are grateful to Max-Planck-Institut fiir Mathematik in Bonn for hospi- 
tality. T.K thanks the organizers of the workshop of Activity "Auto- 
morphic Products" during which he benefited from conversations with 
R. Borcherds, R. Dijkgraaf, V.A. Gritsenko, L. Gottsche, S. Kondo, 
V.V. Nikulin, K. Saito and K. Yoshikawa. We also thank M.-H. Saito 
for discussions. 

Notation. 

e[x} = exp(27r\/^Ix). 

Z+: the set of positive integers. 

Z_: the set of negative integers. 

N: the set of non-negative integers. 

H^: the Siegel upper space of degree g. 
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2    The Gromov-Witten potentials of 
Calabi-Yau 3-folds 

The Gromov-Witten invariants have been extensively studied in recent 
years. For the fundamental properties established so far we refer to 
[6-8,69,73]. In this section we review the relevant materials in the 
cases of Calabi-Yau 3-folds for later convenience. 

2.1    The Gromov-Witten invariants 

Let Y be a smooth Calabi-Yau 3-fold, i.e. a smooth 3-dimensional 
projective variety over C with Ci(Y) = 0 and hli0{Y) = h2>0(Y) = 0 
where h™(Y) = dimity, {%). Hence Pic(y) ^ H2(Y, Z) and x(Y) = 
2(h1>1(Y)-h1>2(Y)). We assume that i?2(y,Z) is torsion-free. Suppose 
that CJI,...I)(JJI generate i?2(y, Z) where / = /i1'1(y). Let Di,..., Di be 
divisors such that ^ = Ci(C?y(J5i)) for i = 1,..., l. Let Li : Di <-* Y 
be the inclusions. Then Ui D [y] = (^)*[A] where [#] stands for the 
fundamental homology class of #. We assume that Di,...,Di are nef 
so that Ui flL*[C\ > 0, (2 = 1,...,/) for any algebraic curve C C Y with 
the inclusion t : C M- Y. 

Let Mg,n(Yi(3) be the moduli stack of stable maps where g, n > 
0 and fi G H2(Y,Z). An element of .M^y,/?) is represented by 
(E^,pi,... ,pn,(p). Here E^ is a connected curve of arithmetic genus 
g = dimiy1(Ep,0sy) whose only possible singularities are ordinary 
double points while pi,... ,pn are distinct nonsingular points on E^. 
The last entry is a morphism (/? : E^ —>► y such that {// G Aut E^ | 
(po {1 = (p, fife) = p^ is finite and ^*[E^] = /?. 

Let _   
7r:Cy>n(y,/3)^^|n(y,/3), (2.1) 

be the universal curve over Adg!n(Y, 0). We have Ca)n(F,^) = 
ATfll„+i(y,/3). Set 

/: Cfl>n(^/5) —>        Y (22) 

(Z!fl,pi,...,pn+i,¥?)     I—»•     ^(Pn+l)- 

The virtual dimension of jMfl)n(F, /?) is often smaller than the actual 
dimension of A^9)„(F,/?). The virtual fundamental class [Mg,n{Y,l3)]™ 
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can be constructed so that its dimension coincides with the virtual di- 
mension of Mg^iY, (3) [6-8,73]. This construction uses the obstruction 
sheaf Rl7r*f*TYi where Ty is the tangent sheaf of V, and is given by 

[Mg,n(Y, /?)]- = e(i2WTy) n [M^Y, /?)], (2.3) 

if it^Tr^/Ty is locally-free. Here e( ) represents the Euler class. In- 
tuitively, e(i?17r*/*Ty) represents the contribution from the anti-ghost 
zero modes. 

For a Calabi-Yau 3-fold Y, the virtual dimension of Mgin(Y,/3) is 
equal to n. Using the evaluation maps 

ev*: Mg,n(Y,p) —►       Y 
(Zg,pi,...,pn,tp)   i—>   (p{pi), 

(2.4) 

the Gromov-Witten invariants are introduced by 

K • • • wi»>^ = (evKwjJ U • • • U ev;(^J) n [>la)n(y^)]vir.     (2.5) 

We extend the Gromov-Witten invariants by C-linearity: 

(U^h ' • • UnWin)g,(3 =U1"- Un (Wh ' ' ' Uin)g,{S , (2.6) 

for^,...,^ G C. 

2.2    The Gromov-Witten potentials and their 
known general properties 

If we write OJ = ^ UuJi 6 /Cc C H2 (Y, C) where /Cc is the complexified 
Kahler cone, the Gromov-Witten invariants can be compactly organized 
into the Gromov-Witten potentials: 

F9= E <eaV' (2-7) 

since 

(3    n>0 P    n>0 n,...,2n 
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By the fundamental property of topological sigma models or the 
Divisor Axiom [69], it follows that 

(o^^n/sni)^, (2.9) 

for /3 / 0. Hence we have 

F9 = {n^+Y,^9^np' (2-io) 

Let Co C Y be a rigid smooth rational curve Co C Y with nor- 
mal bundle TV = (9c0(-l) © (9co(-l). Fix a positive integer h. Let 
p : C^CC/^CQ]) —>• ^^(Coj/ifCo]) be the universal curve and // : 
^,O(COJ ^[CO]) "^ Co the universal evaluation map. It was conjectured 
in [44] and proved1 in [31] that the multiple covering effect of Co can 
be summarized by 

e^p^N) n [AWCo, MCo])]vir = rng h
2^3 , (2.11) 

where nig are the rational numbers defined through 

oo 

(y-1/2 - y1/2r2 = - E a;29~2 m9>        y = exp(^x).       (2.12) 
9=0 

Explicitly we have mo = 1, mi = ^ and in general 

For gf > 1, it follows that 

where we use the formula of the orbifold Euler characteristic of the 
moduli space of genus g(> 1) curves with n punctures [48]: 

X     =(-ir(2g~3 + n]       B29 (2 15) X9'n     [     H       n       ) 2g{2g - 2) ' ('-15j 

^eealso [2,10,76]. 
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Therefore the multiple coverings of rational curves should contribute 
to the second term on the right hand side of (2.10) in the form 

£ £<l>o)/3,mg/i
2s-Vn^'> = £<l>o^m3Li3-29(e<^'),     (2.16) 

0YO h>o p'^o 

where the "polylogarithm" function Li3_2<7(£) is defined in Appendix 
A. 

The evaluation of the constant map contribution (e")^ has been 
explicitly performed in the literature [10,37,70]. We briefly recall this. 
By the isomorphism 

Mg,n(Y,0)*iMg,nxY, (2.17) 

we have TT = TT X id with the universal curve TT : C^n —> Mg^- Set E = 
IX^UJQ IM where UJ-Q ^IJ^ is the relative dualizing sheaf [88]. Thus 
E* = V£bcpn by duality'and it follows that R^^Ty ^ E* Kl Ty. 
Consequently, we have 

W.ntt 0)]vir = ^dim(y)(IE* H Ty) fl fM^n^, 0)], (2.18) 

where we used rk(E) = g. Then the evaluation of (6^)^,0 reduces to 
the Hodge integrals, i.e. the integrals over Mg,n of cup products of the 
Chern classes A^ := q(E). 

Set § := N* \ {0}. We regard S as a poset by the partial ordering: 
d! < d (d,df E S) iff d- | di (vz). Let us introduce new variables 
qi = et\...,qi = etl. If d = (di,...,d/) e S we write qd for q*1 •• -qf. 
We also introduce 

Kijk = Di • Dj • Dk = (ui U Uj U 0;^) n [y], 

# = c2(y) • Di = c2(y) n (^)4A] - My) u a*) n [y].    l ' 
Then combining the above results the Gromov-Witten potentials were 
found to have the following expressions: 

F° = 1 E K«*W* - 4pC(3) + X) ^o(d) ^o List/), (2-20) 

F1 = -X1 n \Mi,i] ■ Y, PiU + E [^(d) ^i + E iVi(d')] Lii(^)' 
d& d'es 

d'<d 

(2-21) 
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and 

^ = (-l)^_1n[A?s,o]-^)+5]iVo(rf)mffLi3_2s(^) + --- , (2.22) 

for g > 1. The coefficients N0(d) and Ni(d) count the primitive num- 
bers of rational and elliptic curves. 

Remark 2.23. In FQ we have inserted the term — jpC(3) by hand. 
This term seems to lack a satisfactory explanation in the pure context 
of the Gromov-Witten theory but, as well-known, its existence has been 
supported from other approaches. Since Lis^) and Lii(£) are multi- 
valued functions with non-trivial monodromy groups (see Appendix A 
and [65] for a summary) we neglected the terms that can be cancelled 
by monodromy transformations in the expressions of FQ and Fi. Re- 
call that £(3) is irrational so that — ^ipC(3) cannot be cancelled by a 
monodromy transformation. 

A basic result due to Mumford [88] is: 

A1n[M1,1] = ^. (2.24) 

Another important result is: 

>i-i n [Mg,o] - (-ly-'m, C(3 - 2g),        (g > 1). (2.25) 

This equation (rewritten in an equivalent form) was conjectured in [30] 
and recently proved in [31]. See also [78] [43] for physical justification. 

Thus we have seen that Fg contains the constant term proportional 
to £(3 — 2g) and is related to the function Lis-2g(0' (For Fi we have 
not considered the term proportional to £(1) since £(1) is divergent. 
However, as we will see later, its formal presence may be preferred 
from some aesthetic viewpoint.) In the following we will see that these 
features of Fg are indeed realized in our conjectural expressions. 

3    Jacobi forms and their liftings 

The purpose of this section is to collect together some fundamental 
materials of Jacobi forms whose properties are indispensable for our 
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construction. In the simplest case a systematic study of Jacobi forms 
was initiated in [27]. A straightforward extension of [27] leads to the 
idea of Jacobi forms associated with positive definite lattices. How- 
ever, for our present purpose, it is necessary to consider Jacobi forms 
associated with lattices of Lorentzian signature. We note that such 
possibilities have already been considered in [40] in the context of the 
Donaldson invariants for 4-manifolds with b^ = 1. 

3.1    Jacobi forms 

Let (11, ( , )) be an even integral lattice, i.e. a free Z-module 11 of 
finite rank endowed with a symmetric non-degenerate bilinear form 
( , ) : 11 x 11 -► Z satisfying (A, A) G 2Z for all A G 11. Note that we 
allow 11 to be indefinite. As is customary, we write 11 instead of (11, ( , )) 
when the bilinear form is known from the context. We also write 11 (r) 
for (n,r( , )) where r G Q. The bilinear form ( , ) determines the 
canonical embedding 11 C 11* = Homz(n,Z). By extending ( , ) via 
Q-linearity we can regard E* as a rational lattice. We also identify lie 
with 11^ by extending ( , ) via C-linearity. Given a nonzero rational 
number r, let (r) denote the rank 1 lattice (Ze, ( , )) with the generator 
e satisfying (e, e) = r. 

We assume that 11* is such that any element of it is either positive, 
zero or negative. 

Definition 3.1. A triplet (<£, n,7) G Z x Z x E* is said to be positive 
if either of the following three cases holds: 

(i) £ > 0,   (ii) £ = 0, n > 0,   (iii) l = n = 0, 7>0. 

We write (-£,71,7) > 0 if (£,72,7) is positive. 

Definition 3.2. A Jacobi form of weight k G Z associated with II = 
(11, ( , )) is a meromorphic function $£ : Hi x He —> C satisfying 

1. For any (««;)€ SX2(Z), 

c(z,z) 
2(cr + d) 

Mr,z).   (3.3) 
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2. For any A, fi e H, 

$fc(T, z + AT + fi) =e ——T + (A, z) Mr,z).   (3.4) 

3. $fc can be Fourier-expanded in some appropriate region of Hi x He 
as 

**(T,Z)=   ^ £>(n,7)gnC7, (3.5) 
n>—no 

where no is some non-negative integer and we have introduced 
the notation q = e[r] and C7 = e[(7, z)]. 

Remark 3.6. Since $k(T,—z) = (-l)k$k(T,z), we have D(n, -7) = 
(-l)^(n,7). 

Definition 3.7. Suppose that (11, ( , )) is positive definite. Then $fc 

in Definition 3.2 is said to be nearly holomorphic if no > 0 while it is 
said to be weak if no = 0. 

Let Q be a simple Lie algebra of rank s with a fixed Cartan subalge- 
bra f) and W(Q) the Weyl group of Q. We identify f) with f)* using the 
Killing form ( , ). We extend ( , ) by C-linearity. We normalize the 
highest root 0 as (9,0) = 2. Let Qw = (Qv, ( , )) be the coroot lattice 
of g. Then Qv is a positive definite even integral lattice of rank s and 
P = (Qwy is the weight lattice of Q. With this data we used in [65] the 
notion of Weyl-invariant Jacobi forms following [100]: 

Definition 3.8. A Weyl-invariant Jacobi form (j)k,m of weight k and 
index m is a Jacobi form of weight k associated with the lattice Qv(m) 
in the sense of Definition 3.2 such that it is invariant under the action 
ofW(fl)onQv(m)c. 

We note that a weak Jacobi form of even weight in the sense of [27] 
is a weak Weyl-invariant Jacobi form of Ai. 

Let 

E2k(r) = 1 - -^ J] flTtt-xW,     (*>!), (3.9) 
4k   00 

71=1 

denote the normalized Eisenstein series of weight 2k where <Jk(n) = 

d\n 
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Definition 3.10. A meromorphic function on Hi x lie is called a quasi 
Jacobi form of weight k associated with 11 if it is expressed for some 
integer k0 as X^'^o^-*'^2' E^E^k' where $fe/ is a Jacobi form of 
weight k' associated with 11 and pk-.ki(E2)E^E§) G CfE^^^e] is a 
quasi modular form [61] of weight k — k'. 

3.2    Hecke operators and liftings 

In this section we assume that $& is a quasi Jacobi form of weight 
k associated with an even integral lattice 11 having Fourier expansion 
(3.5). 

Definition 3.11. For ^ = 1,2,... the action of the Hecke operator Vt 
on $£ is defined, as in [27], by 

$fe|y,(T,z) := ^ £ IV*** (^,«*) • (3-12) 
ad=Z b=0 ^ ^ 

The following relation has already been used in [65]: 

Lemma 3.13. 
oo 

XySkMrj*) = ££(^,7) Lii-fcCpVC7). (3-14) 
£=1 ^,71,7 

Proof. From the definition (3.12) the left hand side is equal to 

oo d— 1 

E^1 E J2d~k E D^^e [W4 qna/d(na ■     (3.15) 
£=1 ad=£ 6=0 n,7 

a>0 

By performing the sum over b we obtain 

00 

^P^-
1
 ^-fc+i]rD(nd,7)<r(c7)a 

a>0 
00 00 

(3.16) 

^T^^'^E^VcfCT • 
cZ=l  n,7 a=l 
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However, the last expression is equal to the right hand side of (3.14). 
□ 

This lemma urges us to introduce: 

Definition 3.17. The action of the Hecke operator VQ on $£ is defined 
by 

*k\K(T,z):=2^ai-k)+    J2    m^Lix-^C7).   (3.18) 
(0,n,7)>0 

Combining (3.14) and (3.18) we find that 

Lemma 3.19. 

£=0 (t,n,<y) >0 

(3.20) 

Remark 3.21. Since £(1) diverges, the definition (3.18) and hence 
(3.19) are meaningless for k = 0 as they stand. Nevertheless the case 
k = 0 is the most important one in the next subsection. To treat this 
case adequately one would have to make an analytical continuation in 
k and regularize the divergence properly. However, in the following 
we will adopt a simple-minded approach keeping £(1) as the divergent 
sum X)/i>o Ti m ^e intermediate process of calculations and discard the 
diverging £(1) in the end. Hopefully this will make the manipulations 
below transparent although they are admittedly formal. 

3.3    Lorentzian lattices and Jacobi forms of weight 
zero 

So far we have been quite general. In the following we will choose a 
specific Lorentzian lattice H and an associated Jacobi form $o of weight 
zero. 

Fix a simple Lie algebra Q of rank s (with the convention mentioned 
before) and an associated nearly holomorphic Weyl-invariant Jacobi 
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form of weight —2 and index m denoted henceforth as </>_2,m- We will 
focus on the even Lorentzian lattice of signature (5,1): 

n = Qv(ra)©(-2). (3.22) 

The reason why we select this lattice will become clear in the next 
section. We parametrize the elements of He as 

He 3 z = z®ve, (3.23) 

where z G Qv(m)c and v G C with e being the generator of (—2). 

Since we have II* = iD(^) 0 (—|), we write 

n*97 = 7eje*, (3.24) 

where 7 G P(^) and j G Z with e* being the generator of (—|). Then 
we say 7 > 0 if either of the following possibilities holds 

(i)  7 > 0,   (ii)  7 = 0 and j > 0. 

