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Abstract 

We study global worldsheet anomalies for open strings end- 
ing on several coincident D-branes in the presence of a jB-field. 
We show that cancellation of anomalies is made possible by a 
correlation between the t'Hooft magnetic flux on the D-branes 
and the topological class of the 5-field. One application of our 
results is a proper understanding of the geometric nature of 
the gauge field living on D-branes: rather than being a connec- 
tion on a vector bundle, it is a connection on a module over 
a certain noncommutative algebra. Our argument works for a 
general closed string background. We also explain why in the 
presence of a topologically nontrivial J5-field whose curvature is 
pure torsion D-branes represent classes in a twisted K-theory, 
as conjectured by E. Witten. 
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1    Introduction and summary 

The goal of this paper is to understand the conditions for cancellation 
of global worldsheet anomalies for open strings ending on D-branes. In 
the case when all D-branes are noncoincident, this has been achieved 
in [1]. It turns out that interesting new phenomena arise when one 
considers coincident D-branes with nonabelian gauge fields. In partic- 
ular, noncommutative geometry makes an appearance. Recently, it has 
been argued by many authors that the gauge field on D-branes is bet- 
ter understood as a connection on a module over some noncommutative 
algebra rather than as a connection on a vector bundle. This has been 
demonstrated for D-branes in flat space in the presence of a constant 
B-field [2]. Our setup is much more general (arbitrary metric and B- 
field), so it is nice to see that the same interpretation of the gauge field 
arises again. On the other hand, we will be concerned only with the 
topological properties of the gauge field, leaving its dynamics aside. 

1.1     Review of twisted K-theory 

The main motivation for this study was the interpretation of D-brane 
charges in terms of K-theory [3, 4], so we begin by reviewing it. It has 
been suspected for some time that D-brane charges are most naturally 
understood as classes in K-theory rather than as integer cohomology 
classes [3].^ The basic reason for this is that D-branes carry vector 
bundles. In Ref. [4] E. Wit ten showed that the relation between D- 
branes and K-theory can be understood very simply using some ideas of 
A. Sen [5]. For IIB string theory one considers a configuration of equal 
number of D9 and anti-D9-branes carrying vector bundles E and F. 
The pair (E, F) defines a class in K-theory. It is easy to see that creation 
of virtual brane-antibrane pairs from vacuum does not change the K- 
theory class. Thus the stable state into which the brane-antibrane 
system settles after tachyons condense can be labeled by this class. It 
is also very plausible that if pairs (E, F) and (£", F') have the same 
K-theory class, then they lead to the same stable state, as one can 
be converted to the other by a virtual process. Conversely, Witten 
explained how, given a D-brane wrapped on a submanifold, one can 
construct a K-theory class it represents. 
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In the presence of the Neveu-Schwarz B-field these arguments should 
be modified. One way to see this is to note [4, 1] that a single D-brane 
can be wrapped on a submanifold Q if and only if the normal bundle 
N of Q satisfies: 

W,(N) = [H)Q. (1) 

Here Wz(N) G HS(Q,Z) is the image of the second Stiefel-Whitney 
class W2(N) under the Bockstein homomorphism, [H] is the integer co- 
homology class whose de Rham representative is H = dB, and [H]Q is 
its restriction to Q. Eq. (1) is the condition of cancellation of global 
anomalies for open strings ending on Q [1]. It refines the usual state- 
ment that the restriction of H to the worldvolume of a D-brane must 
be trivial in de Rham cohomology. When [H]Q = 0 the condition (1) 
says that iV has Spinc structure, and enables one to construct a class 
in the K-theory of space-time X corresponding to a D-brane wrapped 
on Q [4]. When [H]Q is nonzero, the submanifold Q does not represent 
a K-theory class. 

In Ref. [4] it has been proposed that when [H] belongs to a tor- 
sion subgroup of H3(M,Z), D-brane charges take values in a certain 
"twisted" version of K-theory KH{M). (In mathematical literature it is 
sometimes called K-theory with local coefficients.) To motivate the def- 
inition of KH(M), let us recall that the space of global sections r(M, E) 
of a (finite-dimensional) vector bundle E is a (finitely generated) pro- 
ject ive module over the algebra of continuous C-valued functions on M 
ContAf (C). (A projective module is a module which is a direct sum- 
mand of a free module. r(M, E) is projective for any E because any 
E is a direct summand of a trivial vector bundle.) Since M is com- 
pletely determined by the algebra ContM (C), it should be possible to 
define K(M) directly in terms of ContM(C). Such a definition is in- 
deed possible: for any algebra A one can define its K-group K(A) as the 
Grothendieck group of finitely generated projective modules over A. By 
a theorem of Serre-Swan [6, 7] the category of finitely generated pro- 
jective modules over ContM(C) is equivalent to the category of finite- 
dimensional vector bundles over M, hence if (ContM(C)) = K(M). 

Now it is plausible that when the B-field is present, we must replace 
ContM(C) with some other (noncommutative) algebra A and consider 
K(A). Morally speaking, this follows from the lore that when the B- 
field is switched on, M becomes a noncommutative space in the sense 
of Connes [8, 2]. 
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A natural class of algebras is provided by so-called Azumaya al- 
gebras [9]. An Azumaya algebra of rank m over M is a locally trivial 
algebra bundle over M whose fiber is isomorphic to the algebra of m x m 
matrices Matm(C). A trivial example of an Azumaya algebra over M 
is Matm(C) <g) ContM(C), i.e. the algebra of Matm(C)-valued functions 
on M. A slightly less trivial example is the algebra End(i?) of all endo- 
morphisms of a vector bundle E over M. Two Azumaya algebras A and 
A' over M are said to be equivalent if there exist two vector bundles E 
and E' over M such that A^End^) is isomorphic to A/(2)End(£T/). In 
particular, an Azumaya algebra of the form End(i£) is equivalent in this 
sense to Cont^C) for any E. This definition of equivalence is useful 
because the K-group of an Azumaya algebra depends only on its equiv- 
alence class [10]. Moreover, by a theorem of Serre [9] equivalence classes 
of Azumaya algebras over M are classified by the torsion subgroup of 
H3(M,Z)} We will denote by 5(A) the class in #3(M,Z) correspond- 
ing to A. To summarize, for any torsion class [H] G JF/"

3
(M, Z) there is 

a unique equivalence class of Azumaya algebras and the corresponding 
K-group KH(M). It is natural to conjecture [4] that KH(M) classifies 
D-brane charges when [H] is a torsion class. 

