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Witten asked in 1997 (and no doubt much earlier too) if there was 
an example of a rank four bundle E on a Calabi-Yau 3-fold X satisfying 
the following conditions: 

• X is not simply-connected, 

• ci(JS) = 0; in fact A4E 3* Ox, 

• the holomorphic Euler characteristic x(J5) of E equals 3, 
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• E is slope-polystable (a direct sum of slope-stable bundles of de- 
gree zero with respect to the Kahler form), i.e. admits an 5C/(4) 
Hermitian-Yang-Mills connection by the Donaldson-Uhlenbeck- 
Yau theorem, 

• 

• 

the pairing H1(A2E) ® H^E) ® H1^) -> C (given by cup- 
product, wedging, and HS(A4E) S H3(Ox) = C) should be non- 
zero, 

the same pairing H1(A2E ® a) <g> H1^ ® /?) (g) fT1^ ® 7) -> C, 
where a, /3, 7 are representations of the fundamental group of X 
such that Of ® (3 ® 7 = 0^? vanishes for a, /? and 7 non-trivial, 

• the last two conditions also hold with E replaced by E* through- 
out, 

• one can analyse the pairings if1 (End E) ® Hl(E) ® Hl(E*) -> 
Jff

3(0x)=C, and 

• C2{X) — oi{E) is C2(i71) for some slope-polystable bundle F of any 
small rank and Ci(F) = 0. 

This has something to do with compactifying a 10-dimensional 
string theory on X to the supersymmetric standard model in four di- 
mensions to study the half-life of the proton. E and F are to be em- 
bedded in .E8 bundles, and x(£0 = 3 is the "generation number" - the 
number of families of quarks. This is the limit of my understanding, 
but fortunately Witten distilled the physics down to the above purely 
mathematical question. 

Physicists usually concentrate on producing examples satisfying as 
many of the topological conditions as possible (see [DOPW] for the 
current state of the art), hoping that if the moduli are big enough there 
will be at least one bundle satisfying the conditions on the pairings. 
(The first example satisfying these topological conditions was given by 
Tian and Yau in [Y], [TY], but their example with E = TX®0 does not 
satisfy the other constraints.) Physicists also tend to use the Friedman- 
Morgan-Witten method of constructing bundles on elliptically fibred 
3-folds. Here the Serre construction is used; in fact even though the 
3-folds below are elliptic the FMW method does not apply because 
the bundles are not stable on the elliptic fibres and the nonexistence 
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results of physicists (e.g. [DLOW] rules out these 3-folds) do not apply 
directly. Here the problem is tackled from the other end, constructing 
bundles satisfying the pairing conditions (which I feel ought to be the 
most difficult) with enough freedom to try and control the topological 
ones. This is only partially successful - the last condition still eludes 
me (and so [DLOW] may yet apply to this case). C2{E) is kept as low 
as possible to make satisfying the last condition feasible, but I have 
yet to find the required F. The necessary condition (the Bogomolov 
inequality C2(F). Q, > 0, where Q, is the Kahler form) for the existence 
of a stable F is easily satisfied, but C2(F) is not effective. I still believe 
the class C2(F) may be represented by a stable F but my attempts to 
find one over the last 2 years have failed. (Since it is usually assumed 
in the physics literature that C2 of a stable bundle, with ci = 0, must 
be an effective curve we give an example to show that this need not be 
true.) 