We write (£, 71,7, j) > 0 when (^,71,7) > 0. We also write (£, 71,7) > 0 
when (^,n,7,j) > 0 but the restriction on j is removed. 

Consider 

E{T,V) := -x/^^4^ ,     (T,I/) G ^ x C5 (3.25) 

where 

00 

^(r, 1/) = y/=i(y-w-yVW nU-Oa-gW-tf1!/-1). (3-26) 
n=l 

is the odd Jacobi theta function and 

00 

»/(r) = ^JI(l-0, (3-27) 
n=l 

is the Dedekind 77 function. Obviously, 

n=l 
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Moreover, this can be expressed in terms of the Eisenstein series: 

E(r, v) = -V^Ixexp (jr ^^^(T)) , (3.29) 

where 
y = e[jy]    and    x = 27ns. (3.30) 

The function 2?(T, U) is essentially the prime form on the elliptic curve 
with modulus r. It is easy to see that Efa v)2 is a weak Jacobi form 
of weight —2 and index 1 in the sense of [27] and it actually coincides 
with <^_2,I(T, V) in [27], which is one of the two generators of the ring 
of weak Jacobi forms with even weights. 

We then define 

<ft_2,m(T,*) 

£(T^)2 $o(r5 z) = $o(r, z, u) := ^Z'X   > (3.31) 

which is apparently a Jacobi form of weight zero associated with 11. 
Since we have 

1 1 fr {l-qn) ,n\4 

-1^2 E(T, V)2      (y-1/2 - y1/2)2 J-J (1 - qny)2(l - q^y-1) 
(3.32) 

vA!=l V / 

we can asymptotically expand $o('7"7 
z, v) as 

oo 

$0(T, Z, V) = - Y, X2g-2V29-2,m(Ti z) , (3.33) 

where (p2g-2,m is a quasi Jacobi form obtained from 0_2,m by multiply- 
ing a weight 2g quasi modular form, i.e. an element of weight 2g in 

Q[i?2j E4, Ee}- Apparently we have 

<P-2,m(T, Z) = (f)-2,m(r, z) . (3.34) 

We expand (p2g-2,m as 

¥>2<7-2,m(T, Z) = ^2 C9^ iWC , (3.35) 
71,7 
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where (7 = e[(7, z)]. Then we have the symmetry property ^(71,7) = 
^(71,-7). 

The expression (y~1//2 — yly/2)~2 appearing in (3.32) has subtle fea- 
tures and will play an important role later in this paper. It has expan- 
sions 

00 

(y"1/2«y1/2r2 = E^'      M^1)' (3-36) 
3=1 

exhibiting a wall-crossing behavior.  On the other hand, precisely on 
the wall, we have 

(y-1/2 - y1/2)-2 = \ Elil J -     (Iwl = 1. v ^ i) •       (3-37) 

In the rest of this section and the next section we will tacitly assume 
that we are precisely on the wall, hence the expansion (3.37). We may 
thus regard the expression (y-1/2 — yl^2)~2 as an element of | Z[[y, y-1]] 
by interpreting it as a formal distribution [60]. The reason for assuming 
(3.37) is that the Fourier expansion 

*O(T, *, v) = Y, Din, 7, j)qnCyJ , (3.38) 

has the manifest symmetry properties 

D(n, 7, j) = D(n, -7, j) = D{n, 7, -j). (3.39) 

Note that we must have co(n,7) G 2Z if we demand D(n,^,j) G Z. 

However, when we attempt an interpretation in terms of D2-D0 
bound states in §5 we shall be mostly off the wall using the expansion 
(3.36). 

Lemma 3.40. 

00 

^(n^V = -$>2'-2c>,7)- (3.41) 
j 9=0 

Proof. This is a direct consequence of (3.33). □ 
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Now we would like to consider the actions of the Hecke operators 
on $o and ip2g-2,m and compare the results. For simplicity we will 
use the same notation Vt (£ = 0,1,2,...) for both $o and ^2^-2,m. For 
V2g-2,m, the Hecke operator Vb is defined by using the expansion (3.35). 
Since we are dealing with (quasi) Jacobi forms of weight zero we should 
emphasize again what we have cautioned in Remark 3.21. 

The following identity is crucial for our purpose: 

Lemma 3.42. 

$ok(T, z, v) = - ]£x2g-2(p2g_2,m\Vi{T, z),    (e = 0,1,2,...).   (3.43) 
9=0 

Proof. If e > 0, we find that 

ad=£ 6=0 
a>0 

d— 1    /        oo / L 

=rl E E (- E M^'^V*. F^.« 
ad=:^6=0   \      y=0 \       a 

a>0 

= _ £ ,^-3 ^ £ d-^^2s_2,m ( ^, a. 
2=0 ad=^ 6=0 

a>0 
oo 

9=0 

(3.44) 
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As for the case l = 0, we have 

*ok(r,^) = ^(0,0,0K(l)+     Y.    D(0,f,J)Lii(qnCyJ) 
(0,n,1,j)>0 

= ^(o,o,o)c(i)+  Yl ^(o,7,i)E^r^ h 
(0,n,i,j)>0 h>0 

= ^E^E^0'0^v ,j3h 

h>0 j 

/I>0 (0,n,7)>0 j 

(3.45) 

where we used C(l) — Ylh>o h Thus Lemma 3.40 shows that 

$O\VO(T,Z,I/) 

I        i   ^ 

/i>0       g=0 

E E ^X»2»-%(o,7) 
/i>0 (0,n,7)>0 2=0 

oo 

= _^^-2    £sMC(3-2p)+    E    cg(0,7)Li3_25(g^) 
9=0 \ (0,n,7)>0 

oo 

= _ E x2g~2(P29-2,rn\Vo(T, Z) . 
S=0 

(3.46) 

This completes the proof of (3.43). □ 

Now we set 
oo 

^9 '= ^PW2,mk(T,20 , (3.47) 
£=0 

as in [65]. We will see in the next section that !Fg is an important 
piece of the Gromov-Witten potential Fg for certain elliptically and 
KS fibered Calabi-Yau 3-folds. 
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Remark 3.48. Note however that even for g > 2, Fg is not exactly an 
automorphic form on the type IV domain but what might be called a 
quasi automorphic form since we are using a quasi Jacobi form (p2g-2,m 
for the lifting. The situation is reminiscent of that in [23] where the 
enumerative problem associated with the Riemann-Hurwitz theory for 
elliptic curves was discussed and the connection to quasi modular forms 
[61] were explained. At hindsight the encounter with quasi automorphic 
forms is inevitable and should be interpreted as the remnant of the 
holomorphic anomaly studied in [10]. It also partially explains why 
some extra work is needed when one uses the Harvey-Moore method [49] 
to extract the Gromov-Witten potentials: in the Harvey-Moore method 
the automorphic properties are always preserved while what we are after 
are not precisely automorphic forms. Although not simply related to 
the Gromov-Witten potentials, still it might be possible to preserve the 
automorphic property by replacing ^2^-2,m by a genuine Jacobi form 
^2^-2,m as expected in [65]. At least this was already done in the genus 
one case. 

Lemma 3.19 then tells us that 

Proposition 3.49. 

^ = ^Y^C(3 - 2g) +    Y,   ^(^7)Li3-2,(pVC7).       (3.50) 
(*,n,7)>0 

The following infinite product is an essential ingredient when we 
discuss the string partition function in the next section: 

Proposition 3.51. 

exp ( Y, ^9~2^9    = e-'^^1^     H    C1 - pYCV)^n'7j) • 
v9=0 / (€,n,7j)>0 

(3.52) 

Proof. We see that 

exp f 5>2»-2:FJ =exp I -Xy^oMr,*,!/) j , (3.53) 

by Lemma 3.42. Then (3.52) follows from Lemma 3.19. D 
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4    String partition function 

By utilizing the results obtained in the above we formulate in this 
section the conjectures on the Gromov-Witten potentials and the string 
partition function for Calabi-Yau 3-folds endowed with specific fibration 
structures. 

4.1    Fibered Calabi-Yau 3-folds 

Let Y denote a Calabi-Yau 3-fold as in §2. In this section we use the 
notations introduced there. We now list up what we will assume on 
Y. First, we assume that there exist a K3 fibration TTI : Y —)> Wi 
as well as an elliptic fibration 7T2 : Y —> W2. The two fibrations are 
assumed to be compatible. This implies that a generic fiber of TTI is 
an elliptic K3 surface. We mostly assume that 7r2 : Y -+ W2 has a 
section. Next we assume that all the singular fibers of TTI : Y —> Wi 
are irreducible. Then Wi = P1 and W2 = ¥a (a = 0,1,..., 12) where 
Fa =-Ppi(C?pi 0 C?pi(a)) is a Hirzebruch surface. See for instance, [54]. 
(In general, the allowed possibilities of the base of an elliptic Calabi-Yau 
3-fold with a section are del Pezzo, Enriques, Hirzebruch or blown-up 
Hirzebruch surfaces [83].) 

Furthermore the Picard lattice of a generic fiber of TTI : Y -> Wi, 
which is necessarily an elliptic if 3, is assumed to coincide with H © 
Qv(—TO) where H is the hyperbolic plane, i.e. the even unimodular 
indefinite lattice of rank 2 with intersection matrix (5 jjj) ? m ^s some 

positive integer and Qy is the coroot lattice of some simple Lie algebra 
0 of rank s = I — 3. 

With these assumptions we express the complexified Kahler param- 
eters as in [65]: 

<i = logu - logg - -(logp - logg), 

*2 = logp-logq, (4-g 

t3 = logq- (70,logC), 

ti+3 = (A»,logC),    {i = 1,...,$), 

where A, (i = 1,..., s) are the fundamental weights of g and 70 is some 
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positive weight.  This parametrization is such that LJI is the pullback 
via TTI of the fundamental cohomology class of Wi. We have 

p1 = 24,    p2 = 24 + 12a,    p3 = 92. (4.2) 

The parametrization (4.1) should allow us to fix a particular "fun- 
damental chamber" in which we work in the following. 

4.2    The main conjectures 

As in [65] we assume that there exists a nearly holomorphic Jacobi form 
of weight —2 and index m associated with Y in the form 

0-2>m(T,*)=     ^(r)24     , (4.3) 

where ^io7m(T,z) is a weak Weyl-invariant (with respect to Q) Jacobi 
form of weight 10 and index m satisfying ^10^(^0) = —2E±(T)EQ(T). 

Sadly, we are aware of neither a general algorithm to determine the 
precise form of ^rio)m(r, z) from the geometric information of Y nor 
whether there are additional conditions on Y for </>_2,m to exist. How- 
ever at least we must have 

cd(-l,7) = 0,    for 7 ^0,    Co(-l,0) = -2,     co(0,0) = -x{Y), 
(4.4) 

for the following conjectures to make sense. We substitute (4.3) in the 
definition (3.31) of $o- We assume that the coefficients D(n,^,j) are 
integers so that co(n,7) are even integers. 

Now we can state our conjectures on the Gromov-Witten potentials: 

Conjecture 4.5. The Gromov-Witten potentials behave as 

Fo = F0
(0)+^o + 0(9l), 

F^ff+^i + Ofa), (4-6) 

Fg = J:
g + 0(qi),    forg>l, 

where Tg are given by (3.50) and 

3!-t 

Fi0) = -Ax n [Mi,i] ■ Y^PJi = -YA E^ 
(4.7) 
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In the fundamental chamber, we gave in [65] conjectural formulas of 
FQ and Fi expressed in terms of the data of (/>-2,m- This was achieved 
by employing the elliptic polylogarithm of Beilinson and Levin [9] which 
is the holomorphic version of that of Zagier [110]. The result reads as 
follows: 

Conjecture 4.8. In the fundamental chamber we have 

F0
(0) = logu jlogplog q - — (log C, log C) j 

+ (? "" 2^) l0gP' (log^log^ 
+ l^ogq)3 -^ogq • (logC,logC) + ^ ^Co(0,7)(7,logC)3 , 

7>0 

(4.9) 

and2 

Fi0) = -^2410^ + 2UoZP + 441og^ + ^ X)cb(0i7)(7ilogC), 

(4.10) 

24v       6 &^ &^     24     n 7>0 

where log£ = 2TT\/^1Z andl2 = ^ co(0,7)(7,7). 
7>0 

As shown in [65] these formulas are such that if we replace Lir (r = 1,3) 
by Cir (r = 1,3), we have (at least to the first order in qi) 

F9(u,p,qX) = F9(u
f,q,pX), (4.11) 

for all g > 0, where 

log?/ = logix - (logp - logg). (4.12) 

For the definition of Cir see Appendix A. 

Since we have 
^(-l,0) = mpcd(-l,0), (4.13) 

and 

c,(0,0) = mg co(0,0),     (g ^ 1),    ci(0,0) = m1 c0(0,0) - 2co(-l, 0), 
  (4.14) 

2The normalization of Fi differs from that in [65] by mi = ^. 
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it is easy to check that the conjectured expressions of Fg are consistent 
with the general results reviewed in §2. 

For concrete examples of Y and some corroboration of Conjectures 
4.5 and 4.8 for g = 0,1, see [65] and references therein. 

If we translate these conjectures on the Gromov-Witten potentials 
into the language of the string partition function using Proposition 3.51, 
we reach the main conjecture of this paper: 

Conjecture 4.15. The string partition function behaves as 

Z = exp {x-2F^ + i^) H    (1 - peqnCyJ)D{£nn'J} + 0(qi) 
(£,n,7j)>0 

(4:i6) 
where we neglected ("(1) appearing in (3.52). 

Eq. (4.16) bears strong resemblance to Borcherds' infinite product 
formulas [12]3. This should be so since we have employed more or less 
the same kind of lifting procedure. However, the important difference 
lies in that we used the lifting of a weight zero Jacobi form associated 
with a Lorentzian lattice. This has entailed a more complicated ex- 
pression of the "Weyl vector" X~

2
FQ ' + F^ which exhibits chamber 

dependence as in the case of the ordinary Weyl vector. It should be 
noted that since FQ ' and F[ ' are respectively homogeneously cubic 
and linear in U, the homogeneous degree of X~

2
FQ ' + F[ ^ as a func- 

tion of x and U is one, lending further support to the interpretation of 
x-2F0

(0) + F^ as the "Weyl vector". 

5    An interpretation in terms of 
D2-D0 bound states 

In eq.    (4.16) we observe that the complexified Kahler moduli and 
the string coupling x are unified in a rather nice way.   In fact, the 

3When making this analogy, it should be born in mind that there is a conven- 
tional ambiguity: we could replace Z by Z'1 in the definition of the string partition 
function. 
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geometrical origin of the Lorentzian lattice 11 we have used may be 
attributed to the following relation: 

H2{Y, Z) 0 H0(Y, Z)DH® Qv(-m) 0 (2) = H 0 II(-l),      (5.1) 

where we identified H0(Y, Z) with the lattice (2). The (analytically con- 
tinued) string coupling x parametrizes H0(Y, C) just as the complexified 
Kahler moduli parametrize (a cone of) H2(Y,C). Thus it seems natu- 
ral to view the string partition function as a function (or a section of 
the appropriate vacuum line bundle) over the extended moduli space 
whose tangent space is some domain of H2(Y, C) © H0(Y, C). This fact 
immediately suggests that there should be an interpretation of the infi- 
nite product (4.16) in terms of the bound states of D2- and DO-branes. 
In the following we wish to develop some arguments supporting this 
picture. 

Remark 5.2. As mentioned in Introduction, D6- and D4-branes are 
duals of DO- and JD2-branes. Thus the above extended moduli space is 
a half of the usual extended moduli space [103] whose tangent space is 
contained in ®s

i=0H
2i(Y,C). 

In the conjectured expression (4.16) all the information is encoded 
in the Jacobi form $o or its Fourier coefficients D{n^^j). Our basic 
expectation in the following is that $o should be interpreted as the 
function counting the bound states of a single D2-brane and DO-branes 
moving inside the fibers of the if 3 fibration. 

5.1    Preliminaries 

5.1.1    Notations 

For a smooth complex projective variety V, we define the Hodge poly- 
nomial by 

dim(V) 

XtsLV) ■■=  E (-l)P+qhp'q(V)tn*, (5.3) 
p,q=0 

where hp'q(V) = dimHq(V,Q,pv). We also introduce 

Xt(V) := Xt,i(V), (5.4) 
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which is essentially the Hirzebruch Xy genus of V. Note that the Euler 
characteristic of V is given by X^Y) = XiOO- 

The rth symmetric group <Sr naturally acts on Vr = V x • • • x V (r 
times) as permutations on r letters. The quotient is the rth symmetric 
product V^ := V'r/&r. In general V^ has orbifold singularities when 
dim(VP) > 1 while it is smooth when dim(V) = 1. We set V^ = {pt}. 

