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Abstract 

We examine the reduced phase space of the Bianchi VIIQ 

cosmological model, including the moduli sector. We show that 
the dynamics of the relevant sector of local degrees of freedom 
is given by a Painleve III equation. We then obtain a zero- 
curvature representation of this Painleve III equation by apply- 
ing the Belinskii-Zakharov method to the Bianchi VIIQ model. 
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1    Introduction 

Bianchi VIIQ cosmological model is a finite-dimensional dynamical sys- 
tem with non-trivial dynamics. It can be considered as a symmetry 
reduction of the Gowdy model [1] whose spatial hypersurface is the 
three torus T3. The Gowdy models represent examples of two commut- 
ing Killing reductions of general relativity [2], whose space-times have 
compact spatial hypersurfaces. Although the two commuting Killing 
vector system is integrable [3], [4], [5], [6], [7], it is not known how 
to extend the corresponding methods of constructing solutions [8], [9], 
[10], [11] to the compact case topology. Therefore Bianchi VIIQ model 
can serve as a toy model for exploring the issue of integrability of the 
Gowdy model on the three torus. 

Belinskii and Prancaviglia showed, within a more general frame- 
work of Belinskii and Zakharov inverse scattering method [5], that the 
Einstein equations for some Bianchi models admit a zero-curvature rep- 
resentation, indicating that these are solvable dynamical systems [12]. 
However, their analysis was not complete in two aspects. The first 
aspect is related to the fact that their considerations were only local, 
since they ignored topological obstructions coming from the non-trivial 
global topology of the spatial hypersurface, the three torus T3. The 
problem is that spacetimes with compact spatial sections do not allow 
in general global Bianchi metrics, and one can put only locally ho- 
mogeneous metrics [13], [14]. Related to that is that compact spatial 
manifolds have non-trivial topology, and locally diffeomorphic metrics 
are not necessarily globally diffeomorphic, which means that there are 
global degrees of freedom in the metric, beside the usual local ones. It 
has been shown recently that the moduli parameters enter non-trivially 
in the diffeomorphism invariant symplectic form, and hence they could 
change the dynamics of the local degrees of freedom [15], [16]. The sec- 
ond unexplored aspect is to find out what kind of integrable nonlinear 
dynamical equation can be obtained. 

In order to explore these issues, it is convenient to study the dy- 
namics of Bianchi VIIQ model in the canonical formalism. We perform 
constraint and gauge-fixing analysis and show that the dynamics of a 
generic sector of local degrees of freedom can be reduced to that of 
a Painleve III equation. There is also a special sector with enhanced 
symmetry, which has a linear dynamical equation. By using the results 
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of Kodama [16] we show that the moduli parameters do not change 
the dynamics of generic local degrees of freedom. We then show how 
Bianchi VIIQ model appears in the Belinskii-Zakharov approach, and 
how to obtain Painleve III equation. We then use these results to ob- 
tain a linear system whose zero-curvature condition is a Painleve III 
equation. 

2    The Class A Bianchi Models 

Bianchi models are spatially homogeneous spacetimes which admit a 
three dimensional isometry Lie group G that acts simply transitively 
on each leaf I! of the homogeneous foliation, for a review and references 
see [17]. As a consequence, there exists for each of these models a set 
of three left-invariant vector fields Lj on E which form the Lie algebra 
of the group G: 

[LI,LJ}=C
K

IJLK, (2.1) 

where C1 JK are the structure constants of the Lie group. 

Dual to the the vector fields Lj, one can introduce a set of three 
left-invariant one-forms x1 which satisfy the Maurer-Cartan equations 

dx1 + \ C'JK XJ A XK = 0. (2.2) 

If the trace C
I
IJ of the structure constants is equal to zero, the 

Bianchi model is said to belong to Bianchi class A. For this class of 
models, the spacetime admits foliations by compact slices. 

