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1    Introduction 

In this paper we generalize the results of Twist Positivity [1] to a wide 
class of symmetries. We investigate the (unitary) implementation Us 
of a symmetry S of a classical, free field Lagrangian. We establish twist 
positivity of the the partition function Zpp twisted by the symmetry 
Us, namely Zpp > 0, and show positivity of the pair correlation oper- 
ator that is twisted by Us, namely Cp > 0. After considering a simple 
example of a free field in §1.1, we give the general definitions of these 
concepts in §1.2-1.3. The methods here are applicable both in quantum 
field theory and also in related problems in statistical physics. 

1.1    Free Bosonic Fields on Compact Manifolds. 

Let M be a compact Riemannian manifold, E —> M a finite-dimensional 
Hermitian vector bundle on M endowed with a compatible connection, 
and let A^ denote the corresponding (positive self-adjoint) Laplacian 
on the Hilbert space L2(E) of square integrable sections of E. Let (•, •) 
denote the inner-product1 on L2(E), and let V (A^) be the domain of 
AE. 

The    corresponding    free    field    theory    has    the    Lagrangian 

£ : V (A1^2) XL
2
(E) -)• R, defined by, 

£ Vch 'df) = \~dt'}~dt')~ (AE2(pch AJfVd) - m2 {<pch ipcl), 

(1) 
where m > 0 is the mass of the field. The characteristic feature of free 
bosonic quantum field theory is that the time evolution is prescribed 
by a linear partial differential equation of second order. The dynamics 
corresponding to this Lagrangian via the Euler variational principle 
reads, 

(^ + AE + m2)ipcl(t,x) = 0. (2) 

Since the manifold M is compact, the self-adjoint operator A^ has dis- 
crete spectrum and there is an orthonormal basis2 of L2(E), {(pc\,k}keKi 

1Inner products are antilinear in the first argument. 
2See §2.2 for a basis-independent quantization. 
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consisting of eigensections of A^, 

(AE + m2) ipci)k = ulvc^k • (3) 

Restricting consideration to the case that all the col are strictly 
positive, each solution to eq.(2) may be expanded as 

<p*(t, x) = £ -L^ia+We^* + M-AOe-^Vd,^) ,      (4) 

where a±(±k) are complex coefficients. Canonical quantization of that 
system replaces the complex coefficients a±(±k) by operators, also de- 
noted by a±(±A:), satisfying the canonical commutation relations, 

[a±(±fc),<4(±A0]    =   6kfk, (5) 
[a±(±fc),a±(±fc,)]   =   [a+(A;),a_(-A:,)] = [a+(k),a*_(-k')] = 0 . 

The a4(±fc) act on a Fock space $, which is the Hilbert space spanned 
by all vectors of the form 04 (±ki) ...04 (±A:n) |0), where the unit vec- 
tor |0) (called the vacuum) is in the nullspace of all the a± (±fc) and 
in the domain of any product of a± (±fc)'s. The charged "one-particle" 
subspaces of #, which are the spans of {al(—fc)|0)}, and 

{a+ (fc) 10)}^^, play a special role in the theory. Natural linear iso- 
morphisms between these spaces and L2 (E) and its dual, respectively, 
will be exploited in §3.1. 

1.2    Bosonic Quantization of Admissible Quadratic 
Lagrangians 

We work here with a generalization of the fields in §1.1. 

Assumptions: 

1. Replace the space L2 (E) by a separable complex Hilbert space 
£, called the space of classical fields. The canonical pairing 
between E and its dual £* is denoted by (•,•):£* x £ -» C. 
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2. Replace the operator \Jvn? + A^ by a positive self-adjoint clas- 
sical frequency operator Q : £ -> £ which is bounded below 
by a positive constant A > 0. The ground state energy // > 0 
is the largest such A. 

3. The compactness of M is replaced by the assumption that fi is 
0-summable, i.e. that Tre"^n < oo for all /3 > 0. 

4. The free Lagrangian £ : 2? (fi) x fl -^ R is given by 

£ (<£, dipldt) = (dip/dt, dip/dt) - (Slip, Q(p). (6) 

Note that condition (2) rules out the case of a massless (m = 0) scalar 
field on the circle S1 parametrized by 0 G [0,27r) unless the Laplacian 
A51 = —d2/d62 is twisted. For p not a multiple of 27r, the twisted 
Laplacian Ap

sl is the self-adjoint extension of —d2/d02 acting on smooth 
functions on Sl which satisfy 

0->27r- d9n d9n 

for n G N. 

Definition 1. An Q satisfying the strict positivity and Q-summability 
assumptions (2-3) is called admissible^ as is its associated free La- 
grangian. The canonical antilinear isomorphism / H^ / : £ —> 8* 
is given by 

(f,9) = (f,9) 
for all g G £.   Given a linear or antilinear operator A : £ -> £, the 
conjugate transformation A : £ * —> £* is given by 

Ag = Ag. 

