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Abstract 

We conjecture that the Sen-Seiberg limit of the Type IIA 
D2-brane action in a flat spacetime background can be re- 
summed, at all orders in a7, to define an associative star prod- 
uct on the membrane. This star product can be independently 

e-print archive:   http://xxx.lanLgov/hep-th/9907211 



250 L. CORNALBA AND R. SCHIAPPA 

constrained from the equivalent Matrix theory description of the 
corresponding M2-brane, by carefully analyzing the known BPS 
conditions. Higher derivative corrections to the Born-Infeld ac- 
tion on the IIA side are reinterpreted, after the Sen-Seiberg 
limit, as higher derivative corrections to a field theory on the 
membrane, which itself can be resummed to yield the known 
Matrix theory quantum mechanics action. Conversely, given the 
star product on the membrane as a formal power series in o!, 
one can constrain the higher derivative corrections to the Born- 
Infeld action, in the Sen-Seiberg limit. This claim is explicitly 
verified to first order. Finally, we also comment on the possi- 
ble application of this method to the derivation of the Matrix 
theory action for membranes in a curved background. 

1    Introduction and Discussion 

It is by now clear that string theory as it emerged in the eighties is but 
a fraction of the full story. The five known superstring theories as well 
as the low-energy 11-dimensional supergravity are now known to be 
related through a web of dualities [1], and it is believed that all these 
theories are simply different limits of an underlying 11-dimensional 
quantum theory known as M-theory, whose fundamental degrees of 
freedom are as yet unknown. Throughout these string theories we have 
D-branes of various dimensions [2], playing in certain regimes a role 
as fundamental as that of the basic string. These Z}-branes have a 
precise description within string theory, their low-energy dynamics be- 
ing dictated by the Born-Infeld action [3] which can be obtained using 
boundary conformal field theory techniques. M-theory itself contains 
M2-branes and M5-branes, which themselves can be related to the 
branes in string theories [1]. 

The problem of understanding the structure of string theory is di- 
rectly related to a full understanding of what is the fundamental nature 
of spacetime. At large distances the structure of the spacetime man- 
ifold is well described by Riemannian geometry. On the other hand, 
at small distances - i.e., much shorter than the string scale 4 - the 
Riemannian description of spacetime breaks down. In fact, there is 
as yet no known intrinsic and covariant description of the underlying 
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geometry and fundamental degrees of freedom. Despite this lack of un- 
derstanding of the small distance structure, one can use D-branes in 
order to probe physics at distances smaller than the string length [4]. 

In this work we shall focus our attention on the description of the 
M-theory M2-brane. Let us first recall that M-theory compactified on 
a circle is described by Type IIA string theory at finite string coupling 
[1]. Moreover, the (unwrapped) M2-brane corresponds, in the Type 
IIA description, to the Dirichlet membrane. It is by now a well known 
conjecture that M-theory compactified on a light-like circle admits a 
non-perturbative description in terms of the degrees of freedom of a col- 
lection of .DO-branes [5, 6, 7, 8]. Moreover, these DO-bianes are exactly 
described by the (0 + l)-dimensional reduction of 10-dimensional U(N) 
super Yang-Mills theory. A precise understanding of this Matrix theory 
conjecture is obtained by starting with M-theory, now compactified on 
a space-like circle, and considering the sector with iV units of momenta 
in the compact direction. Prom a IIA point of view this corresponds to 
the sector of the theory with N DO-branes. One then uses the Poincare 
invariance of the underlying M-theory in order to relate the space-like 
compactified theory to the theory compactified on the light-cone. This 
is achieved by both sending the space-like compactification radius to 
zero and, at the same time, by rescaling the 11-dimensional Planck 
length. Such a prescription is known as the Sen-Seiberg limit [9, 10]. 

