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Abstract 

We propose a monodromy invariant pairing if/^X)® 
iJ3(-X'v,Z) —> Q for a mirror pair of Calabi-Yau manifolds, 
(X, Xv). This pairing is utilized implicitly in the previous calcu- 
lations of the prepotentials for Gromov-Witten invariants. Af- 
ter identifying the pairing explicitly we interpret some hyper- 
geometric series from the viewpoint of homological mirror sym- 
metry due to Kontsevich. Also we consider the local mirror 
symmetry limit to del Pezzo surfaces in Calabi-Yau 3-folds. 
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1      Introduction 

In 1994, Kontsevich proposed a homological mirror symmetry [29] for 
a mirror pair of Calabi-Yau 3 folds. It is conjectured that there ex- 
ists a categorical equivalence between the (bounded) derived category 
D(X) of X and Pukaya's A^ category of Lagrangian submanifolds for 
the mirror Xy. The object of Fukaya's A^ category is a (special) La- 
grangian submanifold with flat U(l) bundles on it and undergoes the 
monodromy transformations when we consider the family of manifolds 
Xv. On the other hand the object of the derived category D(X) is a 
complex of coherent sheaves on X. Under the (conjectural) categorical 
equivalence between D(X) and Fukaya's A^ category the monodromy 
of the 3-cycles is mapped to certain automorphisms in D(X), Fourier- 
Mukai transformations. To write this automorphism as well as to study 
the equivalence of the category explicitly are important problems to- 
ward the complete understanding of the mirror symmetry. 

About the possible form of the automorphisms in D(X) there have 
been a proposal by Kontsevich [30], and his idea has been pushed for- 
ward recently by Horja [17]. They propose certain Fourier-Mukai trans- 
formations on D(X) to reproduce the corresponding monodromy ac- 
tions on the period integrals and compare their effects on (the D-brane 
charges) Heven(X,C), i.e., the cohomology ring of even degrees over 
the coefficient C. In this paper we remark a natural integral structure 
for the D-brane charges which was implicit in the previous calculations 
[20], [21], [23]. Also we will identify the generalization by Horja coin- 
cides with the local mirror symmetry in physics [31], [9] and consider 
the cases P2 and del Pezzo surfaces BIQ, Blj, Bis in detail. 

The integral structure above comes from that of the K-group K(X) 
by the Chern character homomorphism. As for the K-group, we con- 
sider the topological K(X), i.e., the set of vector bundles on X divided 
by a certain relation (the stable equivalence). Although not all elements 
in D(X) (, or coherent sheaves on X,) correspond to vector bundles on 
X, we assume all elements in D(X) may be written as a complex of vec- 
tor bundles and have their images in K(X). Throughout this paper we 
write by K(X)hoi the image of D(X) in K(X) under this assumption. 

Main result of this paper is a proposal ("Theorem" 2); There exists 
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a monodromy invariant pairing 

I:Khol(X)®Hs(X\Z)^Q (1.1) 

for the deformation family of Calabi- Yau manifolds Xv and its mirror 
manifold X. We derive this results from Proposition 1 which has been 
verified explicitly for abundance of examples to establish the mirror 
symmetry conjecture [6]. For some special cases the mirror symmetry 
conjecture has been proved in [15], [32]. 

The homological mirror symmetry was also considered by Vafa [45] 
to extend the mirror symmetry conjecture [6]. In ref. [45] the yukawa 
coupling on the complex structure moduli space was modified to in- 
corporate the moduli space of vector bundles on Calabi-Yau manifolds, 
and it was conjectured that the generalized formula enumerates open 
strings with boundary on a special Lagrangian 3-cycle in the mirror 
Calabi-Yau manifold. 

The organization of this paper is as follows: In section 2, we will 
summarize the mirror symmetry of hypersurfaces in toric varieties fol- 
lowing [21], [18]. In section 3 we will define type IIA monodromy and a 
natural integral symplectic structure implicit in the calculations sum- 
marized in section 2. In section 4, we will consider the monodromy 
associated to the local mirror symmetry to P2 and del Pezzo surfaces 
BIQ, Bl-j, Bis and interpret their integral structure in language of coher- 
ent sheaves. In the final section, we will address to the recent develop- 
ments in string theory which are closely related to the content of this 
paper. 
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2    GKZ hypergeometric series and Prepo- 
tential — Review 

In this section we summarize general results about the prepotential of 
Calabi-Yau hypersurfaces in toric varieties obtained in [20], [21]. For 
simplicity we will mainly focus on hypersurfaces, however generaliza- 
tions to complete intersections are straightforward (see [20] for exam- 
pie). 

2.1    GKZ hypergeometric series and large complex 
structure limit 

Let us consider a mirror pair of Calabi-Yau hypersurfaces (X&,X&*) 
described by (four dimensional) reflexive polytopes (A, A*) [2]. We 
denote the lattice points of the polytope A* by z/£ (A; = 0,... ,p) with 
a convention v^ = 0. Then the defining equation of XA* is given by 

/(a) = J>X<  , 
i=0 

in terms of the torus coordinate Xi,..., X4 of (C*)4 C PE(A)- The 
complex parameters (ao,..., ap) G (C*)p+1 represents the deformations 
of the defining equation. In nice situations, to which our attention 
will mainly be restricted, the monomial deformations of the defining 
equation provide the complex structure deformations of XA* . We com- 
pactify the affine space described by a^'s via the secondary fan so that 
the natural C* actions coming from the toric ambient space PE(A) 

are 

respected. The basic object we consider in the compactification is the 
following lattice, so-called the lattice of relations among the vertices, 

I 2=0 
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The secondary fan is a rational, polyhedral, complete fan in Lj^ for 
the dual lattice Ly and its scalar extension. According to the general 
construction of toric varieties, the complete fan defines a toric com- 
pactification of the torus Homz(I/, C*), which is our compactification 
of the affine space of a^'s. Among the cones in the secondary fan, there 
is a cone, called Mori cone, whose geometric meaning is the dual of 
the Kahler cone of PE(A*)- Let us denote the generators of the Mori 
cone Z^1),... ,/(r) (r = rA:(iJ2(Px;(A*)?Z))) assuming that it is simpli- 
cial for simplicity (see [21] for general non-simplicial cases). Then the 
Mori cone L>o = R^o^1^ H \- R>o^r^ describes the affine chart C/Q = 

Homs.0.(Z/>o,C) with the coordinate x^ = (—l)/o a1 (k = l,...,r). 
It has been proved in general [22] that the origin Xi = • • • = xr = 0 
provides a large complex structure limit (LCSL) [34] and there we have 
only one regular period integral 

WQ w = E J11"^^)/ •        P-1) 
J>0 

which corresponds to the special Lagrangian three tori cycle [44]. All 
other period integrals at LCSL contains logarithmic singularities. In 
ref.[19] such solutions are generated by classical Probenius method. Be- 
fore going into the details of the construction of the local solutions, we 
prepare some notations for the cohomology ring of the ambient toric 
variety PS(A*)- At a first looking, the procedure in what follows seems 
to be simply technical but it will turn out that there are important 
implications in view of homological mirror symmetry. 

2.2    Chow ring of PE(A*) 

Here we describe the Chow ring of the toric variety PS(A*) to determine 
the necessary topological data of XA- The Chow ring is an abelian 
group generated by divisors, endowed with a commutative, graded ring 
structure via the intersection product. In case of toric varieties, it has 
a simple description in terms of the invariant divisors Di (i = 0,... ,p) 
[39], [14]: 

A*(PE(A*)) = QPo, -Di,..., DP]/(SR + I) , (2.2) 

where SR is the Stanley-Reisner ideal for the polytope A* and / is the 
ideal generated by linear relations, representing rational equivalences 
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among divisors; 

I>*^ = o- (2-3) 
2=0 

We note here a natural non-degenerate pairing A1
(PX;(A*))R X ^R —> 

R, and thus recognize the dual cone (Z/>o)v lies in ^4
1
(PS(A*))R- In feet, 

according to our construction of L>o, (^>o)v is the Kahler cone (or its 
refinement) of the ambient space PE(A*)- We will denote the dual basis 
to the generators /(1),..., Z(r) by Ju ..., Jr. Then we may write, for 
example, the classical coupling K^bc by 

KfL ••=   / [^A] -Ja-JB-Jc, (2.4) 

where [XA] = Di H h Dp and the symbol fp    +  means to take the 

coefficient of the highest degree element of (2.2) with the normaliza- 
tion determined by the requirement that it gives the Euler number 
X(XA) from the top Chern class cn(XA) (see (3.59) of [21] for de- 
tails). The toric part of the even cohomology H^^(XA,Q) may be 
described by >1*(PS(A*))RM^^([^A])5 where and Ann([XA]) := {v G 
^*(PE(A*)) I [XA}v = 0}. 

2.3      Prepotential and its asymptotic form 

Now we describe the local solutions about the LCSL. To this aim let 
us introduce in (2.1) the indices pi,..., pr] 

WQ(X,P) =  Y^ c(n + p)xx-{-p . 
nez^0 

The results obtained in [20] (or (3.38) of [21]) may be summarized 
into a concise formula using the dual bases Ji,..., Jr to Z^1),..., Z^ 
for the Kahler cone of PE(A*) and restricting them to the hypersurface 
XA. Namely the differentials with respect to the indices in Frobenius 
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method are summarized by 

J 
-) =u>o(£jl + 
?. 

