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Abstract 

We study M-theory fivebranes wrapped on Special Lagran- 
gian submanifolds (En) in Calabi-Yau three- and fourfolds. 
When the M5 wraps a four-cycle, the resulting theory is a two- 
dimensional domain wall embedded in three-dimensional bulk 
with four supercharges. The theory on the wall is specified in 
terms of the geometry of the CY manifold and the cycle E4. 
It is chiral and anomalous, however the presence of a three- 
dimensional gravitational Chern-Simons term with a coefficient 
that jumps when crossing the wall allows to cancel the anomaly 
by inflow. Kahler manifolds of special type, where the poten- 
tial depends only on the real part of the complex coordinate, 
are shown to emerge as the target spaces of two-dimensional 
cr-models when the M5 is wrapped on £3 x S'1, thus providing 

e-print archive:   http://xxx.lanl.gov/hep-th/9906190 



378 R. MINASIAN AND D. TSIMPIS 

a physical realization of some recent symplectic construction by 
Hitchin. 

1    Introduction and summary 

Calibrated geometries [1] (see also [2], [3]) have been studied in the 
context of mirror symmetry [4], [5] and intersecting branes (see e.g., 
[6] for a review and references). Our focus is on Special Lagrangian 
(SL) submanifolds in Calabi-Yau three- and fourfolds, and we mostly 
concentrate on the deformation properties of these submanifolds. 

We study a class of two-dimensional cr-models originating from M- 
theory fivebranes wrapped on four-manifolds. Fivebranes wrapped on 
holomorphic divisors in a Calabi-Yau threefold were a subject for recent 
investigation [7], [8]. Here we turn to the case of M5 wrapped on SL 
four-cycles, when M theory is compactified on a Calabi-Yau fourfold. 
While the amount of supersymmetry can be figured out by general ar- 
guments [9], the actual counting of the multiplets is somewhat involved. 
Such a counting was done for a (very ample) divisor V in a CY three- 
fold, in [7]. The geometry of the resulting (0,4) cr-model was discussed 
in detail in [8]. The understanding of cases with lower supersymme- 
tries, arising when M5 and D5 are wrapped on a SL four-cycle in a 
Calabi-Yau four-fold, requires some results from McLean's deformation 
theory [10]. Recent symplectic constructions by Hitchin also enter in 
a natural way [11], [12]. Indeed, there is a natural extension to the 
symplectic case of many results on deformations of complex subman- 
ifolds, and thus some of the results of [7], [8] (where the submanifold 
was taken to be a divisor in a CY threefold) can be extended as well. 
Our study shows yet another aspect of the intimate relation between 
calibrated geometries and supersymmetry. Even though the main fo- 
cus of our attention is on SL submanifolds, other calibrations can be 
studied along similar lines. 

The wrapped fivebranes and the resulting cr-models are our main 
concern, but it should be noted that the study of cycles is relevant for 
D-brane moduli spaces, in particular instanton effects in type lib (F- 
theory) compactifications when the D3-branes are completely wrapped. 
The wrapping of D3-branes on supersymmetric cycles in four-folds was 
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considered in [13], and for the case of SL submanifolds such configura- 
tions were shown to preserve half of supersymmetry. 

In principle, there are few cr-models obtained by M5 wrapping SL 
submanifolds in four-folds. The summary is presented in the table (Xn 

denotes a (complex) n-fold of SU(n) holonomy, while £& denotes a SL 
cycle of real dimension k): 

Four-fold SLS Preserved Susy cr-model 
rp8 rp4 1 (8,8) 

T^xKZ T2xE2 1/2 (4,4) 
KSxKS EsxE^ 1/4 (2,2) 
T2xX3 ^xEs 1/4 (2,2) 

x4 S4 1/8 (0,2) 

Table 1. 

In this note, we discuss only the multiplet structure and the classical 
target spaces. In cases with lower supersymmetries that are discussed 
here these will not be protected against quantum corrections and there 
can be world-sheet renormalizations. 