Let V be an even dimensional Calabi-Yau manifold. Then the 
elliptic genus ^y(r, z/) is a weak Jacob! form of weight 0 and index 
dim(V)/2 [66] with the expansion 

Mr,") = y-dim{V)/2Xy(V) + 0(q). (5.5) 

We have the duality relation Xy-i(V) = y~dim{v)Xy(V). 

Let V be a complex algebraic variety of dimension n and E a co- 
herent sheaf on V. We denote by Supp(E) the support of E. The 
dimension of E, denoted as dim(.E), is defined to be that of Supp(jE') 
and E is called of pure dimension m if dim(F) = m for all nontrivial 
coherent subsheaves F C E. 

In the following, by Hk(V,A) we always mean the A;th Borel-Moore 
homology group [16] with coefficients in a commutative ring A. The 
fundamental homology class of V, which is an element of H2n(V, Z), is 
denoted by [V]. If V is smooth, the operation n[V] gives the Poincare 
duality isomorphism: Hk(V,Z) = H2n-k(V,Z). If V is smooth and 
compact, the Borel-Moore homology coincides with the ordinary one. 

If W C V is a closed subvariety with the inclusion L : W <-> V, we 
frequently write [W] instead of £*[W]. 

In this section we usually denote by X a projective K3 surface. 

5.1.2    D-brane charges 

We recall some generalities on D-brane charges. It has been argued [50] 
that I?-brane charges in X are associated with Mukai vectors. The 
Mukai lattice of X is the total integer cohomology group 

#2*(X, Z) = #0(X, Z) © H2(X, Z) © #4(X, Z), (5.6) 
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endowed with the symmetric bilinear form 

(v, vf}x = Ci • ci — ab' — a'b, (5.7) 

for any v = (a,cu b) e H2*{X,Z) and v' = (af,c^ V) G H2*{X,Z). Here 
the notation v = (a, ci, 6) means v = a 0ci ©6 with a G H0(X, Z), ci G 
H2{X,Z) and 6 G iJ4(X,Z). We have if2*(X,Z) ^ E8(-l)e2 © ff04 

where E8 is the positive definite even unimodular lattice of rank 8. 

The Grothendieck group i^o(^) is defined to be the quotient of 
the free abelian group generated by all the coherent sheaves (up to 
isomorphisms) on X by the subgroup generated by the elements F — 
E — G for each short exact sequence 

0->E-*F-+G-*0 (5.8) 

of coherent sheaves on X. In what follows, we shall use the same 
notation E for both a coherent sheaf on X and its image in KQ(X). 

Let v : Ko(X) —t (&iH2l(X,Q) be the module homomorphism de- 
fined by Mukai vectors [85-87], namely E \-> v(E) := ch(E)^td(X). 
Explicitly we have 

v(E) = (rk(£), criE), ik(E) Q+ ^(E)2 - c2(E)^ , (5.9) 

where g G ^(X, Z) is the fundamental cohomology class of X so that 
gn[X] = 1. Thus actually we have v(K0(X)) C #2*(X,Z) since 
H2{X^Z) is even. This definition is such that 

2 

X(£,F) := £(-!)«dimErt'^F) = -{v{E)1v{F))x ,        (5.10) 
i=0 

by the Hirzebruch-Riemann-Roch theorem. 

The Mukai lattice has several distinguished isometries. For instance, 
for an invertible sheaf L on X, the map 

v(E)^ch(L)v(E) 

= v(E) + [ 0,ik(E)c1(L),c1(E)Ucl(L) + ^^(L)5 

(5.11) 

ME)„rr,2 
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gives an isometry of H2*(X, Z). 

Let Q : K0(X) -»■ QiHxiX, Q) be defined by 

E -► Q(E) :=v(E) n [X] 

= (rk(£0 [X\, c^E) n [X], x(X, E) - rk(E)) .      l "    j 

We call Q(S) the D-brane charge of S with its component in #2; rep- 
resenting the JD2i-brane charge. Since Q is a module homomorphism, 
it follows that 

Q{F) = Q(E) + Q(G) , (5.13) 

for each exact sequence (5.8) of coherent sheaves on X. This may be 
interpreted as the charge conservation law when making the D-brane 
state associated with F out of those associated with E and G. 

Let C be a curve on X and let L : C ^ X be the inclusion. If 
E is a coherent sheaf on C, the direct image L*E is a torsion sheaf on 
X obtained by "extending by zero". Suppose that we have the exact 
sequence (5.8) now for coherent sheaves on C. Since L* is an exact 
functor, we have 

Q(L*F) = Q(L*E) + Q(L*G) . (5.14) 

This may also be regarded as the charge conservation law for D-brane 
states without D4-branes. Similar formula holds for a O-dimensional 
subscheme instead of C. 

The above consideration can be extended almost verbatim to a 
smooth Calabi-Yau manifold Y of any dimension. We define Q : 
Ko(Y) -> ®iH2i(Y,Q) by E ^ Q(E) := v(E) n [Y] where v(E) = 
ch(E)^/td(Y). 

Remark 5.15. In the above, we have defined Q on the Grothendieck 
group Ko(Y). However, in more general contexts like homological mir- 
ror conjecture [68] or Fourier-Mukai transforms, the domain of Q must 
be (naturally) extended from Ko(Y) to the bounded derived category 
D6(y) of coherent sheaves on Y. 

Let V be a smooth variety of dimension n and W an m-dimensional 
irreducible and reduced subvariety of V with the inclusion map L : 
W M> V. Then by using a resolution of singularities TT : W —} W and 
the Grothendieck-Riemann-Roch theorem for singular varieties [34], one 
can show [20, §5.8-5.9] that 
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Lemma 5.16. 

clik(t^Ow) H [V] = 0,    for k < n — m, 

chn_m(L*ow) n [v] = [W]. 
(5.17) 

Suppose that a coherent sheaf E on V is of pure dimension m. Let 
Supp(jE') = UiSi be the support of £7, where 5i are irreducible and 
reduced. We shall define the multiplicity of E along S^ Let CV,Si b6 

the stalk of Oy at Si and Ey^. the stalk of E at Si. Let /^.^ be the 
stalk of the ideal sheaf of Si. Then (Ov,Si, -Ts^s*) is a local ring with the 
residue field Ov.Si/Is^St — K(Si)> where K(Si) is the function field of 
S^ Since (Is^Si)kEv,Si = 0 for some fc, there is a filtration 

OC^Cif C---C^=JBvA (5.18) 

such that Fi/Fi'1 ^ K(5i). We define the multiplicity of £ along Si 
by mult5. (JS?) := s*. Namely, mult^^S) is the length of -EV,^ as an 
O^^-module. 

Lemma 5.19. 

chA.(JB) n [V] = 0,    fork<n-m, 

chn.m(E) n[V} = YJ multa^)^]. (5-20) 

Proof. See [20, §5.8-5.9]. □ 

Proposition 5.21. Suppose thatY is a (smooth) Calabi-Yau manifold. 

(i) Let i : Z M- Y be a 0-dimensional subscheme of length d.  Then, 

Q(**0z) = (O,...,O,d). (5.22) 

(ii) Let E be a coherent sheaf of pure dimension 1 onY. //Supp(E) = 
UiCi with Ci being irreducible and reduced, then 

Q(E) = (0,..., 0, £ multc^MQ], x(Y, E)). (5.23) 

Proof  (i) is an easy consequence of Lemma 5.19 while (ii) follows from 
Lemma 5.19, Ci(Y') = 0 and Riemann-Roch. □ 
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Corollary 5.24. Let t : C <-> Y be an irreducible and reduced curve 
on Y and F a torsion-free sheaf on C. Then, 

Q(L*F) = (0,..., 0,vk(F)[C}, x(C, F)). (5.25) 

Proof. Recall that 

X(C,F)=X(Y,L.F), (5.26) 

since iP(C, F) = H^Y, L*F) for the inclusion L. D 

Remark 5.27. If C is smooth, Corollary 5.24 can also be seen (as done 
in [50] for the case n = 2) by directly using the Grothendieck-Riemann- 
Roch theorem for nonsingular varieties: 

ch^.F) td(y) = ^(ch(F) td(C)), (5.28) 

where L\F := ^(—iyRlL*F = L*F since Rh+F vanishes for i > 0. 

Remark 5.29. We define the degree of F by 

deg(F) := x(C, F) - vk(F)x(C, Oc) ■ (5.30) 

Then, we have 

X(C, F) = deg(F) + rk(F)(l - pa(C)), (5.31) 

where Pa(C) is the arithmetic genus of C. If F is locally-free, deg(F) 
reduces to the ordinary degree of F with (5.31) being the Riemann- 
Roch theorem for a singular curve. 

Example 5.32. Let Z C X be a 0-dimensional subscheme of length d 
and let L : Z c-> X be the inclusion. If we denote the ideal sheaf of Z 
by Iz we have an exact sequence, 

0 -> Iz -> Ox -> Ox/Iz = <<*Oz -» 0. (5.33) 

Since Q(L*OZ) = (0,0,d) and Q(Ox) = ([X],0,1) we obtain 

Q(Iz) = ([X}Al-d). (5.34) 
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5.1.3    Hilbert polynomials 

Let Hx be an ample invertible sheaf on X. The Hilbert polynomial 
PE/x(n) E Q[n] of a coherent sheaf E on X is defined by 

PE/xin) := x(X, E ® HT) = rk(E) ^X) n2 + deg(£;) n + x(X, E), 
(5.35) 

where deg(£) := (ci(E)Uci(^x))n[X] and deg(X) := deg(i?x). Since 
[E] H> PE/x{n) is a module homomorphism, we obtain 

PF/x{n) = P^/xCn) + PG/X(n), (5.36) 

for each exact sequence (5.8) of coherent sheaves on X. 

Let C be a projective irreducible curve polarized by an ample in- 
vertible sheaf He on C. Let F be a coherent sheaf on C. The Hilbert 
polynomial of F is similarly given by 

Pp/cin) := x(C, F ® flg") = rk(F) deg(C) n + x(C*, F),       (5.37) 

where deg(C) := deg(Jfir(7). Suppose that we have an inclusion L : C <-+ 
X. Since t*Hx is also ample, one may choose He = ^*Hx- Then it 
follows that 

PF/c(n)=PUF/x(n). (5.38) 

This can also be directly checked by using (5.26) and 

deg(^F) = rk(F) (^(^(C)) U c^Hx)) n [X] 

= rk(F) dCffx) n i.[C\ = vk(F) deg(Hc) 
(5.39) 

Comparing (5.35) and (5.37) with the expressions of .D-brane 
charges one finds that the coefficients of Hilbert polynomials are, in a 
sense, scalar projections of .D-brane charges. In particular, if ZW-brane 
charges vanish, DO-brane charges coincide with the constant terms of 
Hilbert polynomials. This fact may be a useful observation later in this 
section. 

5.1.4    Some moduli spaces 

Let E be a coherent sheaf on X. Fix an ample invertible sheaf Hx on 
X and expand PE/x(n) in the form PE/x(n) = TSE) (Xifflri/il A 
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coherent sheaf E on X is called semi-stable (stable) if it is pure and 
satisfies 

PE'/xiji) PE/x{n) f  PE'/xin) PE/x{n) 

a&im{E'){E') a&im{E){E) \Otdim{E'){El) Otdim{E){E)) 

(n»0),   (5.40) 

for any proper subsheaf E1 C E. There is another notion of stability 
due to Mumford: 

1. The case where rl^i?) > 0:  A coherent sheaf E is slope semi- 
stable (stable) if it is torsion-free and satisfies 

degCEO      degCE) /deg(ff)      deg(£)\ 
ME')   -  ME) V rk(S')        vk(E) ) ' y      ' 

for any subsheaf E' of 0 < rk^') < ME)- 

2. The case where rk(.E') = 0: A coherent sheaf E is slope semi- 
stable (stable) if it is of pure dimension 1 and 

X{X,E?)      x{X,E) (x(X,E>)      x(X,E)\ (, ^ 
deg(S0   "  <ieg{E) V deg(^)        deg(E) )>       [0'    ) 

for any subsheaf E' of 0 < deg(E') < deg{E). 

By (5.35) and (5.37), we have the following relations: 

slope stable =^ stable =^ semi-stable =^ slope semi-stable.       (5.43) 

Let MHX(
V

) be the moduli space of semi-stable (with respect to 
Hx) sheaves on X with .D-brane charge v PI [X]. Let M.8H (v) C 
A/lJfirx('u) be the subset parametrizing stable sheaves. If M8

H (v) is 
not empty, it is smooth of dimension (v, v)x + 2. If T; is primitive and 
iJx is a general point of the ample cone of X, MHX (

V
) — ^Ifx (v) an(^ 

A^if^ (v) is irreducible symplectic (hence hyperkahler). Since the choice 
of Hx is not so important, we usually denote MHX (

V
) by M(v). In the 

following, we deal with the cases where M(v) — M8^). If vfl \X\ is ex- 
pressed as (r[X], [C],a), we frequently use the notation .M(r, C, a) for 
Al(v). When the isomorphism class [E1] of a coherent sheaf E belongs 
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to M(v), we simply write E G M(v) instead of [E] e M(v). For more 
details on M(v) see the original works [85-87] or an exposition [56], 
and for recent developments on M(v) see [91,92,108,109]. 

Let V be a projective scheme polarized by an ample invertible 
sheaf Hy. Fix a coherent sheaf F on V. Informally speaking, the 
Grothendieck Quot-scheme QuotF^ parametrizes quotient sheaves of 
F having a common Hilbert polynomial P(n) or equivalently exact se- 
quences 0-)>E-+F->G-*0 such that Pc/vin) = P{n). If V is an 
S'-scheme we can similarly consider relative Quot-schemes Quot^yy^. 
See [47,56] for more details. 

Example 5.44. A fundamental case is the Hilbert scheme X^ := 
Hilb^ = Quotjrj /X of 0-dimensional subschemes of length d in X. In 
this case relevant short exact sequences are in the form (5.33) and X^ 
is an irreducible symplectic manifold of dimension 2d. If C C X is an 
irreducible curve we have 

X[d] ^ M(l, 0,1 - d) ^ M(l, C,pa{C) - d), (5.45) 

where the first isomorphism is obtained by sending a 0-dimensional 
subscheme Z C X to its ideal sheaf Iz {cf. (5.34)) while the second one 
reflects the isometry (5.11) and is obtained by sending a 0-dimensional 
subscheme Z to IZ(C) := Iz ® Ox(C). 

5.2    DO-branes bound to a rigid smooth jD2-brane 
in a Calabi-Yau manifold 

We begin by considering a single D2-brane wrapping around a fixed 
closed (nonsingular) Riemann surface Ch of genus h so that the world- 
volume of the jD2-brane is Ch x M with the time running in the direction 
of R. Let us imagine that this D2-brane is bound to collections of 
DO-branes. Taking into account the fact that DO-branes are the pure 
magnetic sources as seen from the D2 brane, we may regard DO-branes 
as vortices. To concretely realize vortices one may consider, as the 
effective world-volume theory of the combined system, N = 2 abelian 
Higgs model [26] or more generally N = 2 abelian Born-Infeld type 
theory [21] on Ch x M • The precise form of the effective theory does 
not matter since the BPS conditions are universal [21] and are given by 
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the so-called (abelian) vortex equations on Ch- Thus the moduli space 
of the relative configuration of DO-branes with respect to the fixed D2 
brane should coincide with the moduli space of vortices. 

The mathematics of the vortex equations on closed Riemann sur- 
faces has been much investigated in the literature [14,15]4. We now 
review this subject rather in detail since it is conceptually important 
in what follows. 

Suppose that a hermitian C00 line bundle (i.e. [/(l)-bundle) L —>• 
Ch is given. Let A be the space of unitary connections on L and fi 
the space of (7°° sections of L. Our convention is such that yf^\A is a 
veal-valued 1-form on Ch if A e A. The curvature two-form is given by 
FA = dA and the covariant derivative DA = d + A can be decomposed 
as DA = OA + BA where OA and BA are respectively the (1,0) and (0,1) 
part of DA- Since BA determines a holomorphic structure on L, we can 
view A as the space of holomorphic structures on L. 

Let UJ denote the Kahler form on Ch- Then the vortex equations 
are the equations for (A, 0) G A x Q given by: 

BA(f) = 0, 
^     *      o (5-46) 

where A^ is the adjoint of A a; and c is a real constant. The first equation 
of (5.46) means that the section 0 is holomorphic with respect to the 
holomorphic structure determined by BA- Thus, in order to have a 
solution for 0 we must have d := deg(L) > 0. The integration of the 
second equation of (5.46) gives the stability condition 

c2 

d < — Area(C^), (5.47) 
ZTT 

which is necessary for the existence of solutions. The sufficiency was 
also shown in [14]. 