0=1 

1    r 1     r 

+ —  ^ 'Wab(x)JaJb+ ^    5^   Wabc(x)JaJbJc   , 2!   ^^   ~«,V~/-a~<,        3! 
a,6=1 a,6,c=l 

where products of J^'s are taken in the cohomology ring Hf^(XA, Q). 
This way of keeping track of the hypergeometric series was first utilized 
in [15] and later used in [42]. We stress here that our definition of the 
hypergeometric series (2.1) (or (3.38) of [21]) and that in [42] differs 
in the Gamma factor which normalizes the solutions. This difference 
in the Gamma factor is crucial to obtain integral, symplectic basis 
for the period integrals, although both give the solutions of Picard- 
Fuchs equation. Now to describe the formulas more concretely, let us 
introduce a basis 1, Ja, J6

(2), J(3) of respective degrees by the property 

(1JJW) = -1  ,   (Ja,Jn = 5i ab 

with (A, B) '•= fx A A B. Prom the reasons which will become clear 
soon, we shift the basis slightly to introduce a canonical "symplectic" 
basisofi?--(XA,Q)by 

1 , J? := Ja - C2(X
^

AJQ
 , Jf , J(3)  • (2.5) 

The above formal expansion of the series may be connected to the 
classical Probenius method by 

a 

+ J2 DfW^J? + D{Z)wo{x)J{3) , (2.6) 

where 

v /    a,6,c a 
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and the notation Da wo(x), for example, means an operation 
limp^o^i ^o(x,p). The form of the differential operators D^ using 
the classical yukawa coupling K^bc = Jx Ja A J& A Jc appeared in the 
references [20] (see also (3.38) of [21]) and may be reproduced directly 
from the formal definitions of WQ(X, T^) and the basis (2.5). In terms 
of the above hypergeometric series, a closed formula for the genus zero 
prepotential was found to be 

2 \wo(x)J ^ 

D^woix)   . . .    . 
ta = p-^-  (o = l,...,r). (2.7) 

Wo (re) 

Especially a specific asymptotic form of the prepotential at the large 
radius limit was observed in [20] generalizing the results for the quintic 
[6], which we reproduce here in the form 

F(t)= [   F(t,J) , 
IXA 

with !F(t, J) defined by 

where t • J = Yla^Ja- For general proof of this formula we refer 
to a review article [18] (Proposition 6.7). We remark here that the 
prepotential was introduced to define the special Kahler geometry on 
the complex structure moduli space using a symplectic basis of the 
homology group HS(XA*^) [43]. Combined this fact with our results 
(2.8), we may expect that the right asymptotic form of the prepotential 
indicates that the hypergeometric series we have arranged about the 
LCSL in (2.6) is very close to the integral symplectic basis of period 
integrals. In the next section, we will argue that this is in fact the 
case relating the monodromy problem to the recent progresses on the 
Fourier-Mukai transformations on derived category by Horja [17]. 
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2A     Lattice polarized K3 surfaces 

We may apply the above construction to the lattice polarized K3 sur- 
faces [12], [28] in parallel ways. The lattice polarized K3 surfaces are 
defined by a lattice M which has the signature (1, r—1) and also admit a 
primitive embedding into the K3 lattice LK3 = E$(-l) ®Es(-l) e#e3 

where H represents the rank two hyperbolic lattice. Given a lattice M, 
the lattice polarized K3 surface, M-polarized K3 surface, is defined to 
be the K3 surface whose Picard lattice is given by M. In a parallel way 
to Calabi-Yau 3 folds, we can construct mirror pair of K3 surfaces for a 
reflexive pair of three dimensional polytopes (A, A*), thereby we obtain 
the lattice polarized K3 surfaces X^ and X/^* with their Picard lattices 
given by MA and MA*, respectively. The two lattices MA and MA* 

admit primitive embedding into the K3 lattice and allow the inclusion 

LK3DMA®H® MA*  , (2.9) 

with finite index (see [12], [28]). The orthogonal complement of the 
Picard lattice gives the transcendental lattice of the K3 surface, and 
gives up to the factor H the Picard lattice of the mirror K3 surface. 

Now let us consider the prepotentials for the K3 surface X^. Since 
it is known that for K3 surfaces there are no instanton corrections in 
the prepotential due to quadratic relations (period relations) among 
period integrals, we may expect strict constraints on the integral basis 
for the period integrals of the mirror XA* . Namely we should have 

FW = ?EKaiU6 
2      . 

for the prepotential of X&.  With this in mind, we arrange the series 
w0(x, £) in (2.6) by 

wQL^\^wQ{x)l' + ^D^wQ{x)J^+mwQ{x)J^  ,   (2.10) 

where 

1' = 1 " ^  .   tf > = J. .   J{2} = "^  , (2.11) 

and 

D™ = aS8* ■ tm = "2(2^ £K^A -1 •      (2-12> 



344 S. HOSONO 

The classical couplings K^b = fx JaJb are defined for positive bases 
Ji,..., Jr of H2

(XA, Z). As a right generalization of the prepotential 
(2.7) we introduce the prepotential for K3 surfaces by 

F{t) = (^))2 {"oW^Wx) + J2KabD
{>o(x)Di1)w0(x) 

(2.13) 

with the mirror map ta = 
a

w ^p. Then the required asymptotics for 
F(t) will be realized if we have the following quadratic relation, 

w0(x)D^wo(x) + ±Y1 KthD^wQ{x)D^wQ{x) = 0 , (2.14) 

which we may verify explicitly for several examples. The fact that 
we have the required quadratic relation for several examples already 
is convincing for the claim that the our arrangement (2.10) of the se- 
ries provides integral and orthogonal basis for the period integrals of 
the transcendental cycles in /^(^A*, Z). Note that due to the mirror 
symmetry of the K3 surfaces the symmetric form of the transcendental 
lattice H2 (XA* , Z) is given by 

/0     0     1\ 
Ec =    0   Kth   0      , (2.15) 

Vi    0    0/ 

using the intersection form of the Picard lattice of X^. In the case 
of quartic hypersurfaces in P3 for example, we may verify directly the 
integrality of the monodromy matrices, as well as the orthogonality with 
respect to (2.15), through the explicit calculations of the monodromy 
of the hypergeometric series(2.10). 

In the next sections, we will explain these phenomena in the formal 
expressions (2.6)(2.10) from the viewpoints of the homological mirror 
symmetry. 
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3      Type IIA monodromy 

In this section we write the mirror pair of Calabi-Yau manifolds by 
X = XA and Xy = XA* for notational simplicity. As will be evident, 
many of the results are not restricted to the hypersurfaces in toric 
varieties. 

3.1     Homological mirror symmetry and a sympleo 
tic basis 

The monodromy of the period integrals are symplectic with respect to 
the intersection form on the cycles of middle dimensions Hs{Xy',Z). 
The homology classes of Hs(Xv, Z) are considered as D-brane charges 
of (special) Lagrangian 3 cycles in Xv. Under the homological mirror 
symmetry these cycles are mapped to the elements of D(X), the de- 
rived category of coherent sheaves. More precisely, Kontsevich proposes 
categorical equivalence between Fukaya's A^ category of Lagrangian 
submanifolds in Xy and the derived category D(X) of the coherent 
sheaves on X. Therefore the skew symmetric and integral form on the 
homology classes H^{Xy', Z), as D-brane charges, should have the mir- 
ror counterpart. The right notion for the D-brane charges is in the 
K-group K(X). Here we consider the topological K-group and the im- 
age Khoi(X) of D(X) assuming elements in D{X) may be represented 
by suitable complexes of vector bundles on X as addressed in section 
1. The skew symmetric form on Kf^i^X) may be defined by the alter- 
nating sum x(^,^7) = ^^—lydimExVQ^EiT) for sheaves S and JF. 
If we use Riemann-Roch theorem, we may write the skew symmetric 
form by 

X(£,T) = / ch(£v ® ^)Todd(X) . (3.1) 
Jx 

Namely we may realize a skew symmetric form Heven(X, Q) using 
the Chern character homomorphism ch : K(X) —>> Heven(X, Q). We 
should note that the integral structure of the image c]i(Khoi(X)) is 
different from that of Heven(X, Z). This is the point we must be careful 
for Calabi-Yau 3-folds. (In case of K3 surfaces the latter is isomorphic 
to the image of K(X).) 
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With this background in mind, let us introduce a skew symmetric 
form on Heven(X, Q). First we consider an involution * which acts on 
H2l(X, Q) by (—I)2. Using this involution we define 

(a,/?) = /  aA*£ATodd(X) 
Jx 

= - [ (aofc - ^2/?4 + aifc - a6^o)Todd(X) , (3.2) 
Jx 

for a,/? G Heven(X, Q). If we evaluate this skew symmetric form for 
the basis we have introduced in (3.4), we find that it has the 'standard' 
matrix form of the symplectic form, which we denote by Ec. Moreover 
the change of the bases 