The structure constants for the class A Bianchi models can always 
be written in the form 

C JK = £JKLS   , (2.3) 

where €JKL is the totally antisymmetric symbol, and SIL is a symmetric 
tensor density of weight one over the Lie algebra of G. Further clas- 
sification of the class A Bianchi models is defined with respect to the 
signature of the symmetric tensor density SIJ. The type VII Bianchi 
model of class A is denoted as Bianchi VIIQ, and it is characterized by 
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the signature (+,+,0). Hence the structure constants for this model 
are given by 

C^K = ejKi S[ + ejK2 &{• (2-4) 

Bianchi models can be considered as the homogeneous sector of 
general relativity. The dynamics can be obtained by performing the 
corresponding reduction of the canonical formulation of general rela- 
tivity. The canonical variables of general relativity are the three metric 
gij(t,xl) on the spatial section S, and its canonically conjugate mo- 
menta TT*-

7
'^, x2), where xl are coordinates on E. The action for a Bianchi 

model can be obtained by inserting the expressions 

gijit, x) = gij(t))d(x)Xj{x), **& x) = i^mfaWjix) (2.5) 

into the canonical form of the Einstein-Hilbert action. This gives 

SBA = J dt (f'gu - N'Hj -NHo), (2.6) 

where the canonical variables (gjj, 7rIJ) have the Poisson brackets 

{9iJ^L} = l(SfSi + 8}Sf). (2.7) 

The vector constraint Hj, I = 1, 2, 3, is the reduction of the diffeomor- 
phism constraint, and Hj is given by 

HT = 2 CJ
KI gjL 7rLK = 2 eKIMSMJ gjL KLK

 « 0. (2.8) 

The reduction of the Hamiltonian constraint is HQ, and it is given by 

HQ = —L^TtfoTT^) - ^{tri+TzigSgS) - ^{gS)) « 0. 

(2.9) 
N1 and N are the corresponding Lagrange multipliers. The constraints 
(2.8) and (2.9) form a closed Poisson algebra 

{fr/,i3j} = C^/jffe> (2.10) 

{#(>,#/} = 0, (2.11) 

and therefore they constitute a set of first-class constraints. Further- 
more, the equation (2.11) implies that the hamiltonian constraint is 
invariant under the transformations generated by the vector constraint. 
This fact can be used to go to the parametrized particle form of the ac- 
tion, defined by the diffeomorphism invariant variables and the Hamil- 
tonian constraint. 
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3    Vector Constraint 

The standard approach to finding the dynamics of Bianchi models is to 
solve first the vector constraint. This requires the corresponding gauge- 
fixing, and because of (2.11), one can even find the diffeomorphism 
invariant variables explicitly. 

In the case of Bianchi VIIQ model the topology of E is fixed to be 
the three torus T3 and the coordinates xl = (x,y,z) can be chosen such 
that x1, x2? X3 have the canonical form 

X1 = cos z dx + sin z dy,    X2 = ~ s*11 zdx + cos z dy,        x3 = dz. 
(3.1) 

The three left-invariant one-forms x1 satisfy the Maurer-Cartan equa- 
tions for the type VII Bianchi model 

dx'+x'Ax'^O,    dx'+x'Ax^O,    dx3 = 0. (3.2) 

Note that every Bianchi model has a symmetry group M, which is 
the automorphism group of the Lie algebra of G. M can can be realized 
as a subgroup of GL(3,R) in the following way. Let us consider a 
set of the left-invariant vector fields Lj. They form the Lie algebra 
of G through the commutation relations (2.1). An invertible matrix 
MIj yields a new set of left-invariant vector fields Lj = LjMj, whose 
commutation relations will have the same structure constants as Lj if 
the following identity is satisfied 

C'JK = (M-1)^ CL
MN M

M
J M

N
K , (3.3) 

where (M-1)7
L is the inverse of the matrix MLj.   The matrices Mj 

with the condition (3.3) define the symmetry group M. 

as 
Equivalently, with the help of the identity (2.3), we can define M 

SIJ = (detM) "1 M'K S
KL

 (M
T
) L

J
 , (3.4) 

where (MT
)L is the transpose of the matrix MJ

L. In particular, in the 
case of the Bianchi-VII model the tensor density SIJ has the signature 
(+, +, 0) (see equation (2.4)), and hence the condition (3.4) implies the 
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following form of the matrix M 

'e^      0        0 \    / costf    sin^   u> 

M = MDME=\   0     ±elco    0       [-sin^   cos0   v \ .     (3.5) 

0 0      ±1/   V    0 0      1> 

Let us consider the following change of variables 

guV) = (ME*)?® QKL(t) {ME)
1
^) , (3.6) 

where (ME)
1j(t) is given by 

/ cos^(i)     sin^(i)   u(t)\ 
ME(t)=l-swO(t)   cos6(t)   v(t)     , (3.7) 

V      0 0 1/ 

and QJJ = diag(Qi7 Q2: Qs) is a diagonal matrix. It is useful to intro- 
duce new variables (/?o?/?+,/?_) as 

The definition (3.6) involves only ME, because by rescaling of Q by 
constants we can always put Mp = Id. 

