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shown to be determined by the intersection theory of the ho- 
mology of the Calabi-Yau threefold. (Similar statements hold 
for M-theory and the type IIA string compactified on the three- 
fold, where there is also a dependence on the expectation values 
of the Ramond-Ramond fields.) We describe general rules for 
computing the hypermultiplet spectrum of any F-theory vac- 
uum, including vacua with non-simply-laced gauge groups. The 
case of monodromy acting on a curve of Aeven singularities is 
shown to be particularly interesting and leads to some unex- 
pected rules for how 2-branes are allowed to wrap certain 2- 
cycles. We also review the peculiar numerical predictions for the 
geometry of elliptic Calabi-Yau threefolds with section which 
arise from anomaly cancellation in six dimensions. 

1    Introduction 

The F-theory vacuum [1] constructed from an elliptically fibered Calabi- 
Yau threefold X with section determines an effective theory with N = 
(1,0) supersymmetry in six dimensions. Such supersymmetric theories 
will have fields in hypermultiplets, vector supermultiplets and tensor 
supermultiplets. (See, for example, [2] for a discussion of such theories.) 

For any particular F-theory vacuum, the taxonomy of the supermul- 
tiplets may be derived from the geometry of X as an elliptic fibration 
via seemingly straightforward methods in the case of the vector and 
tensor multiplets [3, 4]. The classification of the hypermultiplet con- 
tent has always been a little harder to carry out. Many methods have 
been proposed which allow the hypermultiplets to be determined from 
the geometry in certain cases [5, 6, 7, 8, 9, 10, 11, 12, 13]. 

The purpose of this paper is to outline a systematic approach to the 
problem of determining the gauge symmetry and hypermultiplet con- 
tent of a given six-dimensional theory obtained from F-theory. (Note 
that as far as the moduli space of hypermultiplets in concerned, our 
methods utilize the associated type IIA compactification and thus also 
apply directly to the compactification of M-theory on X giving an 
N = 1 theory in five dimensions and to the compactification of the 
type IIA string on X to yield an TV = 2 theory in four dimensions, pro- 
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vided that the expectation values of certain Ramond-Ramond fields 
have been tuned appropriately.) 

The methods we employ will not be particularly new but we will 
see that the process of analyzing the gauge group and matter content 
can be quite a bit more subtle than had previously been appreciated. 
In particular, the case of monodromy of the fibration leading to non- 
simply-laced Lie algebras requires some care. A particularly awkward 
case which has caused some confusion is when a Z2 monodromy acts 
on a curve of Aeven singularities, i.e., a curve of I0dd fibers in F-theory 
language. In this paper we resolve this problem in agreement with 
an observation by Intriligator and Rajesh in [14] concerning anomaly 
cancellation. 

In section 2 we will show how many features of a Lie algebra struc- 
ture arise naturally from an elliptically fibered Calabi-Yau threefold. 
This will allow us to elucidate the method for determining the gauge 
algebra. In section 3 we discuss exactly how to analyze the hypermulti- 
plet content in the cases where the associated curves and surfaces within 
the Calabi-Yau threefold are smooth. We discuss the cases where these 
curves and surfaces are singular in section 4. This section includes 
some unexpected rules we are forced to adopt for 2-brane wrapping. 
Although the results of this section are less rigorous than the preceding 
section, we are able to give precise results in many instances which can 
be extended to the general case under the fairly conservative assump- 
tion that the relevant physics is determined locally from the geometry 
of the singularities. 

Finally in section 5 we emphasize the peculiar numerical predictions 
which arise from anomaly cancellation in the F-theory compactification 
onX. 

2    Lie algebras and Calabi-Yau threefolds 

We begin with a Calabi-Yau threefold X which admits an elliptic fibra- 
tion TT : X -» S, where E is a complex surface, and also assume that 
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this elliptic fibration has a section.1 The type IIA string compactified 
on X yields an effective four-dimensional theory with N = 2 super- 
symmetry; its strong-coupling limit, known as "M-theory compactified 
on X," yields an effective five-dimensional theory. One more effective 
spatial dimension is obtained in a limit in which the areas of all compo- 
nents of the elliptic fibers shrink to zero—this is the "F-theory limit." 
See, for example, [3, 18] for an explanation of this. 