The first example below is on if 3 x T2; when I showed this to Witten 
another condition was promptly added to the above list - that X should 
not be K3 x T2 (in fact that the holonomy of X should be bigger than 
517(2) C 5C/(3)). It is included below and worked out in full, however, 
as it displays most of the ideas of, and is good motivation for, the 
other two examples, which we run through more briefly as most of the 
principles are the same. These second two examples take place on the 
SU(2) x Z2 holonomy manifold (KS x T2)/Z2 where the ^-action is 
an Enriques action on the K3 times by —1 on T2, and so is free and 
preserves the canonical class. The bundles we find are not really full 
5l7(4)-bundles, but have smaller structure group U(2) x>u(i) U(2) C 
51/(4) (i.e. they are direct sums of rank two bundles of opposite ci); I 
think Witten's intention was to deform them to non-split bundles - the 
pairings involving the deformation space Hl(EndE) would enable one 
to study such deformations. This paper is inevitably a rather dry list of 
mathematical constructions, but the general technique used to satisfy 
the conditions on the pairings should be clear from the first example. 
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1    KSxT2 

Let S be a smooth K3 (2,3)-divisor in P1 x P2. Let <jju o^ be (the 
restrictions to S of) the pullbacks to P1 x P2 of the Fubini-Study Kahler 
forms on P1, P2 respectively. They are the first Chern classes of the line 
bundles 0(1,0) and 0(0,1), in the obvious notation. Tensor powers of 
these give the line bundles 0(z, j). Note that a;2 = 0, UJ1UJ2 = 3, c^f = 2, 
and that UJ2 is a nondegenerate Kahler form on 5. 

The line bundle L = 0(—1,1) is of degree —1 (with respect to o^), 
has Ci(L)2 = —4, and it and its dual are acyclic - that is 

H'iL) = 0 = #*(£*)   Vz. 

This can be seen by simple exact sequences on P1 x P2, or from the 
obvious fact that L and L* have no sections, and Riemann-Roch. 

We are going to define two rank 2 bundles on S, with determinant L 
and L* respectively, by the Serre construction on a surface ([GH] p 726, 
[DK] Chapter 10), which we briefly describe now. Just as (codimension 
1) divisors correspond to (rank 1) line bundles, codimension 2 (i.e. 
dimension zero, on S) subschemes Z sometimes correspond to rank 
2 bundles E via zero sets of sections s G H0(E). Suppose we have 
such an s with zero locus Z. Then, just as wedging with a non-zero 
vector v e V in a 2-dimensional vector space V gives an exact sequence 
0->C ->► V —>> A2V -> 0, wedging with s G H0(E) gives a sequence 
of sheaves 0 —> Ox —> E —> A2E —>• 0 which is exact away from the 
zeros of s. Us vanishes only in codimension 2 (i.e. not on a divisor) 
this sequence is in fact globally exact except at the last term, where it 
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is clearly onto only those sections of A2E that vanish on Z, so giving 
the exact sequence 

0-> Ox ->£->L®Xz-^0, 

where Iz is the ideal sheaf of functions vanishing on Z, and L is the 
line bundle A2E. 

The Serre construction provides a partial converse to this construc- 
tion: given Z and L one tries to reconstruct an E with A2^ = L and 
s G H0(E) (with zeros on Z) as an extension of L ® Iz by Ox as in 
the above sequence. Such an extension is of course given by an element 
of i71(L*) away from Z, which we may think of as an L*-valued one- 
form that is 5-closed away from Z. Local analysis on Z ([DK] Chapter 
10) shows that the extension E being locally free is equivalent to d of 
the form being some non-zero multiple az5z of the Dirac delta at each 
point z of Z. Thus the condition for the global existence of such a vec- 
tor bundle E is that the class in H2(L*) defined by some combination 
^2zez az^z (az ¥" 0 Vz G Z) is 3 of something, i.e. that it is zero in 
cohomology. (Here the residue data az is really an element of the line 
L*®Kx\zi thus giving a linear functional on H®(L®Kx) by restriction 
to z. By Serre duality #0(L ® KxY = H2(L*) this gives an element 
of H2(L*) as claimed. The a^s give the dual of the determinant of the 
derivative ds G (T*X ® E)\z of the section s G H0(E) at the zeros z.) 