41)-*41) + £a^(2) , (3.3) 

with symmetric form Cab = Cba is symplectic, namely does not change 
the symplectic form, although it will change the integral structure in- 
troduced through the bases in Heven(X, Q) (in general). We should 
note that this change of the bases results in the corresponding change 
of the asymptotic form of the prepotential (2.8) in the quadratic terms 
of i, which are known to be non-universal in contrast to other terms. 
Observing this fact we may summarize the results in [19], [20], [21], [23] 
via abundance of examples into the following statement; 

Proposition 1. There exists a canonical symplectic basis of the skew 
symmetric form (3.2) on Heven{X, Q); 

1  ,   Jf  ,   42)  ,   J(3)  , (3.4) 

where Jf = (Ja — ^bCabJb XTodd^))""1 with some rational constants 
Cab = Cba- Corresponding to this basis, we have an integral symplectic 
basis for the period integrals about the LCSL through 

wo U ^ J = wo(x)l + ]r D^wo(x)j; 

+ Y, DPw0(x)42) + D^wo(x)J^  , (3.5) 
6 

where D^ = D^ + ^2aCabDa . Precisely the hypergeometric se- 
ries appearing in the coefficients of the canonical symplectic basis of 
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Heven(X, Q) are integral symplectic with respect to Ec. The correspond- 
ing prepotential has the following asymptotic form: 

F® = | 5Z Kabctatbtc +±Y, CdM* 
abc ab 

E (c2(X),Ja) C(3)    Y   v     ^^ 
24       io+2(2^x(X) + (!)(9)- 

In the following, we arrange the canonical symplectic basis into 
a row vector II^J) = (1, Jf, J^ , J^) and the corresponding pe- 
riod integrals in a column vector IIB{X) SO that we have wo(x, i£-) = 
1J

A
(J)JIB(X). We should note that the formal relation (3.5) shows the 

homological mirror symmetry explicitly, as we may read from it the 
correspondences between 3 cycles in the mirror manifold Xv and the 
elements in the derived category. The construction of the period inte- 
grals specifying suitable 3 cycles is one of the hardest part in the mirror 
symmetry. However our formula (3.5) replaces this problem by easier 
ones that thinking about coherent sheaves on Calabi-Yau manifolds. 
Now let us study the formula (3.5) in more details. 

First of all the hypergeometric series WQ(X) is uniquely character- 
ized by the regularity at LCSL. It is known that this series represents 
the period integral for a 3-torus T3 coming from the complex torus 
(C*)4 in the ambient toric variety. This cycle is proved to be special 
Lagrangian for the metric around the degeneration point, the LCSL 
point. The dual cycle to this is a vanishing cycle S3 which appears over 
the principal component of the discriminants of the hypersurface Xv. 
The corresponding period integral is known to be D^WQ(X) containing 
the highest power of the logarithm. These cycles play an important 
role for the geometric mirror symmetry construction proposed in [44]. 
There it has been argued in general that the T3 cycle, with flat 17(1) 
bundle on it, has its deformation space of real dimension 6 whereas the 
dual cycle S'3 with flat U(l) bundle is rigid. Under the homological 
mirror symmetry these cycles should be mapped to the sheaves which 
have the same dimensions for their moduli spaces. A little thought tells 
us that they are given by the structure sheaf Ox and the skyscraper 
sheaf Op for S'3 and T3, respectively. We evaluate the Chern charac- 
ter for each sheaf to be ch(Ox) = 1 and ch(C?p) = Volx, respectively, 
where Volx is the normalized volume form of X. Namely we read our 
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formula (3.5) as 

T£;ol + "- + ^3W(3) = ch((9x) f Q + • • • + (-ch(Op)) f fi , 
JT

3 JS
3 

where ft represents the holomorphic 3-form of the mirror family. This 
relation indicates the following relation should hold in general; 

(ch(£j,wo(x,^-\\= J Q , (3.6) 

where we denote by ^7 G D(X) the mirror image of a D-brane having 
the charge 7 6 Hs(Xv\ Z). As for the from 

J! - (Ja-Y^c^42))^odd(x))-\ 
b 

we may interprete this as the Chern character of a torsion sheaf sup- 
ported on the divisor Ja. Suppose for simplicity that the divisor D := Ja 

is a smooth, irreducible subvariety in X. Then we may consider a co- 
herent sheaf <S on the subvariety D. We may consider this sheaf S in 
the Calabi-Yau manifold extending by zero to the outside of D. This 
is the torsion sheaf denoted by i*S, and whose Chern character may be 
evaluated by Riemann-Roch formula; 

ch(i*<S)Todd(X) = i* (ch(<S)Todd(L>))   . (3.7) 

If we write the components of ch(i*S), we have 

chi(i#5) = rD , 

chziuS) = U [CiiS) + 2Ci(-C)))   ' 

chs(i*S) = U (ch2(S) + ^Ci(S)ci(I>) + ^ (diD)2 + C2(D))\ 

-^D-c2(X) , (3.8) 

where r is the rank of the sheaf S on D. Our formula (3.4) for Jf is 
essentially this Riemann-Roch formula for the embedding of rank one 
sheaves. The concrete form of the base Jf depends on the divisors, 
but we remark here that if a divisor Ja describes a K3 surface[25], we 
may have considerable simplification for the choice of the undetermined 
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constants Cab- For example, when we consider the ideal sheaf Ipq for 
the torsion sheaf Opq supported on two points on the K3 surface, we 
have 

chmipq)) = Ja-±c2(X)Ja , (3.9) 

which we evaluate from (3.8) using Ci(Zpq) = 0,ch.2(Ipq) = — ZVOIKS as 
well as ci(D) = 0, C2(D) = 24Vol^3. In the next section we will discuss 
the cases of del Pezzo surfaces after introducing certain automorphisms 
in the derived category D(X), which was proposed by Kontsevich [30] 
and studied more recently by Horja [17]. 

3.2    Type IIA monodromy and the monodromy in- 
variant pairing 

Now let us define the type IIA monodromy (group) acting on the 
derived category D(X) by the mirror transform of the monodromy 
(group) acting on the 3 cycles of the mirror family. Then we understand 
that the actions of the monodromy on the D-brane changes, Khoi(X), is 
the same as the corresponding actions on H^(X^', Z) under the mirror 
equivalence. With this definition of the monodromy we may summarize 
what is implied in Proposition 1 as follows; 

"Theorem" 2.  There exists a monodromy invariant pairing 

I : Khol(X) ® H3(X\ Z) -* Q (3.10) 

for the deformation family of Calabi- Yau manifolds Xv and its mirror 
manifold X. 

If we write the pairing /(£7,7') for a symplectic basis 7's of Hs{Xw, 
Z) and its mirror transform £7's, then our series WQ(X, ^) should be 
understood by 

wo (*» 2Q = E7^ TW^r)/ to > (3-11) 

where the summation is taken over a symplectic basis. Our Proposition 
1 and the formula (3.6) also say that corresponding to our canonical 
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symplectic basis with its symplectic form Ec, the invariant pairing has 
the form (/(57,7

/)) = E"1, identifying (3.11) with our expansion 

Wo (X' £~i) = ni4( J)-n^(a:) =: ^AiJ^Usix)  , 

for n^(J) = (ch(f7)) and IlB(x) =* (/ Q). Note that our canoni- 
cal symplectic basis TlA(J) = n^(J)E~1 in Proposition 1 is still sym- 
plectic because ^Ej1 = Ec. The monodromy M acting on the period 
integrals TJLB(X) -> tMJlB(x) should have the type IIA monodromy 
counterpart in the mirror, 11^(J) —> n^(J)M. Then our identification 
of the invariant pairing is consistent because we have the monodromy 
action on ^(x,^) = II^JjE^II^a;) -> ^(JjAfE"1 ^MH^^) = 
n^(J)E~1njB(x) for a symplectic matrix satisfying tMY!,cM = Ec. 

Remark. Here we fix our convention about the monodromy actions. 
Let us fix a basis S = {7} of H3(X, Z) and consider the Poincare dual 
Oy's for the basis HS(X, Z). Then we define the skew symmetric form 
Sby 

/ ay =      a 
Jy JX 

^J  I \ KJLI^J'       /L-i^yi^j' 

We consider the monodromy action on the basis {a7} by a7 —> 
^ , ayMy^. Then the invariance of the skew symmetric form E is 
expressed by the condition *MEM = E, i.e., M is symplectic with re- 
spect to E. We note that by definition of the Poincare dual / = fx a7 A 
we have / —> ^ , My7 f,. The holomorphic 3-form fi is expanded by 
the basis {a7} as follows; 

 / t/y 

since we have / fi = X^y E77^7/. The monodromy acts on the period 
integral £7's by £77 -> ^yCAf"1)^/^/. We should compare the above 
formula with our claim (3.11) which we reproduce here, 

7*7' ^ 

Our claim /(£7,7') = (E-1)^/ is consistent to identify Q with WQ{X^ ^J) 

under the mirror symmetry.   If we define the hypergeometric series 
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by llB(x) = E~1njB(x) = t(^7), then the monodromy matrix acts 
by IlB(x) ->► M"1nB(a;). The same arguments applies to Calabi-Yau 
hypersurfaces (or CICYs) of arbitrary dimensions. Especially in case 
of even dimensions, we should replace the skew symmetric form S by 
corresponding symmetric form, and also have the "period relations" 
fx ft A n = o, 

J2GJ^GJ' = 0 , (3.12) 
7J7/ 

as a nontrivial consistency condition (see (2.14) for K3 surfaces). 