To quantize this theory in the usual way, let {ek}keK denote an 
orthonormal basis of £ consisting of eigenvectors of Q, namely, 

Qek = oOkCk ,    for all k G K . (7) 

Let Op ($) denote the set of linear operators on #. The real-time quan- 
tum field (pur : Kx £* —> Op (#) is the operator-valued function defined 
by 

v«r (*, /) = E 71= («+ (*)eiWkt+«- (-*) e'iUkt) (/. c*) • 
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The operators a± (dtk) are required to satisfy the canonical commuta- 
tion relations (5), and to act on Fock space #, which is isomorphic to 
the symmetric tensor algebra exp^^ 8 © £*.3 The Hamiltonian H and 
particle number operator N of the system are defined as 

H = ^Uk «(*;)«+(*) + a-(-A0M-fc)) 
keK 

N = j2(ai (k) a+ (k)+a- (-fc)a- (-fc)) • 

The fields (PRT (t, /) and </?^T (i, /) commute and LPRT (t, /) (iV+l)~ ' 
is bounded. We then infer that the closure of (pRT (t, /) defined on the 
domain ^o? the algebraic subspace spanned by states of finite particle 
number, is normal. This follows by an application of Nelson's analytic 
vector theorem, Lemma 5.1 of [2], since the vectors in #0 are a common 
set of analytic vectors for the real and imaginary parts of the field. Note 
that for / G V (Cl2), the field (fRT satisfies the Klein-Gordon equation 

§P<PBT (*, /) + VET (*, n2/) = 0, (8) 

where the derivative is taken strongly on #()• 

The conjugate field (p*RT : M x £ —> Op (#) is given by 

The imaginary-time fields y?: [0, oo) x£* —>• Op (^ and (p : [0, oo) x5 —>■ 
Op (^) are given by 

¥>(*,/) =6"**^ (Ojje**   ,   ^ (t, /) = e-'^T (0, /) etH 

Again, ip (t, /) and (p (t, /) give well-defined normal operators with core 
#0 when £>0. 

3 We use a instead of the more standard variable a to remind the reader that the 
symbol k need not correspond to momentum. The notation Q;_ (—k) is preferred 
over a- (k) to resemble the standard quantization of the free complex scalar field 
in a rectangular box. In that case, the basis of S can be chosen to be of the form 
ek = e~lkx, where k ranges over some lattice. Then (e^, /) = / e_fc (x) f (x) dx and 
a. (—k) = a_ (—k). 
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1.3    Twist Positivity and the Twisted Pair 
Correlation Function 

The partition function of the system is defined as 

ZP = TV (e"'*)  , (9) 

so one needs the heat operator to be trace class. This is a consequence 
of the admissibility of fi. 

Definition 2. For a unitary operator U : $ —± $ commuting with the 
Hamiltonian H, the partition function twisted by U is 

We say that U is a twist positive with respect to H if 

Zpju > 0 

for all P>0. 

It was observed in [1] that, surprisingly enough, many interesting 
symmetries U are twist positivity, both in particle quantum theory and 
in quantum field theory. In this work, we generalize previous results by 
considering the following natural class of symmetries: 

Definition 3. A bounded linear or antilinear operator S : S —> £ is 
a Lagrangian symmetry if S restricts to a bijection of 2) (fl) onto 
itself and 

C{(p,ip) = C{Stp}Stp) . (10) 

Hence S is a Lagrangian symmetry iff it preserves the closed quadra- 
tic forms 

(p \-± C((p, 0)   and   dcp/dt \-^ C (0, dcp/dt) 

and their domains. From the one-to-one correspondence between closed 
positive quadratic forms and positive self-adjoint operators (see [3]), it 
follows that S is a Lagrangian symmetry of £ iff [5, ft] = 0 and S is 
unitary or anitunitary. 

For each Lagrangian symmetry S, we shall denote by Us its im- 
plementation on Fock space # (see §3). The Us have a characteristic 
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action on #.  Indeed, the set of such implementations is precisely the 
set of unitary4 operators U : $ -> $ such that 

1. U commutes with the Hamiltonian iJ, the number operator AT, 
and with the combined time-charge reversal operator TC, which 
is constructed in Theorem 11 below. 

2. U preserves the vacuum, and U acts independently on each par- 
ticle in a multiparticle state, unaffected by the presense of other 
particles. 

3. U either sends particles to particles of the same charge (for S 
unitary) or to particles of opposite charge (for S antiunitary). 

That properties 1-3 hold for implementations of Lagrangian symmetries 
is proven in lemmas 10 and 12. Theorem 13 implies that all such 
symmetries U are implementations of Lagrangian symmetries. 

We now give our main results. 

Theorem 4. The Fock space implementation Us of a Lagrangian sym- 
metry S of an admissible free Lagrangian is twist positive. 

We define the twisted pair correlation function and associated ob- 
jects: 

Definition 5. Let 0 < t, s < (5, f G 8* and g e £. The time-ordered 
product is given by 

For a unitary Lagrangian symmetry S, the twisted pair correlation 
function C^Us is 

Cp,U8(tJ',8,g) = -^—Tv ((cp(t,ms,g))+Use^H)   . (12) 

4Note that an antiunitary Lagrangian symmetry will have a unitary implemen- 
tation on 5- 
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The twisted pair correlation function is the integral kernel of the twist- 
ed pair correlation operator Cp on the path space 

7£ = L2(M);   £) = L\[0,t3))®£ 

of square-integrable functions from [0,/?) to E. The operator Cp is that 
which satisfies 

/, Cpg)    = j j CM, (t,/(t); 5,9 (*)) ds dt, (13) 

where f,g G 7^. Define the twisted derivative D as i times the self- 
adjoint extension oflj^ acting on smooth functions g : [0, ft) —t 8 such 
that for all n G N, 

dna dna 
5-^(0)= lim^*^(i)  . (14) 

We prove in §5 the following 

Theorem 6. If S is a unitary Lagrangian symmetry of an admissible 
free Lagrangian then 

C7/j=(-I>2 + fi2)-1
> (15) 

where Q, is identified with I <g> Q. 

In §6, we modify and extend this theorem to antiunitary symmetries 
and to the case of real scalar fields. 