We point out that most of the following analysis does not really 
depend upon this elliptic fibration structure and applies to M-theory 
and type IIA compactifications of X. We use the F-theory language 
as an organizational tool to give examples later on. One also has the 
advantage in F-theory of being able to use anomaly cancellation as a 
powerful tool in checking the consistency of results concerning spectra 
of massless particles. In the F-theory context we can freely exchange 
the notion of, say, an In fiber and an An^i singularity. The former 
is the elliptic fibration description for the latter. Recall [4] that this 
is because although In is really the extended Dynkin diagram of An-i 
and that one always ignores the components of the fiber which hit the 
chosen section of the elliptic fibration.2 Thus, in the zero-area fiber 
limit of F-theory, a shrunken In fiber gives the same physics as an An_i 
singularity one dimension lower. 

Whenever rational curves in X are shrunk down to zero size we 
expect 2-branes of the type IIA string wrapped around these curves 
to contribute massless particles to the spectrum. It is precisely these 
massless states which are the focus of our interest in this paper. 

Actually we need to be careful with the statement that massless 
states appear automatically when a brane wraps a vanishing cycle. 
There is always the subtlety of 5-fields and R-R fields which should 
be tuned to the right value (usually denoted "zero" by convention) to 
really obtain a massless state. As emphasized in [19] the relevant pa- 
rameters to worry about in this context are the R-R fields. We may see 
this as follows. If one considers the type IIA string compactified on X 

1The F-theory limit cannot be taken unless either the fibration has a section, or 
a .B-field has been turned on in the base [15, 16, 17]. 

2In fact, the F-theory limit should really be taken in two steps: First, shrink to 
zero area all fiber components not meeting the chosen section, producing M-theory 
or the type IIA string compactified on a space with ADE singularities; then shrink 
the remaining component of each fiber down to zero area. 
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then deformations of the Kahler form (and S-field) on X are given by 
vector moduli. Suppose we use these Kahler moduli to shrink down a 
holomorphic 2-cycle to obtain an enhanced gauge symmetry. Once we 
reach this point of enhanced symmetry we may have a phase transition 
releasing new hypermultiplet degrees of freedom. Thus at the point of 
phase transition, these new parameters, which include R-R fields, are 
fixed at some value. Reversing this point of view, we may tune param- 
eters in the hypermultiplet moduli space to achieve an enhanced gauge 
symmetry but these parameters include R-R fields. Thus we need to 
assume always that the R-R parameters have been tuned to the ap- 
propriate values required to obtain the enhanced gauge symmetries we 
discuss below. 

Witten [6] analyzed how to determine the massless particle content 
for a given configuration of rational curves. Let us assume that a given 
rational curve lives in a family parametrized by a moduli space M. In 
the simplest case one has an embedding M x P1 C X. An isolated 
rational curve is a trivial example of this where M is simply a point. 

According to Witten's calculation, one half-hypermultiplet may be 
associated to the fact that a 2-brane breaks half of the supersymmetry. 
This half-hypermultiplet is then tensored with the total cohomology of 
M in an appropriate sense. The result is that if M is a point, then we 
simply obtain a single half-hypermultiplet. If M is an algebraic curve of 
genus g then we obtain a single vector multiplet and g hypermultiplets. 
This was also argued by a different method in [5]. Note that for any 
wrapping we may also wrap with the opposite orientation to double 
this spectrum. 

Of central interest to us is the fact that compactifying a type IIA 
string theory (and thus M-theory and F-theory) on a Calabi-Yau three- 
fold X produces a theory with a Yang-Mills sector. The gauge fields 
may be viewed as arising from integrating the R-R 3-form of the type 
IIA string over 2-cycles in X to produce 1-forms.3 These 1-forms play 
the role of the Yang-Mills connection. In addition, the 4-cycles in X 
which are dual (via intersection theory) to these 2-cycles will play an 
important role. Let F denote the 4-form field strength of the R-R 3- 
form in the type IIA string.   Note that the 2-branes of the type IIA 

3In M-theory, one likewise integrates the M-theory 3-form field over 2-cycles. 
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theory are electrically charged under this field—that is 

*F=1, (1) / 
Me 

for a 6-dimensional shape M6 (such as a six-sphere) enclosing the seven 
directions transverse to a fundamental 2-brane. 