First, we will analyze the cases where the submanifolds are complex 
concentrating on the fourfolds with 517(4) holonomy1. Before going 
into details of the multiplet structure, we can have a look at the field 
content after the reduction. As in the case of [8] the target space classi- 
cally factorizes into two sectors, the "universal" and the "entropic" (to 
borrow the terminology from [8]). The universal sector consists of two 
real scalars, one coming from the coordinate parametrizing the position 
of the M5 in three dimensional spacetime and one coming from the 
component of the /5-field along the Kahler form (this will be better ex- 
plained in section 2). In the entropic sector the two sources for the two- 
dimensional scalar fields are the self-dual tensor field on the fivebrane 
worldvolume, and the deformations of the cycle C inside the Calabi- 
Yau. The position of the cycle inside the fourfold is parametrized by 
the four (out of five) scalars in the (0,2) tensor multiplet on the five- 
brane worldvolume. After the reduction these will yield dc real scalars 

1K3 x K3 compactifications can be discussed as a special case. 
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on the world-sheet (the notation will be justified shortly). The self-dual 
/?-field gives rise to frj" and b^ right- and left-movers respectively (we 
have already mentioned that one of the scalars coming from the ft field 
belongs to the "universal" sector). The excess of left-movers tells us 
that the resulting cr-model is of heterotic type, and there is a coupling 
to a gauge field. The numbers of right- and left-moving fermions are 
given by the twisted Dirac index. A very quick analysis of the mul- 
tiplets reveals the connection between supersymmetry and McLean's 
deformation theory [10]: It is required by supersymmetry (simply by 
boson-fermion matching) that the first Betti number of the subman- 
ifold bi(C) = dimif1(C,R) be equal to the dimension of the moduli 
space of deformations of C inside X, dc- Indeed it is known that the 
tangent space of the local moduli space at C of Special Lagrangian 
submanifolds can be canonically identified with the space of harmonic 
one-forms on C [10]. This identification is crucial for the supersymme- 
try of the two-dimensional cr-model. The idea of using supersymmetry 
transformations to give a physical derivation of McLean's deformation 
theorems was explained to us by J. Harvey and G. Moore (see also [14]). 

Since the resulting two-dimensional theory is chiral, it can suffer 
from anomalies. In section 3, we discuss the cancellation mechanism. 
It turns out that the three dimensional bulk theory has a gravitational 
Chern-Simons term with a discontinuity in its coefficient. The variation 
of this term cancels the two-dimensional anomaly by inflow. 

In section 4, we will turn to M5 wrapped on a real manifold S1 x S3. 
By duality, this case will be related to the study of moduli spaces of 
D-branes, and we will be able to generalize some of the results here to 
D-branes wrapped on SL cycles. Using the self-duality of the fi field 
on the worldvolume of M5 and the fact that 61(23) = 62(^3), it is 
easy to see that the resulting number of zero-modes from the tensor 
field is 61. Just like for D-branes, these modes are paired with 61 zero- 
modes arising from deformations. However supersymmetry predicts 
the stronger result that the target space is Kahler. In constructing the 
metric, we find many analogies with the c-map construction of Cecotti, 
Ferrara and Girardello [15] and establish a weak c-map. The result is 
in agreement with the one obtained for D-brane moduli spaces [11]. A 
special care is needed for the treatment of the normal directions. 
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2    Wrapped M5: Complex Special 
Lagrangian cycles 

Here we will perform the reduction to two dimensions of the 6D su- 
persymmetry. As explained in [8], it suffices to consider the reduction 
of the supersymmetry transformations of the tensor multiplet from flat 
space. For this purpose we will need the zero-mode expansion of the 
6D fields in the fivebrane action. 