It possible to give a more down-to-earth description of Azumaya 
algebras and their modules. Let us pick an open cover {Ui} such that 
all Ui and their multiple overlaps are contractible. An element of an 
Azumaya algebra A of rank m is a section of a vector bundle with fiber 
Matm(C), i.e. it is a collection of functions Ri : Ui —>• Matm(C) such 
that on double overlaps Ui n Uj = Uij we have 

Ri = djRjGjj . (2) 

Here Gy are GL(m,C)-valued functions over U^. Consistency of (2) 
on triple overlaps Uijk requires 

GijGjkGki = Ojki (3) 

where Qjk are C*-valued functions. It is easy to see that Qjk define a 
Cech cocycle, and therefore an element ( G H2(M, ContAf(C*)). Here 
C* is the group of nonzero complex numbers. £ is a measure of non- 
triviality of the Azumaya algebra A.   By a well-known isomorphism 

1This subgroup is called the topological Brauer group of M and is denoted 
Br(M). 
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H2(M, ContM(C*)) ^ H3(M,Z) we can reinterpret ( as a class in 
ii/^MjZ); this is the class 5(A) mentioned above. 

A module over an Azumaya algebra can be described as follows. 
Suppose we are given a set of functions hij : Ui -> GL(n, C) satisfying 
on triple overlaps 

hijhjkhki = Cijk, (4) 

where the cocycle ( is the same as in (3). Consider a vector bundle 
with fiber CnTn and transition functions 

h^^Gij. (5) 

First of all, such a bundle makes sense since the transition functions sat- 
isfy the usual "untwisted" gluing condition on triple overlaps. Second, 
its fiber 

cnm ~ cm e • • • e cm (6) 

is naturally a module over Matm(C), the fiber of A. Third, it is easy to 
check that the obvious "fiberwise" action of A makes it into a module 
over A. It can be shown that this module is projective if M is a nice 
enough space (compact, for example). Moreover, all projective modules 
of A arise in this way.2 

1.2    Azumaya algebras and D-branes 

Now we are going to explain the relation between global worldsheet 
anomalies and Azumaya modules. The basic idea is rather simple. The 
starting point for the Sen-Witten construction of stable D-branes in 
IIB string theory is a configuration containing n D9-branes and n anti- 
D9-branes. When [H] = 0, the D-branes carry a principal bundle with 

2Let us give a sketch of a proof. First, a projective module over A is also a projec- 
tive module over ContM(C) and therefore corresponds to a vector bundle E over M. 
Second, it can be shown that the fiber of E must be a module over Matm(C). Third, 
any module over Matm(C) has the form (6) for some n [11]. Fourth, the action of 
A on any given fiber Ex of E generates a subalgebra Ax of End(Ex) ~ Matnrn(C) 
isomorphic to Matm(C). Fifth, let the transition functions for E be gij. It is easy 
to see that in order for the fiberwise action of A to be consistent on double overlaps, 
G^gij must be in the centralizer C(AX) of A^. Since both A^ and Eiid(Ex) are 
central simple algebras, by Corollary 3.16 of [11] End(Ex) ~ Ax (g) C(AX), and it 
follows that there exists a trivialization of E such that g^ have the form (5). 
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structure group U(n). We will show that when [H] is nonzero, the 
D-branes carry a principal SUfo)/^ bundle which cannot be lifted to 
a U(n) bundle. The obstruction to lifting an SU{n)/'Ln bundle to a 
U(n) bundle is a certain class in i?3(M, Z) closely related to the t'Hooft 
magnetic flux. We will prove that cancellation of global worldsheet 
anomalies requires that this class be equal to [H]. 

An SU(n)/7in bundle without U(n) structure can described in terms 
of transition functions as follows. Take an associated vector bundle 
in the adjoint representation of 5t/(n)/Zn. Its section is given by a 
collection of functions fc : Ui —» Tz(n), where u(ri) is the Lie algebra of 
SUijij/TLn, i.e. the space of all hermitian n x n matrices. On double 
overlaps they satisfy 

fi = hijfjh^1, (7) 

where hij are [/(n)-valued matrices. Consistency on triple overlaps 
requires 

hijhjkhki = Cijki (8) 

where Qjk are [/(l)-valued functions. The cohomology class of £ in 
#2(M,ContM(£/(l))) ^ #3(M,Z) is the obstruction to lifting the 
SU(ri)l'Ln structure to a U(n) structure. 

Comparing (8) and (4) we discover that an /S'[/(n)/Zn bundle with- 
out U(n) structure corresponds naturally to a module over an Azumaya 
algebra A with 5(fk) = (. Since we have both D9-branes and anti-D9- 
branes, we get a pair of modules over the same algebra A which define 
a class in KH{M). It is also easy to see that creation and annihilation 
of branes does not change this class. 

Furthermore, the gauge field in the fundamental representation of 
U(n) (whose holonomy enters the open string path integral, see below) 
cannot be a connection on a rank n vector bundle over M, since there 
is no such bundle around. Instead, the gauge field is a connection on 
the Azumaya module defined above. 

Thus cancellation of global worldsheet anomalies for open strings 
ending on D9-branes is the reason why D-brane charges take values 
in KH{M). More generally, one can analyze these anomalies for open 
strings ending on D-branes of arbitrary dimension. This yields con- 
sistency conditions for wrapping multiple D-branes on a submanifold 
Q C M. To formulate these consistency conditions we need to be more 
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precise about the relation between the t'Hooft magnetic flux and the 
obstruction to having U(n) structure. The t'Hooft magnetic flux is a 
cohomology class y € H2{Q,rLn) which measures the obstruction to 
lifting an SU^)/!^ structure to an SU(n) structure. Consider a short 
exact sequence of groups 

0 -> Z -> Z ->► Zn -> 0, (9) 

where the second arrow is multiplication by n and the third arrow is 
reduction modulo n. It leads to a long exact sequence in cohomology 

... H2(Q, Zn) -> H\Q, Z) -> H\Q, Z)... (10) 

The homomorphism H2^,!^) —> HS(Q,Z) is a Bockstein homomor- 
phism and will be denoted /5/. As explained in more detail below, the 
obstruction to having a U(n) structure is precisely I3'(y). We will show 
that for bosonic strings cancellation of global anomalies requires 

P'(y) = [H}Q- (ii) 

For superstrings we find that global anomalies cancel if 

(3,(y) + Ws(N) = [H}Q. (12) 

This generalizes (1). We will also explain the analogue of these condi- 
tions for Type I D-branes. 