One upshot of all this which will suffice for our needs is that if 
H2(L*) = 0 then E and s exist 

So define the dual A* by the exact sequence of sheaves 

o -> o ^> A* -> :z;2(i, -1) -> 0, (1.1) 

where Z^l, — 1) denotes the ideal sheaf of functions vanishing at two 
fixed points on 5, twisted by L* = 0(1,-1). There is no obstruction 
to defining bundles in this way (with a section SA* vanishing exactly at 
the two points) as H2(L) = 0. 

Prom the above sequence it is evident that 

A2 {A) = L,    c2{A*) = 2 = c2(A),    H0{A) = 0,    H0(A*) = C.sA.. 

Similarly we define B by 

0 -> 0 -^> B -> 13(1, -1) -► 0, (1.2) 
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with 

K\B) = L\    c2(B) = 3,    H0(B) = C.sB,    H0(B*) = 0. 

Now let T denote an elliptic curve, and set X = S x T —> S. 
Finally denote by Orin) the nth power of the pull-back to X of a fixed 
degree one line bundle on T, with first Chern class TIUT. Then we can 
define 

A' := TTM ® OT(3),    £' := 7r*5 ® 0T(-3),    E := A'® B'.     (1.3) 

Assume that S is a generic divisor in P1 x P2, so that its only line 
bundles are the 0(i, j)s by Noether-Lefschetz theory. Then we have 

Theorem 1.4. TTie ranA: ^ bundle E defined in (1,3) satisfies all but 
the last of the conditions listed at the start of this paper, with respect 
to the Kdhler form fi = 7r*a;2 + 6UT> 

Proof. Throughout we will often suppress pull-backs for clarity; thus A 
will often denote 7r*A and u)2 will be confused with TT*^. 

Firstly A4£ ^ A2^(8)0T(6)®A25(8)0T(-6) S L(8)L* ^ 0* is trivial. 
By Riemann-Roch the holomorphic Euler characteristics x(^)> x(B) 
are 0 and —1 respectively, so that 

X{E) = X(OT(S))X(A) + X(OT(-3))X(B) = 3(x(A) - x(B)) = 3, 

as required. The choice of Kahler form Q = 0J2 + 60;^ ensures that A' 
and B' have degree zero, so E = A1 © JE?' is polystable if and only if A1 

and 5' are stable, which in turn is equivalent to A and B being stable 
on the K?> surface S. This follows from 

Lemma 1.5. Recall that S was chosen such that its only line bundles 
are the 0(i, j)s. Then letting P denote either of A* or B on S, P is 
stable with respect to U2. 

Proof We must show that P(i,j) has no sections for 0 > degP(i,j) = 
Qi + 4j + 1, i.e. for 3i + 2j < -1. But the presentations (1.1,1.2) give 
the sequence 

0 _> 0{ij) -> P(iJ) -+ ln(i + l,j - 1) -+ 0, 
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where n is either 2 or 3 points on 5. The degree of 0(z, j) is 3i+2j < —1, 
so it has no sections. Similarly since the degree of 0(i + 1, j — 1) is 
32+2J + 1 < 0, this line bundle can only have a section if it is trivial and 
the section has no zeros. Thus ln(i +1, j — 1) has no sections forn > 0, 
and we have shown that P{i,j) has no sections and so is stable.        □ 

We now turn to the pairings H1(A2E ® a) ® H1^ ® /3) ® ff1^ ® 
7) -» C, for a, ^9, 7 flat line bundles with a ® /? ® 7 = Ox- This is 
what motivated the construction of E\ the basic idea being that the 
cohomology of flat line bundles on the elliptic curve T behaves in a 
way that is reminiscent of Witten's condition on the pairings; namely 
it is non-trivial if and only if the line bundle is trivial. 