The bosonic zero-modes 

The Kaluza-Klein ansatz for the chiral two-form /5 is: 

P = pauja + (TTVT + c.c.) + ix J, (2.1) 

where J is the Kahler form on C, {a;j, / = 1,... 620(C)} is a basis of 
H2,0(C) and {a;aj a = 1,... &2 (C)} is a basis of anti-self-dual (1,1) forms 
on C. The scalars pa, u (ir1) are real (complex). We therefore get b^ 
left-moving and b^ right-moving real scalars. We have implicitly used 
the fact that due to the Kahlerity of C we have the decomposition 

H2+(C) = H2>0(C)®H0>2(C)(BJ;    H2(C) = H2+(C) 0 H2-(C)   (2.2) 

The five scalars of the 6D (2,0) tensor multiplet parametrize the po- 
sition of the fivebrane in transverse five-dimensional space. When the 
fivebrane is wrapped, four of them (say X6-9) parametrize the posi- 
tion of the four-cycle C inside the Calabi-Yau four-fold X while the 
fifth (X10) describes the motion of the string in the three non-compact 
dimensions. The massless modes arise from deformations of W2 x C 
preserving supersymmetry. Let A4 be the space of deformations of C. 
The tangent space to M at C is 

TcM = H0(C,Af) (2.3) 

where J\f is the normal bundle of C inside X. For C a special lagrangian 
submanifold the following equivalence holds [10]: 

Af S T*C (2.4) 

We will rely heavily on this relation in the following. Taking into ac- 
count that H0(C,T*C) ^ Hlfi(C) we see that (2.3) implies 

dimcM = bl0(C) = i&i(C) (2.5) 



382 R. MINASIAN AND D. TSIMPIS 

Let us choose a complex basis {v-1, m = 1,2, / = 1,...610(C)} of 
sections of Af. Due to the equivalence (2.4) we may identify 

v? = u,V (2.6) 

where {^f^^m,} is a basis of H0il(C) and raising/lowering of the m 
index is possible due to the existence of a metric on TC. We will expand 
to first-order in <// 

X6 + iX7 = 24/;  X8 + iX9 = -2v2
7((pTy (2.7) 

where (p1, J = 1,... |6i are two-dimensional complex massless uncon- 
strained bosons. The (world-sheet) scalar X10 accounts for one real 
boson. 

Altogether the number of right-, left-moving real bosonic degrees of 
freedom is 

iVf = 61 + 62+1;  Wf = &i + 6+ + l. (2.8) 

The fermionic zero-modes 

The fivebrane breaks the Lorentz invariance of WQ down to Spin(l, 1)^ 
xSpm(4)c. The fermions of the tensor multiplet transform in the 
(+, 2+) 0 (-, 2_). Moreover the Spin(5) = USp(2) 7^-symmetry of the 
6D tensor multiplet is broken by the Calabi-Yau to 5pm(4)^, where 
50(4)^ is the structure group of A/". From the 2D point of view there 
is a Spin(4)c x Spin{4)j^ 7^-symmetry and fermions in the (2_,2±), 
(2+, 2±) give rise to left-, right-movers on W2 respectively. Due to (2.4) 
the fermions can be thought of as bispinors on C and are in one-to-one 
correspondence with (p,g) forms on C\ Since C is Kahler, one can con- 
struct two sets of gamma matrices {7™, 7™} = {7™, 7™} = gmn, [7,7] = 
0. We can take 7™ = ipW'y171, where pW is the chirality matrix on C. 
We will regard 7m, 7m as creation operators and let us denote the "Fock 
vacuum" by |0). Let ^R (if;1) be a bispinor in the (2+, 2+) 0 (2+, 2_) 
((2_, 2+) 0 (2_, 2_)) of Spin(A)c x 5p2n(4)^. One has 

mnk ' ' mnkl ' '     ''   ' 

^L ^ ^.O^m + fi(W)7m^ + ^7-7^)|0) (2.9) 
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where Q^p^ is a (p, q) form on C. To see this note that because C 
is Kahler the positive and negative spin bundles on C (due to (2.4) a 
similar result holds for J\f) decompose as: 