1.3    The mechanism of anomaly cancellation 

Showing that global worldsheet anomalies cancel if (11) or (12) are 
satisfied is unfortunately rather tedious. (For an analogous argument 
in the abelian case see [1], Section 6. The argument for Type I D9- 
branes was sketched in [12].) This is because we tried to keep the 
discussion elementary yet reasonably rigorous. Let us briefly explain 
what is involved in the argument. For simplicity, consider the path 
integral for an open bosonic string in the presence of D9-branes: 

fvt exp  V^ISNG^ + V^IJ eB    TrHolasiA).       (13) 

Here £ is the map from the worldsheet E to the target space M, SJVG^] 

is the Nambu-Goto action, A is the U(n) gauge field on the D9-branes, 
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Holy (A) is the holonomy of A along the loop 7, and Tr is the trace 
taken in the fundamental representation of U(n). It will be sufficient 
to consider the case when E is a disc. The Nambu-Goto action is a well- 
defined function on the space of maps Map(£, M) from S to M, but the 
other two factors are more problematic. Indeed, while H = dB is a well- 
defined 3-form, B itself may have "Dirac string singularities." Similarly, 
since the ,S77(n)/Zfc bundle cannot be lifted to a U(n) bundle, the trace 
of holonomy of the gauge connection in the fundamental representation 
of U(n) is not well-defined. This can be traced back to the "twisted" 
gluing condition (8). 

In fact, both of these factors make perfect sense if we interpret them 
as sections of certain line bundles over Map(S, M) rather than as mere 
functions. Recall that the trace of holonomy of a connection on an 
ordinary vector bundle is a function on a free loop space LM of M. 
We can define the trace of holonomy for our "connection" as well, but 
it turns out that it takes values in a certain nontrivial line bundle over 
LM. Similarly, the phase factor coming from the 5-field is a section of 
a well-defined line bundle over Map(E, M). 

We are actually interested not in holonomy around arbitrary loops 
51 -> M, but around those loops which extend to a map E —» M 
where E is a disc. Thus we are interested not in the above-mentioned 
line bundle over LM but in its pull-back to Map(E, M). We will show 
that the pull-back is trivial, and the phase factor coming from the B- 
field provides its trivialization. As a result, although neither the trace 
of holonomy nor the phase coming from the B-field are functions on 
Map(E, M), their product is a well-defined function. This implies that 
the open string path integral is well-defined. 

1.4    Outline of the paper 

The paper is organized as follows. In Section II we recall how to de- 
fine 5-field in a topologically nontrivial situation. In Section III we 
describe the topology of the gauge fields living on D-branes. In Section 
IV we explain how one is supposed to understand the trace of holon- 
omy of a connection in the fundamental representation of U{n) in the 
presence of t'Hooft magnetic flux. In Section V we define the phase fac- 
tor exp(—\/—T f CB) following [13, 14] and show that the open string 
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path integral for bosonic strings is well-defined if the condition (11) is 
satisfied. In Section VI we extend the discussion to superstrings and 
show that anomalies cancel if (12) is satisfied. As explained above, this 
implies that stable D-branes in Type IIB string theory are classified by 
KH(X). In Section VII we discuss what happens when [H] is not a 
torsion class. 

A word about conventions. We denote by R the field of real num- 
bers, and by Z the abelian subgroup of R generated by 27r. Of course, Z 
is canonically isomorphic to the group of integers Z. It is also a module 
over the ring Z. We will normalize H = dB so that its periods are 
integer multiples of 2TT. Thus [H] will be a class in i?3(M, Z) rather 
thanin#3(M,Z). 

2    The definition of the B-field 

The precise definition of the B-field is most conveniently formulated in 
the language of Cech—de Rham cohomology [13, 1]. Choose an open 
cover Ui, i 6 /, of M, such that all ZYi, the double overlaps Uij = Ui nUj, 
the triple overlaps Uijk, etc., are contractible (such a cover exists for 
any manifold.) On each Ui there is a well-defined real 2-form Bi. On 
double overlaps Uij we have the relation 

Bj-Bi^dAij, (14) 

where Ay are real 1-forms. These 1-forms satisfy a consistency condi- 
tion on triple overlaps Uijk' 

Aij + Ajk + Aki = -V^ldlog ay*, (15) 

where a^ are i7(l)-valued 0-forms. In turn, a^ satisfy a further 
constraint on quadruple overlaps Utjki'. 

aijk®jkiaiki%] = 1. (16) 

Equations (14-16) mean that S-field is a connection on a gerbe [15], as 
defined in [16]. However, we will not use this terminology here. 

Equation (16) implies 

- log ctijk + log ajki - log aiki + log aiji = V^rriijkh (17) 
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where rriijki G Z. m^ form a Cech cochain with values in Z. Moreover, 
it is easy to see from (17) that m is a Cech cocycle and therefore 
represents a class in H3(M,Z). This class will be called [if], because 
its de Rham representative is H = dB. 

Note that the condition (16) means that the functions a^ form a 
2-cocycle with values in ContM(i/(l)), the sheaf of £/(l)-valued con- 
tinuous functions on M. One can construct the corresponding class in 
H2(M, Contflf (£/(!)) directly from [H] by the following standard argu- 
ment. Consider an exponential exact sequence of sheaves 

0 -> Z -► ContM(M) -> ContM(tf (1)) -> 0. (18) 

It induces a long exact sequence in cohomology which reads in part 

... #2(M, ContM(K)) -> #2(M, ContM{U(l))) 

-± HS{M, Z) -► iy3(M, ContM(M))....   (19) 

But the sheaf ContM(K) is fine, so HP{M, ContM(K)) = 0 for all p > 0. 
It follows that #2(M,ContM(£/(l))) is isomorphic to #3(M5Z). The 
cohomology class of a is mapped to [H] under this isomorphism. 