The positivity of the operator Cp ensures the existence of a count- 
ably additive Borel measure whose moments are the twisted correlation 
functions of the free field. It would be interesting to extend the tech- 
niques of constructive quantum field theory to non-linear perturbations 
of the free theories we consider here. 
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2    Bosonic Quantization of Complex Free 
Fields 

2.1    The standard L2 (X) representation of S. 

Making contact with the standard physics notation for complex free 
Bosonic fields, we represent the space £ as L2 (X), for some measure 
space X, so that expressions involving fields (p G £ may be written in a 
familiar form as ip (x)J x G X. We note that if one identifies a function 
/ G L2 (X) with the linear functional on L2 (X) given by 

9 •->  / / 0*0 g (x) dx , 

then the canonical isomorphism • is just complex conjugation, and the 
conjugate transformation of A is given by 

Af={Af), 

where the bars on the right-side denote complex conjugation. Elements 
of £* will always be represented below as /, for some element / G £. In 
particular, we make no essential use of complex conjugation on L2 (X), 
which is not a natural representation-independent operation on £.5 

The operator-valued linear functionals cpux and (p*RT are commonly 
expressed in suggestive notation as 

VBritJ) = / (pRT{t^x)f(x)dx (16) 

and 

<PRT(t,f) = J<p*RT(t,x)f(x)dx. (17) 

5 An example of a complex classical field theory given on an L2 space with phys- 
ically unnatural conjugation is the complex scalar field on the "twisted circle." Set 
£ = L2 (S1), £1 = A^u where A^ is the twisted Laplacian defined in §1.1. Hence 
unless p is a multiple of TT, we see that the L2-conjugation on £ is does not commute 
with least-action time evolution. 
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Here ipnr (t, x) and (p^ (t, x) are notational devices expressed as 

<PBT (t, x) = y2 -4= (e^H W + e^*- (-*)) ek (x) 

where the summations are understood to be interchanged with the inte- 
grals in (16 — 17). Note that (PRT (t, x) and (p*RT (t, x) are not functions, 
and pointwise they are merely symbolic expressions. 

As usual, the canonical commutation relations for the operators a± 
are equivalent to the equal-time canonical commutators: 

'<PBT(tJ),^(t,g) 

\pRT(t,f),^(t,g) 

= i(f,9) 

= ijf(x)g{x)dx = i{f,g), (18) 

=  [<PRT{t,f),VRT(t,g)] 

= [<PRT(tJ),<PBT{t,g)]=0. (19) 

Here dfRx/dt and dcp*RT/dt are defined using the strong limit on #o- 

The Klein-Gordon equation (8) for (pc\ (t, x) is denoted by 

(# + ny yd (*, x) = o, (20) 

and the conjugate Klein-Gordon equation for (pci (£, x) is 

{d? + til)vcl(t,x) = 0. (21) 

Notice that when £ is the space L2 (E) of square integrable sections of 
the vector bundle E then <pci is a section of the dual bundle E*. This 
is why we refrained from identifying the space £ with its dual. 

2.2    Great ion/ Annihilation Functionals & Basis-Free 
Quantization 

We introduce the creation and annihilation functionals, which play a 
role in the Fock space implementation of classical symmetries. We show 
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that they are natural objects which come from a basis-independent 
method of quantization. 

Definition 7.  The linear creation functionals A*+ : £* -> Op($) 
and A*_ : £ -» Op (#) are defined by 

^ (/) = E (/'c*) < (*) = E </»e^^ < (*)'   /e 5* 
/e k 

A*_ (/) = J] (efc, /) a*_ (-*) = E (e^ />£ «- (-fc) >   f££- 
k k 

The linear creation functionals are well-defined operators on $o-   The 
linear annihilation functionals are given by 

A+ (/) = K (/))* = Y, (c*. /)«+ (*) = E <e*. />£"+ (*) 
A; A; 

A_ (/) = (A*_ (/))* = J2 (/.e*) a- (-fc) = E (/.c*>£a- (-*) • 
k k 

We state without proof the following 

Theorem 8.  The creation and annihilation functionals satisfy for all 
Lges 

[A+(f),A*+(g)]=(gJ) = {gJ)£ (22) 

[A-(f),A*_(g)] = (f,g) = (f,g)£. (23) 

The dynamics of the A± are given by 

eitHA*+ (/) e-itH = A*+ (e^/) (24) 

eitHA*_ {f) e-itH - A*_ (emf) . (25) 

Furthermore6 

VRT (t, f) = -j= [A*+ (Cl-^e^f) + A. (fi-VV*/)]        (26) 

Vxr (t, f) = -j= [A- {n-1/2eitaf) + A+ (fi"1/V*7)] , (27) 

6For fx > 0, equations (26)-(27) show that if we restrict (PRT (t, /) and (p*RT (t, /) 
to the subspace of 5 containing states of at most n particles, for fixed n < oo, then 
we may continuously extend IPRT (t, f) and (p^ (t, /) to / G f-1, the completion 
off in the inner product (/,#)_! = {Q,-l/2f^-1/2g). 
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and for f e V (eta) 

* (i'/) = 72 K (n"1/2e"^) + A- (n-1/2etnf )]        (28) 

V (t, f) = -j= [A*_ (A"1/V*0/) + A+ (9-W<Pf)] .        (29) 

// we define the maps 

r_ : S -)• S,     / >-> ill (/) |0) 

^/ien eac/i r± is a linear Hilbert space isomorphism onto the appropri- 
ately charged 1-particle subspace o/#;

7 and 

TIHT+ = ft 

As promised, we now sketch an equivalent quantization which does 
not rely on a arbitrary choice of basis. Given a solution (pc\ to the classi- 
cal equations of motion (20), define the (unquantized) linear functionals 
A+ and A- on £* and £, respectively, by setting 

A+ (/) = -^ J »>=> (t, x) (Cl^e-^f) (x) dx 

-^/^^(<r^</>)<fc      (30) 