S+{TC) ® K1/2 ^ ft0'0 0 ft2'0;    S-(TC) (8) K'1/2 S ft1'0       (2.10) 

and we can expand the fermionic zeromodes in terms of forms on C. 
Also note that ftg'^lO) (^'0)7m|0)) transforms in the 2+ (2_) of 
Spin(4:)j^ (Spin(4:)c)- Taking into account (2.2) and the isomorphism 
Hp>q(C) = H2-p>2-q(C) we see that from the 2D point of view the num- 
ber of (real) left- and right-moving fermionic degrees of freedom is 

N[ = 61 + 6J + 1;  iV£ = 61 + &+ + l. (2.11) 

In order to reduce the supersymmetry, we need to be slightly more 
explicit than in (2.9). Let us choose our ten-dimensional matrices to 
locally decompose as 

where 

and Y 

ro,i = y.,1 0 p(0 0 p(A0 

r2'3'4'5=l2®72'3'4'5®]I<Ar) 

r6'7'8'9=i2®p(c)®76'7'8'9 

^ = ia2;    V-a1 

-4 _(   0      a^V      5_/   0 il2 
0 

7i+4,i = 2,...5. 

(2.12) 

(2.13) 

We locally decompose the covariantly constant spinor of the Calabi- 
Yau as £(8) = £^ <g> ^ and we take ^s\ £ to be of positive chirality. If 
we write £(8) as £($) with i = 1,... 4 the symplectic index, the statement 
about the chirality corresponds according to our conventions to setting 
£2=3 = f j=4 = 0. The fermions are expanded in terms of 2D right- and 
left-movers as 

46) = $_ ® AJ) + Vj_ <8) A^-j + il>l ® 4(i) + left movers,      (2.14) 

where 

{^/rnnym^       for ? = 1 

wwrr    for * = 2    ;    A7w) = (WSB7w + w7m7mU(,-) 
0 for i = 3,4 

(2.15) 
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and 

Z(i)=U*    ioii = 2 (2.16) 

The right-moving zero modes ^f 2? ^f 2? ^12 are complex antichiral 2D 
fermions. Only half of those are independent since the 6D symplectic 
reality condition implies i/jf = 2(^2)*) where x = 0, /, or /. In the 
following we set ipx := ip*. 

2.1    The 2d supersymmetry 

Substituting the expansions (2.1), (2.7), (2.14) into the supersymmetry 
transformations of the tensor multiplet we get 

Sir1 = -E*+II>LI    SipL = S-TT
7
^ 

5pa = 0; Sipl = 0 (2.17) 

where ip+ are the left-moving fermions and the supersymmetry param- 
eter £+ is a chiral complex 2D spinor. These are the supersymmetry 
transformations, written in complex notation, of the 2D fields of a (0,2) 
(j-model. In order to compare with the standard (0, l)-superspace de- 
scription [16] and read off the complex structure of the target space of 
the a-model, we pass to a real basis: TT

1
 = (j)11 + i(/)21] cp* = 01/_+ i(f)21. 

Similarly for the fermions: ?// = x1- + *X-J; ^ — X1- + ZX-7; ^+ = 
(+ + ir]+. The susy transformations become 

^ = (C+^-y - v+f^d-tf*;    2 = 1,2;  x,y = IorI       (2.18) 

where J*2^ := ^[^J^^y satisfies J2 = —1. Moreover the transforma- 
tions (2.18) and the fact that (0,2) supersymmetry is unbroken implies 
that J has to be covariantly constant, giving a Kahler target space. 