Upon compactification we will be wrapping 2-branes around a 2- 
cycle in X to produce a point particle in four-dimensional space-time. 
To find the charge of this resulting particle we may take MQ = S2 x 
Si, where 5'2 is a sphere in four dimensional space-time enclosing the 
particle and Si is a 4-cycle within X. 

It follows that in the type IIA compactification 

1. We have 62(X) = b^X) gauge symmetries of the type U(l), each 
labelled by an element of H^X), in addition to the U(l) gauge 
symmetry coming from the R-R 1-form (whose charge is measured 
using MQ = X, the generator of HQ(X)). 

2. If a 2-brane wraps a 2-cycle Ca to produce a particle then the 
"electric" charge of this particle under the U(l) symmetry asso- 
ciated to a 4-cycle 5^ will be the intersection number (Si fl Ca). 

We thus obtain a perturbative U(l) 4^ ^+1 gauge symmetry in type 
IIA. In the M-theory compactification, there is no R-R 1-form, and 
the eight transverse directions to the M-theory 2-brane are enclosed by 
M7 = S3 x Sf, so the total "perturbative" gauge symmetry is given 
by U(l)64 . In the F-theory limit, the only 4-cycles which contribute 
gauge fields are those with intersection number zero with the elliptic 
fiber; moreover, 4-cycles which are the inverse images of 2-cycles in 
the base S are associated to tensor multiplets rather than gauge fields. 
Thus, in the F-theory limit, we get a "perturbative" gauge symmetry 
group of U(1)64(X)-62(E)-1. 

As is now well-known, and as we will discuss, the wrapped 2-branes 
will elevate this U(l) 4^ ^+£ gauge symmetry to a non-abelian Lie group 
(since certain wrapped branes include vector multiplets in their spec- 
tra), where e = 1, 0, or —62(2) — 1 for IIA, M-theory or F-theory, 
respectively. From now on we will concern ourselves only with the Lie 
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algebra of the gauge symmetry. It was noted in [20] that, at least in F- 
theory, the global structure of the gauge group may be recovered from 
the Mordell-Weil group of X as an elliptic fibration.4 

If this u(l)e(64(x)+e) appears as the Cartan subalgebra of our gauge 
algebra then the discussion above implies that we may make the fol- 
lowing identifications. Let f) be the (real) Cartan subalgebra, let f)* 
be the dual space, and let A C f) be the coroot lattice and A* C f)* 
be the weight lattice so that the Cartan subgroup U(l) 4^ ^+e is nat- 
urally identified with I)/A. For the IIA compactification, we take A = 
HA(X, Z) 0 Hi(X, Z) and A* = H^X, Z) 0 H2(X, Z), and in M-theory, 
we take A = H±(X,Z) and A* = H2{X,Z). In F-theory, we begin 
with the orthogonal complement within H±(X) of the elliptic fiber £", 
and then we mod out by n-lH2(Y) (that is, A = [E)LjV"1^(E) C 
i?4(X)/7r-1iy2(E)); we then take A* = Hom(A,Z) to be the dual lat- 
tice of A. In each case, a 2-brane wrapped around a particular 2-cycle 
is then naturally associated with an element of the weight lattice and 
its charges under the Cartan subalgebra are given in the standard way. 

We work this out in detail in several particular cases. Consider 
first the case that X contains a "ruled" complex surface S admitting 
a fibration TT : S —>> M, for some M, where all fibers are isomorphic to 
P1. The fibers will shrink down to zero size in the F-theory limit. The 
simplest example of this is M x C\ where M is a Riemann surface of 
genus g and that C\ = P1 is in the fiber direction. That is to say, in 
our elliptic fibration TT : X -> E we have a curve M C E over which 
the fiber is I2. Clearly we have massless states appearing for the 2- 
branes wrapped around C\. We also have a u(l) symmetry associated 
to S'I = M x C\. Let us consider the normal bundle of a single C\ curve. 
This normal bundle may be written as 0(a) © (9(6) where a + b — —2 
by the adjunction formula and the fact that X is a Calabi-Yau space. 
Since this curve may be translated along the M direction one of these 
line bundles must be trivial. Thus the normal bundle is O 0 0[—2) 
where the 0[—2) describes the normal bundle direction which is also 
normal to S\. Therefore (S'i D Ci) = —2. This tells us that we have 
a vector supermultiplet and g hypermultiplets from wrapping 2-branes 
around M x P1 all with charge —2 with respect to the u(l) gauge 
symmetry associated to this divisor.   Similarly by wrapping with the 

4Indeed TTI of the gauge group is equal to the Mordell-Weil group (including both 
the free and torsion parts). 
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opposite orientation we obtain a copy of this except with charge +2. 