A. (/) = 4 / fd (t, x) (Q'^e-""/) (x) dx 

_2_j3^x1(^l2e.inis)(x)dx (31) 

for / G £. Equations (30) — (31) are independent of £, since <pc\ satis- 
fies the Klein-Gordon equation, eq. (20).  We then replace the A± by 

7Note that to any given linear Hilbert-space isomorphism f + : S -> 3+ ^ = 
Spanja^ [k) |0)} corresponds the antiunitary operator / h-> r^r+ (/). Hence a 
natural linear isomorphism between £ and ^ exists only if £ is equipped with a 
preferred antiunitary operator. Such is the case neither if £ is produced by the Stone- 
von Neumann theorem from the (exponentiated) quantum-mechanical canonical 
commutation relations nor if £ is the set of square-integrable sections of an arbitrary 
vector-bundle. 
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operator-valued linear functionals A± satisfying (22 — 23). The quan- 
tized field (fRT (i, /) is then defined by equation (26). The Fock space 
is defined in the obvious way, and the Hamiltonian may be defined by 

H = £ Al (flV*£) A+ (nWfk) + £ AL (&<*&) A_ (nf fk) , 
k k 

where {fk} is an arbitrary orthonormal basis of S. The quantization of 
§1.2 may be recovered using the equations a*+ (k) = A*+ (ek), a!_ (—fc) = 
A*_(ek). 

3    Implementing Lagrangian Symmetries 
on Fock Space 

To motivate the definition of the Fock-space implementation of La- 
grangian symmetries, we examine the adjoint substitution of test-funct- 
ions which implements a unitary Lagrangian symmetry S : S —> £ at 
the classical level. If we replace (pci —> S(pci then 

/ <PcL(t,x)f(x)dx -» / S(pci(t,x)f(x)dx= (f(-),S(pci(t,-))e 

= f<p*(t,x)(S*f)(x)dx (32) 

where 5* = (5)* = (5*). Similarly, 

/ $<* (*, x) f{x)dx-+     (S(pcl) (t, x) f (x) dx 

= Ucl(t,x)(S*f)(x)dx. (33) 

The first and second transformations are implementable by the sub- 
stitutions / —> S*f and / —> 5*/, respectively. We use these adjoint 
substitutions (and similar considerations for antiunitary symmetries) 
as our definition: 

Definition 9. Let S : £ —>• £ be a Lagrangian symmetry. For S uni- 
tary, the corresponding Fock-space implementation Us : # -* $ is 
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the linear operator which satisfies 

Us 10) = |0> 

USVBT (t, f) U*s = <pRT (t, S*f) (34) 

Usvh- (*. /) Us = Vh- (*, STf) ■ (35) 

// S is an antiunitary symmetry then Us \$ -*$ is given by 

US |0) = |0) 

Us<PRT(tJ)Ul = ip*RT{t,S*f) 

Usv*RT{t,f)U*s = VRT(t,S*f). 

Note that for antiunitary S the adjoint S* satisfies 

(f,Sg) = (S*f,g). 

The following lemma gives the properties of Us'. 

Lemma 10. Let S and V be a unitary and an anti-unitary Lagrangian 
symmetries, respectively. Then Us and Uy exist, are unitary, and com- 
mute with H. Furthermore, the actions of Us and Uy on $ are given 
by 

Us |0> = |0> 

^A; (/) U*s = A*+ (5*/) (36) 

UsA*_(f)U*s = A*_(S*f) (37) 

and 

Uv |0> = |0> 

UvA\(f)Ul = AHy*f) 

UvA*_{f)U*v = AX{V*f). 

Proof. If Us exists then it follows from (30) — (31) that it satisfies (36)- 
(37). Existence and unitarity follow from the tensor product structure 
of #. The fact that Us commutes with H follows from (24) — (25). 

We omit the similar proof of the antiunitary case. ■ 
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3.1    TC Invariance 

Theorem 11. There is a unique antilinear operator TC on $ such that 
TC |0> = |0) and 

TC<pRT{tJ) {TC)-l = ^RT{-tJ) 

TC^WMTC)-1 = ¥>«!.(-*,/). 

Furthermore, TC is antiunitary, squares to the identity, and satisfies 

TCA*+{f) (TCr = A*_(f) 

TCA*_(f)(TCy = Al(f). 

The proof is similar to that of lemma 10 and is omitted. Notice 
that by the CCR (18) — (19), there are no linear or antilinear operators 
T and C on $ with the properties that 

fipRr(tJ)f-^ = VRr(-tJ)   ,   fV*Rr{tJ)f-^ = <p*Rr{-tJ) 

and 

C<PKr(t,f)C-x = <p*Rr{tJ)   ,   Cip*RT{t,f)C-l = VRT{tJ). 

However, if the Hilbert space £ carries a conjugation8 v which commutes 
with fi, then it is easy to verify that there is an antiunitary operator 
Tv and a unitary operator Cv on # such that 

Tv |0) = Cv |0) = |0) 

TyyRT(tJ)Ty-l = VRT{-t,T) 
Tw^RT(tJ)T^^^RT(-tJw) 

cwtpw(tj)cv-l = ipy(t,n 
Cvv*RT(tJ)C^ = (pRT(t,r). 

Furthermore, TVCW = TC. 

TC symmetry plays a crucial role in the proofs to follow. We sum- 
marize behavior of Us and tp under TC symmetry: 

Lemma 12. Let S : £ -> £ be a Lagrangian symmetry. Then 
8A conjugation is an antiunitary map that squares to 1. 
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i. [tf5,rc] = o 

2. TC<p(tJ)TC = <p(tJ) 

3. TC(p{t,g)TC = <p(t,g) 

Finally, we state the following Theorem, which shows that the class 
of Lagrangian symmetries contains most of the symmetries encountered 
in practice. 