Now we are ready to present several examples for which integral 
symplectic basis for the period integrals has been obtained explicitly. 

Example 1 (One parameter models in [6], [27]). There are four exam- 
ples of Calabi-Yau hypersurface Xd{d = 5,6,8,10) in the weighted pro- 
jective spaces P(c5) = P4(^i,... jOfe). One is the quintic in P4, whose 
defining data may be written {d\(S) = (5; I5) specifying the degree and 
the weights. The others have (d; u) = (6; 2,14), (8; 4,14), (10; 5,2,13). 
The (even) cohomology ring has a simple form Heven(X, Q) = Q[</]/(e/4) 
with the normalized volume form Volx = UJ1"d

UJ5 J3. The topologi- 
cal data are given by (if^, (cs, J),x) = (5,50,-200), (3,42,-204), 
(2,44,-296), (1,34,-288), respectively for d = 5,6,8,10. The hy- 
pergeometric series are determined by the general formula (2.1) with 
/(i) = (—d;^ and we extract the hypergeometric series from the ex- 
pansion 

WQ (x, — J = wo(x)l + Dww0{x) Js 

2m 

+ D^wo{x) JW + D^w0(x)(-Vo\x)  .        (3.13) 

If we set Js = J - ^^ - aJ(2) with a = y, |,3, |, respectively, 
for d = 5,6,8,10, we may verify that our hypergeometric series T[B(Z) 

reproduces integral symplectic basis for period integrals constructed ex- 
plicitly in refs.[6], [27]. (Precisely hypergeometric series *(—WQ, 

-D^wo,Di2)Wo,D^wo) coincides exactly with Ml' = Nt(gug2,z
1, 

z2) in ref. [27], see the formula above eq.(5.4) of [27] for the matrix 
iV. The minus signs come from a difference in the overall sign of the 
prepotential T.) See Example 4 for the monodromy calculations. 
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Example 2 (Two parameter models in [7], [8]). The same calculation 
proceeds to the two parameter models X(%) C P(2,2,2,1,1), X(12) C 
P(6,2,2,1,1) and X(18) C P(9,6,1,1,1). For these models integral 
symplectic period integrals for their respective mirror X(dy have been 
determined in [7], [8]. Since the necessary details may be find in the 
literatures, we simply reproduce here the data of their topological cou- 
plings; following the notation in [21] the non-vanishing classical yukawa 
couplings are summarized in 

8Ji3 + UlJ2 for X{%) ,    4J3 + 2J*J2 for X(12) , 

9 Jl + 3 Jl J2 + J1J2  for X(18) , 

and also the values of C2. J := ((C2, Ji), (C2, J2)) are given by 

(56,24) forX(8)  ,     (52,24) forX(12)  ,     (102,36) forX(18)  . 

Note that from these data we may reconstruct the ring Heven(X, Q). 
For the data {/^, l^} we refer to the references. What we need here is 
to find the constants Ca& in the basis of Proposition 1 which reproduce 
the results in [7], [8]. In ref.[7] these constants are written by a,/?,7, 
related to our constants Cn = —a, C12 = —/?, C22 = —7- For X(8) 
and X(12), it was found that they can be arbitrary integer. Although 
special values a = 0,(3 = — 2,7 = 0 were chosen there, we set a = /? = 
7 = 0 in favor of our interpretation (3.9) for the K3 fibrations. Namely 
the K3 fibrations we see in the divisor J2 simplifies the construction 
of our symplectic basis. In contrast to these, we need to have non- 
vanishing rational numbers for the Cab of X(18). In any case, we can 
find the constants Cab which reproduce the period integrals given in [7], 
[8], up to the difference above, with the following choices; 

X(8) ■ Ji=Ji     12
C2Aji '    J* = J2     12C2AJ2 

X(12) ■■J? = Jl        12
C2A^l ,      J2   = J2 - ^C2 A J2 

X(18) ■■J? = Ji     12
C2Aji 

9 7(2)       3    (2) 
'21     "2   2     ' 

js = J2- —c2 A J2 - 
3 7(2) 

-2J2   • (3.14) 

For -X"(18), it may be convenient to define another basis H = Ji, E = 
Ji — 3 J2 for Heven(X, Q) since in this basis the classical yukawa cou- 
plings simplifies to 9i?3 + 9E3. This is because the divisor E is isomor- 
phic to P2 which may be contracted to a point (see the next section). 
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Remark. In case of the lattice polarized K3 surfaces, there is no 
ambiguity in our expansion wo(x, ^r) presented in (2.10). In this case 
the identifications of our bases (2.11) with suitable coherent sheaves on 
X are 

l' = ch(lp) ,   J(2) = -Volx = -ch(Op) , (3.15) 

and Ja = ch.(ODa(L)) with the torsion sheaf supported on the divi- 
sor Da = Ja tensored with a suitable line bundle L on it.   The line 
bundle L on Da is determined requiring ch(C>£>a(L)) = Da f- + 
(degL) VOIRS = Da. Note that the Chern character of the ideal sheaf lp 

for the skyscraper sheaf Op may be evaluated from the exact sequence 
0 —> lp —> Ox -> C?p —>• 0. Note also that the sheaf Ip is the image of 
Op under the Fourier- Mukai transform $£•(•) : -D(X) -> D(X) defined 
by the kernel Q, the ideal sheaf 0 -> Q -> O^xx -^ OA -> 0 for the 
diagonal A C X x X [38] (cf. definitions in the next section). 

The monodromy invariant pairing (3.10) in this case should be un- 
derstood / : Khol(X) (g) H2{Xy\Z)trans -> Q, where i/2(X

v, Z)traris is 
the transcendental lattice. For a basis of the transcendental lattice 
whose orthogonal form Ec given in (2.15), we have (7(^,7)) = E"1 

and thus WQ(X, ^T) = ^ , ch(f7)(E~1)7)7/ / , Vt where Q represents the 
holomorphic 2 form. Full determination of the type IIA monodromy 
group is beyond the scope of this paper, however we may expect that 
the monodromy group would be generated by the (—2)-reflections due 
to Mukai on D{X) [38]. 

The case of the elliptic curves is more simple and we may identify 
the type IIA monodromy with SX(2,Z) action on D{X) in [37]. This 
is clear but we will evaluate explicitly the monodromy of the relevant 
hypergeometric series in section 3.4. 

3.3      Automorphisms in derived categories 

In 1996 Kontsevich [30] considered certain automorphisms of D(X) 
which come naturally from the homological mirror symmetry, namely 
Fourier-Mukai transforms with suitable choices of its kernels.  To de- 
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scribe them let us consider for a Calabi-Yau 3 fold X the diagram: 

<X   -£>   X 

PI (3.16) 

X 

When we fix an object £ G D(X x X), we may consider a functor 
$£.(.) = R#p2*(£®Lpt(-)) : D(X) -> D(X). If the functors of this type 
define equivalences (automorphisms) of the category, they are called 
Fourier-Mukai transforms. We call the object £ G D(X x X) in <&£ the 
kernel of the functor. The conditions on the kernel for $£ to define a 
Furier-Mukai transform has been studied in general for smooth projec- 
tive varieties in [4], [3]. The Fourier-Mukai transform $5 : D(X) -> 
D(X) induces corresponding automorphism Khoi{X) —>► Khoi(X) under 
the canonical map, and futher an automorphism on Heven(X, Q) using 
the Chern character ring homomorphism ch : K(X) —> Heven(X, Q). 
The identity may be realized by the torision sheaf OA € D(X x X) 
supported on the diagonal A C X x X, namely the delta function 
supported on the diagonal. 

Now let us introduce the kernels proposed by Kontsevich. The first 
kernel is given by the complex, 

 > 0 -> OA <g>pZ(£) -> 0 -> • • • , (3.17) 

where £ is the sheaf of a line bundle on X and the non-zero sheaf is at 
the zero-th position. The corresponding Furier-Mukai transform acts on 
a sheaf J7 G D(X) as F H-> JF® £. Since in our case of hypersurfaces in 
toric varieties the Picard group are generated by our basis Ji,..., Jr of 
iy1,1(X, Z), we may consider r-independent kernels of this type. Taking 
the Chern character, we may summarize the Furier-Mukai transforms 
of this type by 

2>.4 : 7 ►-♦ 6*7 (7 € H™n(X,Q); k = 1,... ,r). (3.18) 

We have used the notation VXk because we can identify these auto- 
morphisms with the type IIA monodromy corresponding to the mon- 
odromy about the toric divisors Xk = 0 at the LCSL. The second is the 
kernel whose cohomology is the ideal sheaf !& of the diagonal; 

• • • -> 0 -4 0XxX -> OA -► 0 -> • • • , (3.19) 
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where O^ at the zero-th position. The functor $£ acting on a sheaf T 
results in • • • -> 0 -> P2*(^XxX ®Pi^) —> T —^ 0 —>• • • •, which implies 
the following automorphism on Heven{X) Q), 

To : 7 ^ 7 " ( / Todd(X) A 7] 1      (7 G ^everi(^, Q)).       (3.20) 

Kontsevich proposed that this should reproduce the monodromy 
about the principal components of the discriminant of the mirror family 
Xv. Since over the principal discriminant we have vanishing cycle(s), 
S3, we may identify this monodromy with the Picard-Lefschetz formula. 