These vector supermultiplets enhance the u(l) symmetry to su(2) 
in the usual way and we have an additional g hypermultiplets in the 
adjoint representation. The key point is to notice in this construction 
that the condition 

(51nc1) = -2, (2) 

has played the role of the Cartan matrix of su(2).5 

The next simplest case is where we have a set of curves Ci, • • • > Cn 

which may intersect each other and are each isomorphic to P1 and lying 
in the fiber direction. We assume that Mx (JJ^ d) embeds algebraically 
into X.6 We now have a Cartan matrix given purely by the configura- 
tion of Ci,..., Cn. Applying the above method we obtain the standard 
F-theory result of a simply-laced enhanced gauge symmetry as listed, 
for example, in table 4 of [18]. 

As noted first in [11] the real power of this Cartan matrix approach is 
that it gives a clear way of describing non-simply-laced gauge algebras. 
Consider a less trivial example of ruled surfaces as shown in Figure 1. 
In this example the moduli space Mi of the curve Ci is different from 
the moduli space M2 the curve C2. Think of Mi as the vertical direction 
in the figure. We obtain ruled surfaces Si = Mi x C\ and S2 = M2 x C2. 
We have a two-fold cover M2 -» Mi branched at one point in Figure 1. 
Any other branch points are not shown in the figure. 

The intersection matrix of this configuration may be written 

{Sir\ci)={^\ Jf). (3) 

This is the Cartan matrix for sp(2) (or so(5)) and so our enhanced 
gauge algebra should be sp(2). 

5 Of course there is a sign difference here compared to usual Lie algebra theory. 
This sign difference is purely due to the convention that Lie algebra theorists insist 
on the Cartan matrix being positive definite, rather than negative definite. If string 
theory had been studied before Lie algebras then the sign would be the other way! 

6We can consider more generally a situation where we glue together n distinct 
P1 fibrations over M along appropriate disjoint sections, forming a chain. In the 
remainder of this paper, we will continue to explain by example and will not ex- 
plicitly state the most general form of the algebraic surfaces which contract to M 
in the F-theory limit. 
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Mi 

Figure 1: Ruled surfaces producing sp(2). 

This phenomenon of obtaining a non-simply-laced symmetry alge- 
bra was first noted in [7] inspired by the construction of [21]. There it 
was explained by monodromy acting on the fibers as follows. Let Mi 
be embedded in E and let M2 be a two-fold cover of Mi (branched at 
various points). Over a generic point in Mi we see that, ignoring the 
component meeting the chosen section, the Kodaira fiber consists of one 
line from Si and two lines from ^2 forming the (dual) Dynkin diagram 
of su(4). Moving along a closed path in the complement of the set of 
branch points of M2 -» Mi we will exchange the two lines in 52. This 
action on the Dynkin diagram is induced by an outer automorphism of 
su(4) and the invariant subgroup under this outer automorphism can 
be taken to be sp(2). 

One might therefore suspect that the effective gauge algebra is the 
monodromy-invariant subalgebra of the simply-laced gauge symmetry 
generated locally by the vanishing cycles. This was the assertion in [7]. 
Unfortunately it is an ambiguous statement.7 

Let us analyze carefully all possible outer automorphisms of SU(2fc). 
An element g of SU(2A;) satisfies (T5)sr = 1. Complex conjugation t : 

7It should be possible to resolve this ambiguity by exhibiting the gauge algebra 
structure itself (and not just the Cartan matrix) along the lines of [22]. We leave 
this for future work, and in this paper we shall resort to less direct arguments. 
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g i-)- g is an example of an outer automorphism. Indeed this acts on the 
Dynkin diagram of SU(2fc) by reflection about the middle node. Clearly 
the invariant subgroup under this outer automorphism is given by g 
real. But this yields the group SO(2fc)—not what we were expecting! 