We are interested in the situation when we are given a submanifold 
Q C M and the restriction of H to Q is trivial in de Rham cohomol- 
ogy, i.e. [H]Q is pure torsion. Until Section 5 we are going to work 
exclusively with objects on Q, so in order not to clutter notation we 
will omit the subscript Q until further notice. Hopefully this will not 
cause confusion. 

An open cover {Ui} of M induces an open cover of Q indexed by 
the same set /. By abuse of notation, we will continue to refer to the 
elements of the cover as Ui. If H is trivial in de Rham cohomology, 
there exists a 2-form B such that H = dB. Then Bi = B + //;, where 
fii is a real 1-form on Ui. From (14) it follows that on double overlaps 
we have 

fjLj - fM - Aij = dpij, (20) 

for some real 0-forms pij. From (15) and (20) it follows that on triple 
overlaps we have 

-y/^i(pij + pjk + Pki) = log aijk - log djk, (21) 

where djk are complex numbers with unit modulus. The numbers djk 
form a Cech cochain with values in U(l).  In fact (17) implies that C 
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is a Cech cocycle and so defines a class in H2{Q, U{1)). The origin of 
this class can be understood more abstractly as follows. Consider an 
exponential exact sequence of groups 

0 -4 Z -4 M -4 UQ) -4 0. (22) 

It leads to a long exact sequence in the cohomology of Q which reads 
in part 

... H\Q, [/(I)) -4 H\Q, Z) -> H\Q, R)... (23) 

The first arrow here is a Bockstein homomorphism which we will call 
/?. Since the cohomology class of H in i?3((5,M) is trivial, exactness 
implies that there is an element £ G H2(Q, U(l)) such that /?(£) = [H]. 
C is precisely the class we have constructed above using Cech cocycles. 

The topology of the gauge bundle on 
D-branes. 

It is usually said that A (the gauge field on D-branes) is a connection 
on a U(ri) vector bundle over Q, but transforms nontrivially under the 
gauge transformation B -4 B + dA, to wit A -4 A — A. We need a 
more precise statement which would tell us how 1-forms Ai on various 
patches are glued together. We regard A as a collection of 1-forms 
Ai,i G /. We postulate that on double overlaps they satisfy 

Ai = gijAjg^1 + V^gijdg^1 - Ay. (24) 

Here Ay are the same 1-forms as in (14), and (/y are U(n)-valued func- 
tions. The transformation law (24) is not the correct transformation 
law for a connection on a vector bundle. It is not even immediately 
clear how to define the holonomy of such a "connection" A around a 
loop. A natural definition exists only when the restriction of H to Q 
is trivial in de Rham cohomology. It will turn out that the trace of 
holonomy of A takes values in a line bundle over the loop space LQ 
rather than in complex numbers. 

Apart from the last term in (24), the transformation law for Ai is 
that of a connection on a vector bundle. To be precise, for a vector 
bundle the gluing functions py must satisfy 

gijQjkgki = 1. (25) 
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We will impose instead 

9ij9jkgki = otijk, (26) 

where otijk were defined in (15). The reason for this peculiar definition 
is that it will make the open string path integral well defined. 

In order to understand in what sense A is a "connection", we need 
to get rid of the last term in (24). Recall that when B is flat, A^ satisfy 
(20). We define new 1-forms Ai by 

A>i = A.i     fii. 

Their transformation law follows from (24) and (20): 

Ai = hijAjh-j1 + ^Ihijdh-j1, (27) 

where 
hii^gae"^^. (28) 

The transformation law for Ai looks like that of an ordinary connection 
on a vector bundle. However, the gluing functions hij do not satisfy 
the usual condition (25) on triple overlaps. Instead one can show, using 
(26),(21), and (17) that they satisfy 

Thus h^ do not define a U(n) vector bundle over Q. Instead, as ex- 
plained in Section I, they define a module T over an Azumaya algebra 
Awith<y(A)=/?(C) = [H]. 

Although the transition functions h^ taken in the fundamental rep- 
resentation of U(ri) do not define a vector bundle, they do define a 
vector bundle when taken in the adjoint representation of U(ri). This 
is because h^ fail to glue properly only modulo the elements of the 
center of C/(n), which is immaterial once one passed to the adjoint rep- 
resentation. Thus we obtain a rank n2 bundle over Q which we call 
Adj. It is easy to see that the 1-forms Ai lead to a well-defined con- 
nection on Adj. This enables one to define the holonomy of A in the 
adjoint representation in the usual manner. 

The bundle Adj has U(n)/U(l) = SU{n)lTLn as its structure group. 
One can define a class y in H2(Q,Zn) which measures the obstruction 
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to lifting it to an SU(n) bundle. This class is called the t'Hooft mag- 
netic flux in the physics literature. Let us construct a Cech cocycle 
representing y. Set 

qij = (dethij)
l/n, (30) 

and define S't/^-valued transition functions 

hij =q^1hij. (31) 

In general, they do not glue properly over triple overlaps; instead we 
have 

hijhjkhki = yijk- (32) 

Taking the determinant of both sides of (32) we see that y^ is a 2- 
cochain with values in Zn. Furthermore, it follows directly from the 
definition of y that it is a 2-cocycle. This cocycle is the Cech represen- 
tative of the t'Hooft magnetic flux. 

For our purposes it is more useful to know if Adj can be lifted to a 
U(n) bundle. This may be possible even if y ^=- 0. Indeed, suppose y is 
nonzero, but is a reduction modulo n of an integer cohomology class z. 
This means that there exists a Z-valued Cech cocycle Zijk such that 

yiik = exp (^£^) • (33) 

A standard argument shows there exists a line bundle C over Q whose 
first Chern class is z.s Let its transition functions be iy, i.e. 

log Uj + log tjk + log tki = - ^/^Zijk. (34) 

Then the [/(n)-valued functions uy = hijt^71 satisfy 

UijUjkUki = 1. (35) 

This means that Uij define a vector bundle with structure group U(n). 
It follows that a sufficient condition for being able to lift Adj to a U(n) 
bundle is 

3z e H2(Q, Z)    y = z mod 27m. (36) 
3First one uses the exact sequence (19) and the fact that ContQ(R) is a fine 

sheaf to show that H1^, ContQ(U(l))) ~ H2(Q,Z). Let t be the preimage of 
z G H2(Q,Z) under this isomorphism. The Cech cocycle Uj representing t yields 
the transition functions for C. 
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It is easy to see that this condition is also necessary. 