Theorem 13, Let U be a unitary operator on the one-particle sub space 
ffW of $ such that 

1. U commutes with H and TC. 

2. U maps #£   either to itself or to 3^ . 

Then there exists a unique Lagrangian symmetry S such that 

U = Us\,w . 

The proof is a simple application of the isomorphisms r± of Theo- 
rem 8. 

4    Twist Positivity 

Having finished with our investigation of the Fock-space implementa- 
tions of Lagrangian symmetries, we may now prove the anticipated 
theorems. That the partition function is well-defined follows from 

Lemma 14. // Q is an admissible classical frequency operator (see 
definition 1) then e~^H is trace-class. 

Proof Since Uk > 0, 

TV' -"'      "■ ■        "          (.^-nfc^OXnK o-fiUk 

93r+   denotes the subspace of 3^ consisting of elements of the form A+ (/) |0). 
$_   is defined analogously. 
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The conclusion follows from the estimate 

k 

The next theorem shows that many symmetry operators are twist pos- 
itive. 

Theorem 15. Let S : £ -> £ be a linear or antilinear Lagrangian 
symmetry of an admissible free Lagrangian £. Then the Fock space 
implementation Us of S is twist positive. Furthermore, for antiunitary 
S we have   

Tr (Use-*11) = ^Tr (^e"2^). (38) 

We note that twist nonnegativity is a consequence TC symmetry 
(Lemma 12). 

Proof We first consider the case that S is unitary. Choosing the basis 
{e^} of section 2.1 to simultaneously diagonalize Q and S,10 

Qefc = UkCk (39) 

Sek = pkek (40) 

we compute 

(41) TVj (Use-**) = TT —"—  

Twist positivity follows, since 

n l- > (w   1   ^i2=e-2F-(i+e-^) 
> e'2^^ > 0. 

Although in section 6.2 below we shall see that the previous proof 
may be altered to include the antiunitary case,11 the suggestive formula 

10Unitarity was used, since an antiunitary operator is diagonalizable only if it is 
a conjugation. 

ii One may also use the (conjugationless) structure theorem in [4]. 
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(38) suffices.   Let {|/;+)} and {j/^)} be orthonormal bases of the 
charged subspaces ^"^ and #(") of $. Since Use~^H maps fi^ to 3^, 

Wse-f"1 = J2 (ft\ Use'"11 \ff) {ff\ Use^ \ft) 
$ 

hJ 

i 

5(+) ffC-) 

But -S2 is unitary, so 

Tr Uste-W* = T7 1    '    1   2/9    , (42) 

where {pk^k} are the joint eigenvalues (counting multiplicity) of 
(52,0). Since [5, S'2] = 0, the nonreal pk come in conjugate pairs, 
so both sides of (42) are nonnegative. Hence 

TrUse-pH = A   Tr U^e'2^ x Tr ^e"2^, 

proving (38). 

5    The Twisted Pair Correlation Function 

We study the pair-correlation function, defined for unitary S in defini- 
tion 5. The twisted pair correlation is often written in the suggestive 
notation 

C (t, /; 5, g) =    /   C (t, x;s,y)f (x) g (y) dx dy, (43) 

XxX 

where 

C (*, rr; a, y) = ^- Tr [(^ (i, x) ^ (5, y))+ C^c"^] . (44) 

Here C (t, x\ 5, y) is not a function, but is only symbolic expression 
similar to the expression (fRrit^x) introduced in §2.1. Note that the 
trace operation in (44) is always assumed to be interchanged with the 
integral in (43). 
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5.1    The Integral Kernel C (£, x; s, y) 

We begin with a suggestive argument that 

/  ds f dyC (t, x- s, y) g (5, y) = {-D2 + Q2
X) "1 g (t, x) (45) 

for smooth functions g eTp satisfying the periodic boundary conditions 
(14) for D. This calculation is justified in the remainder of §5. 

The field <p satisfies the analog of the imaginary-time Klein-Gordon 
equation, 

(-d2
s+n2

y)v(s,y)=0. (46) 

Using this we get an equation for the imaginary-time Feynman Green's 
function, 

(-O2 + n2
y) {ip (t, x) <p (5, y))+ - St-a&w (47) 

where 5X^ is the Dirac measure 

/       fix) 9 (y) Sx,y dx dy = (/, g)e . 
JXxX 

Integrate by parts, interchange the trace and (—d2 + 0%), and apply 
(47), to obtain 

/   ds [ dy C (t, x; 5, y) (-d2 + n2
y) g (5, y) 

Jo       Jx 

= g(t,x)-  /  dyC(t,x]s,y)dsg(s,y) 
Jx 

+      dy (d8C(t,xis,y))g(s,y) 
Jx 

Using the definitions of tp and Us for S unitary, and by cyclicity of the 

5=0 

(48) 
s=0 
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trace, 

/  dyC(t,xil3,y)dag(P,y) 
Jx 

= | TV [ <p fax) <p (/?,dsg 03,.)) Use-f**] 

= ^TT[P(«,x) Use-^(p(0,dsS*g fa .))] 

= ^ TV [> (0, a^*p (/?,.)) ^ (*, x) C/5e-^] 

= f dyC(t,x-0,y)dsS;g{p,y). 
Jx 

The second term in (48) vanishes by applying the boundary condition 
(14) on g. Similarly, the third term also vanishes, and hence 

/    ds [ dyC(tJx',s,y)(-d2
s+n2

y)g(s,y)=g(t,x), 
Jo       Jx 

suggesting that 

ds      dy C (t,x',s,y) g^y) = (-81 + Sl2xy
1 g(t,x), 

Jo       Jx 

as desired. 

In the rest of this section, we make precise and justify the above 
manipulations. 