Membranes exist in both Type IIA string theory and in M-theory. 
In particular, one should be able to describe M2-branes as specific 
states within Matrix theory. On the other hand, jD2-branes can be 
described within Type IIA string theory in terms of the geometry of 
a world-volume manifold embedded in spacetime, whose dynamics are 
governed at low energies by the Born-Infeld action and in general, at 
weak coupling, by the full af expansion of the boundary state confor- 
mal field theory [3]. Naively one would assume that these two descrip- 
tions should be essentially the same - i.e., they should coincide in the 
Sen-Seiberg limit. On the other hand, a closer look shows that these 
descriptions are actually valid in seemingly different regimes. In fact, 
Matrix theory probes the dynamics of the DO-branes at the Planckian 
length which, in the Sen-Seiberg limit, is much smaller than the string 
length. The af expansion is, on the other hand, a large distance expan- 
sion, therefore valid in the opposite regime. Still, we shall conjecture 
in this work that one can learn about one description from the other. 
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In particular, the exact knowledge of the Matrix theory action can be 
used to conjecture the Sen-Seiberg limit of the action describing the 
jD2-brane to all orders in a' - i.e., Born-Infeld plus higher derivative 
corrections. Conversely, one could proceed the other way around and 
use extensions of known results about Z)2-branes propagating in non- 
flat spacetime [11] in order to start tackling the problem of describing 
Matrix theory in curved backgrounds. Indeed one could use conformal 
field theory calculations in order to determine the a' corrections to the 
Born-Infeld action in a curved background. Then, via the prescription 
described in this paper, one could take the Sen-Seiberg limit and ob- 
tain the first corrections to Matrix theory in this curved background 
[12, 13, 14, 15, 16]. 

Let us now be a bit more specific. In order to carry out the above 
program, we shall start by considering static BPS membranes in Ma- 
trix theory. At the classical level, in flat background spacetime, these 
membranes are described by holomorphic curves. Using the work of 
Cornalba and Taylor [17, 18], one can represent any holomorphically 
embedded curve via matrices - i.e., we can construct its matrix repre- 
sentation. This construction is accomplished by starting with a given 
holomorphic embedding and then associating functions on the mem- 
brane to matrices, so that matrix multiplication is represented by an 
associative star product on the space of functions. This star product is 
clearly non-commutative and, moreover, it is given by a formal power 
expansion in a' = £p/R, which at each order is given by a local deriva- 
tive bilinear of the functions living on the membrane. The product 
starts as simple function multiplication, and is constrained at higher 
orders by the following three conditions. First, the star commutator of 
functions starts at order af with the Poisson bracket, where the sym- 
plectic form is determined by the area element of the embedded curve. 
Secondly, and as previously stated, the product should be associative. 
Finally, the coordinate functions which represent at the Matrix level the 
static curve, should satisfy the BPS condition which follows from the 
known Matrix theory action. As described in [17] these three conditions 
can be iteratively solved (algebraically) in powers of a', if one considers 
the specific case of holomorphic quantization for the BPS membranes. 

Having described the static BPS branes, we now proceed by con- 
sidering fluctuations about these solutions. Fluctuations can again be 
represented dually either as matrices or as functions on the brane. In 
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particular, if we consider the fluctuating coordinates as functions and 
we re-write the Matrix theory action in terms of the star product, one 
immediately gets an action in terms of higher derivatives of these co- 
ordinates functions and in powers of a'. It is then very natural to 
conjecture that this expansion is nothing but the Sen-Seiberg limit of 
the full a' expansion describing the Z)2-brane. 

What we do in this paper is, first of all, to describe in detail the 
correct Sen-Seiberg limit of the Z)2-brane action. We then apply this 
procedure to the Born-Infeld action and show that, in the limit, it 
reproduces exactly the light-cone gauge fixed Nambu-Goto M2-brane 
action in 11-dimensions. This is, as expected, the first term in the 
previously described expansion of the Matrix theory action as given in 
terms of the star product. Finally, we describe how one should proceed 
in order to test the conjecture at higher orders in a1\ and moreover how 
one can infer higher derivative terms in the JD2-brane action from a 
given star product. 

The picture that emerges from this conjecture is the following. Each 
derivative correction to the Born-Infeld action translates into a correc- 
tion to the effective field theory on the M2-brane. The sum of all these 
derivative corrections on the D2-brane action translate to an infinite 
sum of corrections to the field theory on the M2-brane, in such a way 
that, in the Sen-Seiberg limit, they can be re-organized into a star 
product. This reduces the non-renormalizable field theory on the M2- 
brane to a matrix quantum mechanics. Moreover, this star product can 
be independently constrained by analyzing the BPS condition arising 
from Matrix theory. 