We have two alternative ways of imposing the constraints Hj (2.8). 
One way is to complete the canonical transformation (3.6) by calculat- 
ing the conjugate momenta 

dgu   u dgu   Ij dgu   7J W = "w"7r ' p- = "asr^ ' ft=="ftr7r ■       (3-9) 

dgu   u dgu   JJ dgu   7J 

^ = ^7r ' *+ = w* ' p- = ^r7r '     (3-10) 

and then expressing the constraints (2.8) in terms of the new canonical 
pairs (0, po, u, pu, v, pv, (3°, po, (3+, p+, /5", P-). This is the approach 
taken by Kodama [16]. Alternatively, we can calculate 7rIJ as a function 
of (0, u, v, /J0,/^) and their time derivatives (0, ti, v, /?0, Z?-1", ^") and 
then impose the constraints Hj. Once the constraints are imposed we 
can calculate the pre-symplectic form and determine the canonically 
conjugate momenta for the diffeomorphism invariant variables. We 
will choose the second alternative, because it is simpler and it gives an 
independent check of Kodama's results. 



PAINLEVE III EQUATION 215 

Our first step is to express the conjugate momenta 7rIJ in terms of 
the new variables 

TT" = -y/feUj(gIMKMNgNJ - gIJgMNKMN), (3.11) 

where the extrinsic curvature KJJ is defined by 

Ku = j^ (-gu + (Ljtghj). (3.12) 

Our choice of foliation is such that N1 = 0, so that 

KIJ = ~9IJ. (3.13) 

The vector constraint (2.8) is expressed in terms of the product giK^KJ 

and from the equations (3.11) and (3.13) we calculate 

^       9IK -K3 = ^ {?1K9K3 - Sf (hK9KL)) ■ (3.14) 

Thus, 

Hi = 2g2Kn
K:i~g2KgK\ (3.15) 

H2 = -2g1KirK3~g1KgK\ (3.16) 

^3 = 2 (guc ^ - g2K ixKl) ~ {gXKgK2 - g2K9Kl) . (3.17) 

In order to impose the vector constraint, we only have to calculate the 
components of the product giK9KJ in terms of our new variables (3.6) 

9IK9
KJ

 ={ME
rQMEME-

lQ-l(ME
TYiyi 

+ (MB
T
QQ-

1
{ME

T
)-

1
)I

J
+ (ME

T(ME
T)-1) ' .   (3.18) 

We substitute (3.7) and (3.8) into (3.18) and after a straightforward 
calculation we find that iJj = 0 is equivalent to 

u-vd = Q    ,    v + uO^Q    ,    sinh2(2\/3/r)^ = 0. (3.19) 

Now we insert (3.6) into (3.11), and by taking into account (3.19), 
we obtain 

«"{t) = (A^1),* PKL{t) mE
l)T)Lj , (3-20) 
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where the matrix P = diag(Pi, P2, P3) and it is given by 

P1 = ^l ^vP+P+rfr-) (.2/50 + /?+ + V3/3-), 

P3 = _2 V^ c-20JO-v+) (^o + £+). (3.21) 

Note that in our calculation of P we have used the constraints (3.19), 
and therefore the expression (3.21) is valid for all solutions of the con- 
straints. The equations (3.19) have two classes of solutions. One class 
is given by 

which corresponds to the sector /3~ ^ 0,/?"~ ^ 0. This is a generic 
sector invariant under the Bianchi-VII group [16]. In this sector the 
vector constraint gives that u, v and 9 are constants and hence P is 
automatically diagonal. The second class of solutions is 

u - v6 = v + u6 = (3" = 0, 

and it is less obvious that P is diagonal in this case, but it is a conse- 
quence of the constraints (3.19). Namely, 9 appears in the off-diagonal 
part of P, but it is multiplied by a factor Q^1 — Q^"1, which vanishes 
for f3~ = 0. This is the sector which is invariant under a group larger 
then the Bianchi-VII group [16]. We will concentrate on the generic 
sector, although we will give some brief comments about the enhanced 
symmetry sector. 