The space AxQ, is equipped with a natural Kahler, hence symplectic 
structure. The action of the U(l) gauge group Q on A x Q is symplectic 
and has a moment map given by /Z(J4,0) = A^FA — V^l\(/)\2. Let 
S = {(A, 0)e^4xfi|0^O and 5^0 = 0} be the set of solutions to 

4The vortex equations have also appeared as the BRST fixed configurations in 
Witten's analysis of two dimensional linear sigma models [105]. 
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the first equation of the vortex equations. Then the moduli space of 
vortices is given by the symplectic quotient 

{^(-V^ic^nsj/g. (5.48) 

The complex gauge group Qc acts on A x Cl leaving S invariant. 
We can identify the complex quotient 

S/gc, (5.49) 

with the set of effective divisors of degree d on C^, hence with the 
dth symmetric product CJ;' which is a smooth d dimensional Kahler 
manifold. This is so since every nonzero holomorphic section of an 
invertible sheaf determines an effective divisor and vice versa up to 
scalars. Indeed, there is a natural morphism (the Abel-Jacobi map) 

** : C^ -+ Pi<4 , (5.50) 

taking an effective divisor D of degree d to the invertible sheaf Och(D) 
such that every fiber (^(i)~1(C>ch(^)) is a projective space ¥H0(Chj 
Och{D)) ^ |D|. In other words, 

CJ?>*£{(L,U)\LePiclh, UcH0(Ch,L), dimU = 1} .      (5.51) 

Let K be a canonical divisor of Ch- If d > 2h — 2, the morphism £/d 

makes C^ ' a projective bundle over Pic^h since 

Ext\Och(-D),Och) = H\Ch,Ochm = H\Ch,0Ch{K-D)y = 0, 
(5.52) 

so that we have dimJHr0(Cf/l,Och(£
))) = d + 1 - h by the Riemann- 

Roch theorem. This can be rephrased in the following way. Let V be 
the Poincare line bundle over Pic^ xC^ with V\{L}xCh — L for every 
L e Pic^ and let u : Pic^ xCh -> Pic^ be the projection. Then, 
if d > 2h — 2, is+V is a vector bundle of rank d + 1 — h and we have 

If d > 0 and the stability condition is satisfied, the two quotients 
(5.48) and (5.49) are isomorphic. This is a story familiar in the context 
of the Kobayashi-Hitchin correspondence [74]. Therefore, the moduli 
space of vortices can be identified with the symmetric product C^ ' with 
d being the number of vortices. 
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The cohomology of Q ' was studied by Macdonald [75]. In partic- 
ular we have 

t ^V = ^|fe|f .        (M < 1 • 1*1 < 1) • (5.M) 

This immediately leads to 

oo 

Ex«(ciV = (i-^^a-y)*-1,      (lyl < i, M < i), (5.54) 
d=0 

and 
oo 

E^V = (i-y)2h-2,     (|y|<i). (5-55) 

Thus we find that X(CQ ') = d+ 1, which is consistent with the isomor- 
phism Cf0 = IP*. For /i > 1 it follows that 

AV   h  ;      [0 if d> 2/i-2. V       ; 

The vanishing of x(^ ) fov d > 2h — 2 can also be seen as follows. 
As mentioned C^ ' is a projective bundle over Pic^. Since Pic^h is 

homeomorphic to T2/l, we see that x(Cf ^ = x(Pd"/l)x(T2/l) - 0. 

Now going back to our problem, we suppose that the smooth Rie- 
mann surface Ch can be embedded in X (or more generally a smooth 
Calabi-Yau manifold Y"). In view of Corollary 5.24, Remark 5.29 and 
(5.55), the appropriate state counting function of the bound system of 
a Z)2-brane wrapping once around Ch and DO-branes sticked to Ch may 
be given by 

oo 

X>ri'V+1-'1 = (y-1/2 - y1/2)2h-2,     (|y| <i) •      (5.57) 
d=0 

This expression obviously enjoys the symmetry property under the ex- 
change y ++ y"1. This is gratifying since the variable y will be identified 
with the one in the previous sections and in that case the symmetry is 
required from the fact we are considering a closed string theory. 
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Remark 5.58. The shift of DO-brane charge can formally be incor- 
porated by considering the line bundle L = L ® Och{K)~1^2 instead 
of L since deg(L) — X(CA> £)• This twisting of the line bundle is very 
much reminiscent of that in the theory of the Seiberg-Witten monopole 
equations for 4-manifolds [106]. This should not be too much surprising 
since it is known that the vortex equations and the monopole equations 
are closely related [36]. The vortex equations can be considered as the 
dimensional reduction of the monopole equations. Indeed, the expres- 
sion [y-ll2 — yl/2)2h-2 is also equal to the Donaldson or Seiberg-Witten 
series of Ch x T2 [82] with the symmetry under the exchange y <->► y~l 

being the charge conjugation symmetry of the monopole equations. For 
h > 1, this was shown also in [11]. There is subtlety when h = 0 since 
62"(Co x T2) = 1 and there is a wall-crossing phenomena (cf. (3.36)). 
In this case a path integral justification requires the evaluation of the 
u-plane integral [81] which has been done in [79]. 

Remark 5.59. Given a real 3-dimensional manifold M we associate 
the variables yi to the generators of the free part of Hi(M, Z). Then the 
Reidemeister torsion5 r(M; yi) of M is closely related to the Alexander 
polynomial [97]: If 61 (M) > 1, r(M;^) coincides with the Alexander 
polynomial AM(yi) E Z^,^"1] which can be made symmetric under 
the exchange jji <r> y"1. If, on the other hand, bi(M) = 1 and dM = 0, 
we have 

r(M;y)=(y-if^(y)i/a)2.        AM(y)eZ[y,y-i}, (5.60) 

where AM(2/) is the Alexander polynomial symmetric under the ex- 
change y <-> y~l. In particular, we have 

r(C,x51;y) = (2/-
1/2-2/

1/2)2'1-2, (5.61) 

where y is associated with [51]. See for instance, [18,84]. According 
to Meng and Taubes [80], r(M;^) coincides with the Seiberg-Witten 
series of M defined through the 3-dimensional version of the Seiberg- 
Witten monopole equations. See also a recent work [79] for the connec- 
tion between the Donaldson-Witten partition function and the Reide- 
meister torsion. See also [33] for a relation between the Seiberg-Witten 
series of 4-manifolds and knot theory. It is rather curious to note that, 
in the following, we will encounter expressions quite similar to (5.60). 

5The Reidemeister torsion is essentially equal to the Ray-Singer torsion [18,84, 
95]. 
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Remark 5.62. Another reason for the significance of (y-1/2 — y1/2)2^-2 

is the following. Let Ch be a rigid [93] smooth curve of genus h in a 
Calabi-Yau 3-fold Y where "rigid" means that the normal bundle N = 
Nch/Y satisfies H0(Ch,N) = 0._Let p : Cgfi(Ch, [Ch]) -> M9,o(Chj [Ch]) 
be the universal curve and /i : Cgfl(Ch, [Ch]) —> Ch the universal evalu- 
ation map. Then it was proved in [93] that 

oo 

(y-1/2 - y1/2)2h-2 = (-i)'1-1 J2 x29~2 m*-* > (5-63) 
g=h 

where y = exp(^/—Ix) and 

m9^h := ei&p.ffN) n fMgfi(Chi [CH])]™ . (5.64) 

Note that nig in §2 is equal to ra^o and rrih-^h = 1. Eq.(5.63) is 
important in the sense that it plays a key role in relating the D2-D0 
state counting and the Gromov-Witten invariants. 

5.3    A D2-brane moving in K3 

As a warm-up for the next subsection we briefly recall the situation 
where a single D2-brane (not bound to any i^O-branes) moves in X. 
This case was first studied in [107]. 

Let C be an irreducible and reduced curve (which is not necessarily 
smooth) in X. One can consider the (component of) generalized Pi- 
card scheme Pic^ parametrizing invertible sheaves of degree d on C up 
to isomorphisms. Although Pic^ is not complete in general, one can 
consider its compactification Pic^ as the set of isomorphism classes of 
rank-1 torsion-free sheaves of degree d on C where the degree of a rank- 
1 torsion-free sheaf L is defined by x(C? L) — x(C, Oc)- Tensoring with 
an invertible sheaf of degree k gives an isomorphism : Pic^ ^ Pic^+A\ 

Let Ch C X be a connected nonsingular curve of genus h. Then the 
complete linear system (C^l is the set of all effective divisors linearly 
equivalent to Ch and \Ch\ = P*1. The latter statement can be seen as 
follows. First we have H2(X,Ox{Ch)) = H0(X,Ox(-Ch)y - 0 by 
vanishing theorem. The exact sequence 0 -> Ox —» Ox(Ch) —> wch -> 
0, where u)ch '= Och(Ch) is a canonical sheaf on Ch, leads, by us- 
ing ^(X.Ox) = 0, to an exact sequence 0 -> ^(X.OxiCh)) -> 
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H^ChtUcJ -> H2(X,Ox) -± 0. Since the map H^C^CJ^) -> 
H2(X,Ox) is surjective and both spaces are 1-dimensional, the ker- 
nel Hl(X,Ox(Ch)) must vanishes. Then, applying the Riemann-Roch 
theorem, we obtain the desired result. 

Setting Sh := |Cfc|, let Ch C Sh x X be the universal curve. For 
the flat family Ch/Sh we assume that all the fibers of the structure 
morphism p : Ch —> Sh are irreducible and reduced curves (of arithmetic 
genus h). 

A 5/j-flat Och module J7 is called a relative rank-1 torsion-free (resp. 
invertible) sheaf of degree d on Ch/Sh if at each point s € Sh the fiber 
Ts is a rank-1 torsion-free (resp. invertible) sheaf of degree d on the 
fiber (Ch)s- 

Denote by j : jT/f —> Sh the relative compactified Picard scheme 
Pic^ /^ —> iS/i of degree d which is the set of isomorphism classes of 
relative rank-1 torsion-free sheaves of degree d on Ch/Sh- 

As before, tensoring with a relative invertible sheaf of degree k pro- 
vides an isomorphism 

ak : J* -^ ^ • (5.65) 

Since the fibers of p are Gorenstein, the relative dualizing sheaf ujch/sh 

is a relative invertible sheaf of degree 2h — 2 on Ch/Sh- Thus we can 
use this for the construction of 02/1-2• 

Also the map F ^ F* = H)mo{Ch)s(F,0{Ch)s), s G Sh, F e (Jg)s 

determines an isomorphism 

e:Jh
d-^Jh-

d, (5.66) 

Especially, if we set e^ := (J2/1-2 o e, we obtain 

6W : Ji -^ JZh-2-d • (5.67) 

This map is obtained by F (->■ F* := Hmio^ )s(F, (<jOch/sh)s) = F* ® 
(uCh/sh)s. We note that deg(F*) = -deg(¥) and x((Ch)„F*) = 
-x((Ch)s,F). 

It is known [85-87] that jjf is an irreducible symplectic manifold of 
dimension 2h and 

■J* s A4(0,ch,d+l-h). (5.68) 
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Yau and Zaslow [107] proposed that the state counting function of 
a single D2-brane moving in X is given by 

oo 

Ex^V-^-T^i- (5.69) 

This proposal and its implication for the enumeration of nodal rational 
curves in X were further studied in [5,32]. 

5.4    DO-branes bound to a D2-brane moving in KZ 

In order to extend the results in §5.2 and describe the bound states 
of DO-branes and a D2-brane moving in the K?> surface X, there are 
two basically different but equivalent points of view. As we saw in 
§5.2, the moduli spaces of vortices are isomorphic to the symmetric 
products of (smooth) curves. Going to the relative situation, we are 
led to consider relative Hilbert schemes of points on curves. This gives 
the first approach. On the other hand, we also observed that the moduli 
spaces of vortices are those of pairs consisting of line bundles on curves 
and their sections. This latter viewpoint can be generalized and we are 
led to consider the so-called coherent systems [72]. 

5.4.1    Relative Hilbert schemes 

We start with the first viewpoint. We assume the same setting as in 
§5.3. In particular all the fibers of p : Ch —> <S/i are irreducible and 
reduced. 

Let X be polarized by an ample invertible sheaf Hx- Each fiber 
(Ch)s is polarized by (LS)*HX where ts : (C/l)s ^ X is the inclusion. 

Now fix a relative rank-1 torsion-free sheaf J7 of degree k on Ch/Sh- 
Since J7 is c^-flat and Sh is connected, the Hilbert polynomial of a 
fiber, 

pr./(ch). (n) = deg({Ch)s) n + x((Cfc)., ra) = deg((Cfc)a) n + k + 1 - h, 
(5.70) 
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is constant as a function of s G Sh- Fix a positive integer d. Then the 
relative Quot-scheme q : Quoti/Ch /Sh —> Sh parametrizes 

0^E—>Fa—>G—>0}-     (s£Sh), (5.71) 

where E and G are coherent sheaves on (Ch)s satisfying PG/(ch)s(n) = d. 
Let £ be the universal subsheaf and Q the universal quotient sheaf 
corresponding respectively to E and G in (5.71): 

0 —-> £ —■» (q x idx)*^* —* 0 —> 0. (5.72) 

For simplicity, we set q*^ := (5 x idxYF- Notice that 

p£u/(<Wg(„) (n) = deg((Ch)9(fl)) n + fe-d+l-/i,    ^G Quo4/C|i/5fc . 
(5.73) 

As for the D-brane charges, we see that 

Q({Lq{u))*£u) = (0, [CiJ, fe - d + 1 - /i), 

Q((<>q{u)U*Fu) = (0, [Ch], A: + 1 - /i), (5.74) 

0((^H)*^) = (0,0,(0, 

where u G Quot^y^/^. Note that the D-brane charges (5.74) are 

constant as functions of u G Quot^/Ch/Sh. This is intuitively plausible 
since "charges" must be conserved for a continuous family of curves. 

An important case is J7 — Och- By a slight abuse of notation, we 
denote by CJJ the relative Hilbert scheme Hilb^/^ = Quot^c /ch/sh 

parametrizing cJ^-flat subschemes of Ch relatively of dimension 0 and 
length d. Obviously in this case we have Q((i>q(u))*£u) — (0, [C/J, — d + 

1 — h). As we will see later, CJJ is projective and smooth of dimension 
d + h. 

One can construct the (degree d component of) Abel-Jacobi map [1] 
which is the forgetful morphism 

*£ : Q*o4/Ch/Sh -+ Jtd , (5.75) 

obtained by sending u G Quoti/^/^ to the isomorphism class of £u. 

{cf. (5.68) and (5.74).) The fiber of ^ at t G J^~d is isomorphic to 
PHom(^)    (/,^(t)) where / is a rank-1 torsion-free C?(cfc).(t)-module 
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representing t. The map £/£ is smooth over t if ExtL)    (/, Fjft)) = 0- 
See [1] for more details. 

By tensoring with a relative invertible sheaf £ of degree £ we obtain 
a commutative diagram [1]: 

Q^oti/ch/sh ®c ' Q,uotF®C/Ch/Sh 

J'k—d 
h <ri 

7* 

*?%£ 

i+k-d 

(5.76) 

Since wch/sh —: CJ is a relative invertible sheaf of degree 2h — 2 
(indeed it is isomorphic to Och(Ch)), we may take C = UJ in (5.76). 
Thus we obtain a commutative diagram 

Quot? ^/Ch/Sh 
(5.77) 

2h-2-d 

where O := Och' The down diagonal arrows may be viewed as exten- 
sions of (5.50). In particular the south-east arrow C^ —> jjf is obtained 
by sending u G CJJ to (the isomorphism class of) £* where £ is the uni- 
versal subsheaf of O. We note that Q({iq(u))*£u) = (0> [C/J> ^ +l — h). 