Throughout the paper, we shall only discuss the bosonic part of the 
actions which we consider. Let us recall though that we are always 
analyzing supersymmetric theories, and therefore all the actions have a 
SUSY extension involving the dynamics of the corresponding fermionic 
fields. The main point of the present paper is most simply described 
within the bosonic theory, and we therefore omit the fermionic parts of 
the actions. 

While this paper was being typed, we learned about other work 
along similar lines [19]. 
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2    The Sen—Seiberg Limit 
of the Born-Infeld Action 

Our ultimate goal is to show how one can relate the action for an 
M-theory membrane to the action describing a jD2-brane in Type IIA 
string theory. To this end, we have to analyze the Sen-Seiberg limit and 
precisely understand how it relates states in light-cone compactified M- 
theory to states in Type IIA theory. In this section in particular, we 
shall consider the motion of an M2-brane as described by the Nambu- 
Goto action and we will show that the dynamics can be determined 
from the Born-Infeld action describing the D2-brane through a precise 
understanding of its Sen-Seiberg limit. 

We start, in order to introduce notation1, by reviewing the standard 
light-cone description of M-theory in a flat background. Transverse 
coordinates will be denoted by X*, i = 1,..., 9, while light-cone ones 
by X± = 2-1/2(X0 ± X10). Also, £p will denote the Planck length, 
and R the light-like compactification radius in the X~ direction. To 
describe the motion of an M2-brane (we shall always consider M2- 
branes which do not wrap the compact direction), we take the world- 
volume of the membrane to be the product space R x E, where E is a 
two dimensional surface with the topology of the brane. Coordinates 
on the world-volume are r and aa (with a = 1,2) or, collectively, £a 

(with a — 0,1,2). The motion of the surface is described by coordinate 
functions X^ : R x E —> R11 on the world-volume, and the correct 
dynamics is determined, at low energy, by the minima of the membrane 
Nambu-Goto action, 

= -T ffzV- det ga/3 

where ga/3 = daX^dpXy, is the induced metric, and the tension T of the 
brane is given by 

(27r)2^ 3 ' ip 

1 We will use the following index conventions. Indices in M-theory spacetime will 
be /i, i/,..., and on the brane world-volume will be a, /3, Spatial indices on the 
brane world-volume will be a, 6,..., and spatial directions in IIA (or equivalently 
transverse directions in M-theory) will be i, j,  
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In order to simplify the highly non-polynomial Nambu-Goto action, we 
can use the diffeomorphism invariance on the brane world-volume. In 
fact, it is well known [20, 21, 22] that the propagation of the M2-brane 
is most conveniently described in the light-front gauge, where the inde- 
pendent degrees of freedom are the transverse embedding coordinates 
X1 and the remaining light-front coordinates X± are given by the gauge 
constraints X+ = r and daX~ = XldaX

l. The dynamics of the system 
is then governed by the Lagrangian [20, 21] 

I^T-\ix\x^y     a) 

where d2a Q is a fixed volume form on the manifold S describing the 
brane and 

{A,B} = -}-EabdaAdbB 

is the Poisson bracket corresponding to the volume form. The overall 
normalization of the action has been chosen so that, when considering 
static solutions of the equations of motion, the area element Qd2a 
corresponds to the area element of the brane given by the embedding 
in the transverse directions. More precisely, if 

hab — daX
ldbXl, 

then, for solutions such that X± - 
Vdet hai,. More generally 

- r and X 

Q- r det hah 
Q~^x- - - ixw 

Finally, let us recall that, in order to solve the gauge constraint daX~ = 
XldaX\ we clearly have to restrict our attention to solutions satisfying 
the constraint 

{Xi,li} = 0. (2) 

We now wish to rederive the above description of the M2-brane, this 
time starting from the known duality between M-theory and Type IIA 
[1].   First, let us recall [6, 8, 9, 10] that M-theory compactified on 
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the light-like circle X~ ~ X~ + 2ITR can be described as the limit 
of M-theory compactified on a_space-like circle of radius i?, where 
we take the Sen-Seiberg limit R -> 0. Moreover, in order to match 
energy levels [9, 10], we need to consider M-theory with a new Planck 

length ^p, where we keep the ratio R/t2p = R/ip constant. In the 
following, we shall refer to the space-like compactified theory as M. In 
order to describe the above limit in detail, we introduce a dimensionless 
parameter 77 -> 0, and we then take 

7^ = r)2£p  ,        R = r]4R. 