The pre-symplectic structure a by definition (2.6) is 

a = irIJdgIj. (3.22) 

In order to calculate a in terms of the new variables we substitute the 
expressions (3.20) and (3.21) for the three metric gu and its conjugate 
momenta 7rIJ into the equation (3.22), and we obtain 

a = Tr (PdQ) + 2Tr (PQ dME ME-
1
) . (3.23) 

The second term in (3.23) can be calculated from the definition of the 
matrix ME (3.7), and we get 

0     d0   du-vdO^ 
dMs ME'

1
 = ( -dd    0    dv + ud9 | . (3.24) 

0      0 0 
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Prom (3.20) and (3.21) we obtain that the components of the diagonal 

matrix (PQ) j are 

(PQ)\ = !^(-2f3° + t3+ + V3p-) , (3.25) 

(PQ)22 = ^^(-2^° + /?'+ - V3/3-), (3.26) 

(PQ)\ =-2^-00+ /3+). (3.27) 

Since PQ is a diagonal matrix, it is obvious that 

Tr (PQ dME ME-
1
) = 0. (3.28) 

Thus, the second term in (3.23) is identically equal to zero and a is 
given by 

a = Tr (PdQ) . (3.29) 

Prom 

dQx = e2(^^++V3^)2(d^o + dp+ + 73^-) j (3.30) 

dQ2 = c2(^+/>+-V5/n2(d/30 + d/3+ - x/3d^-), (3.31) 

dQs = e2^0-2^2(dp0 - 2d/3+), (3.32) 

and from (3.21) we obtain 

y/detg 
a = 12 ^Bp ^_/?od/50 + p+dl3+ + p-dp-^j . (3.33) 

Since 

(12^)/*.,       ^-(12^)^ 

P_=(l2^)r, (3.34) 

the pre-symplectic form becomes 

a = p0d/?0 + p+d/?+ + p_d/r . (3.35) 

Note that (3.35) is the pre-symplectic form for the generic sector. 
The enhanced symmetry sector is a special case where p_ = /?" = 0, 
so that the pre-symplectic form becomes 

a=podp0+p+dp+. (3.36) 



218 N. MANOJLOVIC AND A. MIKOVIC 

Dynamics of the canonical pairs (/30 , po , (3+ , p+ , /5~ , p_) is de- 
fined by the Hamiltonian constraint (2.9). To calculate the expression 
for the Hamiltonian constraint in terms of the diffeomorphism invariant 
variables we substitute (3.20) and (3.21) into (2.9) and obtain 

tfo = -j^=(Tr(PQPQ) - ±Tr2(PQ) + Tr(SQSQ) - ±Tr2(SQJ). 

(3.37) 
We notice that the Hamiltonian constraint is independent of the un- 
physical variables (0, u, v). In addition, we already have the compo- 
nents of the product (PQ) j, which are given by the equations (3.25), 
(3.26) and (3.27), and SQ is a diagonal matrix 

(SQ)\ = e^+^ws/n  (SQy2 = cWfi+p-rfp-) > ^^ = 0, 
(3.38) 

Prom this we obtain that the Hamiltonian constraint for the generic 
sector is given by 

Ho = 6-^(-0of + (ffr)> + 0-)*) + 2-^2sinh^2V3r), 
(3.39) 

or in terms of the canonical pairs (3.34) 

Ho = ^|= (-(Po)2 + (P+)2 + (P-)2 + 48e4^0^+)sinh2(2v/3^-)). 

(3.40) 

The previous calculation applies also to the enhanced symmetry 
sector, but one must take into account that p- = {3~ = 0. The Hamil- 
tonian constraint then becomes 

which corresponds to the dynamics of a two-dimensional relativistic 
free particle. 

4    DifFeomorphism invariant phase space 

Note that the reduced pre-symplectic form (3.35) implies that the dif- 
feomorphism invariant phase space is given by {p^^) canonical pairs. 



PAINLEVE III EQUATION 219 

However, this is not correct, since it has been shown recently that the 
diffeomorphism invariant subspace is larger, because it contains the 
moduli parameters, which are associated with the global degrees of 
freedom of the metric [15], [16]. This is a consequence of the fact that 
Bianchi metrics on compact spatial slices represent compact Reiman- 
nian manifolds with non-trivial topology, and such manifolds can be 
locally diffeomorphic, but not globally diffeomorphic. 