There is a convenient way to rewrite this criterion. Consider a short 
exact sequence of groups 

0^Z-*Z->Zn^0, (37) 

where the second arrow is multiplication by n. This exact sequence 
leads to a long exact sequence in cohomology 

... H2(Q, Z) -> H2(Q, Zn) -+ #3(Q, Z) -+ H\Q, Z).... (38) 

The second arrow here is a Bockstein homomorphism which we call /?'. 
Exactness implies that y is in the kernel of /?' if and only if it satisfies 
(36). Thus the necessary and sufficient condition for being able to lift 
Adj to a U(n) bundle is 

P(V) = 0. (39) 

We now claim that 13'(y) = [H]. Indeed, it easily follows from our 
definitions that 

Cm = Vijkqijqjkqki' (40) 

Taking the logarithm of both sides of (40) yields 

log Qjk = log yijk + log Qij + log qjk + log qki + ^-lpijk, (41) 

where pijk are Z-valued numbers. Next we apply the Cech coboundary 
operator to both sides and get 

- log Qjk + log Qki - log Qki + log Cyz 
= - log y^k + log yjki - log yiki + log y^ + ...,   (42) 

where the dots denote a Cech 3-coboundary with values in Z. The 
left-hand side is a Cech cocycle representing /5(C) = [jy], while the 
right-hand side is a Cech cocycle representing (3'(y) plus a coboundary. 
Thus we get 

m = m (43) 

An important consequence of this relation is n[H] = 0, i.e. [H] is 
an n-torsion class. Indeed, the third arrow in (38) is multiplication by 
n, so exactness implies n/5' = 0, hence n[H] = 0. 
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Let us summarize what we have learned so far. The postulated 
transformation law for the "connection 1-forms" Ai (24) leads to a well- 
defined vector bundle Adj of rank n2 with structure group SU(n)/Zn. 
The 1-forms Ai = Ai — fii taken in the adjoint representation of U(n) 
define a good connection on Adj. In general Adj carries a nontrivial 
t'Hooft magnetic flux y G i?2(Q,Zn) which prevents lifting it to an 
SU(n) bundle. Even if y ^ 0, it may still be possible to lift Adj to 
a C/(n) bundle; the obstruction to doing this is P>\y) E H3(Q,Z). We 
showed that the Bockstein of y is precisely [H]. This means that Adj 
can be lifted to a U(ri) bundle if and only if [H] is trivial. (Caution: 
remember that all objects here are restricted to Q, i.e.   [H] is really 

4    The definition of the trace of holonomy 

In the previous section we remarked that the 1-forms Ai enable one to 
compute the holonomy and its trace in the adjoint representation of 
U(n). What we really need, however, is the trace of holonomy in the 
fundamental representation. 

We have seen that when /?(£) = [H] is nonzero, it is impossible to 
lift the SU(n)/Zn bundle Adj to a U(n) bundle. In such a situation 
the 1-forms Ai cannot be interpreted as connection 1-forms for a U(n) 
vector bundle. Nevertheless, they do have a geometric meaning: they 
define a connection on an Azumaya module T. Roughly speaking, a 
connection on an Azumaya module F is a connection on the underlying 
vector bundle which is compatible with the action of A on F. A more 
precise definition goes as follows. Suppose we are given a connection 
on an Azumaya algebra A. This means that we are given a covariant 
derivative VA on the underlying vector bundle such that for any two 
elements i?i, i?2 G A and any vector field X we have 

V£(flxifc) = V£(i2i)i22 + RiV* (i?2). (44) 

Then a connection on a module F over A is a covariant derivative Vr 

on the underlying vector bundle such that for any s G F, R G A and 
any vector field X we have 

Vr
x(R8) = V$(R)s + RVT

x(8). (45) 
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In terms of an open cover {Ui} and transition functions (2), a con- 
nection on A is given by 

V;(£)i = dpRi - 7=1 [bip, Ri], (46) 

where 6* = b^dx11 are u(ra)-valued l-forms which satisfy on double 
overlaps 

hi = GijbjG^ + y/^lGydGr.1. (47) 

Then a connection on a module T is given by 

VjC^i = d^Si - V=l (1 ® 6^ - A^ ® 1)*, (48) 

where Ai are the ^(n)-valued l-forms defined in the previous section. 
The property (45) is easily verified. 

A crucial difference between a connection on the module T and a 
connection on an ordinary vector bundle arises when one tries to define 
the holonomy of a connection along a loop 7 G LQ. From (29) one 
readily sees that any natural definition of holonomy will produce an 
object which is well-defined only modulo multiplication by a complex 
number with unit modulus. For this reason we anticipate that the trace 
of holonomy of A will actually take values in a line bundle over LQ. 

To define the trace of holonomy of A we will work locally on LQ. 
We have already picked an open cover U^i G /, of Q. An open cover 
of LQ will consist of sets Vp,p € V. V is the set of pairs (£, /), where 
t is a triangulation of S'1 and / is a map from the simplices of t to /. 
By definition Vyj) C LQ is the set of loops 7 : S1 —> Q such that for 
any simplex a G t 7(0-) C W/^). Now pick any p = (£,/) G V. Let t 
consist of r simplices <T1? ... ? ar. Since S'1 is oriented, the simplices are 
also oriented. Let vi, £ = 1,...', r be the vertices of t numbered so that 
the boundary of a£ is vi+i — vi. We will use a shorthand fa = /(a*). 

Suppose we are given a 7 G V^. We denote by At the pull-back of 
the 1-form Afe to cr^. We denote by /i^_i the matrix hf^^^vi)). We 
now define a function !Fp : Vp —> C by the following formula: 

•^(7) = Tr f[Ko\ai(Ae)he,e- (49) 
.£=71 

where Tr is the trace in the fundamental representation. 
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Suppose the intersection Vp n Vp> = Vpp' is nonempty. We want to 
compare Fp and ^y on the double overlap V^,/. Let 7 G V^y; then a 
short computation shows that 

^(7) =/Hpp'J
rpf(j)1 (50) 

where T-^y is a [/(I)-valued 1-cochain on LQ. In order to write it 
down we need to introduce some more notation. Let a^,..., a^, be the 
simplices of tf. We define a nondecreasing sequence of integers io,..., ir 

by 

UiG^,     V2£cr'i2,     ...,     vr(=(j'ir. 