Recently Horja [17], generalized the kernel (3.19) to more general 
situation, which we may understand the local mirror symmetry coun- 
terpart of the formula (3.20). Here we briefly summarize his result to 
clarify its relation to the local mirror symmetry. Let us assume an 
exceptional locus E in a Calabi-Yau hypersurface (or CICY) X which 
may be contracted to a locus Z in X. In the ambient toric varieties the 
exceptional locus ^o of the (elementary) contractions are given by the 
intersections of toric divisors, D^ n • • • fl Dik. Here we assume our ex- 
ceptional locus E comes from the ambient space, namely EQ restricted 
to X. This is exactly the local mirror symmetry considered in [26], [9]. 
In this setting we may consider the following diagram, 

ExzE   -^   E 

(3.21) 

E 

together with the embeddings ja : E <-» X (a = 1,2) and j : E Xz E c-^ 
X x X. We write Y := E Xz E. Given an object 1 G JD(Y') we may 
consider the functor $^(-) = R#(j2 or2)*(X(8)L (ji ori)*(-)) : D(X) -> 
D(X). Since we may verify $j(-) = $^1 (Lemma 4.4 of [17]), we obtain 
new kernels of the Fourier-Mukai transforms in (3.16) in this way. For 
the local mirror symmetry version of Picard-Lefschetz formula (3.20), 
a naive choice of the kernel would be to consider the complex X : • • • —> 
0 -> Oy -> 0Ai -> 0 -* • • •, where A' c Y = E Xz E is the diagonal 
(A' = E). The actual construction is more involved using the (reduced) 
Koszul complex for O& = OE and the mapping cone construction, 
(see ref.[17] for full details).   The corresponding automorphisms on 
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Heven(X, Q) are determined (Proposition 4.5 [17]) to be 

k 

1 -»• 7 " Jit1 " ejDio)r2* (C/i 0 n)*(7) Todd(y) ^(ToddC^)-1)) , 

(3.22) 
for7ei]/reven(X,Q). 

In our case of toric varieties, hypersurfaces (of CICYs) in toric vari- 
eties, the contraction shows itself as an extremal ray of the Mori cone (or 
its higher dimensional cone). In this paper we restrict our attention to 
the primitive contractions, where we have an extremal ray representing 
the contraction. Let us write the extremal ray l^ — (^ ; 4 ,..., lp ) 
in our notation prepared in section 2.1. Geometrically extremal ray 
represents a rational curve collapsed under the contraction. The dual- 
ity of the lattice L to if1,1^, Z) (precisely ^4

1
(PE(A*))) comes from the 

intersection pairing between algebraic 2 cycles and the divisors. From 
this reason we may read off the divisor which contains the curves to be 
contracted from the extremal ray, namely, we simply read the negative 
entry of the vector l^k\ Based on these facts we make the following 
definitions, /+ = {i | if) > 0 }, I'_ = {i | 1^ < 0(1 < i < p) }, 
I'L = {0} if ZQ < 0, and !'_!_ = {(f)} otherwise, where !'_ represents the 
toric divisors to be contracted (the case ZQ > 0 does not occur for 
PE(A*) being projective). We may also read the dimensions of Z from 
the cardinality of the set /+. Corresponding to these primitive contrac- 
tions characterized by l^k\ the automorphisms (3.22) are written more 
explicitly (Proposition 4.20 [17]): 

T"^-W1-*LT£J£^£' (3-23) 
ier. 

where Di represents the toric divisors represented by the vertices of A*. 
Note that we may write Di = ^2m l\m' Jm because Ji,..., Jr are defined 
to be the dual basis to Z^,..., Z^. Then A(£) in the above formula is 

defined by A(0 := lf^ + Ylm^k H J™, with a formal variable ^. 7^) 
is defined by the corresponding product of A(0's to the representation 
7 = Y\ Di. The contour integral are understood to take all the residues 
about the zeros of the denominator. 

In our compactification based on the secondary fan, which is briefly 
summarized in section 2.1, the Mori cone has a meaning to describe the 
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coordinate ring of an affine chart of the compactified moduli space for 
the mirror family of Xv. In this toric compactification, the extremal ray 
(one dimensional cone) describes coordinate ring for one dimensional 
torus invariant subvariety isomorphic to P1. This is exactly the P1 

whose coordinate is given by Xk and other variables vanish. It has been 
proved over C [17] that the automorphism above coincides with the 
monodromy of the GKZ system around a certain loop contained in the 
P1. What we have now is a natural integral structure which comes 
from our canonical integral symplectic basis (3.4) of Heven(X, Q). In 
fact we may verify, up to conjugation, that the automorphisms VXk, 
7o57fc on Heven(X, Q) reproduce exactly the monodromy determined 
in [27], [6] as expected from our observation summarized in Example 
1 and Example 2. Furthermore we may verify for many examples that 
these automorphisms are integral and symplectic with respect to our 
symplectic basis in Proposition 1 if we take a suitable choice for the 
undetermined rational constants Ca&. 

3.4    Monodromy of the elliptic curves and some 
other examples 

As the simplest cases of the type IIA monodromy, we present examples 
of the elliptic curves; EQ : the cubic in P2, E? : the degree four curves in 
P2(2,1,1) and J58 : the degree six curves in P2(3, 2,1). For the degree 
d curve in P2(a, 6, c) the toric data may be read from the dual polytope 
A*(a;) = Conv. ((1,0), (0,1), (—a, —b)). For example, we determine the 
basis of the Mori cone to be I = (—d; a, 6, c) , (d = a + b + c), and 
also Heven{X,Q) = Q[J]/(J2) with the normalizaton JXJ = 1,2,3, 
respectively for X = E$,E7 and EQ. Given these data we may write 
the hypergeometric series: 

WQIX, — ) = WQ(X) + J—dpWo(x)  . 

Since the prepotential of the elliptic curves is given simply by F(t) = t, 
there in no amibiguity to define the canomical "symplectic" basis of 
Heven{X). It is fixed by UA{J) = (1, -ij), where d' = £, and cor- 
respondingly integral symplectic basis for the cycles should be given 
by IIB{X) = t(wo,—^-idpWo) accoding to our pairing. The analytic 
continuations of the hypergeometric series are simple exercises, for ex- 
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ample, we may follow the calculation in [6] based on the Barnes in- 
tegral representations. In Table 1, we list the connection matrix N 
of the series about x = 0 to those about x = oo, from which we 
may determine the momodromy about x = 0 and the discriminant 
diso(x) = 1 - 27x11 - 64r, 1 - 432a;, repectively for X = EQ, E7, E%. 
For readers convenience we present the hypergeometric series about 
x = oo 

d-i 

k=l 

T, M - _I_J_ v r(^ + f)r(biv + f)r(Ar + |)        6 
k{)~    d(27ri^6ri T(dN + k) 

ak\Ti{j^i\T   i    bk 

where a is the primitive root of ad — 1 for d = a + b + c. 

E6 ^7 ^8 

N 
(I    0\ /I     0\ /I    o\ 

1       i ) 1     1 V2  -2/ V "V 
Mo 

/I    o\ /I     0\ (1   o\ 
V-3   I V-2   i; l-i ij 

M1 (l   l\ 
A   1\ Vi A 

(o  l) Vo ij VO ij 

Table 1. The connection matrix N and the monodromy 
matrices about x = 0 and the discriminant diso(x). The ma- 
trices MQ and Mi generate the modular group ro(3),ro(2) 
and the modular group F = 51/(2, Z) for I?6J £7, E$, respec- 
tively. The connection matrix relates the hypergeometric 
series by '(WQ, -g-dpivo) = N * W, ^i00). 

As we see in the table, T1B(X) in fact provides an integral, symplec- 
tic basis for the period integrals. Furthermore it is easy to verify that 
the type IIA monodromy To and Vx exactly reproduce the the corre- 
sponding monodromy matrices when acted on the "symplectic" basis 
nA( J). The modular group F = 5'L(2, Z) is nothing but the modular 
group realized in the derived category D(X) by Mukai [37]. 

We can extend these analysis for the lattice polarized K3 surfaces 
observing that there is no ambiguity in defining our canonical "orthogo- 
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nal" basis for the Picard lattice. Our "Theorem" 2 (or more concretely 
the equation (2.10)) implies that we will obtain an orthogonal basis for 
the period integrals in this way. 

In the rest of this section we present explicit examples of the mon- 
odromy calculations for simple cases. 

Example 3 (Quartic hypersurface in P3). The quartic hypersurface 
X(4) in the projective space P3 has the Picard lattice (4), i.e., the 
rank one lattice with its generator J of the intersection number 4. This 
is a simple example of the lattice polarized K3 surface, and has its 
toric data A(l4)* = Conv. ((1,0,0), (0,1,0), (0,0,1), (-1, -1, -1)). In 
Batyrev's mirror construction we may write X(4) = X/± using the dual 
polytope A = A(l4). The cohomology ring Heven(X(A), Z) is described 
explicitly by Z[J]/(J3). The hypergeometric series representing the 
period integral of the mirror X(4)v = X^ may be determined by the 
formula (2.1) with I = (-4; 1,1,1,1). Then following (2.10) we have 

wo (x, ^j = wo(x) (l " Y) + D{1)Mx) J + D^wo(x) (-ipj . 