As a result one cannot define globally a Bianchi metric, so that one 
needs a notion of locally homogeneous spacetime [13], [14]. A locally 
homogeneous Bianchi spacetime M with a symmetry group G can be 
represented as M/K, where M is a homogeneous Bianchi space-time 
with a simply connected spatial section, and K is a discrete subgroup 
of G [15]. In the following we will review Kodama's results [16], since 
his approach is suitable for the Hamiltonian formalism. 

The symmetry group G of the covering space M is defined as 

G = {/GDi//(M) |/,$ = $}, 

such that it is isomorphic to G, or it is the smallest possible group which 
contains G, and it acts transitively on M. $ = j*$ is the pullback of 
the canonical data $ on M and j : M -> M is the covering map. 

The moduli space can be parametrized with finitely many parame- 
ters {Aa}, which are determined from the covering maps j\ : M —> M 
such that Jl(7Ti(M)) = K\ is isomorphic to K and it is a subgroup of 
(5, where 7ri(M) is the fundamental group of M. One then has to find 
conjugacy classes of K\ under the homogeneity preserving diffeomor- 
phisms HPDG 

HPDG = {feDiff(M)\fGr1 = G}    . 

This procedure gives that K\ = fxKofo1, where KQ is a reference point, 
such that M/KQ is identified with M, and f\ is a linear transformation 
on M such that 

AV = FJX
J 

flQu - (FT)?gKLF« 
fWJ = (F-%nKL((F-r)i 

Ky/<tetj=(detF)(detxWfetgIj. (4.1) 
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Prom (4.1) one obtains that the pre-symplectic form (3.23) becomes 

a = M&tfJdgu + 2Ca{\y
jgIjd\a), 

where V = fD d3x det x, 

fi(A)= f  d3x(detx)(detF)) 
JDQ 

Ca(\) = ^[  d3x(detx){detF)daFF-\ 
iZ JDQ 

and DQ is the fundamental region of the action of KQ on M. The 
Hamiltonian constraint is rescaled by V/Q(\). 

In the case of Bianchi VII model, G = VIIQ, where + fixes the 
orientation of the spatial section. M is a three-torus T3, which can be 
represented as E3/K where E3 is the Euclidian space, and K = Z3. 
G = GXD21 where D2 is the dihedral group and x denotes a semi- 
direct product. K\ are represented by GL(3,R) matrices, whose last 
row is given by (In, rwr, nvr), /, m, n G Z. By using HPDG and modular 
transformations, K\ can be put into form 

/X     Y      Z\ 
^=[0    X-1   W     ,    X>0,    n>0. (4.2) 

\0      0      n7r/ 

Therefore X, V, Z, W and n represent the modular parameters. The KQ 

is associated with X = 1,Y = Z = W = 0, and the deformation map 
/A is given by the matrix 

(4.3) 

The fundamental region is DQ = {0 < x, y < 1,0 < z < nir}. 

Prom (4.3) one obtains 

F = R3(z)ARs(-z), (4.4) 

where R3 is the rotational matrix around z-ax.es. The correction in the 
pre-symplectic form due to modular parameters is given by 

Tr{FF-lPg) = [| cos(2z) - ±(XY - YX) sm(2z)] (Q^ - Q2P2). 

(4.5) 
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However, when (4.5) is integrated over DQ, one obtains zero, and hence 
5a vanishes [16]. Therefore the moduli parameters do not enter into 
the reduced pre-symplectic form, and hence they will not influence the 
dynamics of the local degrees of freedom. 

5    Hamiltonian Constraint 

The action for the generic sector of the Bianchi VIIQ model can now be 
expressed in terms of the canonical variables (p^, (3^) as 

S = J dt^-NHo), (5.1) 

were N is the Lagrange multiplier and i/o = ^detgHo/A is the rescaled 
Hamiltonian constraint (3.40). This system is reparametrization invari- 
ant i.e., it has a symmetry generated by the constraint j^o 

dN 
5p = e{H0,p},     5q = e{Ho,q},     8N = —, (5.2) 

where e is the parameter of the transformation. 