The cochain "H is given by 

^ir=Jr-l+l \ /jr-l=ir-2+l 

jr=ir / Y   jr-l=V-l 

H       ^/l/j^x    I   C/^/x/r- (51) 

Prom (50) it follows that on triple overlaps VPP>PH the transition func- 
tions 1-Lpp'p" satisfy 

rLpp'rLpipnrLpiip = 1. (52) 

In other words, % is a 1-cocycle over LQ with values in U{1). 

The cocycle ?-£ defines a line bundle £A over LQ. The first Chern 
class of this bundle CI(CA) £ H2(LQ,Z) is the image of % under the 
Bockstein homomorphism 0" : /^(LQ, £/(!)) -► H2(LQ,Z). Since the 
transition functions 7^/ are constant, the line bundle CA is flat and 
its first Chern class is pure torsion. 

We define the trace of holonomy of A in the fundamental represen- 
tation to be the global section of the line bundle CA which is given 
locally by Fp. Thus the trace of holonomy of A is a section of a flat 
line bundle over LQ. 
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Cancellation of global anomalies 
for bosonic strings 

In this section we establish that the path integral for an open bosonic 
string ending on D-branes is well-defined if the transition functions hij 
satisfy the twisted gluing condition (29). 

Recall that £ maps 9E to a submanifold Q C M on. which the D- 
branes are wrapped. From now on we will reinstate subscripts Q where 
necessary. We assume that [H]Q is a torsion class. 

Consider the space Map(£, M) of maps from the worldsheet E to 
M such that <9£ is mapped to a submanifold Q C M. We are dealing 
with oriented strings, so E and 9E are oriented. It will be sufficient to 
consider the case when <9£ has a single component, i.e. E is a Riemann 
surface with a single hole. If we choose a diffeomorphism S'1 -> d£, 
there is a natural projection TT : Map(E,M) —> LQ. In the previous 
section we showed that the trace of holonomy of A is a section of a 
certain line bundle CA over LQ. This bundle is flat, but in general 
nontrivial. For string theory applications we need to consider the pull- 
back of CA to Map(E, M) by TT. It turns out that the pull-back is trivial, 
and its trivialization is given by exp(—y/^1 /£*£). To prove this, we 
should first accurately define exp(—\/—T/£*!?). This has been done 
for worldsheets without boundaries in [13] and extended to worldsheets 
with boundaries in [14]. Below we describe the construction of [13, 14] 
as it applies to our particular situation. A version of this construction 
which does not depend on the choice of open cover is explained in 
Chapter 6 of [15]. 

We warn the reader that the accurate definition of exp(—y/--! fCB) 
is rather lengthy, so on first reading he or she may want to jump to the 
next section. The upshot is that exp(—y/^-l f t;*B) is a trivialization of 
the line bundle ^(CA)- Moreover, our definition of exp(—x/^l/£*£?) 
is such that the product of the last two factors in (13) is a well-defined 
function on Map(E, M). 
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5.1    The case of a closed worldsheet 

We will start by defining exp(—V—lf €*B) when E is a closed oriented 
surface. In this case we want exp(—y/^lf€*B) to be a well-defined 
function on Map(E,M). Moreover, we expect that this function is 
invariant with respect to gauge transformations B -> B + dX, where A 
is a globally defined 1-form. 

Recall that we have a good cover of M indexed by a set /. Let 
S be the set of pairs (r, 0) where r is the triangulation of E and 0 is 
a map from the simplices of r to /. For any s e S we define a set 
Ws C Map(E, M) consisting of all the maps £ : E -4 M such that for 
any simplex s £ r £(s) C W^(5). The sets Ws, s G S form an open cover 
of Map(£,M). 

We will work locally on Map(£, M). We want to define a collection 
of functions $s : Ws -> U(l) indexed by elements of S and show that 
they agree on double overlaps Wss> = Wsn Wsr. To do this we have to 
introduce some more notation. Let us fix a triangulation r of E. Let 
{<Sa}, a £ A, be the set of all simplices of r, let {e^}, b G 5, be the set of 
all edges, and let {i>c}, c G C be the set of all vertices. Any edge belongs 
to exactly two simplices. A vertex can belong to two or more simplices. 
We will say that v is n-valent if it belongs to exactly n simplices. 

An orientation of E induces an orientation on all the simplices of r. 
An edge eaa/ = sa D sa> can be oriented if we specify an ordering of a, a'. 

Let us fix a map </> : A -> /. Let £ G W(T^). Then we can use £ 
to pull back a 2-form B^a) on U^a) to a 2-form Ba on the simplex 
s0. Similarly, we can pull back a 1-form A^(a)0(a/) to a 1-form A& on 
the edge e&, where e& is shared by the simplices sa and saf. Finally, 
suppose we have a vertex v shared by simplices sai,..., san. For any 
three indices a, a', a" G {ai,..., a™} we will define a complex number 

Given s = (r, </>) and f G Wa we now define a [/(l)-valued function 
onWs: 

$,(0 = exp   -V=4 J] / Ba - x/=I^ / A*   . (53) 



146 A. KAPUSTIN 

The functions $5 are not quite what we need because they do not 
agree on double overlaps. However, this can be fixed by introducing a 
correction factor Cv for each vertex of the triangulation which depends 
on the 2-cocycle a from (15). The correction factor is defined as follows. 

1. If a vertex v is divalent, Cv = 1. 

2. Suppose v is trivalent. Since E is oriented, the simplices sharing 
v have a natural cyclic order sa, sa>, sa'>. We set Cv = ctaa'a"- 

3. Suppose the vertex v belongs to n simplices sai,..., san, n > 3. 
We pick an arbitrary index a 6 {ai,..., an} and set 

It is easy to check that Cv does not depend on the choice of a because 
of (16). 

A patient reader should be able to prove that the functions $5 thus 
defined agree on double overlaps Wss>. The proof uses the relations 
(14)-(16). We define exp(—\/-T/£*£) to be the global function which 
is given locally by $s. It is obvious that the global function thus defined 
is invariant with respect to gauge-transformations B —> B + d\. 