When T = UJ, the smoothness condition of ^f over t G J^h-2~d 

becomes 

Ext^CJ,^*)) e* ^((C^iw,/)* = 0. (5.78) 

Since deg(/) = 2h-2-d,we see that if d > 2h — 2, &Z* is smooth over 
every point of J^'2^. Since Hom(Ch) .(t) (/, a;iW) ^ Hl{{Ch)mjy and 
x((C/i)j(t)>-0 = ^ — 1 — rf, the fibers of srf£ iov d> 2h-2 are isomorphic 
to FKom(ch)m{I,Wj(t)) - ^d~h- Precisely the same result holds for */£ 
since we have the commutative diagram (5.77). We refer again to [1] 
for more details. 
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It is natural to set C^   := Sh — P^- We also have an isomorphism 
Ml]  r^j n 
^h    — ^h- 

With these preliminaries, we may regard Cjj as the moduli space 
of the D2-D0 bound states in X. In order to count the D2-D0 bound 
states, we are naturally led to consider a combination 

oo     oo 

EEx(4V-y+1-'\ (5.79) 

where we stress that the exponent of y measures the DO-brane charge. 
In the rest of this sub-subsection, we assume for every h > 0 that Ch 
satisfies the condition (•!) to be explained in §5.4.2. Then we have 

Theorem 5.80. For 0 < \q\ < \y\ < 1, 

where 

h=od=o XiwOM/)' 

24 77/_ ,A2 XlO,l(T,v)=v(Ty4E(T,v) 

= (y-l/2 - 2/1/2)2 Q f[(i - 9n)20(i - qny)2(i - tfV1)2 • 
n=l 

(5.82) 

This result may be viewed as an amalgamation of (5.57) and (5.69). 
The proof of this theorem is given later when we reformulate the prob- 
lem in terms of coherent systems. 

By putting w = q/y we can cast Theorem 5.80 in a more symmetric 
form: 

Corollary 5.83. For 0 < \w\ < 1, 0 < \y\ < I, 

oo     oo 

E£x(4Vy 
h=o d=o ^ (5_84) 

_ 11 (1 - (wy)n)20(l - (wy)n-lw)2(l - {wy)n-ly)2 ' 
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Since the right hand side is symmetric under the exchange of w and 
y we readily obtain 

Corollary 5.85 (degree-genus duality). 

X(C$) = X(4hl) • (5-86) 

We note that XIO,I(T, i/) is the (unique up to a multiplicative con- 
stant) cusp Jacobi form of weight 10 and index 1 and can alternatively 
be expressed in terms of the Eisenstein(-Jacobi) series [27]: 

XIO,I(T, u) : — . (5.87) 

In fact XIO,I(T, V) is the first Fourier-Jacobi coefficient of the Igusa cusp 
form of weight 10: 

oo 

XioM = XyXio,n(T>), (5-88) 
n=l 

where Q = (IT>) G H2. The infinite product representation (5.82) 
has a beautiful extension to Xio(^) as found by Gritsenko and Nikulin 
[45]. They applied the exponential lifting procedure by Borcherds to 
a particular weak Jacobi form of weight 0 and index 1 which, as we 
have observed in [63], happens to be the elliptic genus of K3 surfaces. 
For a partial review on the relations between Xio(^) and K3 surfaces, 
see [64]. 

Now we quote the following result from [19,28,39], 

Lemma 5.89. For \q\ < min(l, \y\, l^l-1); 

Z^        (,,-1/2 _ ,,1/2-12 • (5-90) 
XIOAT,")    fo      (y-1/2 - y1/2)2 

Remark 5.91. This is not precisely in the form presented in [19,28,39] 
but is trivially related to it. 

One may interpret this result in an alternative way since the inverse 
of Xio(fi) has also a very nice expansion. Indeed, the result of [24] can 
be rephrased as 
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where S^h)(T, v) is the orbifold elliptic genus of X(/l). Comparing the 
limits Imr' —» oo on both sides of (5.92) one finds that 

where ^r
(
b

h)(r, v) = y-hXyh(X^) + 0(q). It thus follows that 

Lemma 5.94. 

xfpfW) = Xy(X[h]) = XyiJt) ■ (5-95) 

The second equality will be proved in Theorem 5.151. 

Remark 5.96. Naturally we are led to the conjecture: 

£%M = ZxwM = Sjtfav). (5.97) 

Unfortunately this does not follow simply from Lemma 5.94. 

Hence, as a corollary to Theorem 5.80, we find that 

Corollary 5.98. For any nonnegative integer h and \y\ < 1, 

£x(4dl) ,[^„id+i-h =    y hXy(Jh) 

d=0 (y-1/2 - yl/2)2 

= (/i + l)(y-1/2_yi/^-2 + ... 

+ x(Jh
d)(y-1/2-yl/2r2, 

(5.99) 

where the last expression represents the expansion in (y 1'2 — y1l2)2k 2 

for k = h, h — 1,..., 1,0. 

This should be considered as a generalization of (5.57) and it im- 
mediately implies 

Corollary 5.100. For d>2h-2, 

x(cl?) = (d + i-hMJi). (5.101) 
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Proof. If d > 2h — 2 the only relevant part for the calculation of x(C[') 
is the term 

x(Jh
d)(y-1/2-y1/2)-2 

in (5.99). Then use the series expansion (3.36) for \y\ < 1. □ 

This result is consistent with the earlier mentioned condition for the 
smoothness of the Abel-Jacobi map &/g since x(Pd"/l) = d+1 - h. Also 
comparing the coefficients of y1-^ in (5.99) one finds that x(C[0') = /i+l, 
which is consistent with c[01 = F*. 

Remark 5.102. As remarked before, the expression 

y-hXy(Jh
d)   = v-hxy(xlh]) 

(y-1/2 _ j,l/2)2 ^-1/2 _ ^1/2)2 ' (5.103) 

is reminiscent of (5.60) with the numerators playing the role of the 
symmetrized Alexander polynomial. We are not sure whether this is 
merely a coincidence or suggests the existence of certain theories on 
X x T2 or X x S1 which give rise to the relative versions of the Seiberg- 
Witten invariants. 

5.4.2     Coherent systems 

Now we turn to the second viewpoint of D2-D0 bound system on X. 
In the following we simplify notations by using ( , ) for ( , )x. 

Suppose that we are given a coherent sheaf E on X and a vector 
subspace U of H0(X,E) S Rom(Gx,E). The pair (E,U) is called a 
coherent system [72]. A coherent system (E,U) is called of dimension 
m if dim(E) = m. One may equivalently define a coherent system as 
a sheaf homomorphism / : U ® Ox —> E, where U is a finite dimen- 
sional vector space and E is a coherent sheaf, with the property that 
H0(f) : U ^ H0(X,E) is injective. Throughout this sub-subsection, 
we assume that M(v) consists of slope stable sheaves. 

Remark 5.104. Assume that v D [X] = (r[X], [C], a) with a primitive 
[C]. Then A4(v) consists of slope stable sheaves E for a general Hx 
if (i) r > 0, (ii) r = 0 and a ^ 0, or (hi) r = 0 and \C\ consists of 
irreducible and reduced members. 
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Let6 

Systn{v) := {(E, U) | E € M{v), U C H0(X, E), dim U = n}   (5.105) 

denote the coarse moduli space of coherent systems constructed by Le 
Potier [72]. Thus Systn(v) is a projective scheme. 

Definition 5.106. We set 

M(v)i := {E e M(v) I dimH0(X,E) = i}, 

where pv : Systn(^) --> M(v) is the natural projection. 

(5.107) 

Let Ch be an effective divisor on X satisfying 0% — 2h — 2.   We 
consider the following two conditions on C^: 

(•1)  There is an ample line bundle H such that 

Ch-H = min{L - H | L G Pic(X), L • if > 0}. (5.108) 

(•2) Every member of\Ch\ is irreducible and reduced. 

Remark 5.109. Obviously, the condition (•!) implies the condition 
(*2). 

Remark 5.110. If Pic(X) = ZCh with h > 1, then Ch satisfies (•!). 
In the moduli space of polarized K3 surfaces of degree 2/1 — 2, the locus 
of (X,Ch) with rk(Pic(X)) > 1 is countable union of hypersurfaces. 
Hence for a general point (X, Ch), Pic(X) =ZCh- If TT : X —> P1 is an 
elliptic K3 surface with a section such that Pic(X) = Za ©Z/, where 
a is a section of TT and / a fiber of TT, then Ch = f satisfies (•!) with 
h = 1 and Ch = cr satisfies (•!) with h = 0. Indeed, a + 3/ is ample 
and/.(a+ 3/) = (7-((7 +3/) = 1. 

Remark 5.111. Under (*2), IC/JI always contains a smooth curve [35, 
p.l33-p.l35]. 

6As remarked before, we use the same notations for isomorphism classes and 
their representatives. 
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Remark 5.112. Whenever we assume the condition (*1), we use H in 
(5.108) for the polarization of X. 

Let Gr(fc, /) denote the Grassmannian parametrizing /-dimensional 
vector subspaces of C^. The following is a consequence of [108, Lem. 2.1, 
Lem. 2.4]: 

Lemma 5.113. Assume that Ch satisfies (•!) and n < r. Define 
v,w G #2*(X,Z) by vH [X] - (r[X],[Ch],a) and w n [X] = ((r - 
n)[X],[Ch],a - n). Any element f : U ® Ox -> E of Systn(i>) is 
an injection and coker/ is a (slope) stable sheaf. Hence we have a 
morphism 

qv : Systn(v) —>     M(w) 
(5.114) 

(f:U®Oxc-*E)   ^   coker/. 

Moreover, by setting m — n — (r + a), we obtain the following diagram: 

Syst^^ (5.115) 

M{v)i M{w)i-n 

where pv is an etale locally trivial Gr(z,n)-bundle and qv is an etale 
locally trivial Gr(m + i^n)-bundle. 

More precisely, we proved Lemma 2.1 in [108] under the assump- 
tion Pic(X) = ZCh- Since the same proof as there works under the 
assumption (•!), we obtain the diagram (5.115). 

The following is well-known. 

Lemma 5.116. Let E be a torsion-free sheaf or a coherent sheaf of pure 
dimension 1 on X. Let (f) : VQ —± E be a surjective homomorphism from 
a locally-free sheaf VQ.  Then ker</> is a locally-free sheaf or kevcf) = 0. 

Indeed for a torsion-free or a pure dimension 1 sheaf £", depth0xxEx 

> 1 for all point x G X, where Ox,x and Ex are the stalks of Ox and 
E at x respectively (c/. [56, 1.1]). Since X is smooth of dimension 
2, the homological dimension hdoXx(Ex) of Ex satisfies an equality 
hdoXx(Ex) + depth^^E^ = 2. Hence hdoXx(Ex) < 1, which implies 
our claim. 



STRING PARTITION FUNCTIONS 445 

The next Lemma is an extension of [108, Lem 5.2]. 

Lemma 5.117. Under the condition (*1), Systn(i;) is a smooth scheme 
of dimension (v, v) + 2 - n(n + (vi,v)), where vi fl [X] = ([X], 0,1), 
namely Vi — v(Ox)- 

Proof. Let A = (E, U) be a point of Systn(t;). By He [51], the Zariski 
tangent space of Systn(z;) at A is given by Ext1 (A, A), the obstruc- 
tion of infinitesimal liftings belong to the kernel of the composition of 
homomorphisms 

r : Ext2(A, A) ->• Ext2(£, E) 4 H2(X, Ox), (5.118) 

and 
Ext2(A, A) ^Ext2([/® Ox->£,£), (5.119) 

where Ext*(C/ <g> Ox -> E, *) is the hypercohomology associated to the 
complex U ® Ox —> E. Moreover there is an exact sequence 

0 >■ Ext0(A, A) > Hom(£;, E) > Eom{U <g> Ox, E)/V 

 > Ext1 (A, A) > Ext^E, E) > Ext^t/ ® Ox, E) 

 > Ext2(A, A) > Ext2(JE;, E) >■ Ext2(t/ ® Ox, E) = 0 
(5.120) 

where V := im(Hom(C7 ® Ox, U ® Ox) -> Hom(C/ <g> Ox, ^))- Then 
the Serre dual of r is the composition of homomorphisms 

H0(X, Ox) -► Hom(E, £7) M- Mom(E, U®Ox^E).        (5.121) 

So we shall prove that Hom(JE;, t/- ® Ox ->• S) = C. Let 

0 —► Ox ® Ext^E, Cx)* —>• G —»• E —>• 0 (5.122) 

be the universal extension, i.e. the extension class corresponds to the 
identity element in 

End(Ext1(£;, Ox)) = Ext^E, Ox ® Ext1^, Ox)*) • (5.123) 

We set i := dim Ext1 (E, Ox). Since dim Horn (E, U <g> Ox ->• ^) > 1 
by (5.121), it is sufficient to prove that 

(1) E.om(E, U <g> Ox ->■ ^) —>• Hom(G', [/ ® Ox -► -E) is injective, 
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(2) Hom(G,U®Ox-*E)9*C. 

• Proof of (1): Since there is an exact sequence 

Ext-1 (Of, U®Ox^E)—> H[om(£, UtoOx-^E) 

^mTiv{G,U®Ox-*E),   (5.124) 

it is sufficient to prove that Ext-1 (Of*, U ® Ox ->■ E) = 0. We note 
that 

Ex.t-l(0®\U®Ox ->E)= kei(JIom(Of,U®Ox) ->• Eom(0®\E)). 
(5.125) 

Since U is a subspace of Hom(£>x, E), Ext-1 (Of, C/ ® Ox -»■ E) = 0. 
Hence (1) holds. 

• Proof of (2): It follows from [108, Thm. 2.5] that G G M(v + 
ivi)-(vi,v+ivi), i-e- Hl(X,G) = 0. Hence Ext1 (G, Ox) = 0 by Serre 
duality. By the stability of G, we also have Hom(G, Ox) = 0. By the 
exact sequence 

Hom(G, U <8> Ox) —)■ Hom(G, E) 

—>• eom(G, t/ ® Ox ->■ S) —> Ext^G, U ® Ox),   (5.126) 

Hom(G, S) ^ Hom(G, U®Ox^E). Since Hom(G, £7) fits in an exact 
sequence 

Hom(G, Of) —>■ Hom(G, G) —)• Hom(G, E) -^ Ext^G, Of), 
(5.127) 

and Hom(G, G) = C, we have Hom(G, E) = C. Thus (2) holds.        □ 

The proposition below was first shown by Markman [77, Thm. 39]. 

Proposition 5.128. Assume that Ch satisfies the condition (*1). For 
n > r, we have an isomorphism 

8 : Systn(r, Ch, a) ^ Systn(n - r, Ch, n - a). (5.129) 

If n = 1 and r = 0, then the same assertion holds under the condition 
(*2). 
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Proof. For a coherent system / : U 0 Ox —» E belonging to Systn(r, 
Ch,Q>), our assumptions and [108, Lem. 2.1] imply that 

(i) / is surjective in codimension 1 (and hence dimcoker/ = 0) and 
ker / is a (slope) stable sheaf, or 

(ii) / is injective and coker / is a (slope) stable sheaf 

according as (i) n > r or (ii) n = r.   For the second case, / is also 
generically surjective. There is an exact sequence 

0 >■ nomox(U®Ox-> E, Ox) >■ Homox(E, Ox) > Uomox (U®Ox, Ox) 

^ Sxt^^U ® Ox -> E,Ox) ^Sxt^E.Ox) >Sxt^^U®Ox,Ox) 

*- Sxt2
0x {U®Ox^ E, Ox) > £xt2

0x {E, Ox) > Sxt2
0x {U®Ox, Ox)* 

9 

Since / is generically surjective, T-Lomox(E,Ox) -> %omox(U ® 
Ox, Ox) is injective. Hence we obtain /Komox{U®Ox —> E, Ox) = 0. 
Since E is torsion-free or of pure dimension 1, Lemma 5.116 implies 
that Sxt2

0x(E, Ox) = 0. Since U ® Ox is a free module, Sxtk0x{U ® 
Ox, Ox) = 0 for all k> 0. Thus we obtain Sxt2

0x (U®Ox -> E, Ox) = 
0. We set D(E) := Sxt^U ® Ox -+ E,Ox). We shall prove that 
D(E) is a (sloped(stable sheaf of v(D(E))n[X] - ((n-r)[X],[Ch],n-a). 
We first compute v(D(E)): In the Grothendieck group Ko(X), we have 

^(-lySxt^iUQOx -► E,Ox) 
i 

= Yl(-l)iS34>x{EiOx)-Yl(-l)iS34>x(U®0XlOx). 