Lemma 1.6. Given representations a, /?, 7 of the fundamental group 
of X, such that a ® /3 ® 7 = Ox, consider the pairing H1(A2E ® 
a) ® H1^ ® /?) ® H1^ ® 7) -^ C. T/ien this is non-zero for the 
representations trivial, and vanishes for a, (3 and 7 non-trivial 

The same is also true with E replaced by E* throughout 

Proof Hl(A2E®a) = H1(A2A'®a)®H1(A'®B'®a)®H1(A2B'®a), 
and the first and last terms vanish by the Kiinneth formula, since L = 
A2 A and L* = A2B have no cohomology on S and a, /?, 7 are pulled up 
fromT. Thus Hl{A2E®a) = Hl

s{A®B)®H^(a) ® H0
s(A®B)®H^(a) 

and the pairing reduces to 

[H1
s(A®B)®H^(a)]  ®  [^(A)®^(OT(3)®/5)] 

®  [^(5)®^(0T(-3)®7)]   -> C, 

plus the same with /? and 7 exchanged.     (The pairing involving 
[^5(A ® B) ® //^(a)] vanishes because no Hl(B) term survives the 
Leray spectral sequence to cup it with.) 

So we see that for a non-trivial the whole pairing vanishes. (Note 
that for a trivial but f3 = 7~1 non-trivial the pairing does not vanish; 
I am not sure if this is relevant for the physics.) For a = (3 = 7 = 0 
we are left with showing, then, that the pairing on S 

Hl(A ® B) ® if£(A) ® H0
S(B) -* C 

is non-zero. (The full pairing on E is two copies of the tensor product of 
this with the non-vanishing cup-product #£(0^(3)) ® H^(OT{—3)) —>• 
c.) 
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But this pairing is Serre-dual to H1(A)®H0(B) -> H1{A®B), and 
H0(B) = C . sg, SO it is sufficient to show that the map 

H1(A)^H1(A®B) 

is non-zero. 

Tensoring (1.2) with A (recalling that A ® A2A" = A*) and taking 
cohomology gives 

H0{A* ® J3) -> H^A) ^ H\A ® B). 

(1.1) shows that H0(A*®1S) = 0 and H^A)^ H1^) ^ coker [H0(Os) 
-> iJ0(02)] = C, so the second map in the above sequence does not 
vanish, as required. 

The dual pairing, with E replaced by E*, is similar. As above, since 
L and L* have no cohomology on 5, and a has no cohomology on T 
unless it is trivial, the pairing vanishes for a non-trivial, and in the 
a = (3 = 7 = 0 case it quickly reduces to 

Hl(Am ® B*) ® H0
S(A*) ® H$(B*) -> C, (1.7) 

with Hs(A*) generated by SA*> NOW (1.1) twisted by B* yields 

H0{B®12) -> H^B*) m> Hl(A* ® B*). 

Using (1.2) we can see that the first group is either C or 0 (depending 
on whether or not the 2 points used to define A* are a subset of the 3 
points used to define B) and the second group is C2. Thus the second 
map, which is Serre-dual to (1.7), has rank 1 or 2, and the dual pairing 
is non-zero also. □ 

Finally then we want to understand H1 (End E) <g)Hl(E) ® H1^*) 
—>• C. Using the fact that H^(OT(Q)) — C6 etc., we can express 
H1 (End E) in terms of cohomology groups on S as 

IT1 (End A) 0 H^EndB) 0 ff0(A*®S)®C6 0 Hl(B*®A)®C*. (1.8) 

This is easily computed to be 6 +10 +1.6 +12.6 = 94-dimensional. But 
we will find that only the first two groups (16 dimensions) contribute 
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to the pairing. The part of the pairing involving the last group in the 
above decomposition is 

H^B')* ® A') ® H^B') ® H^A'Y) -> C, 

which, by the Kiinneth formula, reduces to a pairing on S tensored 
with the cup-product 

flr(0r(6)) ® ^(0T(-3)) ® i^(0T(-3)) 

on T, and this vanishes. 

The third group in (1.8) is involved in the cup-product pairing 

H0(A* ® B) ® H^A) ® H^B*) -4 C 

on 5 (tensored with a pairing on T2). We will now show that this 
vanishes. 