5.2    The case of a worldsheet with a boundary 

Let E be a Riemann surface with a single hole such that the boundary 
5E is mapped to Q. For any triangulation r we divide the edges and 
vertices into internal and boundary ones. The sets B and Bf will label 
the internal and boundary edges, respectively, while the sets C and C 
will label the internal and boundary vertices, respectively. The set A 
will label the simplices of r, as before. A boundary edge belongs to 
exactly one simplex and has a natural orientation induced by that of 
<9E. A boundary vertex belongs to one or more simplices. Suppose that 
a boundary vertex v belongs to n simplices s01,..., san. Orientation of 
9E induces a natural order on ai,..., an (not just cyclic order!) 

We define functions $s : Ws •->► 17(1) as a product of "internal" 
and "boundary" contributions. The internal contribution is the same 
as for a closed E. To define the boundary contribution we need to 
introduce some more notation. We use f to pull back 1-forms fii on Ui 
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to 1-forms //&, b G B' on e^. Similarly, to every boundary vertex shared 
by the simplices s01,..., san we associate a set of numbers paa' where 
a, a' G {ai,..., an} by pulling back 0-forms pij (see (20). The boundary 
contribution is a product of a factor associated with boundary edges 
and a factor associated with boundary vertices. The first factor is 

exp 
beB' 

(55) 

The second factor is a product over all boundary vertices; a factor Cv 

associated with an individual vertex is defined by the following rules: 

1. If the vertex v is univalent, Cv = 1. 

2. If the vertex v is divalent and belongs to an ordered pair of 
simplices sa and s0/, then Cv = exp (v^"1/w) • 

3. Suppose the vertex v is n-valent, n > 2. Let sai,..., san be the 
ordered simplices sharing v. We set 

Ov Q.a3a2aiCy.0,40,30,1 • • • ^anan_iai exp ^V      -'-PaianJ • \"^/ 

The functions $8 : W8 —> U(l) are now completely defined. It 
remains to compute the transition functions on double overlaps. A 
very patient reader should be able to prove that 

$a=K;(aMa')$*'> (57) 

where H is the 1-cocycle (51) and a; is a natural projection CJ : S —> V 
induced by the natural projection TT : Map(E,M) —> LQ. Recall that 
H defined a line bundle CA over LQ. It follows that the collection 
of functions {$5}, s G S define a section of the pull-back line bundle 
r(cA). 

We now define exp(—\/—Tf£*B) as a global section of ^(CA) 

which is given locally by $s. Since $5 take values in £7(1), 
exp(\/-:T/£*i?) is a trivialization of TT*^^

1
). From (57) and (50) 

it follows that 

exp(V^I [CB)  TrKolaziCA) (58) 
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is a well-defined function on Map(X!,M). Hence the open string path 
integral is well-defined. Moreover, it is easy to see that this function 
is invariant with respect to gauge transformations B -> B + d\, A -> 
A — A, where A is a globally defined 1-form. 

The above argument can be trivially extended to the case when 
dE has several components. The details are left as an exercise for the 
reader. 

6    Generalizations 

We are of course much more interested in superstrings rather than 
bosonic strings. In superstring theory M is a spin manifold, while 
Q C M is not necessarily spin. As explained in [1], the superstring path 
integral contains an extra problematic factor Pfaff(jD), the pfaffian of 
the Dirac operator on the worldsheet. This object is a section of a line 
bundle over the space 

X = Met(E) x Map(E, M) (59) 

where Met(E) is the space of metrics on E. We will call this line bundle 
Pfaff. Pfaff is flat, but in general nontrivial. 

One of the results of [1] is the computation of the Chern class of 
Pfaff. Namely, the first Chern class is given by 

Ci(Pfaff) = 7r/*r(Wr3(JV)). 

Here TT' is natural projection TT' : X -4 LQ, T is the transgression 
homomorphism 4 T: H*{Q, Z) -> H2(LQ, Z), and WZ{N) is the Bock- 
stein of the second Stiefel-Whitney class ^(iV) of the normal bundle of 
Q. Since W3(7V) is a 2-torsion class, Ci(Pfaff) is also a 2-torsion class. 

In Section III we have also explained that the trace of holonomy of 
a connection on an Azumaya module takes values in a line bundle CA 

4Let us remind the definition of the transgression homomorphism. Let x be 
a class in H3(Q,Z). Consider the evaluation map e : S1 x LQ —> Q given by 
e : (t,7) \-> 7(t). We can use e to pull back x to S1 x LQ. The transgression of x 
is a class in ^(LQ, Z) by obtained by "integrating e*(x) over S1." More formally, 
given a homology class a € H2{LQ,Z) we define T(x)(a) = e*(x)(w x a), where 
w £ Hi^jZ) is the fundamental homology class of 51. 
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over LQ. We have explicitly computed its transition functions in terms 
of a 2-cocycle £ on Q. Since the transition functions 1-Lppi are constant, 
CA is flat, but in general nontrivial. A natural question is whether 
one can express the Chern class of CA directly in terms of data on Q. 
The answer to this question can be inferred from the results of [14, 15] 
where it is shown how to construct a line bundle CH over LQ given 
a class [if] € if3(Q,Z). The 1-cocycle (i.e. the transition functions) 
defining CH is given in Eq. (6-19) of [15]. It is easy to see that when 
[if] is a torsion class, this cocycle is cohomologous to our cocycle 1-L 
and therefore CH is isomorphic to CA- It is explained in [14, 15] that 
the first Chern class of CH (and therefore CA) is the transgression of 
[H\. 