(5.130) 

For (a, ci, b) € H2*(X, Z), we set (a, ci, b)* :— (a, —ci, b). Then we get 

v(52(-l)iSx?0x(E,Ox)) = v(Er 
^       i (5.131) 

^(^(-l)^x**0jr (^ ® Ox, Ox)) = u(y ® Ox)*- 

Hence we see that v(D(E)) n[X] = ((n- r)[X], [Ch],n - a). We next 
show that D(E) is (slope) stable: By using the diagram 

ker/ >U®Ox >im/ 

t Y 
E >E 
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we have an exact sequence 

0 > £xtl0x (coker /, Ox) ^ D(E)  /Homox (ker /, Ox) 

 > £xt2
0x (coker /, Ox) > 0 

Hence D(E) is torsion-free or of pure dimension 1 according as n > r 
or n = r. If n > r, then ker / is a (slope) stable vector bundle. Hence 
(ker/)* is also stable, which implies that D(E) is also (slope) stable. 
Thus g : U* <g> Ox -* D(E) is an element of Systn(n - r, Ch,n - a). 
If n = r, then ker/ = 0, and hence D(E) = SxtQx(coker/, CTy). 
Since Supp(coker/) is irreducible and reduced, D(E) is a stable sheaf. 
Therefore g : U* ®Ox -> D(E) also belongs to Systn(n -r,Ch,n-a). 
Hence we obtain a map 

5 : Systn(r, Ch, a) —> Systn(n - r, C/,, n - a). (5.132) 

We shall prove that this map is holomorphic. For this purpose, we 
consider a family f : U El Ox -» £ of coherent systems parametrized by 
a scheme S such that £ is flat over S and U is a vector bundle of rank n 
on 5. Let A : WQ —> £> be a surjective homomorphism from a locally-free 
sheaf Wo to E. We set Wi := ker(Wo 0 W S Ox -* f). Since £s, 5 G 5 
is torsion-free or a coherent sheaf of pure dimension 1, Lemma 5.116 
implies that Wi is a locally-free sheaf. We consider a homomorphism 
^ : Wi 0 W H 0x -> Wo 0 W S Ox sending (re, j/) G Wi 0 W Kl Ox to 
—x + y G Wo0ZYIEI(9x, where we regard Wi and UEHOx as subsheaves 
of Wo 0 W Kl Ox- Then we obtain a morphism of complex which is 
quasi-isomorphic: 

Wi © W Kl Ox ^^ Wo © W El Ox 

ZYK 

(A,f) 

Ox >5 

Since the construction of ip is compatible with base change and ^, 5 G 5 
is generically surjective, ^ is injective, where ^* : (Wo © W Kl Ox)* -> 
(Wi © U E Ox)* is the dual of ^. Hence coker ^* - ^*oSxX(W H 
Ox -^ £,Osxx) is flat over 5 and (coker ^*)s ^ Sxt^Us ® Ox -^ 
^a? Ox). Let g : W* El Ox —> coker'0* be the homomorphism induced 
by the natural inclusion i : W* H Ox ^ WJ © W* S Ox-   Then g : 
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U* IE! Ox —> coker tp* is a family of coherent systems. Therefore 8 is a 
holomorphic map. In the same way, we can construct a holomorphic 
map 8' : Systn(n - r, Ch, n - a) -)• Systn(r, Ch,a). Then 81 is the inverse 
of 8. Indeed, by using the diagram 

0 >WZ®WMOx 

W H Ox 

■Wl®U*mOx 

■WMOx 

s 

- coker if;* - ->0 

we obtain the following diagram 

KM Ox 

(0,id) 

■ m®u®Ox 
{-i>,i*) 

-UMOx 

(Wo 0 U B Ox) ®U^Ox > coker(-'0, i*) > 0 

Then we can easily show that ^(g) : U Kl Ox -> coker(-'0,i*) is 
identified with f : UMOx -> S. Thus 5fo5 = id. Soft = id also follows 
from the same argument. □ 

Corollary 5.133. By the above isomorphism, we have the following 
diagram: 

Systn{v)r+a+i S SystnHn+< (5.134) 

M.{v)r+a+i ' " M{w)nM 

where v n [X] = (r[X], [Cfc], o) and w n [X] = ((n - r)[X], [Cfc], n - a). 

Proo/. Let U ® 0^  —>  E be an element of Systn('u)r+a+i.    Since 
Sxtk0x(U ®Ox ^ E, Ox) = 0 for k ^ 1, we obtain 

Extfc+1(£/ ® Ox -)• £, C?x) = Hk(X,Sxt^iU ®Ox^E, Ox)). 
(5.135) 

Since £xt0x(U ® Ox —> E,Ox) is a stable sheaf of positive degree, 
Serre duality and (5.135) imply that 

Ext3([/ ®Ox->E, Ox) = H2(X, Sxtl0x(y ®Ox^E, Ox)) = 0. 
(5.136) 
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By using the canonical exact sequence 

0 = Ex&iU ® Ox, Ox) —► Ext2(f/ O Ox -»• ^, Cx) 

—> Ext2(£;, Ox) -^ Ext2{U (8) C?^, Ox) -)• 0, 
(5.137) 

we see that 

dimH^X^xt^iU ®Ox^E, Ox)) 
= dimExt2(C/ ®Ox -* E, Ox) 

= dimExt2(£,Ox)-n 
= dimi70(X, E)-n = r + a + i-n. 

(5.138) 

D 

Remark 5.139. We can easily generalize Lemma 5.117, Proposition 
5.128 and Corollary 5.133 to N(mvuv) in [108]. 

We now explain the equivalence between relative Hilbert schemes of 
points on curves and coherent systems under the condition (•2). First 
we remark that 

Lemma 5.140. Under the condition (*2), 

Syst^O, Ch,d+l-h)* SystCh/5h(l, ft), (5.141) 

where 

Syst^l, Jft) x={Oc^L\CzSh = \Ch\, L € Picc} ,     (5.142) 

is the relative moduli space of coherent systems on p : Ch —t Sh. 

Proof. Let C IEI Ox —> £ be a family of coherent systems parametrized 
by a scheme S such that £s e M(0, Ch, d + 1 — h) for all s G 5, where 
£ is a line bundle on 5. Replacing £ by (£EI Ox)* ®£, we may assume 
that £ = Os- We consider a locally-free resolution (Lemma 5.116) 

0 —> V1 A Fo -^ £ —> 0. (5.143) 

Then det^ : detVi -> detVo is injective and it defines an effective 
Cartier divisor Div(£) on 5 x X. Div(5) is called the scheme-theoretic 
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support of E and £ is an O^-^s)-module. Thus we can regard £ as a 
sheaf on Div(£) and we get a homomorphism if) : (9Div(£) —> £- Since 
the construction of Div(£) is compatible with the base change, Div(£) 
is flat over S and ^ ^ 0 for all 5 G S. Thus we get a morphism a : 
Syst1(0, Ck, d + 1 — /i) —► SystC/i/5/i(l, ^f). Conversely, for a flat family 
of Cartier divisors V C S x X and a family of coherent systems if) : 
Ov -± £)Osxx -> Ov -> £ gives a family of coherent systems on 5xX, 
where we regard £ as a sheaf on S x X. Hence we have a morphism 
P : SystCh/Sh(l,J^) -* Syst^OjC^d+l-Zi). Clearly /3oa = id. Since 
every member C G (C/J is irreducible and reduced, set-theoretically 
ao (3 = id. In particular, Syst1(0,C^,d+ 1 — h) is isomorphic to the 
reduced subscheme SystCh/Sh(l, J/f)red of SystCh/Sh(l, J*). Therefore it 
is sufficient to prove that {$ induces an injective homomorphism 

px : Tx$ystCh/Sh&j£)) —> r/3(jB)(Syst1(0,Cfc,d+ 1 - h))     (5.144) 

of Zariski tangent spaces for all x E SystCh/<S/i(l, J*). Let ^ : Oc —> E 
be a coherent system corresponding to a point x E Systc /^(l, jf^). 
Assume that ^(0 = 0 for a tangent vector £ E ^.(Syst^/^l, jjf)). 
Let $ : OT> -t £ be a family of coherent systems corresponding to 
£, where I? C S x X is a flat family of Cartier divisors over S := 
Spec(C[t]/(i2)). We claim that Div(£) = P. Then a(/3(tf)) = *, 
which implies that £ = 0. 

• Proof of the claim: Our assumption implies that £ = Os^Q E. In 
particular, Div(£) = S x Div(S) = S xC. Since £ is generated by one 
element on 5 x (X \ Sing(C)), by the construction of Div(£), we get 

Div(£)|5x(X\Sing(C)) = ^|5x(X\Sing(C))- (5.145) 

Since first order deformations of Dh^i?) = C are classified by ^0(Cr, 
Oc(C)) and the map H0{C,Oc(C)) -> i/0(C \ Sing(C),Oc(C)) is 
injective, it follows from (5.145) that Div(£) = V. 

This completes the proof of (5.141). □ 

Remark 5.146. See Lemma 5.175 below. 

Let Ox -> L be an element of Syst1(0, C^, a) and set C := Supp(L). 
We have an exact sequence 

0 —> Ox —+ Sxtl^Ox -> L, Ox) —» ^i^(L, Ox) ^ 0, 
(5.147) 
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since Womox {L, Ox) = 0. Hence we obtain the following commutative 
diagram under the condition (•2): 

Cj? = Hilb^/5h ^ Syst^O,Ch,d+l-h) -^-+ Syst^l,Ch,-d + h) 

*, Pv 

M(0,Ch,-d+l-h)*-Z—M(0,Ch,d+l-h)—^ M(0,Ch,-d +h-1) 

(5.148) 
where vn[X} = (0, [Ch],d +l-h),wn[X} = ([X], [Ch}, -d + h), and 

C and e are isomorphisms defined by 

C: L >-+ exthx(L,Ox), 
e:    (Oc-+L]c)   ^   {Uomoc(L\C, Oc) C Oc). l j 

For L G M(0, Chi d+1 — /i), £xtQx(L, Ox) is also supported on C and 
we have 

Sxt^L, Ox)\c = nomoc{L\c, Oc) ® uc • (5.150) 

Hence we may identify £ with e^ in (5.67). The diagram (5.148) then 
implies that we can also adopt Syst1(0, Ch, d + 1 — h) as the pertinent 
moduli space of D2-D0 bound states. 

The following was first proved by Huybrechts [55] based on the 
description of moduli spaces in [91]. We can find a more direct proof 
in [108]. 

Theorem 5.151. If Ch is ample or satisfies the condition (*1); then 
Ai(r,Ch,a) is deformation equivalent to X^h~ra^ In particular, 
Xu{M(r)Ch,a))=Xt,i(X[h-ra])- Moreover, ifr > 0 and £ € Pic(X) is 
primitive, then the same assertions hold for .M(r,£, a). 

Proof. That the assertions hold is guaranteed by [108, Thm. 0.2] unless 
r = 0 and Ch is not ample. Hence we may assume that r = 0 and Ch 
satisfies (•!). The following argument is very similar to the last part of 
the proof of [108, Thm. 3.6]. Let H be an ample line bundle in (5.108). 
Replacing E G M{^Ch,a) by E ® H®71 G A^(0,C^,a + ndeg(C^)), 
n ^> 0, we may assume that the evaluation map (j): II0(X, E) ® Ox -> 
E is surjective for all E G M{Q,Ch,a). By [108, Lem. 2.1], ker</> is a 
stable sheaf. Then the correspondence 

R:   M(0,Ch,a)    —)■   A<(a,-Ch,0) ^ 152) 

i? i—)■ ker0 ^ •      / 
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gives an immersion. Since .M(a, — C^, 0) is irreducible (indeed deforma- 
tion equivalent to X^), R is an isomorphism. Therefore .M(0, C^, a) 
is also deformation equivalent to X^. □ 

Remark 5.153. The isomorphism R is called the reflection by v(Ox) 
(cf. [86, 108]). Indeed v(Ox) is a (-2)-vector and v(R(E)) = 
dimH0(X,E)v(Ox) -v(E) = -((v(Ox),v(E))v(Ox) +v(E)). Hence 
—R(E) is the reflection of v(E) by v(C?x)- Since a (—2) reflection is 
an important piece of the isometry group of the Mukai lattice, it is 
important to analyze its geometric realization. 

Let us set 
oo 

(floo:=n(1-frB)> and        ©(0:=(0oo(<z/Ooo(«)co.   (5-154) 
71=0 

For each n e Z we define sign(n) by 

J+l    ifn>0, 
sign(n) = < (5.155) 

1—1    it n < 0. 

Then, the following is well-known: 

Lemma 5.156. For 0 < \q\ < |fi| < 1 and 0 < |g| < 1^1 < 1, 

^l;     VW' Sign(j)=sign(j) 

Proo/. See [52,99,111]. D 

Now we are in a position to state the main assertion: 

Theorem 5.158. Assume that Ch satisfies (*1) for all h > 0.  ITien, 
/or 0 < |g| < |y| < 1, 

E E ^-(systHo, ch, d+1 - /oxtt)1-v-y 
/i=0 <i=0 

-1 

«(y)oo(g/j/)oo((tty)-1)oo(ttyg)oo(tt-1g)oo(g)ii(<-1tg)oo' 
(5.159) 
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In particular, by setting t = i = 1; we obtain 

oo     oo 1 

£ £xtSyst^O, Chid + 1 - h))^1^1^ = r-T .    (5.160) 
h=0 d=0 

Moreover, if Ch is ample and satisfies (*2), then X^(Syst1(0, C/^d + 
1 — h)) is meaningful and can be obtained from (5.159) as ifCh satisfied 

For the proof of this theorem, we need the notion of virtual Hodge 
polynomials. For a scheme V over C, cohomology with compact sup- 
port H*(V, Q) has a natural mixed Hodge structure [22]. Let ep>q(V) := 
^fc(-l)fc^^(i?c

fc(y)) be the virtual Hodge numbers and e(V) := 
J2p,q

eP'q(v)tPiq the virtual Hodge polynomial of V. The following 
properties are useful for the computation of e(V). (For more details 
on virtual Hodge polynomials, see [19, 0.1].) 

Lemma 5.161. 

(a) Suppose that V has a decomposition V = U*=1V^ into mutually 
disjoint locally closed subsets. Then 

e(V) = J2eW- 
i=l 

(b) If V is a smooth projective variety, then e(V) = XttiV)- 

For each integer n, we set 

M:=fc. (5.162) 

Then, 

Lemma 5.163. Let TT : V —¥ W be an etale locally trivial ^-bundle 
over W. Assume that V is projective over W. Then 

e(V) = [n + l]e(W). (5.164) 
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Proof. We may assume that W is smooth by applying Lemma 5.161 
(a) successively. Since TT is a projective morphism, the Leray spectral 
sequence for TT degenerates. Moreover we obtain i?27r*Q = Q, and 
hence R2i>JT*Q ^ Q for 1 < i < n. Since H*C{V,Q) is the Poincare dual 
of i?*(V,Q), we obtain our claim. □ 

Proof of Theorem 5.158: By Lemma 5.117, Syst^O, Ch, d+1 - h) is 
smooth. Hence it is sufficient to compute the virtual Hodge polynomial 
eCSyst^O^d+l-/*)). 

We start with the computation of e(Syst1(r, Ch,a)), r + a > 0. 
Under the condition r + a > 0, (5.115) gives the following diagram: 

Syst1^ + l,Ch,a + l)r+0+i+i 

M{r + 1, Ch, a + l)r+a+i+i M{r, Ch, a)r+a+i 

where pi is an etale locally trivial Pr+a+i-bundle and pz is an etale 
locally trivial F_1-bundle. By Lemma 5.163, we have a relation 

^2[i}e(M(r, Ch, a)r+a+i) 
i>0 

= V[r + a + 2 + i]e(M(r + 1, Ch, a + l)r+a+2+i) 
i>o (5.165) 

= [r + a + 2]e(M(r + 1, Ch, a + 1)) 

+ (tiy+a+2 J2[i\e{M(r + 1, Ch, a + l)r+a+2+i). 
i>0 

Applying this successively, we see that 

^[i]e(.M(r, Ch, a)r+a+i) 
i>Q 

= [r + a + 2}e(M(r + 1, Ch, a + 1)) 

+ (tt)p+a+2 ^[i]e(7U(r + 1, Ch, a + l)r+0+2+i) 
i>0 

= [r + a + 2]e(M(r + 1, Ch, a + 1)) 

+ (ti)r+a+2[r + a + 4}e(M(r + 2, Ch, a + 2)) 

+ • • • + {ti)^='{r+a+2j)[r + a + 2k}e(M(r + k, Ch, a + k)) + ■ ■ ■ . 
(5.166) 
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Since 

e(Syst1(r,Cft,a)) = J][r + a + i]e(M{r,Ch,a)r+a+i) (5.167) 
i>0 

and J2jZ0(r + a + 2j) = (r + a + k — l)k, we obtain that 

= [r + a]e(M(r, Ch, a)) + (tty+a y][i]e(^(r, Ch, a)r+a+i) 
w (5.168) 

= 5](tt)(r+a+fc"1)fc[r + a + 2k]e(M(r + k, Ch, a + k)). 
k>0 

Now using (5.168) with r = 0, we find that 

J2 E e(systl(0. ch, ^mtiy-y-1 

h>0 a>0 

= E E J^^^'1^ + M]<M{k, Ch, a + k))ya(ti)l-hqh-1 

h>0 a>0 k>0 

h>0 j>i   i>0 

h>0 j>i   i>0 

tt 

(5.169) 
^    \j>i  i>0 

where we applied Theorem 5.151 to e(M(i,Ch,j))' 

For Syst1(0, Ch, —a), a > 0, we use Corollary 5.133 to find a relation 

^[^(^(O^^-a),) = ^[a + l + 2]e(>l(l,C^l + a)a+i+1). (5.170) 
2>1 i>l 

By using (5.165) successively and performing a similar calculation as 
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above, we see that 

/i>0 a>0 

/i>0 a>0 i>0 

h>0 a>0 A;>1 

= E E E^-1^"^ + MMV, Ch, i))yi-i(ti)1-hQh-1 

h>0 i>j j>l 

= EEE^)0"1^^ +J}e(X^2-ij+V)yj-i(ti)1-hqh-1 

h>0 i>j j>l 

tt 

(5.171) 

Combining the above results we obtain that 

£ J2 e(Syst1(0) Cfc, aJ^Ctt)1"*^1 

= -( E («)"*[<+jV"*9y) (Ee(x[nl)(tt~)^n 

^    \i>0,j>0 

tt     ' E (WIT* - (%)"i2/i)^ ) (Ee(xH)(«)"n^ 
5(tt - !)  v>oj>o 

g(i-(tt>i)e(y)e((%)-i)l^c(X )(tt)  ' J' 

where we used Lemma 5.156 in the last step. Since 

e(y)e((%)-1)      Mooiq/yUdttyy^ttyq^ 
(1 - (t^Mim^qUtiq), 

(5.172) 

(5.173) 

(y)oo(g/z/)oo((%)~1)oo(^y9)oo 
and 

00 1 
gc(xW)(tt)-v = ((tt)-ig)oo(iFig)oo(,)2o(,-1,~g)oo(^)oo (5-174) 
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by [19,39], we reach the desired result. The last assertion of the theorem 
follows from the following two lemmas. ((7/. Remark 5.110.) □ 

Lemma 5.175. Under the condition (*2); Syst1(0, Cy^a) is smooth of 
dimension 2h + a — 1. 