A general outer automorphism of SU(2A;) can be obtained by com- 
bining complex conjugation with an arbitrary inner automorphism, 
yielding g h-> h^gh, where h G SU(2A;) (there are no other possibilities 
since that would imply further symmetries of the Dynkin diagram). 
Since this outer automorphism acts on the Dynkin diagram as the re- 
flection, it is also a viable candidate for the monodromy action on the 
gauge group. In this general situation, the invariant subalgebra satisfies 

("9)119 = h. (4) 

The case h = 1 yields SO(2A:) as stated before. Now if we put 

*-(-?3. (5» 
where / is the k x k identity matrix, we obtain the group Sp(fc)—as 
desired. In this case, the outer automorphism is an involution, but this 
is not a requirement in general. 

We see then that the method of directly working out the Cartan ma- 
trix from intersection theory is a better way to determine the effective 
gauge algebra in F-theory than trying to find subalgebras invariant un- 
der outer automorphisms. The latter method is ambiguous. One might 
try to assert that F-theory picks out the "maximal" invariant subalge- 
bra under all possible outer automorphisms. Indeed, sp(k) is "bigger" 
than so (2k) in as much as it has a larger dimension (although in general 
$o (2k) (JL sp(A;)). However, even this approach is inadequate as will be 
shown by examples in section 4. 

Note that in the M-theory or type IIA compactifications, an ambi- 
guity of the sort we have discovered is actually to be expected. As we 
have already pointed out, if the Ramond-Ramond fields have non-zero 
expectation values then some of the non-abelian gauge fields will be- 
come massive; when these are integrated out, the gauge group becomes 
smaller. This is precisely what happens when the outer automorphism 
of the covering Lie group is varied in the construction above. The gauge 
algebra which we wish to determine is the one in which these effects 
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have been turned off so that the F-theory limit can be taken. (A similar 
phenomenon of variable gauge group depending on the precise value of 
an outer automorphism has been observed in a closely related context 
by Witten [23], and applied in [24, 25]). 

3    Counting hypermultiplets 

In the last section we described how to determine the gauge algebra in 
F-theory (or M-theory or IIA string theory) by determining the Car- 
tan matrix from intersection theory. Similar methods will in principle 
determine the hypermultiplet spectrum completely as we now discuss. 

First there can be the case of a family of rational curves acquiring 
extra rational curves at certain points in the family. In the context of 
elliptic fibrations this can be seen as collisions of curves in S over which 
there are singular fibers. The simplest example is a transverse collision 
of In and Im. 

The resolution of singularities associated to this collision was ex- 
plained in [26], and applied to the case of an In-Ii collision in the context 
of string theory in section 8.2 of [11]. The key point is that there exist 
rational curves within the collision with normal bundle 0(—1)0<9(—1). 
One of these curves C is the intersection of two ruled 4-cycles, one ly- 
ing over the curve of In fibers, and the other lying over the curve of 
Im fibers. The normal bundle of C in X is naturally the direct sum of 
the normal bundles of C in each of these 4-cycles, and each of these is 
0(—1). Thus this curve appears as (minus) a fundamental weight. The 
above rules imply that we have found a curve representing the (lowest) 
weight of the (n,m) representation of su(n) ©su(ra). By adding other 
(possibly reducible) curves in the collision fiber we may indeed build up 
the full (n, m) representation. Thus the transverse collision of a curve 
of In and Im fibers yields a hypermultiplet in the (n, m) representation 
ofsu(n) ©su(m). (This same result had earlier been determined using 
quite different methods in [27]. Another approach which is closer to 
ours appeared in [10].) 

Many other "collisions" can be explained in similar ways. However, 
if the extra rational curves at the collision point have normal bundles 
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other than 0(—1) ®0(—1), then Witten's calculation does not directly 
apply. General methods for evaluating the corresponding contribution 
to the hypermultiplet spectrum are not known. 