5.2    Preliminary Estimates and Decomposition of 

We need an estimate to show that Cp is well-defined and bounded: 

Lemma 16. Let Q be an admissible classical frequency operator, and 
let/3 > 0. Then for any n e Z+, t1,...Jtn G [0,/?], and fu ...,/n e E the 
time-ordered product 

{^(ti,fi)...^{tn1A)) + e ■0H 
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where the \ 's stand for the independent presence or absence of a bar, 
extends to a unique trace-class operator. Furthermore, for each such n 
and P there exists a constant Kp^ such that 

tr (V (tlt/}) ...^ (tn,/!)) e-f* < K^n l|n-1/2/*L    (49) 

/or atf ti,...,tn 6 [0,/3]. 

Proof. We note that e~aH for a > 0 maps # into the domain of y/N, 
which is contained in the any time-ordered product of imaginary-time 
fields. Hence expression (49) is certainly well-defined if all the tk are 
less than /3. 

By equations (24 — 25,28 — 29) and the trace-norm Minkowski in- 
equality, we need only consider terms of the form 

/ K ..., an+1) = e-^A* (g\) e'^A* (g*) ...A* (&) e—"*, 

(50) 
where gi = Q 1^fi, Yl^i Qi = P > 0, each aj > 0, and where # 
indicates the presence or absence of a *. For simplicity, we bound (50) 
in the case that all the A± are A*. 

Define the linear functional B* : S* -> B (#) and B : £ -»■ B (Sr) 
by 

B* (g) = ^ (^) (iV+ +1)-1/2 

s GO = (*•($))•, 
where A^+ = ^fe a^. (fc) a+ (k).  Then for any g £ £ and any function 

||5#y)||,<y|, - (51) 

h(N+)B*(g) = B*(g)h(N+ + l) (52) 

MJ\r+ + l)B(0) = .B(0)MJV+). (53) 

Temporarily fix the values of the e^, and pick dj > /3/ (n + 1). Consider 
equation (50) in terms of the B and B* operators. Using (52) — (53) 
to put the factors y/N+ + s all next to exp (—ajH), we have 

/ = e->BB# (g\) e-^B* (g*) ... 

(yp (N+)e-a^ e-a^2 ...B# (^) e-a^H,   (54) 
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where P is a degree-n polynomial satisfying 

\P{x)\<{x + n + l)n for x > 0. (55) 

From the inequality H > iJiNjr) we get 

||P {N+) e-^Hl2\\ < sup {x + n + l)n e"^2 < oo. (56) 

The existence and uniqueness of a bounded extension in the case 
an+i = 0 is now clear from (54). Then equation (54) expresses 
/ (ai,..., an) as a product of e~ajH/2 with many bounded operators. 
Applying equations (51), (54), and (56) and the choice of j gives 

tr|/(ai,...,an+i)| 

<tr g     2n+2 x (sup (a; + n + l)n e'^ f[ ||£r1/2/;|| 
\a;>0 /    .   T N   — /    ^=l 

But exp (—/3H/ (2n + 2)) is trace-class by Lemma 14. The a; were 
arbitrary, so (49) is proved. ■ 

We now have 

Theorem 17. 0/3 : Tp -> Tp is well-defined, bounded, and self-adjoint 

Proof. Let /, g : [0,/?) —> £ be in 7^. By Lemma 16 and Schwarz's 
inequality for L2 (0, /3), 

j j tr(v((,/(<))vKs,S(s)))+<7se-<"'dt<fe 

</'^ll"-1/2/||TJ|fi-1/2
ff||7i. 

Hence Cp is well-defined, exists, and is bounded by the Riesz represen- 
tation theorem. The self-adjointness of Cp is an immediate consequence 
of TC symmetry (Lemma 12). ■ 

Cp behaves nicely under direct sum decompositions: 

Lemma 18. Let ft be a classical frequency operator of an admissible 
Lagrangian with a unitary Lagrangian symmetry S. Let the classical 
space £ be decomposed into a direct sum of invariant subspaces of Q 
and S, 

£ = £1@£2@...      SI = fti © ^2 © ...      S = Si © 52 © ... 
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Let Tpj = L2 [0,13) ® £j. Then Cp also decomposes into a direct sum: 

C/? = ^,10^,2 0... 

where Cpj : Tpj -> Tpj is the Sj -twisted pair correlation operator of 
the free Bosonic theory with classical frequency operator Clj. 

The proof is straightforward. 

5.3    Rigorous Characterization of Cp 

We need three more technical lemmas. The first concerns inverses of 
possibly unbounded self-adjoint operators: 

Lemma 19. Let A and B be self-adjoint operators on a Hilbert space 
T-L with B bounded so that 

BA = Ij^^). 

Then B maps % into 2) {A) and 

AB = l=l\n. 

Proof. We would like to say (AB)* = 5*A* = BA = 1, but since A 
may be unbounded we must be careful about domains. For u e 2) {A) 
and x G H, 

u i-> (Au, Bx) = (BAu, x) = (it, x) 

is a bounded function of u. Hence Bx el) (A*) = 5) (A) and 

(u, ABx) = (u, x). 

Since 2) (A) is dense, 
AEta = x, 

and so AB = 1. ■ 

Definition 20. Let H be a Hilbert space, and let X be a measure space. 
An operator-valued function A : X -^ B (H) is weakly measurable if 
the function (v, / (x) w) is a measurable function ofx for each v, w 6 Ti. 
The integral of such a function is defined by 

v, / A (x) w dx ) =  / (v, A (x) w) dx 

for all VjW G Ti. 
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Lemma 21 (Semi-noncommutative Fubini Theorem). Let X be 
a measure space, % be a Hilbert space, and A : X —> B {%) be a weakly 
measurable function. If 

f Tr\A(x)\ 
Jx 

/1 dx < oo 
Jx 

then 

[ TrA (x) dx = Tr / A (x) dx. (57) 
Jx Jx 

Proof. Let {e^} be an arbitrary basis of W. Then the inequality 

f ^\(eklA(x)ek)\ dx<4 f Tr\A(x)\ dx 
J x   u J x 

follows from the decomposition of A {x) as a linear combination of pos- 
itive operators, all of which have trace norm Tr |-| less than or equal to 
l*\A{x)\. 