Tensoring (1.2) with A* shows that H0(A* ®B) is spanned by SA* ® 
5B, so it is enough, by Serre-duality, to show the vanishing of 

jyi(a*)'^tfi(A*). 

(1.2) twisted by L shows that wedging with SB gives an isomorphism 
#!(£*) ^ tf^Ts), while (1.1) shows that the quotient of ls ^ A" 
is 2^(1, —1) © O3, giving an exact sequence 

0^1S^A*^ X2(l, -1) © O3 -> 0, 

whose cohomology gives the exact sequence 

0-4C —>C3 >Hl(lz)-^Hl(A*) >C2-4C -4 0. 

H\B*) 
5^4* 0SB 

It is easy to check that the diagram commutes, and H0(Is) = C3, so 
the map labelled 5^* must be zero; therefore that marked SA* ® SB also 
vanishes, as claimed. 
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So from the decomposition (1.8) we see that the coupling H 1(End E) 
®H1{E) ® Hl{E*) -> C on X reduces to the direct sum of the corre- 
sponding couplings for A and B'. By the Kiinneth formula and Serre 
duality we are left with understanding the couplings 

H^A) ® H0(A*) -> if1 (End A) and H0(B) ® H^B*) ^H^EndB) 

c ®c -^ c6 c ®c2 ^ c10. 

Twisting (1.1) by A and taking cohomology gives an exact sequence 

... -► Hl(A) m> H^EndA) -± H^A*®^) ->...        (1.9) 

Here the first map is injective because the previous two terms in the 
sequence are if0(End^) -> H0(A* 0X3), which is C .id ^ C .SA* 

and so an isomorphism. (A is stable so has only scalar endomorphisms; 
similarly the last map can be seen to be onto and the last group iso- 
morphic to C5.) But this first map is the A-pairing, which is therefore 
an injection C ® C <-> C6. 

As for 5, twist (1.2) by B* to get, by similar arguments, 

0 -> H^B*) ^ H^EndB) -> Hl{B®X^) -> 0, 

so that again the pairing is an injection C(g)C2c-4C10. □ 

So all that is left is to find an F with trivial determinant and C2(F) = 
C2(X) — C2(E) = 15[r] + 6UT((J0I — UJ2) (where [T] denotes the class in 
HA(X] Z) Poincare-dual to any torus fibre T). Suppose we try for a rank 
2 F, then one can calculate that €2^' := F®L*®0T(3)) = 11[T], which 
is effective. Similarly if F has rank 3 then C2(F' := F ® L* ® 0T(1)) = 
4[T]. One could therefore try to use these facts to create a stable F, 
for instance by using the Serre construction to manufacture a G with 
A2G — L* and C2(G) = lip"1] then twisting by Or(n) s and modifying in 
codimension 1 with elementary transformations, etc, to get the desired 
F'. All my attempts have produced unstable bundles, however. 

We note here that it is not necessary for C2(F) to be effective (i.e. 
represented by a holomorphic curve) for F polystable with ci(F) — 0. 
Indeed the polystable E constructed above (1.3) has ci(E) = 0 and 
C2(E) = 9[T] — 6(JJT(WI — ^2). Thus C2(E) .U2 = — 6 is negative and 
C2(E) cannot be effective. 
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2    (K3 x T2)/Z2 

Now let X be the 517(2) x Z2 holonomy manifold (K3 x T)/Z2, where 
the if 3 is a universal cover of an Enriques surface S = KZ/G and T 
is an elliptic curve (which therefore has a zero and a multiplication 
by —1). Then the Z2-action is generated by a x (—1), and so is free 
(since G is) and preserves the canonical class (since both G and —1 act 
as —1 on it). X -^> S is a T-fibration over S with no singular fibres, 
monodromy —1 around 7ri(5), and a section S M- X at 0 G T. It is 
also a if 3-fibration over P1 = T/ ± 1 with four singular fibres which 
are double fibres modeled on S. 