Consider now the product of Pfaff(D) and the trace of holonomy 
of A in the fundamental representation. The first factor is a section 
of the line bundle Pfaff over X. The second factor is a section of a 
line bundle TT'*^) over X. The Chern class of 7r'*(£A) is 7r'*T(/?(C)), 
where £ is the 2-cocycle entering the twisted gluing condition (29). In 
Section IV we have shown that if /?(£) G if3(Q, Z) is a restriction of a 
class in if3(M, Z), then TT'*/^ is trivial, and therefore 7r'*T(/3(C)) = 0. 
In this section we do not assume that /3(C) 6 H3(Q, Z) is a restriction 
of a class in if3(M, Z), hence 7r'*T(/3(C)) need not vanish. The product 
of Pfaff (D) and the trace of holonomy of A takes values in a line bundle 
Pfaff ® ^(CA) with first Chern class 

i^T(WiiN) + m) - (60) 

Cancellation of global worldsheet anomalies requires this class to van- 
ish. From Section IV we know that if 

Ws{N) + I3{C) = [H\Q (61) 

for some class [if] = if3(M, Z), then Pfaff (8) ^(CA) is trivial and its 
trivialization is given by exp(—y/--i f €*B). Thus (61) is a sufficient for 
cancelling the global worldsheet anomalies. It is very plausible that that 
it is also a necessary condition. Prom Section III we know that (3(() = 
/3'(y), where y G if2(Q,Zn) is the t'Hooft magnetic flux, therefore 
Eq. (61) is equivalent to Eq. (12). 

In the special case of D9-branes the condition (12) reduces to /3'(y) = 
[if].    This means that if [if]  ^ 0, the bundle on D9-branes is an 
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5C/(n)/Zri bundle which cannot be lifted to a U(n) bundle, and the ob- 
struction to the lift is precisely [H]. As explained in the introduction, 
this implies that a system of equal number of D9-branes and anti-D9- 
branes defines a class in KH{M). Arguments analogous to those in [4] 
then suggest that stable D-branes in IIB string theory are classified by 
KH{M). 

It is possible to extend the discussion to Type I strings. Type I 
strings are unoriented, so the definition of exp(—\f—i§ f^B) given in 
Section IV must be modified. In addition, for Type I strings H = dB 
vanishes and [H] is always a 2-torsion class. We will not go into the 
details of the anomaly cancellation mechanism for Type I strings, but 
it is easy to guess what the analogue of (61) should be. Consider first 
the case when only D9-branes are present. They carry a Spin(32)/Z2 
bundle which in general cannot be lifted to a Spin(32) bundle. The ob- 
struction to doing this is the "generalized second Stiefel-Whitney class" 
W2 € H2(M, ZQ) [17]. However, in order to define the open string path 
integral, we need the trace of holonomy in the vector representation 
of Spin(32). We expect that this object is a section of a line bundle 
over LQ whose first Chern class is the transgression of f3'(w2)- We thus 
expect that the path integral is well-defined if 

p'(w2) - [#], (62) 

This relation was first noticed in [12]. 

Consider now n Type I D5-branes wrapped on a submanifold Q C 
M. It is usually said that Type I D5-branes carry a principal bundle 
with structure group Sp(n). We expect that this statement will be 
modified when [H]Q =fi 0 and the bundle will be an Sp(n)/Z2 bundle 
without Sp(n) structure. The obstruction to having Sp(n) structure is 
measured by a class y E H2(Q, Z2), and we expect that cancellation of 
anomalies requires W3(iV) + /3'(y) = [H]Q. 

7    Discussion 

In this paper we have shown that when the restriction of [H] to the 
D9-brane worldvolume is nonzero, cancellation of worldsheet anomalies 
forces the D9-brane bundle to be an 5C/(n)/Zn bundle without U(n) 
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structure. As a consequence of this the geometric meaning of the gauge 
field changes: it becomes a connection on a module over an Azumaya 
algebra. This fact is responsible for the appearance of twisted K-groups 
KH in string theory. 

More generally, we showed that cancellation of global worldsheet 
anomalies imposes a correlation between the t'Hooft magnetic flux on 
D-branes and [H}Q. This correlation is summarized in (11) and (12). 

A natural question is whether it is possible to extend the present 
discussion to the case when [H] is not a torsion class. Witten has ar- 
gued [4] that the answer must be negative. We give two more arguments 
supporting this conclusion. 

First, it must be clear from our discussion that when [H] is not a 
torsion class, it is impossible to wrap any finite number of D9-branes on 
M. This means that there is no good starting point for the Sen-Witten 
construction of D-branes. 

Second, even assuming that one can somehow make sense of an in- 
finite number of D9-branes (and anti-D9-branes), there seems to be no 
good candidate for a K-theory for general [H\. Indeed, for any [H] one 
would like to find an algebra bundle over M such that its K-theory 
classifies the D-brane charges. The structure group of this algebra 
bundle should be some suitable version of 5C/(n)/Zn as n —> oo. A 
natural class of algebra bundles is suggested by a theorem of Dixmier 
and Douady [18, 15] which states that algebra bundles whose fiber is 
the algebra of compact (or Hilbert-Schmidt, or trace class) operators 
on a separable infinite-dimensional Hilbert space V are in one-to-one 
correspondence with elements of iJ3(M, Z). The corresponding "gauge 
group" is PUiy), the projective unitary group of V. Unfortunately, 
the corresponding K-theories are not the right ones. For example, 
the K-group corresponding to the trivial class in HS(M,Z) would be 
the Grothendieck group of Hilbert bundles on M with structure group 
C/(V), the unitary group of V. But this K-group is very different from 
the expected answer K(M)\ it is trivial for any manifold M because all 
Hilbert bundles over M are isomorphic to a trivial one. This happens 
because the "gauge group" U{V) is contractible [19]. More generally, 
one can consider bundles or sheaves of von Neumann algebras; how- 
ever none of them seems to lead to an acceptable K-theory, because 
their automorphism groups have the wrong homotopy type.   In or- 
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der to get the correct K-theory, one has to work with much smaller 
"gauge groups." For example, one could try a subgroup of the unitary 
group UC(V) C U(V) whose elements have the form 1 + K, where K 
is compact (or Hilbert-Schmidt, or trace-class.) One can show that the 
K-group of Hilbert bundles with structure group UC(V) is the same as 
k(M) [20, 21]. Unfortunately, unlike £/(n), UC(V) does not have a 
center, so this K-theory does not have a twisted version. 
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Note 

After this paper was posted on the Los Alamos preprint archive, the 
relevance of the Dixmier-Douady theory for the classification of D-brane 
charges has been re-examined by P. Bouwknegt and W. Mathai [22]. 
These authors showed that the K-theory of the Dixmier-Douady alge- 
bras reduces to the ordinary K-theory when [H] is a torsion class. This 
result invalidates the argument made above against the relevance of 
Dixmier-Douady algebras to D-branes and strongly suggests that their 
K-theory classifies D-brane charges for general [H]. 
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