A {x) = (Re A (a;))+ + (Re A {x))_ + % (Im A (a;))+ + i (Im A (rr))_ . 

Here Re (A) = \{A + A*), Im (A) = £ (4 - A*), and J3± = i (S ± |B|). 
Equation (57) follows by Fubini's theorem, where the summation over 
k is considered to be an abstract Lebesgue integral in the counting 
measure. ■ 

Lemma 22. Let fi be admissible and let t G [0,/?). Then 
<p{t}f)<p (/?, ff) Use-1311 has a unique bounded extension, which is trace- 
class and satisfies 

tr (<p (t, /) ? 08, p) C/5e-^) = tr (<p (0,5*^) ^ (t, /) ^e"^) . 

Proo/. By Lemma 16, ¥ (tif) <p((3,g)Use~l3H has a unique bounded 
extension, which is trace-class. Writing 

<p (t, f) <p (0, g) Use-?* = <p (t, /) Use-™* x e"^2^ (0,5*^), 

we   notice  that   both  factors   extend   to  trace-class  operators   by 
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Lemma 16. By a double-application of cyclicity of the trace, 

tr (y, (t, f) (p (/?, g) Use-e*) = tr (eT^ (0, S*g) tp (t, f) ^e"^2) 

= triq>{0,Srg)<p(tJ)Use-l,E). 

We may now make rigorous the argument of section 5.1. 

Theorem 23. Let S be a unitary Lagrangian symmetry of an admissi- 
ble free Lagrangian C. Then Cp = (—D2 + O2)^ ; where fi is identified 
with l®Q:T(3-±Tp. 

Proof We claim that we only need consider the case that £ = C. Since 
[5, Q] = 0, we may choose a basis {e^} of £ of simultaneous eigenvectors 
of S and Q. Then (—D2 + Q2)~   is reduced by the direct sum 

7^ = ©fcL
2[0,/?)(g)Span(efc). 

By Lemma 18, Cp is also reduced, proving our claim. 

By Lemma 19, all we have to show is that 

(f,Cp(-D* + tf)g)T0 = (f,g)r0 (58) 

for g in the domain of — D2 + Q2. By standard Sobolev space results (or 
Lebesgue's density theorem), such g may be represented by a function 
which is twice-differentiable almost everywhere and satisfies 

9{P) = Sg(0) 
g' ((3) = Sg' (0) 

g'(b)-g'(a)= f g"(x)dx,    0<a<b<(3, (59) 
J a 

where S is now just a complex number and Dg = g'. For E, F e #o> 
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we have the identity 

E v[sA-^ + n2)9(s) 

= -(E 
ds 

-(p(s,gf(s)) + -£(s,g(s)) F). 

Let {En} C $ be a basis of eigenfunctions of N. We compute 

{f,Cp(-I? + tf)g) 

= — >    /    /   dtds — 
Z^Jo  Jo ds 

^\[-<P(°>%)+j; ^9)) <P (*, / (*)) Use-'* En 

+ !?n aids —- 
o   Jt ^ 

^(t./Wjf-^f^^+^^y))^-^ ds 7       ^5 
-En 

-i?r d* 

■Sn ^(*.i)+i^)^(«./(')) ^e"^ En)+BT 

= ^Y,[ dt (f(t),g(t))£(En\Use-^\En) + BT 
n       0 

= (f,g)Tl,+BT, (60) 

where i?T stands for the boundary terms. We were able to move the 
integrations inside of the trace using Lemma 21 and the estimate of 
Lemma 16. Equation (60) used (59). 
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We consider the boundary terms: 

■ (En\ (-(p{^Dsg) + ^ %g)\ <p (tj(t)) Use^
H\En^ 

En\v (tj(t)) (-<p{p,DMg) + ^ (/?,<?)) Use-f* 

= i I dtTr(p(0,Dsg(0))<p (t, f (t)) ^e"^ 

-||  dt TCtp(t,f(t))<p(p,D.gmUse-/,H 

+ ^fdt Tr^(t,f(t))^(P,gmUse^H 

+ !>: / ^ 
n 

dtTQ:^(0^(0))^(t,/(i))C/5e-^ 

We were able to interchange integration and the trace for the same 
reasons as above. The first two terms cancel by Lemma 22. The last 
two cancel similarly. ■ 

6    The Antiunitary Case, Real Fields 

We would like to prove an analog of Theorem 23 for antiunitary classical 
symmetries, as well as a theorem for symmetries of real scalar fields. 
Given that we have not required the choice of an arbitrary conjugation 
on our classical space £,12 it is surprising that unification of the unitary 
and antiunitary cases results from consideration of the real scalar field. 

12 All use of the arbitary representation £ = L2 (X) was for notational purposes 
only. 
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6.1    The Extended Pair Correlation Operator 

We note that if V : £ -> £ is antiunitary then in general 

tT[(<p(t,x)<p(s,y))+Uve-pH] ^0. 