Then ^i{X) is easily seen to be given as an extension 1 —> Z2 —v 
TTipf) -» Z2 -> 1 (where the Z2 is 7ri(if3 x T)). Fixing generators 
a,/3 of 7ri(T) -> 7ri(X) (T -> X as the fibre of X -► P1), and letting 
7 € ^il^) ^ ^iC-^) be the generator of Z2 {S c-^ X as the section of 
X -^ 5), we have a presentation 

7ri(X) = (a^,7)/M = j8a, T"1^ = a"1, T"
1
^ = ^\ 72 = 1) 

whose abelianisation is H\(X\ Z) = 1^ (generated by a, /?, 7). The cor- 
responding flat line bundles, given by the representation {generator H-» 

(—1) G {7(1)} will also be denoted by a,/?,7. Note that 7 = TT*^ is 
the pull-back of the canonical bundle of S to X. 

As before pick an acyclic line bundle L of degree — 1 on S: 

Hi(L) = 0 = Hi(L*) = Hi(L®i)   Vz,    c^L)2 = -2, ci(L).a; = -l, 

with respect to an integral Kahler form LJ on S. (For instance on the 
Enriques surface studied in ([BPV] V.23) with corresponding K3 the 
double cover of P1 x P1 branched over a certain (4,4)-curve, the line 
bundle 0(—1,1) restricted to K3 descends to such a line bundle on S. 
The two Fubini-Study forms on the P1 s pull-back, restrict and descend 
to integral forms CJI, U2 on 5; we then choose UJ = OJI + 2a;2.) 

Next define bundles A and B on 5 by the Serre construction as 
before, 

0 -> 0 ^ A* -> I1 ® L* ^ 0, (2.1) 

and 
0 ^ B -> I2 ® L* -^ 0, (2.2) 
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with 2i and Z2 the ideal sheaves of a point and a zero-dimensional 
subscheme of length 2, respectively, where we take the point to lie in 
the length 2 subscheme this time. 

We are ready to define 

A' := 7r*A <g> 0(SS) ® 7,     B' := Tr*^ ® 0(-35) ® 7,     E := A' 0 £', 
(2.3) 

where S M- X is the zero-section of X A 5, defining a divisor with 
corresponding line bundle 0(5). 

Theorem 2.4. 77&e ran^; ^ bundle E defined in (2.3) satisfies all but the 
last of the conditions mentioned at the start of this paper, with respect 
to any Kdhler form Q in the class of 12 [5] + TT*^. 

Proof. By construction A4i? = O^ and by Riemann-Roch, or by lifting 
to if 3 x T and dividing by 2, 

X(E) = x{A!) + x{B') = ZxsiA) + (-3)xs(£) 
= 3(02(5)-ca^)) = 3(2-1) = 3, 

the second condition. 

Since by choice of fi both A' and B' have degree zero, to prove 
slope-polystability it is enough to check that A and B are slope-stable 
on 5 with respect to u (which was chosen to be integral and such that 
ci(L) .OJ = — 1, remember). 

Letting P be one of A* or 5, of degree 1, to check stability we need 
only show that P ® 77 has no sections for any line bundle rj of degree 
less than or equal to —1 (this is where the integrality of LJ is used). But 
we have a sequence (2.1, 2.2) 

for 1 some non-trivial ideal sheaf. 77 has no sections since it has degree 
< — 1, and L* ® 77 has degree < 0 so has no sections with zeros. Since 
1 is non-trivial this shows that P has no sections, as required. 

We now turn to the A2E pairing, which (in the untwisted case) 
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splits as 
H1(A2A')®H1(B,)®H1(B') 

e 
(H^A' <g> B') ® H^A') ® H^B'))®2 

e 

and similarly for the dual pairing. We compute these using the Leray 
spectral sequence for X -^ S, noting that 7r,0(n5) ^ 0fn (n > 0) 
and so, by relative Serre duality, JR

17r*0(-n<S) S 7®". (Again we are 
suppressing some pull-backs and identifying 7 with ^5.) 