If we denote by XM the space-time coordinates in the M-theory, we 
have the relations 

X0 = x+, 
X10   ~   X10 + 2irR, 

X1   =   rfX*. 

Consider, in particular, a state in the theory M with momentum P^. 
The momentum P+ corresponding to the compact direction X~ will be 
quantized as 

Moreover, the corresponding state in the M-theory will have momen- 
tum P^, where 

P0   =   N/R + P+ 

P10   -   N/R 

p1   =   r]-2P\ (3) 

Recall that M-theory compactified on a space-like circle is given 
by Type IIA string theory at finite coupling [1]. Therefore, in order 
to describe the M- theory with N units of momentum in the compact 
direction, one needs to consider Type IIA with N units of DO-brane 
charge and with the following string length and coupling 

4 = 774   ,        9a = 'n ^ S  5 
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where we have introduced the constants 

p2_Zl _(R\S/2 

ts   ~   R      ' 9s~ \(>P)      ' 

related to the original light-like compactified M-theory.   Finally, we 
introduce the constants 

a' = C]    , e = 2\/2(27ra/), 

and the corresponding tilded quantities 

a' = ^c/    , ?= 7y2e. 

In particular, the constant e is introduced to make contact with [17, 18]. 
It plays the role of a', but it is more convenient to use, since it absorbs 
the factor of 27r, which would otherwise appear explicitly in most of the 
equations that follow. 

Let us now focus our attention on the description of brane states. 
In particular, let us start by concentrating on static BPS branes in M- 
theory, given by embeddings X/x(^) which satisfy X± — r and X1 — 0, 
and which represent holomorphic maps of the manifold E in the trans- 
verse space X1 (as described in detail in [17]). Following the Sen- 
Seiberg limit described previously, we_can consider the corresponding 
BPS brane states within the theory M, or, better yet, within the cor- 
responding Type IIA description. In particular, let us first introduce 
the rescaled coordinates on the world-volume of the brane 

COL        (~    ;ra\ 

T = T    , a   = rj a  . 

We are then considering, within the Type IIA description, a single static 
D2-brane given by the embedding 

x'io = ifx'iO- 

Moreover, since in the original M-theory description the light-cone 
momentum P+ of the brane is given by P+ = 2-1/2 P0 = 2-1/2 TA {A 
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denotes the area of the membrane), and since P+ = N/R, we must 
consider the sector of Type IIA with 

N = ±=TAR (4) 

units of jDO-brane charge. 

As is well known [3], the motion of a D2-brane is described, in the 
low-energy limit, by the Born-Infeld (BI) action 

S = -T f d3zJ- det (gap + 2<ira'Fa^ , (5) 

where the tension of the brane is given by 

f = ^33 = V~6T 
(27r)2£4 

and the induced metric by 

9af> = -daX%X0 + d^X'dpX1. 

This action, however, needs to be corrected at length scales comparable 
to the string length. These corrections take the form of terms with 
higher derivatives of the embedding functions and of the brane Maxwell 
field strength [23]. Nonetheless, for the case we are now considering of 
static BPS states, one may only consider the BI action, since higher 
derivative terms do not change the nature of the BPS solutions [24, 25]. 
In particular, we have already seen that the embedding functions are 
given by a holomorphic map from E to X1. One then only needs to 
determine the correct Maxwell field on the membrane which describes 
the corresponding M2-brane state. Recalling that F12 measures JDO- 

brane density on the J92-brane, and using equation (4), we must have 
that 

lJ/^ = £j/»d*° = N = T2TAR- 
It is not difficult to see that the correct solution to the BI action which 
satisfies the above normalization is given by 

p   =J: Q_ 
12     77V2 27ra'' 
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where, as before, Q d2(j is the induced area element on the brane. We 
then have that for the static BPS case, 

Q   I 0    0    0 

2*d!F<# = ^7=2     0    0    1  I • (6) v      l  0   -1   0  ' 