Proof. By Proposition 5.128, Syst1(0,C^,a) is isomorphic to Syst1(l, 
C/i, 1 — a). Hence we shall prove that Syst1(l, C/*, 1 — a) is smooth. Let 
/ : Ox —>• Iz(C) be an element of Syst1(l, C^, 1 — a). Then condition 
(•2) implies that / is injective and L := coker/ is a rank-1 torsion-free 
sheaf when restricted to its support C. In order to prove the smoothness 
of Syst1(l, C^, 1 — a) at / : Ox -> Iz{C)i it is sufficient to prove that 
Hom(/7(Cf),L) = C. Since /z(C)|c/(torsion) = L\c and L is simple, 
we obtain our claim. □ 

Lemma 5.176. Let (X^Hi), i = 1,2 be polarized K3 surfaces such 
that 

(i) Hi = Hi 

(ii) Every member of\Hi\ is irreducible and reduced. 

Then Syst1(0,-flri,a) is deformation equivalent to Syst1(0,H2,a). 

Proof. It is sufficient to prove the deformation equivalence of Syst1(l, 
Hi, 1 — a) (i = 1,2). By the connectedness of the moduli space of 
polarized KZ surfaces, there is a family of polarized if 3 surfaces TT : 
(A*, W) —t S such that S is irreducible and there are two points Si, 52 G 
S which satisfy {X8^%8i) = {X^Hi). Then there is a family of mod- 
uli spaces of coherent systems (j) : Syst1(l,/H, 1 — a) —> S such that 
Syst1(l,'H,l - a)s = Syst^l,^,! - a) and 0 is a projective mor- 
phism. Assume that every member of [Hal ^s irreducible and reduced 
for a point s G S. Let Oxs -> Izifla) be a point of Syst1(l,'Hs, 1 — a). 
By the proof of Lemma 5.175, r : Ext2(0*, -> Izi^JzCHs)) -> 
Ext2(Jz(%5), Jz(?4)) -> H2(Xs1Oxs) is injective. By a standard ar- 
gument, the obstruction of infinitesimal lifting lives in Ex.t2(Oxs -> 
Iz('Hs),Iz('Hs))- Let Ci(T-i) G RTV^Z be the relative cohomology class 
of H. Since Pic^L^ -> S is smooth (indeed isomorphic), the injec- 
tivity of r implies that infinitesimal deformations of Oxs —>• Iz^Hs) 
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are unobstructed. Hence 0 is a smooth morphism at s. In particular, 
W := {s e S | 0 is not smooth at s} is a proper closed subset of S. 
Since Si,S2€ S\W and <l>\<i>-i(s^w)ls smooth, we obtain our claim.    □ 

5.5    jDO-branes bound to a jD2-brane moving in the 

fibers of the K3 fibration 

In the above we have been studying the case where the D2-D0 bound 
system is moving in a fixed K3 surface X. Similarly, we should like 
to investigate the case where the bound system of a single D2-brane 
and collections of DO-branes is moving in the fibers of the jFC3-fibration 
TTI : Y -> Wi described in §4. This is not an easy task in general 
since the details depend on the choice of Y and we do not have good 
control of the relevant moduli spaces as in the single K3 case. So, 
unfortunately, there is very little we can say at the moment. However, 
one easily sees that 

MT,z,v) = *10'm(r'Z}. (5.177) 

Actually it was this observation that motivated us to consider the mean- 
ing of l/xio,i(^z/) leading to the results in §5.4. 

Remark 5.178. Let Ys be a generic (smooth) fiber of TTI : Y —t Wi. 
By our assumption, Ys is an elliptic K3 surface with a section. Since 
in general Ys does not satisfy the conditions in §5.4, we will need a 
slight perturbation of the complex structure of Ys in order to apply the 
results in §5.4. 

The argument given in §5.4 naturally suggests that <&o(T7 z, v) counts 
the pertinent D2-D0 bound states in the K3 fibers. An appropriate 
mathematical setting for justification of this would probably be again 
coherent systems of dimension 1 in Y and their moduli spaces. 

We should also remark on the following point. While we have as- 
sumed \y\ < 1 so far in this section, we previously assumed that |y| = 1 
(y T^ 1) when we Fourier-expand $o(r?^?z/) in order to obtain the in- 
finite product formula of the string partition function. This was to 
realize the manifest symmetry jD(n,7,j) = D{n,^,—j) and may be 
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regarded as the conjugation symmetry of DO-brane charge. Thus we 
may suppose that the Fourier coefficients D(n,7,j) count (with the 
conjugation symmetry of DO-brane charge imposed) the bound states 
of DO-branes and a jD2-brane moving in the fibers of TTI : Y —> Wi where 
the DO-brane charge is j and the Z)2-brane charge specifies (71,7). 

The cases of several coincident jD2-branes bound to collections of 
DO-bmnes are presumably taken care of by the actions of Hecke oper- 
ators Vi on $o- 

6    Vertex operators and D2—D0 bound 
states 

In the previous section we encountered the expression 

XIO,I(T^)      T,(T)"E(T,W)*' 
(6.1) 

as the enumeration function of the D2-D0 bound states in a KS sur- 
face X. However, as every string theorist would readily realize, the 
right hand side coincides with the (unnormalized) one-loop tachyon 
two-point function of bosonic open string. This fact immediately leads 
to an anticipation that the D2-D0 bound states are related to the the- 
ory of vertex operators. In the present section we will explore this 
possibility although our understanding of the relation remains admit- 
tedly superficial. 

Motivated by the observation in [98], Nakajima [89,90] and inde- 
pendently Grojnowski [46] showed that there exists a geometrical re- 
alization of the Heisenberg algebra on ®nH^(X^). See also related 
works [3,71]. It would be most desirable to have similar realizations 
and interpretations for what we will see below. 

Almost all the technical aspects given below have been known since 
the era of dual resonance model [57] which was a precursor of string 
theory. 
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6.1    Heisenberg algebra and the Fock space repre- 
sentation 

Let (A, ( , )) be an integral lattice of rank £ and set V = Ac- We extend 
( , ) by C-linearity. For each n G Z let V(n) be a copy of V and set 

h = 0V(n) eCK,        h = 0V(n) eGc, (6.2) 

where CAC is a 1-dimensional vector space spanned by K. For a G V, 
let a(n) denote the corresponding element in V(n). The commutation 
relations 

[a(m), 6(n)] = m(a, b)Sm-n K , [a(^)) ^] = 0 , (6.3) 

make h and h infinite dimensional Lie algebras with h being a Heisen- 
berg algebra. 

Setting h± = 0n>oV(±n), we obtain the triangular decomposi- 
tions: 

h = h+ 0 CK 0 h_ , h - h+ 0 CK 0 V(0) 0 h_ . (6.4) 

Let S(h-) be the symmetric algebra of h_. This is isomorphic to the 
Mold tensor product of the polynomial ring C[xi, #2, •.. ] in infinitely 
many commuting variables Xi,X2,  The Fock space S(\\-) is graded 
by assigning the elements of V(—n) the degree n and it becomes an 
h-module in the following way. First, a(ri) (n G Z_) acts on S^h-) by 
the left multiplication. For each n G Z+ let da(n) : h_ —>► C be a linear 
function determined by b(—k) H-> n(a,b)5njk for all b G V and k G Z+. 
We can uniquely extend 90(n) to a derivation on 5(h_) for which we 
keep the same notation. The action of a(n) (n G Z+) on 5(h_) is given 
by identifying a(n) with 9a(n). Finally K, acts as the identity. 

Let C[A] be the group algebra with linear basis {ea | a G A} and 
multiplication eae13 = ea+/3. The total Fock space # is defined as 

Sr = 5(h_)(8)C[A] 

- H £, 
aGA 

with ^a = S'(h_) (g) ea. Then ^ becomes an h-module by letting 

a(n)(u ® ea) = (a(n)u) ® ea ,     (n ^ 0), 

AC(7/ ® ea) = u ® ea , 

(6.5) 

(6.6) 
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and 
a(0)(u ® ea) = (a, a)u ® ea . (6.7) 

Remark 6.8. It is customary to introduce the twisted group algebra 
C{ A} instead of the group algebra C[A] in the standard theory of vertex 
operators associated with lattices. However, for the purpose of the 
present section the ordinary group algebra C[A] suffices. 

The conjugate linear involution  * on h and h is defined through 

a(n)* = a(—n),        «* = K , (6.9) 

where " stands for the complex conjugation. 

Then one can introduce a contravariant hermitian bilinear form ( | ) 
on $ by demanding 

(Au I v) = (u I A*v),    for all A G h and for all u. v G $ 
L (6.10) 

(l®ea | l®eP) =5aip,    for all a, /3 G A. 

In particular we set 1 = 1 ® e0. Some useful identities can be easily 
obtained; 

(a(-n) |6(-n)>=n(a,6> (6.11) 
ea(n)e&(-n) _ ^(afi)eb(-n)ea{n) (6.12) 

(ea(-n)  | e6(-n)^ = en(a,6) (g^g) 

6.2    The Virasoro algebra 

Let {ei} be a basis of V and let {e1} be the dual basis with respect to 
( , ) so that {e^Cj) = Sij. We assume that e* = Cj and e2 = e2. Then 
we have 

£ 

^(a,e*)(ei,6> = (a,b),    for all a,6 G V. - (6.15) 
t=i 

The Virasoro operators are defined for each n G Z by 

1   * L(n)= 2 2 E : ei(n " ™teM •. (6-16) 
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where 
/ xw   x       fa(n)6(m)    ifn<m, .   „„. 

: on 6 m  := { J \K,       .f    ~ (6-17) I o{m)a{n)    it n > m. 

They satisfy the commutation relations of the Virasoro algebra with 
the central charge £: 

[L(m), L(n)] = (m — n)L(m + n) + T^(™3
 — m) Sm-n K .       (6.18) 

Using (6.15) it is easy to see that 

L(0)(l®ea) = !^L(l<g>ea), (6.19) 

where ||a||2 = (a, a). It is also not difficult show that 

[L(m), a(n)] = — ma(m + n), (6.20) 

from which we obtain a useful identity 

6.3    Vertex operators 

We set 

X±(a,y):=X]^(±n), (6.22) 

, oo 

P±{a,y) := y^iCo.y) = Y^V^M^n). (6.23) 
^ n=l 

For \wi\ > \w2\ we obtain commutation relations: 

{X+{a, wx), X_(6, «;2)] = (a, 6) log(l - y), (6.24) 

[P+fouiO.P.foti*)] = —^ll—, (6.25) 

where y = W2/W1. 

The vertex operator is defined for each a G A by 

y(a, y) = y^c^-^^eV(0)ex+(a,y), (6.26) 
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where ea(u <g> ep) = u ® eae13 and ya{-Q\u ® ep) = y^u <g> e^. 

It follows from (6.24) that for |u;i| > \w2\, 

Ml    Mil ,   fl, 
V(a,wl)V{(3,w2) = wl

2  w2
2  (wi-WiY"^ 

x eX-(a,tn)+X-(I3,W2)ea+/3^0(0)^(0)eX+ (a.wi)+*+ CS.tua) 
(6.27) 

Using (6.21) we find that 

qLMV(a,y)q-LM = V(a,qy). (6.28) 

6.4    Two-point correlation functions and 
D2-D0 bound states 

As in §5 let X be a projective K3 surface and for each h > 0 let Ch 
be a smooth curve of genus h on X satisfying (•!) in §5.4.2. Then we 
make an identification 

A = H2*(X,Z)(-l)^Ef(BH(-ir\        (,> = -(, )x.   (6.29) 

(We will try to be general in the following so that most of the results 
are applicable to surfaces with vanishing odd cohomologies.) 

The connection between the symmetric products of a smooth curve 
on a surface and vertex operators has been pointed out by Grojnowski 
[46] and further discussed by Nakajima [90]. Indeed it immediately 
follows from (6.27) that 

(1 | V(-a, l)V(a, y)l) = {y_1/2 _
l
yl/2)W ,        (M < 1) •     (6.30) 

Consider the expansion 

oo 

d=0 

where 
a« = sd(a(-l), a(-2)t..., a(-d)), (6-32) 
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with Sdixi,..., xj) being the Schur polynomial of degree d. Then 

(1 | V(-a,l)V(a,y)l) =2/^(1 | ex+^a^ex-^'yH) 
oo 2 

=  JT (1 | (aWyaWl)^**-        I       ^ 

OO 

d=0 

Take a = c^OxiCh)). Since ||a||2 = -Ch 'Ch = 2-2hit follows from 
(5.57) and (6.30) that 

x{CJfi) = (a^l\a^l). (6.34) 

(cf. [46] and Exercise 9.18 in [90].)  What we will discuss below is a 
more complicated relation between the relative Hilbert schemes C^ 
and vertex operators. 

Set £' = ELi £We* for aily t = ELi ^Wei eV' Let L : V ^ V be 
a linear map and let /i(L) be the £ by £ matrix whose (i, j)-th entry is 
(ez,Lej). Suppose that /i(L) is diagonalizable and the real parts of its 
eigenvalues are positive. Then the Gaussian integral leads to 

Lemma 6.35. 

/ 
<« e-«,«>+<^>+<«/> = —1—e^-1^ , (6.36) 

det /x(L) 

^/iere df d? = Ilti dS(0df M/(27r)'. 

The trace of an operator O on ^o can be conveniently expressed in 
terms of the coherent states [57]: 

OO p 

TrdoO = Y[     d&dZn e-<«-«»>(e^"("n)l | O e^n{~n)l).     (6.37) 

It follows from this representation that 

Proposition 6.38. For 0 < \q\ < \y\ < 1, we have 

1V50 V(-a, IMa, VW*»-t = ^Tm^)M, • (6-39) 
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Proof. Using (6.21) the left hand side can be rewritten as 

00     r n 
q-™Y[ / d&#ne-<*Un>(e^»("n)l I V(-a,l)V(a,y)eVZU-n)l). 

71=1'' 

(6.40) 
Then the integrand of each factor becomes 

,-1/2 _ „im|MP \e 1 I e e e -1/ (y-l/2 _ yl/2) 

(y-1/2 _ yl/2)||a 

(1 - y-n)qn 

exp (i-?n)(cen) 

+ 
Vn vn 

(6.41) 

where we used (6.27). By performing the integrals using Lemma 6.35 
we thus obtain 

77(T)%"1/2-y1/2)l|a|1 exp a 
(2 - yn _ y-n^n 

E\*-y -y 
n(l - Qn 

n=l (1-9") 
(6.42) 

which can be cast in the desired form thanks to the identity 

oo 1 

iA l-tqn-1 = 
n=l 

exp E in 

Zi n(l - ^) 
(6.43) 

D 

Suppose that we are in the situation (6.29). We set a = Ci(Ox(Co)) 
so that ||Q;||

2
 = — CQ = 2. Since £ = 24, we see that the right hand side 

of (6.39) reduces to l/xio,!^, v). 