Thus H^A') S ^(L®6) = 0 and i?*^') S Jff^
1((L*(8)7)®6) = 

0, and the same holds on twisting by flat line bundles or taking duals. 
Therefore only the central pairing above survives. 

Tensoring (2.2) by A or A<g>7, and using the fact that H0{A*®l2) = 
0 (since A* has only one section SA*, and this vanishes at one point 
only), we see that 

H0(A ®B)=0 = H0(A 0 B <g> 7), 

and the same also holds with A, B replaced by A*, B*. Thus the 
H^ffiirtQx ® •) terms that appear in the pairing (from the Leray 
spectral sequence) vanish, and we are left with two copies of 

HlfaQx ® A <g> B) ® H&iA <8» 7)®') ® i^(5®3) -> C, 

and the dual pairing is twice 

Hlin.Qx ® A* <g> 5*) ® i?o((A*)®3) ® HldB* ® 7)®') -»• C. 

Twisting by any flat line bundle that is non-trivial on the T fibres 
destroys the 7r*Ox term (this was the original idea for the whole con- 
struction of course), so we need only consider twisting the first terms by 
7. Since the tensor product of the three line bundles we tensor by must 
be trivial, one of the other two terms must be twisted by something 
containing a 7 factor (i.e. not in the span of a>,P). 

Thus the pairings become, by Serre duality, 2.3.3=18 copies of 

H1
s(A®'y)®H%(B)-+Hl{A®B®'y), (2.5) 
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and the dual 

H%(A*) ® Hl(B* ® 7) -> ^(A* ® 5* ® 7). (2.6) 

Twisting either of the H0 groups above by 7 destroys them by inspec- 
tion of (2.1, 2.2). So from what we have already proved it is now enough 
to show that the pairings are non-trivial as they stand but trivial when 
the H1 groups above are twisted by 7. 

For the first case (2.5) note that the required vanishing follows from 
the vanishing of H§(A): C2(A) was chosen to be 1 making x(A) = 
0 = h0(A) - h^A) + h0(A* ® 7) = -h^A). The non-triviality of the 
untwisted pairing follows by taking the cohomology of A 0 7® (2.2): 

0 -> H^A (2) 7) ^ H^A ® B ® 7), 

where the first zero follows from H0(A* ® 7) = 0 (2.1). Since the 
first group has dimension 1 (also by Riemann-Roch, since /i2(^4®7) = 
h0(A*) = 1) the pairing (2.5) is non-zero. 

For the dual pairing (2.6) we take the cohomology of (2.1) ®5* ® 7, 
giving 

0 -> H0(B ® I1 ® 7) -> ^(5* ® 7) ^> F1^* ® 5* ® 7). 

The pairing is the second map so we want the first map to not be onto, 
but to be onto when the 7 s are removed (so that the twisted pairing 
vanishes). Recalling that we chose the zeros of 5^* to lie in those of SB 

we see that H0(B®li) = C .sB, while H0(B®Xi ® 7) = 0. Since, by 
Riemann-Roch, /^(JB* ® 7) = 2 and hl(B*) = 1, this gives the required 
result. □ 

Again finding a stable F with C2(F) = C2(X) — ca^) and ci(F) = 0 
has defeated me. For F rank 2 this works out as C2(F(3S)<g)L*) = 5[T], 
for what it's worth. 

3    (K3xT2)/Z2 again 

We give a final example, again satisfying all but the last of Witten's 
conditions. Since the example will be very similar to the last one in all 
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but the pairings (as L* will no longer be acyclic) we will concentrate 
mostly on them. 

Pick an Enriques surface with a — 2-sphere C in it, let K?> be its 
universal cover, and again set X = (if3 x T2)/Z2. We will use the 
notation of the last section. 