In order to find the dynamics of the physical degrees of freedom, 
we need to fix the reparametrization gauge symmetry (5.2). As dis- 
cussed in [18], this type of gauge-fixing requires the specification of the 
time variable, in addition to the usual requirement that the Faddeev- 
Popov determinant is non-zero. In the case of our system, the analysis 
simplifies if we introduce new canonical coordinates 

T = 4(/30 + /?+)-lnl6,    PT = 1(PO+P+), 

<? = 608° - p+),    p1 = l(p0-p+)l 

g = 4V3/r,    P=^p-. (5.3) 

The Hamiltonian constraint now becomes 

Ho = -PTPI + \p2 + SeT sinh2(|) , (5.4) 
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Since (5.4) is independent of g1, it follows that pi is a constant c. On 
the other hand, the Lagrange multiplier N plays the role of the one- 
dimensional metric on the world-line parametrized by t, and hence it 
can be set to a positive constant via (5.2). Since the equation for T is 
given by 

t + dV = 0, (5.5) 

then one can choose the following gauge 

T = £,    N = -l/c. (5.6) 

Note that the gauge choice (5.6) requires pi = c < 0, in order for 
N to be positive and finite. Configurations with pi = —c are physi- 
cally equivalent to pi = c configurations, because our system is invari- 
ant under time-reversal (configurations with pi = —c have T = —t). 
The configurations with pi = 0 are excluded, since they belong to the 
enhanced-symmetry sector p_ = /5~ = 0. 

The equation (5.6) defines the required gauge choice, and therefore 
the Hamiltonian of the physical degrees of freedom is given by solving 
the Hamiltonian constraint for pr 

Hence the physical phase space is given by the (p, q) canonical pairs, and 
the corresponding Hamiltonian is given by H*. The dynamical consis- 
tency of the gauge choice (5.6) can be checked explicitly, by comparing 
the equations of motion for PTIP,Q from (5.4) with the corresponding 
equations coming from the reduced Hamiltonian if*. For example 

rt- - -aiW.toh«(!) = ^ + {ir.prY = e-§,     (5.8) 

where {,}* is the Poisson bracket with respect to the reduced phase 
space variables (p,g). 

From H* we get p = q and p = —4e* sinh g, so that 

/72/7 
-^f+ 4e'sinhtf = 0. (5.9) 

This is a Painleve III equation [22]. One can put (5.9) into the standard 
form via time redefinition r = e* 

4-(T^r)+4amhq = 0. (5.10) 
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Note that the standard form (5.10) could have been also obtained 
directly by choosing the gauge T = logt, pi = — c and N = —l/(ct). 

6    Zero-curvature representation 
of Painleve III 

By using a more general framework of Belinskii-Zakharov inverse scat- 
tering method for the spacetimes admitting two commuting spacelike 
Killing vectors [5], Belinskii and Prancaviglia showed that the Einstein 
equations for certain Bianchi models admit a zero-curvature represen- 
tation [12]. In this section we will review their approach for Bianchi 
I, II, VIQ and VIIQ models. A particular attention will be given to the 
Bianchi VIIQ model. We will show that within the framework of the 
inverse scattering method, the dynamics of the Bianchi VIIQ model is 
given by the Painleve III equation (5.10). This is in complete accor- 
dance with the results from the previous section. In addition, we will 
derive a zero-curvature representation for this Painleve III equation. 

We begin with a brief discussion of Belinskii and Zakharov method 
for the midi-superspace models that are characterized by the existence 
of a two-parameter Abelian group of motions with two spacelike Killing 
vectors [5]. Let us choose coordinates adapted to the action of the 
symmetry group so that the metric assumes the following form 

ds2 = -f dt2 + fdz2 + gab dxadxb , (6.1) 

where a,b = 1,2, {x0,^1,^2,^3} = {t,x}y,z}, / is a positive function 
and Qat, is a symmetric two-by-two matrix. The function / and the 
matrix Qab depend only on the co-ordinates {t,z}, or equivalently on 
the null co-ordinates {£, 77} = {5(2 + *), 5(2 — £)}. There is a freedom 
to perform the co-ordinate transformations 

it,*} ^ {m,v(v)} ■ (6-2) 
It is easy to see that the transformations (6.2) preserve both the confor- 
mally flat two-metric f(—dt2 + dz2) and the positivity of the function 
/if dtldrfi >0. 