(3.24) 
We identify this expansion by Wo(x, ^r) = IIA{J).TI

B
{X) introduc- 

ing the notations IlA(J) = (1 - ^^J,-^), and nB(a;) = *(wo(x), 
D^w^x), D^wo(x)). The way of identification is slightly differs from 
that in Proposition 1 for 3 folds cases, since we verify right intersection 
form for the basis T1A(J) (see below). More explicitly we have 

WQ(X) ,   D^woix) = dpwo(x) ,   D^wo(x) =-2d2
pwo(x)-wo(x) , 

(3.25) 
for the period integral about x = 0. The analytic continuation to 
x = oo is similar to the cases in elliptic curves. Since it is easy to 
determine the monodromy about x = 0 and x = oo, we can determine 
the monodromy group once we know the connection formula of the two 
local solutions. In Appendix, we briefly summarize the monodromy 
calculation done in [6] applying to the present case. (The calculations 
are essentially the same for all monodromy calculations done in this 
paper.) In any case we obtain the monodromy matrices MQ, M^ and, 
in turn, MQ and Mi = (MOMQO)

-1
 after determining the connection 

matrix N (where IlB(x) = MI* (x) with 11* (x) = ^wg0, w?0, w^0), see 
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Appendix for the definition lyj^a;),): 

/ 1      0     0\ /0   ( 
Mo =      1      1    0,Afi=(0   10|,iV 

1 0    0 
1 1    0 
-2 -4   1 

1 
_1 

4 
1 

(3.26) 

Now it is an easy exercise to verify the same monodromy matrices 
Mo and Mi from the Fourier-Mukai transformations (3.18) and (3.20), 
respectively, in the basis EU (J). (Precisely we should have IU(J) —>> 
UA^M'

1
 if UB(x) -* MnB(x) according to Remark after (3.11). 

However this is simply a matter of the identification of the monodromy 
actions, i.e., either we reverse the monodromy actions on U.B(x) or 
reverse the Fourier-Mukai transformations (3.18), (3.20).) Also we may 
verify that the monodromy matrices MQ and Mi are orthogonal with 
respect to the canonical orthogonal form Sc in (2.15). We should note 
that the orthogonal form (2.15) is nothing but the symmetric form 
(a,/?) = — /x(^o^4 — a2/32)Todd(X) (3.2) expressed in the basis {1 — 
^-, J, — ^j-}. Corresponding period integrals TlB(x) are identified with 
the period integrals of the transcendental cycles of the mirror X(4)v. As 
a consistency we verify explicitly the period relation (3.12), or explicitly 
using (2.14), 

Wo(x)D^w0(x) + ± {D^w0(x))2 = 0 . (3.27) 

The quadratic relation above may be used to determine the modular 
property of the mirror map x = x(q) defined by t = D

w^°\ with 
q = e2nit. Namely the monodromy M0 simply acts on t by t -» t + 1, 
while the monodromy Mi acts 

_ DWWQ(X)       D^wojx) _ WQ(X)D^WQ{X) _     1 
wo(x)       > D(2)wo(x) ~ wo(x)D(2)wo(x) ~ ~2t 

Now we recall that the modular group To(N)+ is a normalizer of ro(iV) 
in 5L(2,R), defined by adding the Fricke involution t -> — ^. Since 

for iV = 2 we may write ro(2)+ = / l        n  ) ' ( n   i)/'we identify 

the modular group of our mirror map x = x(q) with ro(2)+.   In this 
way we may arrive at the known result in [33]. 
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Example 4 (One parameter models in [6], [27]). For readers conve- 
nience we list the monodromy matrices for the one parameter models 
in Example 1. Although the results are obtained in [6], [27], we re- 
produce them here for the comparison with the type IIA monodromy 
calculations. The monodromy calculations for the hypergeometric se- 
ries IIB(X) = t(wojD^woj D^WQID^WQ) are exactly the same as in 
Example 3. We define the hypergeometric series about x = oo by 

<(*)=E n^1 -^ akj^x) u=o,i,...,d-i), 
k=i \i=i 

i i 
*"& =-JTZSiT, 

nLrMtf + iJ))   „_. 
d (2m)* ^       T(dN + k) 

X (3.28) 
Ar=o 

All of these series are not linearly independent but have some re- 
lations, for example ^w^ + • • • + w^ = 0 (see [27]). Taking an inde- 
pendent set we define n§)(x) = t(wQ:>(x),wf)(x), w™(x), w^L^x)) and 
the connection matrix N by the relation IIB{X) = NU^ix). Since the 
monodromy about x = oo is simple in the basis ng)(x), we can deter- 
mine the corresponding action on UB{X) using the connection matrix. 
The results are listed in Table 2. 

We leave for reader's exercise to verify the same monodromy ma- 
trices follow from the type IIA monodromy, namely Fourier-Mukai 
transformations (3.18)(3.20) acting on our canonical symplectic basis 
UA(J) = (1, J _ £*££ _ aJ(2>, JW, -Volx) with a = f, §, 3, |, respec- 
tively for d = 5,6,8,10 (see Example 1). The action (3.20) reproduces 
the monodromy about the discriminant, which is in the form of Picard- 
Lefshetz fromula for all Xj] 

Ml = (MoMoe)"1 = 

[1 0   0   1\ 
0 10   0 
0 0   10 

\0 0   0   1/ 
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d M 0 .       M^   ..   __       . N 

5 

/ 1 
1 
8 

0 
1 
5 

0 
0 
1 

0\ 
0 
0 

/I 
-1 
-3 

0 0 
1 0 

-5    1 

-1\ 
1 
3 

< 1 
2 

ll 

0 
2 

5 
5 

0 0 \ 
1 1 

I   I 
5         5 

V-5 3 -1 iy V5 -8    1 -4/ Vi -1 0     0 / 

6 

/ 1 
1 
6 

0 
1 
3 

0 
0 
1 

0\ 
0 
0 

/I 
-1 
-3 

0 0 
1 0 

-3   1 

-1\ 
1 
3 

/1 
i 
3 

-3 

0 
1 
3 
0 

0 0 \ 
1 1 
3         3 
1    -2 

V-4 3 -1 1 V4 -6   1 -3/ Vi -1 0     0 / 

8 

/I 
1 
4 

0 
1 
2 

0 
0 
1 

0\ 
0 
0 

/I 
-1 
-2 

0 0 
1 0 

-2    1 

-1\ 
1 
2 

/1 
1 
2 

-3 

0 
1 
2 
0 

0 0 \ 
1 1 
2 2 
1    -2 

V-4 2 -1 IJ V4 -4   1 "3/ Vi -1 0     0 / 
/I 0 0 0\ /I 0     0 -1\ /I 0 0   o\ 

10 
1 1 0 0 -1 1     0 1 0 0 1  -1 
1 1 1 0 0 -1    1 0 -1 -1 0    -1 

V-3 0 -1 1/ V3 -1    1 -2/ \1 -1 0    0/ 

Table 2. The connection matrix JV and the monodromy 
matrices for one parameter models Xj (d = 5,6,8,10). Ma- 
trices are written in terms of our canonical symplectic basis 
defiend by w0(x, £) = UA(J).nB(x). 

4    Local limit of the monodromy 

4.1     Calabi-Yau models 

Here we briefly summarize some properties of elliptic Calabi-Yau 3-folds 
over the Hirzebruch surface Fi. These Calabi-Yau 3-folds are studied 
extensively in the context of F-theory [35], [36], [26]. We will study in 
detail the local mirror symmetry limit of their monodromy. 

Let us consider the affine space C7 with its coordinate xi,X2,. 
and the torus actions generated by 

,x7 

{a,b, c,0,0,0, 0)A, 
(C%|M = ((0,0,-1,1,1>0I-1)M, 

(0,0,-2,0,0,1,  1), 
(4.1) 
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where A, /x, v ^ 0 and (ci,C2,... ,07)* represents the C* action Xi i-> 
\CiXi (A 7^ 0). The quotient of C7 by this group does not behave well, 
however if we remove some bad loci we can obtain a good manifold [10]. 
In our case, the bad loci are determined by the toric data coming from 
the reflexive polytope and there are two different ways to make sense 
of the quotient by removing either the loci 

Z = (xi = X2 = £3 = 0) U (xA = Z5 = 0) U {XQ = x7 = 0)  C C7 , 
(4.2) 

or 

2 = (xi = X2 = £4 = £5 = 0) U (#3 = x7 = 0) 

U (X4 = XS = XG = 0)  C C7 .    (4.3) 

Correspondingly we have toric varieties; 

PE(a,M := (C7 \ Z) I {C*)\aM   ,   Ps(aAc) := (C7 \ Z) / (C%Ac)   . 