Let us now consider fluctuations around the static solution, within 
the Type IIA description. In order to make contact with the light-cone 
description of the M2-brane, we shall use part of the reparametrization 
invariance of the BI action. In particular, we shall keep X0 = r = 
r. Moreover, using time-dependent reparametrizations of the brane 
E (which leave invariant the constraint X0 = r), one can cancel any 
fluctuations fap of the U(l) field-strength F^ + fap- This can be 
achieved by eliminating, first of all, the electric part /oa with a r- 
dependent reparametrization, using the fact that we are working in 
a background with a large magnetic field (6). One can then use a r- 
independent reparametrization to eliminate the magnetic part /12. This 
can be done since, in 2-dimensions, any two area elements (given in 
this case by F12 d2a and by (F12 + /12) d2a) are always equivalent under 
reparametrization. Therefore, we can use diffeomorphism invariance 
on the world-volume to bring any given configuration of the JD2-brane 
into a configuration with gauge field strength given by (6) and with 

One then only needs to consider fluctuations in the embedding func- 
tions. We consider generic transverse embedding functions 

^(0 = if x'co, 

recalling that we are always looking at fluctuations which are finite 
from an M2-brane point of view, and are therefore finite in units of 
the Planck length. In units of the string length, these fluctuations are 
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vanishingly small. The induced metric <7a/3 is given by 

dap   = 
-l + doX^X*   do&dbX* 

doX'daX* daX'dbX' 

-l + tfX'X*        rfX'dbX* 
rfPdaX1       partialaX^bX1 

-I + ^JW   rpX'dbX* \ 
rffrdaX* hab       ) ' 

where, as before, hab = daX
ldbX'1 is the spatial part of the induced 

metric. We now wish to evaluate the BI action (5) in the presence of 
fluctuations. On general grounds one expects, in the limit of vanishingly 
small 77, that 

M-I + L + 0(77) 

corresponding to the fact that the energiesJn Type IIA are related to 
the light-cone momenta in M-theory by P0 = N/R + P+ (Eq. 3). 
In the above equation, L represents the Lagrangian in the M-theory 
limit, and we shall show that it corresponds to the Lagrangian (1). To 
compute the BI action, we introduce the short-hand notation 

Ma{3 = gaf3 + I-KOL Faf3 . 

Given the choice of gauge previously described, we have that 

1 + rfXtX*     rfX^xX1     rj2Xid2X
i \ 

TfX'diX* /in A + h12 

r]
2Xid2X

i      -^ + h2l        h22       ) 

and, therefore, 

detMQ/3   =   (i-^A^^L + ^+ofa) 

O2 O2 ■ ■ ■ ■ 



MATRIX THEORY STAR PRODUCTS ... 261 

where h = det hob. We can then evaluate the BI action in the rj —> 0 
limit (we drop, in the last lines, terms of order 77), 

S   = 'Jd3^-detMap 

= -^/^g + fc-f^ + cK,) 

where 

^^/^(^•-S- 
Using the fact that 

h=l-Q2{X\Xi}\ 

we recover the Lagrangian (1). 

To conclude this section we would like to derive, within the Type IIA 
description, the constraint (2) which is an integral part of the light-cone 
Lagrangian (1). Recall that we have used diffeomorphism invariance of 
the BI action to gauge away the fluctuations in the U{1) field-strength. 
Invariance of the action S under infinitesimal fluctuations of Fap should 
then be reinterpreted as a constraint on the allowed configurations of 
the Lagrangian systemjinder consideration. In particular, we shall 
show that invariance of S under infinitesimal fluctuations of the electric 
field will yield, in the 77 -> 0 limit, the constraint (2) on the embedding 
functions. Start by considering a generic fluctuation /a^ = daap — ^aa. 
Then 

S + 5S   oc    [dszJ-det(Ma(3 + fa^ 

6S   oc   Jd3^-detMae M^fpa. 
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It is easy to see that, to leading order in 77, the inverse matrix Ma/3 is 
given by (we only show the elements of the inverse matrix which will 
enter in the computation that follows) 

/      •••       SxtdiX* %x%x*\ 
M^ = ———\   ^xid2x

i ■■■ ■■■ +.... 