The complete set of vacuum Einstein equations for the metric (6.1) 
decomposes into two groups of equations [5]. The first group determines 
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the matrix gab and can be written as a single matrix equation 

dr, {a % g-1) + dt {a d^g g'1) = 0, (6.3) 

where a2 = detg and {£,77} are the null co-ordinates. The second 
group of equations determines the function /(£, 77) in terms of a given 
solution of (6.3): 

0f(ln/) = « + -^t^, '(6.4) 

^ln/) = ^) + 4^;tr5' (6-5) 

where a^ = d^a, av — d^a and the matrices A and B are defined by 

A = -a % p"1,        B = adT1g g~l. (6.6) 

The dynamics of the system is thus essentially determined by the equa- 
tion (6.3). By taking the trace of the equation (6.3) and by using the 
definition for a, we obtain 

a^-Q. (6.7) 

The two independent solutions of this equation are 

aMO + dfo),    /? = c(fl - dfa). (6.8) 

By using the transformations (6.2), one can bring the functions c(£) 
and d{rj) to a prescribed form. However, we will consider the general 
form without specifying the functions c(£) and d(r/) in advance. 

The crucial step in the inverse scattering method is to define the 
linearized system whose integrability conditions are the equations of 
interest, in our case the equation (6.3). Following ref. [5], we define the 
two differential operators 

Dl = di   -^dx , (6.9) 
A — a 

02 = 3,   +^dx , (6.10) 
A + a 

where A is a complex parameter independent of the co-ordinates {£, 77}. 
It is straightforward to see that the differential operators Di and D2 
commute since a satisfies the wave equation (6.7) 

[DiiD2]=airi^^dx = 0. (6.11) 
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The next step is to consider the following linear system 

D^ = -^-^, (6.12) 
A — a 

A + Q: 

where ^(A, £, rj) is a complex matrix function, and the real matrices A, 
B and the real function a do not depend on the complex parameter 
A. The integrability conditions for the system (6.12) and (6.13) are 
given by the equation (6.3). Furthermore, a solution ^(A,f,77) yields 
a matrix #(£,77) that satisfies the original equation (6.3). Namely, the 
matrix #(£,77) is given by 

9(^V)=HK^V)\X=0- (6-14) 

In order to take into account that #(£, rj) is real and symmetric we have 
to impose two additional conditions, see [5]. Also, it is easy to see that 
the equations (6.12) and (6.13) for A = 0, imply equations (6.6). 

Although Belinskii and Francaviglia formulation is more general 
[12], we will discuss only type A Bianchi models which are compat- 
ible with the inverse scattering method. It is not difficult to show 
that Bianchi types I, II, VIQ and VIIQ admit the representation (6.1). 
Namely, the metric for these Bianchi types has the form 

ds2 = -dT2 + gij dxidxj , (6.15) 

where 
9ij = 9IJ XJi XJj • (6.16) 

For these models it is always possible to have the one forms x1 in the 
following form 

X1 = I1! dx + l\ dy, x2 = l2i dx + l22 dy , x* = dz , (6.17) 

where /% are functions of z only. Let us consider the two-by-two matrix 

An important consequence of the Maurer-Cartan equations for the one 
forms x1 is that the matrix I satisfies the following linear differential 
equation 
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where the matrix C is the same matrix as the upper two-by-two block 
on the principal diagonal of the matrix SIJ defined in the equation 
(2.3). e is the antisymmetric matrix with 612 = 1. 

After a time redefinition t = t(T), the metric (6.15) can be written 
in the form 

ds2 = f(t) (-dt2 + dz2) + gab(t, z) dxadxh. (6.20) 

Here / is a function of t only, and 

g(t,z) = lT{z)1{t)l(z), (6.21) 

where / is given by (6.18) and 7 is a two-by-two symmetric matrix. 
Notice that now 

a2 = (deU)2det7. (6.22) 

Moreover, for these models, the determinant of the matrix / is always 
equal to one, i.e., detZ = 1, so that 

a2{t) = det1(t). (6.23) 

In addition, a has to satisfy the equation (6.7), which now reads 

&{t) = 0. (6.24) 

Hence, a can only be a linear function of time. 

As Belinskii and Francaviglia have showed [12], the linearized sys- 
tem (6.12) and (6.13) can be simplified for the models described by the 
metric (6.20). The first step is to define a two-by-two matrix function 
^ by 

^ = lTipl, (6.25) 

and a constant two-by-two matrix 

R = eC. (6.26) 

The second step is to substitute (6.21) into (6.6) and use the definition 
of the coordinates £ and 77. Then the results of these calculations, 
together with the definition (6.25), can be used to simplify the equations 
(6.12) and (6.13). The crucial step in which a simplification occurs is 
the coordinate transformation {£, z, A} —> {£, w, A}, where w is given 
by 