The transformation of I/J
0
 can be joined with the transformations 

for u and X10 to give 

5iJ>0_ = d-Ue+i   5U = -E*+I/>
0 (2.19) 

where U := X10 + iu. This "universal" factor, consisting of the fields 
{u,X10,^}, possesses separately (0,2) supersymmetry. 
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2.2    The structure of the a-model 

As we have seen, the spectrum on the two-dimensional worldvolume 
is determined by three numbers 6^, b^ and &i. Similarly to [7], one 
can express a(C) — b^ — b^ and x(C) = 2 + 6^ + 6^ — 26! in terms of 
Calabi-Yau quantities 

X(C) = rj2-    a{C) = -ic277 (2.20) 

where 

C2V := [ c2(X)A7]]    n
2'^ [ rjAr] (2.21) 

Jx Jx 
and 77 is the Poincare dual to the cycle C. It is an element of HA(X, Z) 
2 and restricts to 77 = C2(A/r) = C2(C) on C [18], [19], where for the last 
equality we used (2.4). Equation (2.4) and the exact sequence 

O^TC-^TX^A/'-^O (2.22) 

were also used in order to derive (2.20). 

Sihce C is holomorphically embedded in X, r) is of type (2,2). The 
latter requirement (the existence of a holomorphic four cycle) puts a re- 
striction to the complex structure of X. Note also that 77 is primitive3. 
In the next section we will explain the relation between r] and the co- 
homology class of the four-form field strength G4 of eleven dimensional 
supergravity. The conditions that G4 is integral, (2, 2) and primitive are 
precisely the requirements for compactification of M-theory on a man- 
ifold of eight (real) dimensions preserving four supercharges in three 
dimensional Minkowski spacetime [20]. 

Finally putting everything together, we see that the total number 
of (0,2) multiplets is 61 + b^ + 1, while the rank of the vector bundle 
over the target space is 

rankV = ^(61 + 6^ + 1) + \a(C)\. (2.23) 
2Strictly speaking, rj is an element of the cohomology with compact support 

Hcpct (X, Z) which in general for noncompact X forms a sublattice of iJ4 (X, Z). 
For a detailed discussion in a similar context see [17]. 

3This can be seen roughly as follows: We locally parametrize X by (Za,na), a = 
1,... 4 so that C is given by na = 0. Then 77 is schematically given by S(n)dn1 A 
... dn4. Since C is SL we can locally write the Kahler class as cu = dla A dna. We 
thus see that u A 77 = 0 
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Note that the model is chiral even when the numbers of left- and right- 
moving modes coming from the /?-field are the same (cr(C) = 0). The 
standard formulation with (0,1) supersymmetry [16] couples the gauge 
field to the fermionic current. The latter can be bosonized as in [8]. 
Here the left-moving (bosonized) current comes from both the bosoniza- 
tion of the left moving fermions and from the \cr(C)\ left-moving bosons. 

As in [8], in reducing the fivebrane action to the worldsheet of the 
<7-model, both the /3-field and the gauge connection of the vector bundle 
will appear flat at least to this approximation. Repeating the analysis of 
[8] to extract information for the metric, will involve variations of Hodge 
structures of weights one and two. However the classical geometry of 
the model is not protected by supersymmetry from quantum corrections 
[21] and it is not clear to what extent such an analysis should be trusted. 

When the fourfold is of the form K3 x K3, the corresponding SL 
submanifold is still complex, and the resulting two-dimensional theory 
can be discussed as a special case of the more general model presented 
above. Now one has to bear in mind that the fermions on the CY are 
no longer chiral. As before, for each cycle ££, i = 1,2 we cai1 take 
ifc = ci(JV*) = -ci(£*) and have b[ = 2A + 2 where A = § fXi rg. 
Then for £^ x £|, 

6i - 4 + 2D! + 2D2 

b2 = 2 + (2D1 + 2)(2D2 + 2) (2.24) 

and &2~ = 6^". We can see that for the left-movers the gauge bundle can 
be identified with the tangent bundle, and the resulting model has (2,2) 
supersymmetry in accordance with the expectations from the general 
supersymmetry analysis. 