(7) 

Let us now concentrate on the precise form of the infinitesimal fluctu- 
ation fap. First of all we can use £/(!) gauge invariance to move to 
the ao = 0 gauge. Moreover, since we are considering purely electric 
fluctuations, we have that c^ = 82(11. Therefore aa = daf. If we let 
A = <9o/, we have that _ 

foa — da^ • 

We can then use equation (7) to show that 

8S   oc    [d3Z   i     
l    =%  (d1\X

id2X
i-d2\Xid1X

i) 

oc   / d3£ (d1\x
id2x

i - d2\ x^x*) 

a  f d*£ (dlx
id2Xi - d2x

i d^ x. 

Since A is arbitrary, we recover the constraint, 

diXid2Xi - faX* dxX1 = 0 = {X\ X1} , 

as given in equation (2). 

3    Higher Derivative Corrections to the 
Born-Infeld Action and the Star Prod- 
uct 

This final section is devoted to a qualitative discussion on the higher- 
order corrections to the Born-Infeld (BI) action and to the analysis of 
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their Sen-Seiberg limit. The limit will be reinterpreted as a Matrix 
theory action living on the world-volume of the M2-brane. 

Let us start by recalling the Matrix theory Lagrangian [6, 8] 

L = ^Tv(^XiXi + ^[Xi,X^ . (8) 

It is given by the dimensional reduction of 10-dimensional U(N) SYM- 
theory to (0 + l)-dimensions. It is the low-energy limit of the BI action 
describing the degrees of freedom of iV DO-branes and it has been 
conjectured [6, 8] to be an exact non-perturbative description of light- 
cone compactified M-theory, in the sector with iV units of momentum 
in the compact direction. The Lagrangian (8) should be supplemented 
with the constraint 

[Xi
)X

i) = 0, 

which comes from the choice of temporal gauge in the SYM theory. The 
conjecture itself can again be understood in terms of the Sen-Seiberg 
limit described in the previous section [9, 10]. 

The Lagrangian (8) should contain all of the physics of M-theory. In 
particular, it should describe sectors of the theory with finite M2-brane 
charge. Let us consider, to start, a specific BPS M2-brane described 
at the classical level by a holomorphic curve in the transverse space. 
To be definite, introduce the complex coordinates s = a1 + ia2 and 
Zi = X1 + iX2, Z2 — X* + iX4, ..., so that the coordinate functions 
ZA are analytic in s. It was shown in [17] that we can associate to each 
such curve a specific BPS state in Matrix theory, which gives a matrix 
representation of the given holomorphic brane. We shall not review 
here the construction given in [17], but we will quickly describe what 
is needed for the discussion in this section. In [17], given a fixed BPS 
brane, a map Q was constructed which associates to each function A 
on the brane S a matrix Q{A) (or better an operator on a given Hilbert 
space). The map Q has the property that, given any two functions A, 
5, on E, one has 

Q{A)Q(B) = Q{A*B) + o{e°G), (9) 

where • is a specific associative star product associated with the given 
curve, which we shall describe in detail in what follows. As indicated 
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above, the equality in equation (9) is asymptotic in e, and is valid only 
up to corrections which vanish faster then any power of e. In this 
paper we shall not be interested in non-perturbative effects in e and 
will therefore ignore such corrections, treating the equality in (9) as 
exact. In this case, we can speak interchangeably of functions on the 
brane together with a given star product, or of matrices together with 
matrix multiplication. In order to make contact with the membrane 
theory of the last section, it is clear that the description in terms of 
functions on the brane is the preferable one, and we will, from now on, 
consider matrices as functions on E (with the product *). 

Let us now describe star products in detail. A product A * B is 
given as a formal power series Yl™=oenSn(A,B) in 6, where at each 
order the coefficient Sn(A, B) is a local bilinear in A and 5, built out 
of the derivatives of A and B up to finite order. In particular, we will 
have, 

Sv(A,B)   =   AB 

S1(A,B)-S1(B,A)   =   ±:{A,B}. (10) 

As is well known [26, 27, 28, 29], the condition of associativity puts 
stringent constraints on the explicit form of the coefficients Sn. 