Let fsf be defined by 

1(0) = 1^(0)61(0)+AT. (6.44) 
i=l 

Consider the spectral decomposition A/* = Y^d=o d^d where P^ is the 
projection operator onto the eigensubspace with eigenvalue d of #o with 
the obvious properties: P^ = P^, P^Ps = 0 if d ^ 5, and YldLo ^d = id. 
Then we find that 
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Lemma 6.45. For 0 < \q\ < \y\ < 1, 

Tr^V(-a,l)V(a,y)qL^-^ 
oo     oo 2 

= E E «*" V^-* ^0 ^(-a, 1)P„ V(a, l)Pfc . 
(6.46) 

h=0 d=0 

Proo/. Using (6.28) we see that the left hand side is equal to 

Tr5o V(-a, l)ymV(a, ^y-m^o)-^ 
oo oo 

= Tr,0 V(-a, l)yLM £ Pd V(a, l)y-^)^(«»-A £ Ph 
d=0 h=0 

i|2 

(6.47) 

E E ^o 1[/(-«, l)^+<i PdVia, l)y-hqh-* Ph ■ 
h=0 d=0 

D 

An immediate consequence of Lemma 6.45 is the following claim 
equivalent to Theorem 5.80: 

Proposition 6.48. With the identification (6.29) and a — ci(Ox(Co)), 
there exists a relation 

X(C^) = Trt0V(-a,l)PdV{a,l)Ph, (6.49) 

for each pair (h, d) of nonnegative integers. 

Remark 6.50. With this expression at hand the degree-genus dual- 
ity (5.86) follows immediately from the cyclic symmetry of the trace 
and the fact that the right hand side of (6.49) is invariant under the 
exchange a «-» — a. 

6.5    Two-point correlation functions and 
elliptic genus 

We wish to take this opportunity to make the observation in [64] more 
explicit. This subsection is not logically related to the main theme of 
this paper and may be skipped. 
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Let us recall the definition of the Weierstrafi a function 

v     1 /v\2 

As is ^veil-known this is related to the WeierstraB p-function 

^):=(i^U+j:T((^-^) 
by the relation 

7^0 

p(T,v) = -(y^-)2iog<7(T,i/). 

The cr function is related to the prime form by7 

a(r, v) = exp (X
2
£;2(T)/24) E(r, v) 

^k=2 
2k{2k)\ 

In analogy to p(r, z/) let us introduce 

r(r,i/):=-(^)2logE(T^). 

Then apparently we have a relation: 

p(r,I/) = r(r,i/) + -^(r) 

(6.51) 

,      (6.52) 

(6.53) 

(6.54) 

(6.55) 

(6.56) 

Note that while p(r, v) is a (meromorphic) Jacobi form of weight 2 and 
index 1, r(r, v) is not. Explicitly one finds that 

r(^ ") = TTZ -y Si {y~1/2 — y1/2)2       dy ^ \1 — yqn      I — y^q 

l„n 1 d r^ f   -yq"    ,      1/ ^ + 
oo     oo 

+ y|:EE(yfc-y",,)«! nk 

(y-l/2 - 2/1/2)2   "dy^^ 

(^-1/2 _ yl/2)2 + 2^ 1 _ ^ 

(6.57) 

n=l 
7In the traditional theory of elliptic functions, E2 is usually denoted as 771 up to 

a scalar multiplication. 
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For any b e V and ft € A such that (b, ft) = 0, define 

Uttf, b, y) = ¥(13, y)etP-metP+{b,y)) (6.58) 

where t is a formal variable. Observe that 

jUt(f3,b,y)\t=Q = P(b,y)V(f3,y) =: W(P,b,y), 

where P(b,y) := P+(b,y) + P-(b,y). 

(6.59) 

Proposition 6.60. Suppose that a, b e V and f3 e A satisfy {a, (3) = 
(6,/5) = 0.  T/ien, /or 0 < \q\ < \y\ < 1, we ofeiam </ia< 

x exp ^S(a,6)r(T,r/) + ^(^||a||2 + S
2||6||2)(l - E2(T)^ 

(6.61) 

Proof. The calculation is similar to that in the proof of Proposition 
6.38. The left hand side is equal to 

__£_ 
q  24 n / <*&*& 

71=1"' 

1 
exp 

ts(a,b) 
(2,-1/2 _ ^1/2)2 (y-1/2 _ ^1/2)11 

x exp[-(l - qn){&,Zn) + qn({±^P(3 + V^(ta + sy-nb)^n) 

+(1-^P + V^(ta + sy
nb),g}]. 

By performing the Gaussian integrals we obtain that 

(6.62) 

r/(r)^(T,i/)ll 
exp ts(a1 b) 

(y-l/2  _ yl/2) _ vl/2)2 + Z^ 1 _ Qn 
n=l 

n(yn + ^n)gn 

+ (t2IHI2 + 5
2IHI2)Err^ 

n=l 

This readily leads to the desired result. 

(6.63) 

□ 

Suppose again that X is a K3 surface but set A = H2*(X, Z)(—1) © 
H(—l) so that £ = 26.   Assume that #(—1) is generated by a and 
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P where ||a||2 = 2, ||^||2 = 0 and (a,0) = -1. Let {/<} be a basis 
of #2*(X,Z)(-1) and let {/*} be the dual basis. Then (6.59) and 
Proposition 6.60 show that 

r}{rf YZi ^o Wirfi, f\ 1)W(/3, fu y)qL^-^2" 
= 24r(r, U)E(T, V) 2 

r7(r)2 Tr^0 V(-a, l)V(a, j/))^(0)-26/24 
(6.64) 

The left hand side is the ratio of two-point functions of vector particles 
and tachyons if we make an analogy with bosonic open string. (The 
expression 7y(r)2 stems from the ghost sector.) If we replace r(r, v) by 
the Jacobi form p(r, v) one obtains the elliptic genus of X in the form 
presented in [64]: 

£X{T, I/) = 24p(T, i/)JS7(r, vf . (6.65) 

Remark 6.66. If X is an elliptic K?> surface with a section a and a 
fiber /, we may instead set a = ci(Ox(o')) and /? = Ci(Ox(f))' Then 
{/i} must be a basis of (Za + Z/?)-1. 

7    A conifold and Chern-Simons theory 

As a simple application of the infinite product representation of the 
string partition function, we now reproduce some earlier obtained re- 
sults on the relation between topological type IIA string near a conifold 
point and the SU(oo) Chern-Simons theory on a 3-dimensional sphere 
S3 [41-43,58,94,104]. 

Let us set £ = #2 = PQ"1- Then it is expected that the limit log£ —>► 
0 corresponds to the point where a conifold singularity arises. We first 
set z = 0, then in the neighborhood of this limit there is a factor 

oo / oo \ 

H (1 - &)$ = exp f £ x*-2m9 U^9(0    , (7.1) 
j=-oo \flf=0 / 

raised to the power of co(--l,0) = —2 in the infinite product (4.16). 
Here we used (4.13). Intuitively this factor corresponds to the bound 
states of a Z?2-brane and DO-branes (with the charge conjugation sym- 
metry imposed) where the jD2-brane wraps once around the shrinking 
P1 with log£ being its complexified Kahler parameter. 
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According to the fundamental work [101], up to the framing am- 
biguity the partition function of the Chern-Simons theory on S'3 with 
gauge group G and a positive integer coupling k is equal to SfcAoMo 
where SfcAoMo ls one 0^ ^e entries of the transformation matrix of the 
level k Weyl-Kac characters of the affine Lie algebra of G under the 
modular transformation r ->• ~. We recall that SkA0,kAo ^s expressed 
by the classical Weyl denominator of G [59]. In the case of G = SU(N), 
the partition function ZW(SS] N, k) can be explicitly written down [17] 
as 

j = l       ^ ^ 

where Nf = k + N. It is well-known that there exists level-rank duality: 

y/NZw(S3] N, k) = y^kZwiS3] Jb, N), (7.3) 

from which it follows that 

Zw(S6;N,k) 
N'-N-l . N-l 

3=1 j=l 

(7.4) 

where we have set 

PN',N = {— (N/N'f + I (N/Nf -^jN'2 

(7.5) 

We make the identification: £ = e[N/N'} and y = e[l/iV']. This is 
a familiar choice of variables when we relate the HOMFLY polynomial 
of knot theory to the SU(N) Chern-Simons theory. Then we discern 
the infinite product (7.1) when N' » N » 1. Note however that 
since the Chern-Simons theory is an open string theory, the symmetry 
under y -H- y-1, which is peculiar to a closed string theory, is violated 
in the whole expression (7.4). 
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Using the formulas in Appendix A, we have8 

mo A.(0 = - (M£ Iog(logO + C(3) 

k=2        v      ' 

mi£h(o = ~iog(iogo -1ioge+f; ^|raoge)2fc, (7.7) 

and for g > 2 

ms(25-3)!  , ymga3-2g-2k)n_^2k 

k=0 
m9 Li3-23(6 -   (log02s_2  + 1. (2Jb)! ^SO 

(-ir^o     f^(-l)*2C(2g-2 + 2fc) 2fc 
noff^2fl-2   "rZ^ ('2^23-2+2fc Xfl,2fc^08?;     • 

(7.8) 

(log£)2S-2 ^ (2^)23- 

These directly reproduce the behaviors of the Gromov-Witten poten- 
tials in the vicinity of a conifold which were discussed in [41,58,94] and 
especially in [42,43]. 

8    Discussions 

In this paper we have argued that the string partition functions of 
certain elliptically and if 3 fibered Calabi-Yau 3-folds in a particular 
limit should have the infinite product representation (4.16). We have 
used the lifting procedure of Jacobi forms in an essential way. It was 
rather ironic and somewhat against the initial impression that purely 
from the viewpoint of lifting, the amount of difficulty in computing the 
Gromov-Witten potential decreases as the genus g increases; in fact 
there is no contribution to the "Weyl vector" when g > 1. 

Although we cannot be too optimistic since the lifting procedure 
of Jacobi forms should be useful only for the fibered Calabi-Yau 3- 
folds, it is hard to resist the temptation to make a bolder conjecture: 

8For simplicity, we use Cir instead of Lir when r > 0. 
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For a general Calabi-Yau 3-fold the string partition function may be 
expressed in a form that schematically looks like: 

i-ntfv)    . (8.1) 

The major portion of this paper has been devoted to an interpre- 
tation by D2-D0 bound states. It is obvious that one of challenging 
but interesting directions for further research is to place the study of 
D2-D0 bound states on a mathematically rigorous footing for general 
Calabi-Yau 3-folds and ask if the Gromov-Witten theory can be totally 
reformulated in that picture. This, if achieved, may shed some light on 
the (homological) mirror conjecture. We have suggested in this work 
that an appropriate language toward this goal may be that of coher- 
ent systems of dimension 1. Given our success in the K3 case, this 
approach should merit a close scrutiny. 

Also it would be most desirable to find out, if any, an organizing 
theory whose partition function is directly given by (4.16) or (8.1). The 
theory will presumably have some flavor of Chern-Simons theory. Since 
the infinite product representations (4.16) or (8.1) have strong resem- 
blance to the Weyl-Kac-Borcherds denominator, it seems natural to 
expect the existence of some nice algebra of DO-, Z)2-branes. It should 
be emphasized that, while the Borcherds denominators are generally 
expected to be related to enumeration problems of curves or D2-branes 
on surfaces, in the situation of this paper where fibered Calabi-Yau 
3-folds are relevant, the analogy to the Weyl-Kac-Borcherds denomina- 
tor was most evident only after we incorporate DO-branes in addition 
to Z)2-branes. In this analogy, the Euler characteristics of the moduli 
spaces of coherent systems must in an appropriate sense be interpreted 
as "root multiplicities". Some aspects of the algebra of D-branes were 
studied in [50]. Identifying the algebra should help in knowing the (nec- 
essarily infinite-dimensional) gauge symmetry of the organizing theory. 

Another remaining issue, which we were unable to address in this 
work, is to investigate the automorphic properties of the infinite prod- 
uct which we used for the string partition function. 
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Appendix A 

We define the Bernoulli numbers Bn (n = 0,1, 2,...) by 

e* — 1      z—'      n! 
n=0 

Hence we have 

B0 = l,    B1 = ~,    52 = i     B4 = ~, ... (A.2) 

and £?2A;+i = 0 (k > 1). The values of the Riemann zeta function at 
integers can sometimes be expressed in terms of the Bernoulli numbers: 

(27r)2k 

a2k) = 2(2*)! lB"kl    ik-0)' (A-3) 

C(1~2A;) = "ff'     (A;-1)- (A-4) 

The series 
00    en 

^s) = Y,-s> (Re5>^ i^K1)^        (A-5) 
n=l 

and its analytic continuation frequently appeared in the past. See for 
instance [96] [29]. When s = r G Z we will set 

Ur(0 = n(^r). (A.6) 

As the notation suggests, Lir(f) is the usual polylogarithm when r > 0. 
On the other hand, if r < 0, Lir(£) is a rational function. The following 
differential-difference equation is well-known: 

^Lir(0 = Lir-l(0- (A.7) 

For instance, we have 

Li1(0 = -log(l-0, (A.8) 

Liotf) = Y^' (A.9) 

Li-^=(iV (A.10) 
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If r > 0, the polylogarithm Lir(£) can be analytically continued to 
a multi-valued holomorphic function on P1 \ {0, l,oo}. As in [9,65] 
we introduce Cir(^) as Lir(£) modulo any Q-linear combinations of 

5r.i(0,S;-2(0.-...5b(0 where 5^(0 := ^^(logO*"^, (1 < 
j < r). This is to kill off the monodromy of Lir(f) and attain the 
effective single-valuedness. 

When r is a positive integer, we have the expansion [96] [29] 

u*® = ^TF^M " ^(1)"l0§(- log^] + E' ^ir^OogZY, (r-l)! ^      j\ 

(A.ll) 
where ' stands for the omission of the case j = r — 1 and i/;(t) = 
^logr(t). Note that ^(r) - ^(l) = Y7k=i l w^ien r ^s ai1 integer 
greater than 1. This expansion can be simplified for Cir(^) as 

£i^ = -^TTT log(log^ + E" ^li^W)''      (A-12) (r-1)! ^     r- 
where " stands for the omissions of the case j — r — 1 as well as the 
cases where the summand can be expressed as Q-linear combinations 
of Sr-i(0,Sr_2(0,... ,50(0- 

If instead r is 0 or a negative integer, we have [96] [29] 

^--JZ^-^^ff^^. (A,3) 

We note that the expansion (2.12) can be obtained from this by setting 
r = -l. 

Appendix B 

Let A be an abelian surface over C. Set A^ := Hilb^. Let ^ : A^ —t A 
be the morphism obtained by composing the Hilbert-Chow morphism 
717 : -4^ -^ A^ and the sum map at : A^ —>► A. Beauville [4] showed 
that A^'1^ := /^(O)ls an irreducible symplectic manifold of dimension 
2£ — 2. In particular A^ is the Kummer surface. 
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Let 0_2,I(T, V) be the weak Jacobi form of weight —2 and index 1 
introduced in [27]. We have a relation ^_2)I(T) U) = E(T, U)

2
. 

Conjecture B.l. The elliptic genus of A^'1^ is given by 

e^^-f^f^. (B.2) 

Some evidence for this conjecture is as follows. First, the elliptic 
genus £^(€-1) (r, u) must be a weak Jacobi form of weight 0 and index 
£ — 1 since c^A^"1^) = 0 [66]. It is easy to see that the right hand side 
of (B.2) has this property. Next, one can check the conjecture at the 
level of Xy genus: Suppose that the conjecture holds. Then by noting 
0_2,I(T, U) = (1 — y)2/y + ..., we must have 

0-2,1 (r,i/) 

d-l 

<I>-2,I(T,U)  ^e    tt V    d J 

-y   lY    H-yYIv 

d\£ 

However, the last expression has already appeared in [38,39]. 

Remark B.4. The Hilbert schemes X^ of a projective K3 surface 
X and the higher order Kummer varieties A^'1^ are two fundamental 
series of irreducible symplectic manifolds [4]. If the conjectures are true, 
the elliptic genera of X^ and A^1^ can be expressed respectively in 
terms of ^o,!^^) and 0_2,I(T, V) by using the Hecke operators. Here 
0o,i (r>z/) and 0-2,1 (T, V) are known [27] to be the generators of the ring 
of weak Jacobi forms of even weight, thus they are equally fundamental 
in the theory of Jacobi forms. 
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