3    Inflow in 3 dimensions 

Following [22], we would like to present an alternative way of counting 
of the zero-modes on the string. This counting is based on using the 
fivebrane anomalies. Here as well we can reduce the fivebrane anomaly 
given by [23] 

h(TW,W = ^ (\(PI(TW) -MAO)2 +P2W -P2(TW)\    (3.1) 
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by using TWQ\C = TC x TW2 and Af = A^(C ^ X). On the other 
hand we know that the total two-dimensional anomaly (note that there 
is no anomaly of the normal bundle anymore) is given simply by the 
difference of central charges of left- and right-movers, Istmg = {CL — 
CR)PI(TW2)/24:. Comparing with the reduction of the fivebrane anom- 
aly (3.1), we recover 

CL - Cfl = i<^ = ~<7(C) (3.2) 

in agreement with (2.8), (2.11) and (2.20). 

We now turn to the anomaly cancellation mechanism and find some 
new twists here. In particular, the discussion of anomaly cancellation 
is closely related to the jump in the value of a certain cohomology class 
(to be identified momentarily) recently discussed in [17]. Since in eleven 
dimensions a complete cancellation of the anomalies on the fivebrane 
worldvolume occurs [24], we expect the same to happen after the com- 
pactification/wrapping. Note that in three dimensions, the string is a 
domain-wall type of object and thus it is magnetically charged with re- 
spect to the zero-form field strength whose value jumps when crossing 
the wall. The source equation for such a string can be written as 

dA = 5(W2 <-> M3) (3.3) 

where S(W2 ^ M3) is the Poincare dual to the string worldvolume. 
With some abuse of notation we will call A a "cosmological constant"; 
it takes different values on the different sides of wall4. 

Equation (3.3) can be seen as simply the reduction of the fivebrane 
source equation. Somewhat schematically, in this background the five- 
brane source equation becomes 

dGi = 2iT6(x)dx A 77, (3.4) 

where x is a coordinate along the direction transverse to W2 in M3 so 
that S(x)dx represents the Poincare dual of W2 M* M3. Similarly 77 is 

4 One should not confuse this with the case where there is an actual cosmolog- 
ical constant in the uncompactified dimensions, corresponding to the geometry of 
M-theory on AdSs x ^4 [17]. There the cosmological constant turns out to be pro- 
portional to the projection of the four-form field strength of 11D supergravity to 
the (4,0) part of the cohomology of X4. 
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the Poincare dual of C inside X and can be represented as a four-form 
with compact support 6(04 <-► X). We see that the cohomology class 
of G^/STT jumps by rj when crossing the wall at x = 0 in M3. 

As seen in [22], when G4 has non-zero fluxes through a four-dimen- 
sional surface, the term in the effective action [25], 

A11 = G4AXj0)(rM), (3.5) 

where 

dX^(TM) = -1 Qp?(TM) - paCTM)) , (3.6) 

can give rise to lower-dimensional Chern-Simons terms. Indeed there 
is a flux of the four-form field strength through a four-cycle and the 
reduction yields a three-dimensional gravitational Chern-Simons term: 

i /" , A MTC) ■ pfiTM) ~ |a(0^^,        (3.7) 
(0)/ 

T] Ap^TC) • p{°\TM) ~ ^a{cf 
lx 

where 

dp{i\TM)=pl(TM) (3.8) 

As we have already seen, the string anomaly is ~ |^(C) as well. To 
complete the discussion we need to examine the flux quantization. 

The compactification of An and the Chern-Simons coupling of the 
eleven-dimensional supergravity on fourfolds leads to a tadpole in three 
dimensions [26], [27] proportional to (x/24 - fxGl/(87r2)) where x 
is the Euler number of the fourfold X. The coefficient of the three- 
dimensional gravitational Chern-Simons term is expected to be the 
same by supersymmetry, and we argue that the coupling is of the form: 

A3 = ^Aa(C)p?\TM) (3.9) 

which taking (3.3) into account cancels by inflow the string anomaly. 
It would be interesting to check the three-dimensional supersymmetry 
of these terms directly. Note that a similar structure of a gravitational 
Chern-Simons term with discontinuity in the coefficient is also expected 
from the general discussion of inflow on domain walls [28]. 
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4    (2,2) a-models, D-brane moduli spaces 
and the weak c-map 

By wrapping the M5 on S3 in a CY threefold X3, we arrive at a three 
dimensional theory with four supercharges (N = 2). Further wrapping 
on S1 gives a (2,2) two-dimensional model that can be directly obtained 
from a D4 wrapped on S3. As we will see the results easily generalize 
to all D-branes. 