We shall further constrain the star product by demanding that it 
preserves the BPS nature of the holomorphic brane which we are de- 
scribing. In particular, the supersymmetry transformations of the La- 
grangian (8) are known and simple, and one can show [17] that the 
correct BPS conditions which are appropriate for a supersymmetric 
membrane state are given by 

[ZA,ZB] = [tfA,tfB] = 0 

J2[ZA,ZiA} = -e. (11) 

Imposing the above equations gives an extra constraint on the star 
product on the brane. It is carefully shown in [17] that the conditions 
above are solved by the following product 
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The coefficients Qn are (1,1) tensors on the brane, which can be com- 
puted recursively starting from Qi with the formula, 

Qn = Ql + Qn-l + ed<91og(Qi • • • Qn-.i) . 

The tensor Qi can, in turn, be computed perturbatively in e by impos- 
ing equation (11) and is given by 

Q^-Q + tddXogQ + oie2). 

Let us also briefly discuss traces of operators.   The major fact is 
that, again asymptotically in e, they can be computed as integrals over 
the surface E, 

1   C   ^ 
Tr(Q(A)) = -       Y,fiinA, (12) 

where 

Mo = —Qd2a. 
ire 

We now arrive to the fundamental point of this paper. One starts 
with a static BPS solution and considers the physics of the fluctuations, 
as governed by the Lagrangian (8). If one considers the fluctuations not 
as matrices but, in the spirit of what we have just discussed, as functions 
on the brane S, and if morover one replaces matrix products by star 
products and traces with integrals, one can rewrite the action (8) as 
a field theory on S x R governing the fluctuations of the brane itself. 
Using equations (10,12), we have 

A-B   -+   AB + '" 

[,] - £{.>+- 

Tr   ->   — f d2aQ + "' , 
TTS J 

Therefore the Matrix theory action (8) has an e expansion which starts 
as 
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The above reproduces the action (1), if one recalls that ireRT = \/2- 
Moreover, the full gauge constraint [X2,XZ] = 0 for the Matrix theory 
Lagrangian does imply, to leading order in e, the constraint {X\ X1} = 
0 discussed in the last section. 

Let us analyze higher order terms. From the point of view of the D2- 
brane action, one must understand the structure of the terms which in- 
volve higher derivatives of the embedding coordinates (curvature terms) 
and of the gauge field strength. These terms must be analyzed in the 
limit of very large background constant field-strength, as is clear from 
equation (6), even though we can work order by order in derivatives. 
Since we are working in the limit of vanishing string coupling, one can 
analyze open-string disk diagrams, where the underlying CFT is that 
of a string ending on a brane with a constant field-strength. Derivative 
corrections to the effective action can then be analyzed by computing 
standard string amplitudes, in the presence of the given background. 
At first sight we expect the derivative corrections to the BI action to 
diverge in the Sen-Seiberg limit. Indeed, we expect for example terms 
containing the curvature of the brane, measured in units of the string 
length. Since the characteristic length scale of the brane is propor- 
tional, in the ^Sen-Seiberg limit, to the Planck length, and since the 
string length £8 ~ rj is large compared to £p ~ ry2, one expects curva- 
ture terms to dominate in the limit. However, in this argument we are 
neglecting the fact that we are working in a background of large gauge 
field strength 27ra' Fap ~ l/^2- The curvature corrections can then 
be altered by inverse powers of the constant background gauge field 
strength (as can be seen by looking at the propagator in the boundary 
CFT in the presence of a background F), thus yielding a finite result. 

It is therefore natural to conjecture the following. The Sen-Seiberg 
limit of the action describing the D2-brane in Type IIA string theory 
can be resummed to all orders in af. The full sum can then be re- 
written as the action (8) describing Matrix theory, where one interprets 
matrix multiplication as an associative star product on the brane world- 
volume. The star product itself must, for consistency reasons, satisfy 
the conditions (10) and (11). 

Let us conclude by commenting on some questions of uniqueness. 
In section 2 we carefully constructed the Sen-Seiberg limit by impos- 
ing the constraint (6). This clearly depends on the exact definition of 
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the U(l) gauge field living on the brane. In particular, recall that one 
can always do a field redefinition of the gauge field by adding gauge- 
invariant quantities. Therefore, the precise form of the Sen-Seiberg 
limit depends on the chosen definition. It is then natural to expect 
that different definitions will yield in the limit actions written in terms 
of different star products. All these actions should be equivalent, since 
they can be resummed to yield the same Matrix theory action. More- 
over, any consistent star product will have to be associative and will 
have to satisfy conditions (10) and (11). 
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