Letting L = 0(—C), L and L* ® 7 are acyclic while 

C    2=0 (   0    i=0 
ir(L*) = {  C   i = 1 and       H^L ® 7) = ^   C   i = 1 

0    i = 2 ( C   i = 2. 

We can then construct A and B on 5 by the Serre construction, 
using the fact that H2(L) = 0 so there is no obstruction to finding 
locally free sheaves with presentations 

0 -> 0 ^> A* -> L* ® li ^ 0, (3.1) 

and 
0->O-^£->L*® ^-^O, (3.2) 

with Ix, X2 the ideal sheaves of 1 and 2 points in C C 5, respectively. 
We take the one point to be one of the two points, as in the last example. 

Setting 

A' := ir*A ® 0(35) ® 7,    J3' := Tr*^ ® 0(-35) ® 7,    E := A' 0 5', 

we can, as in the last two examples, choose compatible Kahler forms on 
S and X such that A and B are slope-stable and A', Bf have degree zero, 
so that E is slope-polystable. Of course A4E is trivial and x(E) = 3. 

Then 

ffj^A2^) = ^((A2^)*) = ff!(L ® 7r*0(65)) = ^(L)06 = 0, 

and 

H^B') = HJc^A'Y) = #£(L* ® R^Oi-QS)) 
= ^(L*®7)e6 = 0, 

so that as before the pairing on A2E reduces to its Jfir
1(A/ ® B') sum- 

mand, and similarly for the dual pairing and the twists by flat line 
bundles. 
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The usual arguments give the vanishing of H0(A <g> B), its dual and 
their twists by 7, so that the pairing reduces to 18 copies of 

H^Ox ®A®B)® Hl(A (8) 7) ® H%(B) -+ C, 

and the dual to 18 copies of 

HK^Ox ®A*® B*) ® H%(A*) ® ^(5* ® 7) -► C. 

On twisting E by any flat line bundle with a non-zero a or (3 component 
the TV+QX term vanishes so the pairing does too. Thus we need only 
consider twists by 7. 

Thus by Serre duality the pairing is equivalent to 

H^A ® 7)e2 S-^BH1(A ® B ® 7), 

where we have noted from (3.2) that H0(B) = C2 and we have picked 
a basis 55, sf

B. Similarly the dual pairing is represented by 

Hl(B* ® 7) ^ ff1^* (8) S* ® 7). 

We want these to be non-zero, but zero on twisting by 7. 

For the first pairing we tensor (3.2) by <A(®7), giving 

0 -> £r1(i4(®7)) ^ ff1^ (8) 5(07)), 

where 5 is any section of B (which we see from (3.2) vanishes on 2 
points in C C S). Thus it is sufficient to show that Hl(A ® 7) 7^ 0 
and iJ1^) = 0. But h^A ® 7) = -x(^ ® 7) + /i0(A 07) + /i0(yl*) = 
0 + 0 + 1 = 1, and h^A) = -x{A) + h0(A) + h0(A*®i) = 0 + 0 + 0 = 0. 

For the dual pairing, tensoring (3.1) with S*(®7) yields 

0 ^ H^B (8) 2i(®7)) ^ £r1(5*(®7)) ^ ^(^ ® S*(®7)). 

With the 7 the last map is the dual pairing, and by Riemann-Roch and 
h0(B) = 2, x(B) = — 1 we see the sequence is 

0 -> 0 -> C3 ^> i?1^* (8) 5* (8) 7) 

so that the pairing is indeed non-zero. Removing the 7 s gives the 
twisted dual pairing, which we would like to show vanishes. 
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Since the zero of SA* was chosen to lie in the two zeros of SB, we see 
that h0(B <g> Ii) > 1, while by Riemann-Roch h1^*) = 1 + h0(B*) + 
h0(B ® 7) = 1, so that the sequence becomes 

and the final map must be zero. 
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