Because of the self-duality of the /3-field on the worldvolume of M5 
and due to the fact that 61 (S3) = 62(23), we can get either a three- 
dimensional theory with bi vectors or a theory with bi scalars, which are 
dual to each other in three dimensions. In addition there are dc = 61 
zero modes, coming from deformations of the SL submanifold inside 
the CY threefold, and a "universal" sector consisting of two real bosons 
(and their susy partners completing a (2,2) multiplet) coming from the 
coordinates parametrizing the position of W2 x Sl inside R1,2 x T2. 
When bi(Ls) — 0, the cycle is rigid, and the only surviving degrees of 
freedom in two dimensions are the two real scalars of the universal sec- 
tor. The resulting CFT with c = 3 can be written down explicitly 5. In 
direct analogy with the construction of [15], we see that the dualization 
of vectors leads to a doubling of the scalar uentropic" coordinates. It is 
clear that this doubling should work in such a fashion to ensure the 3d 
N = 2 supersymmetry. We see that indeed the (real) moduli space of 
the deformations M is such that TM is a Kahler manifold. A Kahler 
metric on this manifold was constructed by Hitchin in [11]. We can 
now see a physical construction. 

Fix a point {</>*} in the moduli space M. At this point the tangent 
space is 

T+M = H^C.R) 0 H^C.R) ^ Hl(C,C) (4.1) 

Let (/a, na((/))) be a parametrization of X such that C^ <-> X is given 
by na((j)) = 0 and {/a} are coordinates along C^. The normal directions 

5It is probably interesting to note that this theory corresponds to a SL three- 
manifold with vanishing first and second Betti numbers. Such manifolds can be 
constructed by quotiening 53 by discrete groups, and they have non-trivial first 
homotopy groups. It is an open conjecture that any closed simply-connected (and 
therefore with vanishing Hi) three-manifold is homeomorphic to 53 (Poincare con- 
jecture). 



390 R. MINASIAN AND D. TSIMPIS 

Xa are KK expanded in terms of the basis {vf := d^/d^1} of sections 
of the normal bundle of C^ <-¥ X as 

d,Xa = ttdrf, (4.2) 

where d^ := d/da*1 di := 9/9^*, and o^; // = 0,1,2 are coordinates on 
Wz. The ^'s are real. 

Using the special lagrangian property of C one can show [11] that 
{ui\ i = l,... 6i(C)}, where c^ := dZ0vf, is a basis of iJ^C^R). The 
hermitian metric on if^C^R) defines a hermitian metric on TJW: 

Da := JuJiA Mj = f dYsy/gg^vtv^ (4.3) 

where gab is the metric on C.   Let us define "inertial" bases {aj} of 
H^C.R) and {^j} of H2(C,R) by 

^ = Ai7^/;   Wi = M* fa (4.4) 

And let {A/}, {5/} be the dual bases so that 

A/ =  /   a;*;   M/ = /   *a;i 

Hence the metric can be rewritten as 

Ai = <5JJA/M/ (4.6) 

Since a;^^ , tujidcj)1 are closed as forms on ,M [11], we have 

d^Aj/^O;   d[iMil
I = 0 (4.7) 

and therefore we can locally write 

Dij = didjKtf) (4.8) 

for some scalar function K((/)). 