W = 1(T+2I3+X) • (6-27) 
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To perform this co-ordinate transformation we can use ot and /3 as 
given by (6.8). The linear system after this co-ordinate transformation 
involves only derivatives in t and A since all the terms involving deriva- 
tives in w are canceled. Finally, it is useful to make some simple linear 
combinations of the two equations and to use the fact that a is a linear 
function of time. In this way one obtains a new linear system 

^ J-    / -rVT1 •     i T^TT TVT1    i 
dxW = — [-Rw-ipR   +^77   <p+-^(pR   -j^-yRj   <p 

(6.28) 

Although the matrix function <p(£, \,w) depends on all three variables, 
the right-hand side of the system (6.28) does not have any w depen- 
dence. 

The integrability condition for the system (6.28) is 

-^HT"1) - RlRTl~l - lRTl~lR. (6.29) 

To derive the equation (6.29) from the system (6.28) it is necessary to 
use the fact that for these models a is a linear function of time. 

Equivalently, one can derive the equation (6.29) by a direct sub- 
stitution of the formula (6.21) into equation (6.3). A straightforward 
calculation, using the definition of £, 77, the equation (6.19) and the fact 
that a is a function of time only, yields the equation (6.29). Thus the 
dynamics of the these Bianchi models is essentially determined by the 
equation (6.29). Furthermore we have confirmed that the linear system 
(6.28) corresponds to the Bianchi models under consideration. 

Let us now consider Bianchi VIIQ model. In that case the spatial 
hyper-surface is a three torus T3. As we have shown, the modular 
parameters do not affect the dynamics of the local degrees of freedom, 
and hence the equations (6.29) and (6.28) will be correct dynamical 
equations. 

The matrix / for Bianchi VIIQ model is given by 

l=(C0SZ    Sinz), (6.30) 
\ — smzcoszJ v       / 
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and therefore R is 

R = (fj   J) . (6.31) 

We can take 7 to be diagonal 

,= («;«). (6.32) 

We also choose a = t, thus the following relation between the functions 
a and b 

a = ab = t. (6.33) 

In order to derive the differential equation which defines the dynamics 
for this model we substitute formulas (6.31) and (6.32) into equation 
(6.29) and use the relation (6.33) in order to eliminate the function b. 
A straightforward calculation yields the following scalar equation 

- 4 (2*a/a) = t2a-A - a4r2 . (6.34) 
t at 

The redefinitions r = t2/4 and eq = a4/4r then give the Painleve III 
equation (5.10). If we define / = eq then the equation (5.10) becomes 

dr*      f -i&y-MhX-M-    <«*> 
The equation (6.35) is the canonical form of the Painleve III equation 
with the coefficients a = —2, (3 = 2, 7 = 5 = 0, see [22]. 

7    Conclusions 

The dynamics of the generic sector of the Bianchi VIIQ model is given 
by a Painleve III equation, and therefore it is an integrable model. The 
moduli parameters do not affect the dynamics of this sector, and hence 
do not spoil the integrability. Therefore the original claim by Belinskii 
and Francaviglia that the Bianchi VIIQ model is integrable is shown to 
be correct. Furthermore, by using their results, we have found a zero- 
curvature representation of the corresponding Painleve III equation. 

In the enhanced symmetry sector we have obtained a linear dynam- 
ical equation. We expect that the moduli parameters would not spoil 
this, although a thorough investigation of this point would be necessary. 
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The result that a Painleve III equation appears as the dynamical 
equation of the local degrees of freedom in the Bianchi VIIQ model can 
be used to obtain information both about the Painleve III equation and 
about the physical properties of the model. 

As far as the theory of Painleve III equation is considered, the lin- 
ear system (6.28) represents a new tool for the study of Painleve III 
equation. This linear system is different from the linear system which 
is used for the study of Painleve III equation within the isomonodromic 
deformation method [19], [20], [21]. However, it remains to be explored 
what are the advantages of the new linear system. 

On the cosmology side, one can now examine the physical properties 
of the solutions, like small and large time asymptotic, as well as the sin- 
gularities, since these properties of the Painleve III solutions have been 
thoroughly studied [21]. In addition, the quantization of this model 
should be straightforward, since the reduced phase space Hamiltonian 
can be promoted into a Hermitian operator. However, it is not clear 
whether one can find exact solutions for the quantum dynamics, since 
the Hamiltonians at different times do not commute. 
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