Hence the important operator for Wick's theorem is no longer the pair 
correlation operator Cp. We define 

Definition 24. Let Q be a classical frequency operator on £ with an- 
tiunitary classical symmetry V. We define the extended space of 
classical fields E = £* © £. The extended path space is 

T[>=L2(0,/3)(g>E; 

and the extended twisted pair correlation operator Cp : T^ -> T^ 
is the operator which satisfies 

f(t)®g(t),Ch(t)®k(t)i 
T{3 

= ^JJtT({v(tJ(t))ip(srh(s)))+Uve-eH) dtds 

+ -±— [ rti((v(tJ(t))(p(s,k(s)))+Uve-eH) dtds 

+ ^fftr({v(tj(t))<p(srh(s)))+Uve-eH) dtds 

+ -i- f [tr(((p(t,g(t))<p(s,k(s)))+Uve-eH) dtds. 

We note that if the symmetry V were unitary, then the middle 
two terms would vanish, reducing consideration to the pair correlation 
operators associated to (fl, V) and (0, V'). 

6.2    The relationship between real and complex 
scalar fields 

We reduce consideration of antiunitary symmetries of a complex scalar 
field to consideration of (classically unitary) symmetries of a real scalar 
field. Had we required that our space of classical fields £ come equipped 
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with a conjugation which commuted with fi13 then our complex field 
theory would be a direct sum of two real fields.14 Although we impose 
no reality condition on ft nor conjugation on £, we will see that in a 
certain sense our complex field is a real field. 

Definition 25. The natural conjugation T : E -> E is given by 

f®g = 9®f. 

A real operator R : E —> E is one that commutes with conjugation. 
Let Q : £ -> £ be a classical frequency operator of a complex field 
VRT, as above. Let S and V be unitary and antiunitary Lagrangian 
symmetries of ft; respectively. Define the associated real field I^RT ' 
RxE->0p(#) by 

IPRT (*, f®g)= VRT (tj)+ VRT (*, 9), 

and the associated imaginary-time real field ^ : R x E —> Op ($) 
by 

i> (*, / e g) = e-tH^RT (Oj®g) etH. 

Furthermore, define 

f2M = fi 0 fi 

S = S®S 
^{f®g)=v^®vf 

A?(f<Bg)=A\(f)+AL(g) 

A(f<Bg)=A- (f)+A+(g) = (A* (7®ff))* 

T^ =L2[0,/3)(8)E 

and define D^ and Dy : T^ —> T^ analogously to D. 

We have the following 

Theorem 26. I/JRT is a free real scalar field with classical frequency 
operator QR; i.e., 

1. QE is real. 
13so that the Klein-Gordon equation has real solutions 
14We would likewise need to restrict consideration Lagrangian symmetries which 

commute with conjugation on £. 
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2. IPRT is self-adjoint, i.e. (i/>Kr(t,q))* = ipRT(t,q). 

3- dtyRT (t, q) = -ipRT (t, nlq) strongly on fo forqeV (fi|). 

I fyI{T(t,q),d-^(t,r)]=i(q,r)E. 

5- [i>RT(t,q),il>BT{t,r)} = 0. 

6. Successively applying ipRT (t, •) anddtipBT (t, •) to |0) gives a dense 
subset of #. 

Furthermore, 

7. A* is the creation functional ofipRT, i-e- 

txrM = -j= (A* (Cl^e^q) + A^c"^?)) 

and 
[A(q),A*(r)) = (q,r)E. 

8. § and V are real and unitary, and the real-field Fock space imple- 
mentations of § and V, which satisfy 

Us |0} = Uv |0) = |0) 

^s^BT(t,q)irs = ^RT(t,S*q) 

VviPRT(t,q)WY = ipRT(t,V*q), 

are simply given by 

Us = Us   and  Uv = Uv. 

9. C is the twisted pair correlation operator of ipRT with the symme- 
try V, i.e., 

f ®g,Ch®k 

= J  J  tr   (l>(tJ®g>)il>(s,h®k)^Uve-/'H 

We have the following theorem concerning real scalar fields: 

dtds. 
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Theorem 27. Let £ be a Hilbert space with conjugation, and let 
(f^rp : Rx<? —>• C be a free real scalar field with admissible real clas- 
sical frequency operator & : £ —» £. Let S be a real unitary Lagrangian 
symmetry ofCl. Then 17$ is twist-positive and the corresponding pair- 
correlation operator Cp satisfies 

C, = (-£2 + fi2)_\ (61) 

where D is defined analogously to D, and where fi is identified with 

Proof. Twist positivity is proved by replacing the use of TC symme- 
try in the proof of Theorem 15 with the observation that the nonreal 
eigenvalues of the real operator S come in complex conjugate pairs. 
Equation (61) may be proved by slight notational changes in the proof 
of Theorem 23. ' ■ 

The previous two theorems reduce the antiunitary case to a trivial- 
ity: 

Corollary 28. Let Vt be an admissible classical frequency operator of a 
free complex scalar field. Let V be an antiunitary Lagrangian symmetry. 
Then the extended pair correlation operator Cp is positive definite. In 
particular, 

c^O-D^ + ny"1, 

where Q^ is identified with I <g) Q^. 

Furthermore, we note that Theorem 27 applies not only applies to 
Lagrangian symmetries of complex fields, but in general to symme- 
tries which mix the subspaces £ and £* of E.15 Since the Fock-space 
implementations of these additional symmetries will mix particle and 
antiparticle states, they are somewhat less natural. 

15The    simplest     example    is    given    by    £      =      C2,     S (f @ g)       — 

((Txf + szg) 0 (szf + axg)  /\/2,   where   ax (z1,Z2)    =    fa, 21),   sz fa,Z2)    = 

(zi, — £2)? / •-> / is given by definition 1, and z i-)- z is just complex conjugation. 
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Note added in proof: We thank E. Lieb for pointing out his study 
of the positivity of a reflection operator in spin space for the Hubbard 
model appearing in "Two Theorems on the Hubbard Model," Phys. 
Rev. Lett., 62 (1989), 1201-1204 and 1927. 
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