Let us now use the above results to reduce the 6D theory of the M5 
to W3. Like before (see [8] for detailed discussion of the reduction and 
for references) it turns out that it suffices to work with unconstrained 
/?-field in the action and impose the self-duality condition as an extra 
constraint. The KK ansatz for the tensor field is 

P2 = UiaApdcr'' A dla + ^(*u>i)abXdla A dlb + p^da" A da1"       (4.9) 

(4.5) 
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Suppressing internal derivatives first and then imposing the constraint 
dfa = *d^2 we get 

dh = dcr^ A d^fo 

Yuiadat1 A da" A dla + ^(VllX)i(*Ui)abd<rfi A dll 

(4.10) 

where 

(V^,- := <f A + d^U (4.11) 
and 

rjk := A'jdiMk1. (4.12) 

Conceptually this is the connection, with respect to the basis {*t^}, on 
a fibre bundle with fibre if2(C^,R) over the point (f)1 G M. The action 
is6 

S= [   dp2A*dp2+ f   dsa t dV^gahd^Xad^Xh. (4.13) 
JWQ JWZ      JC 

Plugging (4.2), (4.10) above 7 and taking (4.3) into account we get 

S= [   d^aD^id^d^ + (V,X)i(WXy). (4.14) 
Jw3 

Prom (4.7) we see that A/dcj)1 is a closed l-form on M and therefore 
we can introduce the coordinate u1 such that 

du1 := A/dft. (4.15) 

We moreover define 
y1 := M/A\ (4.16) 

Using (4.6), (4.15), (4.16) it is easy to see that 

z1 — u1 + iyI (4.17) 
6As we already noted above (4.9) the /?-field should be thought of as being 

unconstrained, otherwise the first term on the rhs of (4.13) vanishes identically. 
The self-duality is imposed as a constraint on the equations of motion deriving 
from (4.13). 

7In [8] it was shown that the reduction of the fivebrane action in arbitrary curved 
background is recovered (at least to leading order) by first reducing the action in 
flat background and then covariantizing. 
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defines an almost complex structure on TJ\4, which can be shown to be 
integrable, reproducing the construction of [11] in a physical context. 

Eq. (4.15) defines a set of coordinates which can be shown to be 
equivalent to the special coordinates of [29]. Indeed we have 

du1 = f  Q (4.18) 

where tt := Uj A dft. We can "normalize" our coordinates 02 so that 
at (f)1 = 0, LJi = aj and therefore dcj? = du1 (see (4.4), (4.15)). The 
supersymmetry transformations of section 2 are worked out at (f)1 = 0. 
Note that the resulting space TM is Kahler, as follows from (4.8), and 
has the special property that the potential depends only on the real 
part of the complex coordinates. Due to this very restricted nature of 
the target space one may even expect some non-renormalization theo- 
rems in spite of having little supersymmetry. It will be interesting to 
investigate this question in more detail. 

To summarize, the target space of the cr-model obtained by wrap- 
ping M5 on £3 x S'1 is given by the moduli space of a D3-brane wrapped 
completely on such a cycle. Due to the presence of the S1 and the equiv- 
alence of 3D vectors and scalars (T-duality), it is clear that wrapping 
a D5 would produce a similar target space. 

We conclude with two remarks on four-cycles. The case of a D5 
wrapped on a cycle £4 in a fourfold is somewhat puzzling: it would 
produce a space-filling two-dimensional theory that by general argu- 
ments [9] is expected to have very low supersymmetry. From the other 
side as seen from [12], in this case the cycle is complex and Kahler 
and the cotangent bundle construction yields a hyper-Kahler target 
space indicating at least four supercharges, and thus a supersymmetry 
enhancement. 

Considering wrapped D-branes on SL leads to an identification [4] of 
the complexified space i?1(C) and the moduli spaces of stable bundles V 
on the mirror manifold Y, Hl(EndV, Y). It was conjectured in [29] that 
this relation is expected to generalize to Hk(C) = Hk{EndV) Y), for all 
k. A higher-rank space, H2(C), appears for the first time at dim^C = 4 
and is relevant only for wrapped M5-branes (while D-branes don't "see" 
this space). It would be interesting to understand if the M5-brane can 
play any role in testing the extended mirror conjecture. 
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