(4.4) 

Looking into the detail of the relevant toric data, it is easy to see 
that these two toric varieties are related by the flop in two dimensions 
(see e.g., [35], [26]). In the both cases the general section s of the 
anti- canonical bundle defines a Calabi-Yau hypersurface X = 5~1(0). 
In what follows we will be mainly concerned with the hypersurface in 
Px;(a,6,c) because it contains a del Pezzo surface as an toric divisor, which 
may be contracted. (The hypersurface in Ps(a,6,c) contains a rational 
elliptic surface and K3 surface, and will be studied elsewhere.) We 
denote the defining equation of the Calabi-Yau hypersurfaces by 

^(8) :xl + xl + xl{(xt + xl)xl2 + {xl8 + xls)x)2} = 0 C PS(3,2,i), 

XE(7) : xl + x\ + x\{{x\ + x§x\ + (xj2 + x^} = 0 C £3(2,1,1)* 

XEW : x\ + x\ + x\{{x\ + x\)x% + {x\ + x\)x^\ = 0 C PE(I,I,I), 

(4.5) 

where it is understood that all possible deformations, which are ho- 
mogeneous polynomials with respect to the torus actions C*(a, 6, c), 
are included in the defining equations. The homogeneous degree has 
been determined from the anti-canonical bundle (divisor) — Kp^ of the 
ambient spaces. We see explicitly from the defining equation that the 
divisor D7 = (x7 = 0) restricted to XE(k) describes the del Pezzo sur- 
faces Blk for k = 6,7,8.   Also the divisor D3 = (£3 = 0) restricted 
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to XE(k) is P2- (Hereafter we will abuse the notation Di to represent 
the corresponding divisor restricted to the hypersurface X^).) In our 
situation the del Pezzo surfaces appear as the degree d = a + b + c 
hypersurface in P3(a, 6, c, 1). 

Our Calabi-Yau hypersurfaces are typical examples of those by 
Batyrev, and we may associate a pair of reflexive polytopes for mir- 
ror symmetry of these spaces. For example for the Calabi-Yau hyper- 
surfaces XE(k)(k = 6,7,8) we associate a pair of reflexive polytopes 
(A(a, 6, c), A* (a, 6, c)) with vertices of A* (a, 6, c) given by 

i/0* = (0,0,0,0), ^ = (1,0,0,0), i/2* = (0,1,0,0), 

1/3* = (-a,-6,0,0), i/4* = (0,0,0,1), 

z,* = (-3a, -36, -1, -1) , 1/* = (0,0,1,0) , i/J = (-2a, -26, -1,0) . 

The polar duality of the polytope determines uniquely the polytope 
A (a, 6, c). Given the polytopes we may determine the Hodge num- 
bers of the Calabi-Yau hypersurfaces to be (h1,1(X^)1h

2,1(X^)) = 
(3,243), (4,148), (5,101) for XE(8hXE(7) and XE(6), respectively. Us- 
ing the formula (2.2) for the Chow ring, we see that H^iX^ Q) has 
dimensions three for all XE{k) (k = 6,7,8). The fact that we have 
less dimensions than those expected from /I

1
'
1
(XA) for XE(7) 

and XE^ 
means we have so-called twisted sectors for these models. There is a 
way to remedy this situation modifying the toric data slightly, however 
this is not important for our local mirror calculations. 

For the dual of the Kahler cone in H^^XA, Q), the Mori cone, we 
will find three generators (see [21] for detailed calculations): 

/(1) = ( 0;0,0,  1,-1,-1, 0,  1), 

/(2) = ( 0;0,0,-3,  1,  1, 1,  0), 

/(3) = (-rf; a, 6,  0, c,  1, 0,-1). (4.6) 

These bases have their duals Ji, J2 and J3, which are related to the 
toric divisors A in (2.2) by 

D7 = J1-JS,DS = J1- 3J2 , D0 = -dJs , (4.7) 

where DQ = — (-Di H h D7), the canonical class Kp        - The ring 
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structure of Hf™£.(X&, Q) may be recovered from the following data; 

^(6) : 27 D3
H + 27 D* + 3 D3

7 , (c2, D) = (90, -18,6) 

XE(7) :18D3
H + 18Dl + 2D3

7 , (c2, D) = (96, -12,8) 

XE(S) :   9D3
H +9Dl +  D3 ,   (c2,D) = (102,-6,10) (4.8) 

where we have used the convention that the coefficient of DiDjDk rep- 
resents the corresponding cubic intersection number fx  DiDjDk^ and 

(c2, D) = ((c2, DH), (C2, JDS), (C2, D7)) with D^ := J^ 

The above simple form of intersection numbers comes from the fact 
that the divisors D? and D3 are isomorphic, respectively, to the del 
Pezzo surfaces Blk(k = 6,7,8) and P2, which may be contracted to 
a point. In fact we see in (4.6) that the rational curves Z(3) and l^ 
are contained, respectively, in the divisors Dj and D3. Thus Z(3) and 
/(2) are the extremal rays for the respective contractions. In the next 
subsection we will study in detail the monodromy formula (3.23) for 
the contractions Z^3) and l^2\ 

4.2    Local limit of the monodromy — del Pezzo 
surfaces Y2,Bl§,Blj,Bl% 

Now we are ready to consider the monodromy problem under the local 
mirror symmetry limit to the del Pezzo surfaces. We will focus on 
the primitive contractions corresponding the extremal rays l^ and Z^3), 
explicit in our models XE(k) • 

Specifying a contraction, say l^3\ we have a subvariety which is 
isomorphic to P1 in the compactification of the moduli space of the 
complex structures of Xg,ky   Namely the local coordinate of the P1 

about the LCSL is given by z = (—l)/o a13 and the P1 is located at x = 

y = 0 (x = (-1)'° a!(1),y = (-l)/o a/(2)). This is exactly the situation 
in which we take the local mirror symmetry limit to del Pezzo surfaces 
[9]. If we take l^2\ then we will come to the local mirror symmetry limit 
to P2. In both cases the general formula (3.23) due to Horja applies. 
The Picard-Fuchs equations (Cw = 0) which describe our local mirror 
symmetry limits also follow from the data of the extremal ray Z, and 
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they are given by, 

P2 : L = {92
y + 3y(39y + 2)(S9y + l)}9y , 

Bl6 : C = {92
z + 3z(39z + 2)(39z + 1)}9Z 

Bl7:C = {92
z + 4z(49z + 3)(A9Z + 1)}9Z , 

Bl8:C = {9\ + Ylz($>9z + 5)(60, + 1)}^ . (4.9) 

We see from the form of the differential operators, the monodromy of 
the solutions is reducible for all cases, which will be interpreted later. 

Now let us look closely our hypergeometric series (3.5) under the 
local mirror symmetry limit to the del Pezzo surfaces 5/6, B/7, Bl%. In 
the IIB side the local mirror symmetry limit means the limit #, y -> 0 
in the hypergeometric series. Prom our definition of the hypergeometric 
series combined with the ring structure of #^(XA, Q), it is straight- 
forward to obtain the following form of the limit; 

wo ( #, —- J mod Ann D7 

= 1 + D7 

x.y^O 

-±.9nMz)yDl(i_L.AMz) 
2-Ki 

+c?(4(43a>o(z))' <4-io> 
where AnnD7 = {v e H%%(XA,Q)\D7 • v = 0} ® C[logx}{x}. Since 
the first three terms should give the local solutions of the 3rd order 
differential equations (4.9), we arrange the above formal expansion to 
Wo(z> als) = i1' D7i D7)-RBjocai{x) neglecting the D% term. In case of 
P2 we expand the series (3.5) via the basis nA>local = (l,Ds,Dl), aild 

correspondingly we have UBMai(y) = *(!, -±dP2Wo, ^d2
p2<wQ). 

In Table 3, we have listed the monodromy matrices for the hyperge- 
ometric series HB,local- Though the the evaluations of the monodromy 
is straightforward, we present, for reader's convenience, our definitions 
of the hypergeometric series about z = 00 and its connection matrix iV 
to the series about z = 0. We should note that the monodromy about 
z = 0,00 is easy to be determined. For Blk we have defined the hyper- 
geometric series about z = 00 for j = 0,1, in addition to the obvious 
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one 1, by 

<(*) 

d-l 

5^(1 - o^Xl - abk)(l - ack)akjwk(z) , 
fc=i 

- ^     1     1 

a(27rz)' E 
iV=0 

r(aiv + f )r(6jy + f )r(iv +1)2       N_* 
T{dN + k)T(l + N + jj) 

with a being the primitive root of Q;d = 1 (d = a+b+c). The connection 
matrix has determined by analytic continuation of the above series back 
to the region z = 0. (P2 has the same hypergeometric series about 
z = oo as Bk, but differs about z = 0 because the I vector is different. 
This simply results in the difference in the connection matrix and also 
the monodromy matrices.) 

Table 3. The connection matrix and the monodromy ma- 
trices for del Pezzo surfaces. The connection matrix relates 
the hypergeometric series by IlB.iooaz = JV.t(ll«;g0

)«;f>). 

Corresponding to this hypergeometric series we consider the type 
IIA monodromy acting on the row vector n^'^^ = (1,D7,£>|). Up 
to conjugation, the formula (3.23) for the type IIA monodromy may 
be identified with the monodromy about the discriminant dis = 1 + 
272,1 + 64,z, 1 + 4322, for Bk, Bl7, Bl8, respectively. In these cases the 
general formula (3.23) may be written 

7^:7^7-(l 
,D7 

) 

L (1 - e-«) 
c4 (l-e-<)(l-e-6«)(l-e 

aPff+P6_ty 7(0 2m 
(4.11) 
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where the residue is taken about f = 0 and f = 2DH
+

D6
 . When writing 

this formula we use the rational equivalences, D3 = a J3, i?2 = feJa, ^4 = 
D5 = -Jx + J2 + J3 = -2Dg3+z>6 + J3 and DQ = -^3- Also we use 
D7 = £)# — J3 and the intersection numbers (4.8) when evaluating 7(£) 
for 7 = 1, D?, Dj. For the P2 contraction the corresponding formula is 
more simple and has the following form, 

r^^-a-^p-L-^IL.      (4.12) 

Here we use Dz — Dg — SJ? for the determination 7(£) for 7 = 
l,D3,Dl 

In both cases it is easy to verify that the type IIA monodromy repro- 
duces, up to conjugations, the monodromy Mi about the discriminant 
for the hypergeometric series Hs^ocaz- Precisely for Blk (k = 6,7,8) 
we verify that the monodromy operation T2 on the basis nA'/oca/ ex- 
actly reproduces the matrix Mi in Table 3, and for P2 it coincides with 
Mo"1MiMo in Table 3. This is not merely a verification of the general 
results obtained in [17], but our point here is that we may arrange the 
expansion (4.10) using the pairing in "Theorem" 2. Namely we may 
arrange the hypergeometric series, for example, into the following, 

Wo I x, -— I mod Ann D? 
ZTTZ x,y-±Q 

= wo(z)l + wW(z) (D7 - ^c2(XA)D7 - ±D2
7 

+ w^\z)^D2
7 + w^(z) (-"£?)  , (4.13) 

where we set h = 1,2,3, respectively, for BI%,BI>I,BIQ, and also note 
that WQ(Z),WI(Z))W2(Z) are linear combinations of 1, dpzWQ(z), d2

3Wo(z). 
In the arrangement above (4.13), we have evaluated the Chern character 
of the ideal sheaf lp on the del Pezzo surface i : Blk ^ ^A! 

ch(iap) = D7- \D2
7 - ^c2(X)D7 , (4.14) 

using ci(lp) = 0, ch2(Ip) = -V0I5 for the ideal sheaf and ci(D7) = —D7 

which follows from the adjunction formula for 0 -4 Ts -> Tx -> iV -> 0 
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with ci(AOIs = D7 and ci(X) = 0. We also use ^(ci(S)2 + c2(S)) = 
V0I5 for rational surfaces 5, (x(Si®s) = !)• As for the 3-rd term 
of (4.13), w^ x iDf, we identify this with some sheaf 5, tensored 
with a suitable line bundle on it, supported on the canonical divisor 
—Ci(D7) = D7 of the surface (see (3.15)). These two sheaves should 
correspond to some 3-cycles in the mirror Xv, which are not explicit in 
our argument (see the discussions in the next section for recent works 
on this). We remark that the reducibility of the monodromy is evident 
in our interpretation because the D-brane charge 1 is not local but 
l = ch(Ox). 

As we see in Table 4, after arranging the expansion of the hypergeo- 
metric series to (4.13), the monodromy matrices becomes integral. This 
means that the sheaves we looked above may be part of the integral 
generators of Khoi(X). In case of P2, however, the monodromy matrix 
contains one rational number |. This should be understood by the fact 
that the anti-canonical class Ci(Ds) of P2 is not a primitive class but 
three times of the line on it. 

Bk Bl7 Bk 

Mo 

Mi 

Table 4. Integral monodromy matrices for S = Blk (k = 
6, 7,8). We identify the corresponding sheaves with Ox, iJp, i*£ 
in D(X). Monodromy matrices of P2 and Blk have also been 
calculated, respectively, in [13] and [31]. 

Discussions 

We have proposed the monodromy invariant pairing (3.10) between 
the D-brane charges. As we have argued, this pairing has its ground 
on the homological mirror symmetry due to Kontsevich. It is interest- 
ing to note that the pairing was essentially utilized when evaluating 
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the prepotential in the very beginning of the mirror symmetry and its 
application to Gromov-Witten invariants. 

In the following we summarize related subjects which we haven't 
addressed in this article. 

In this paper we have restricted our attentions to the primitive 
contractions, where the extremal rays or equivalently some edges in 
the secondary polytope play their roles to specify the torus invariant 
orbit P1 in the complex structure moduli space. Zariski theorem of 
Lefschetz type for hypersurfaces says that for a generic line P1, generic 
to the discriminant variety, there is a surjective homomorphism TT^P

1
 \ 

(Dis D P1)) —> 7ri(M \ Dis) for the deformation space M. It is not 
clear the analysis restricting to the torus invariant P1 suffices to find 
all necessary generators for the monodromy group, although for the 
one, two parameter examples we looked in this paper we verify that 
the monodromy group is generated by them. 

The Calabi-Yau hypersurfaces we have looked in the last section ad- 
mit topology changes due to the flop operations. According to [1] the 
(complexified) Kahler moduli spaces of topologically different Calabi- 
Yau manifolds X and X' are unified in the complex structure moduli 
space of their mirror Xv by analytic continuation. Combined with the 
homological mirror symmetry, we should have the categorical equiva- 
lence D(X) = D(X') for their derived categories. The full picture of the 
moduli spaces of our models in this respect will be reported elsewhere. 

Finally we address to recent progresses in physics. The homological 
mirror symmetry due to Kontsevich may be interpreted as the mirror 
symmetry of D-branes in string theory. In ref. [40] the conformal field 
theory analogue (boundary states) of the D-branes was first formulated, 
and more recently in the work [5] the relations between the geometry 
of the cycles and the boundary states of conformal filed theory (at 
Geppnar point) have been pursued. In this respect the two parameter 
models we looked in the text have also been analyzed in refs. [11], 
[24], [41]. The local mirror symmetry limit of these D-brane analysis 
considered in [13]. Especially the local mirror symmetry limit and also 
the monodromy problem have been studied in general using Landau- 
Ginzburg theory in a recent paper [16], which appeared when this article 
was being completed. The paper [16] proposes a way to construct 
3-cycles which corresponds to sheaves on (toric) del Pezzo surfaces, 
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which we haven't looked in this paper. Our pairing contained in the 
formal expansion of the hypergeometric series (3.5), (3.6) provides us 
the corresponding hypergeometric series to a sheaf without specifying 
the 3-cycle explicitly, and seems to provide a complementary approach 
to [16]. We will come to this problem in future investigations. 

A    Brief summary of the monodromy cal- 
culations 

In this appendix, following [6], we briefly summarize the monodromy 
calculations done in the text. Here we write the case of the quartic 
hypersurface in P3, the extension to other cases are straightforward. 
As described in section 2, the relevant hypergeometric series about a 
LCSL are determined by the toric data / = (—4; 1,1,1,1), from which 
we have ^o(^) = S^Lo k^xn- The analytic continuation to x = oo 
may be done by the Barnes integral representation 

/ x     V^ (4n)!  . 

71=0 

r(45 + i)(-i)s 

=siXdsr(4s+i» 
1   ^ 

r(s +1)3 

r(-*)(-i) 

x" 

S 

Xs 

c    v       ' r(s + i)3 
00 v('ni\ 

where in the second line the contour C encircle the poles at s = 
0,1,2,... counterclockwise, while in the third line it is deformed to 
encircle the poles at s = —^(m = 1,2,...) clockwise. This completes 
the analytic continuation to x = oo. Other hypergeometric series about 
x = oo are defined by 

<(a) = -lEr^rn-.^3aY^g"?  (J = 0,l,2,3) ,  (A.2) 
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where a is the primitive root of a4 = 1. Setting m = AN + k and using 
the relation r(^)r(l - z) = j^, we may rewrite (A.2) as 

< 
k=l 

*W     4 (2m)3 ^0 r(4JV + k)X ■ (A•3, 

These four series are not independent but have one relation w™ H-^f3 + 
^2° + ^3° — 0- For the analytic continuation back to x = 0 we utilize 
again the following integral representation for Wk(x)] 

~ ( \-  [       ds     1     1     r(* + t)4   —* 
^lXJ " icx e2- - 1 4 (27ri)3 r(45 + ifc)X      * 

= _/• -J!_l   '   r's + t)4
x-.-} (A4) yc,  e2iri _ 1 4 (2^)3 r(45 + jfe) X ' V^^J 

where in the first line Ci encircles the poles at s = 0,1,2,... counter- 
clockwise, while in the second line it is deformed to CJ which encircles 
the higher 3rd order poles at s = — m — | (m = 0,1,2,...) coun- 
terclockwise. The higher order poles above introduce the logarithms 
about x = 0, up to (logz)2, which should be connected to the logarith- 
mic singularity in wo^dpWo,d^wo at our LCSL. The connection matrix 
may be determined simply by comparing our solutions at LCSL and 
the analytic continuation of Wj0(x). The monodromy at LCSL sim- 
ply comes from the logarithms in the hypergeometric series, and easily 
determined. Also the monodromy about x = oo is easily determined. 
This is because the monodromy is represented in the basis WjC(x) by 
w? -> w^,w^ -> wf.wf -> wf = -w^ - w? - wf using the 
relation noted above. 

Monodromy matrices and the connection matrix appeared in the 
text are determined in this way. 
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