The case of non-simply-laced symmetry algebras raises even more 
complicated possibilities. Some of the hypermultiplet matter can ap- 
pear in a somewhat "non-local" manner as we now explain. Suppose we 
are in a situation analogous to Figure 1. Let us consider the example of 
a type 12k fiber (where we again ignore the component passing through 
the chosen section). Let the middle component in the chain have a mod- 
uli space given by Mi and the other components have moduli space M2 
where M2 —> Mi is a double cover. That is, we have a Z2-monodromy 
acting on the l2k fiber (in the only possible way). Figure 1 is the case 
k = 2. 

According to [6] we should obtain g(Mi) hypermultiplets for 2- 
branes wrapping the middle component and g(M2) hypermultiplets for 
2-branes wrapping each of the other components. Note that g(M2) > 
g{Mi) from the double cover. There are additional hypermultiplets 
arising from wrapping connected unions of these components. In fact, 
each of the positive roots of the covering algebra su{2k) is represented 
by such a connected union, some of which are fixed by the monodromy, 
and others of which are exchanged in pairs under the monodromy. The 
ones which are fixed under monodromy have Mi as moduli space, while 
those which are exchanged in pairs have M2 as their moduli space. 

When we organize these weights in terms of representations of sp(A:), 
we find that the invariant subspace describes the adjoint of sp(fc) while 
the anti-invariant subspace describes the remaining weights in the ad- 
joint of 5u{2k). On the other hand, each invariant positive root con- 
tributes to the invariant subspace, while the roots exchanged in pairs 
contribute to both the invariant and anti-invariant subspaces. We con- 
clude that the adjoint of sp(fc) occurs ^(Mi) times while the weights in 
the anti-invariant subspace each occur g(M2) — g(Mi) times. 

We demonstrate which weights appear in the example of k = 2 in 
Figure 2. We show the weights of the adjoint representation. The dots 
represent weights associated to Mi, i.e., from Ci. The circles represent 
weights associated to M2, i.e., from C2. It is important to note that 
reducible curves may also be wrapped by 2-branes. That is, two rational 
curves intersecting transversely at a point may be viewed together as a 
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Ci + 2C2 

Figure 2: The adjoint of sp(2). 

nodal rational curve. These wrappings of reducible curves are required 
to obtain all the adjoint weights of the vector multiplets of the previous 
section. The reducible curve Ci + C2 has moduli space given by M2— 
since C2 has a moduli space given by M2. Looking at Figure 1 we see 
that there is also a chain of rational curves in the class Ci + 2C2 but 
note this this combination is invariant under the Z2 monodromy and 
so has moduli space given by Mi. These circles form the weights of 
5 of sp(2). Ignoring the zero weights for now we see that the adjoint 
appears g(Mi) times and the 5 of sp(2) appears g{M2) — g(Mi) times. 

Indeed the zero weights also work out correctly. A zero weight must 
represent an uncharged hypermultiplet and therefore a modulus. We 
may use the work of Wilson [28] to demonstrate this. Wilson showed 
that a Calabi-Yau threefold containing a ruled surface M x P1 has 
a moduli space which preserves this ruled surface only in codimension 
g{M). That is, there are g{M) deformations of the Calabi-Yau threefold 
which destroy this ruled surface. Applying this to both ruled surfaces, 
we get g(Mi) + g(M2) deformations. On the other hand, each sp(2) 
adjoint contains a two-dimensional weight zero eigenspace while each 5 
contains a one-dimensional weight zero eigenspace. Thus the dimension 
of the weight zero eigenspace is 2(^(Mi)) + (g(M2) — y(Mi)), which 
simplifies to (/(Mi) + 0^2), as claimed. 
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The above construction may be easily generalized to sp(k):s 

Theorem 1. Let TLa monodromy act on an hh fiber in F-theory so that 
the central component of the fiber has moduli space Mi and the outer 
components have moduli space M2. Thus M2 —>• Mi is a double cover. 
Then the resulting gauge algebra is $p(k) and we have g(Mi) hypermul- 
tiplets in the adjoint representation and g(M2) — g(Mi) hypermultiplets 
in the A2 representation (which has dimension k(2k — 1) — 1). 

Similarly ee with Z2 monodromy will yield an f4 gauge algebra with 
g(M2) — g(Mi) hypermultiplets in the 26 representation (in addition to 
the usual g(Mi) adjoints). Also $o(2k) with Z2 monodromy will yield 
an $o(2k - 1) gauge algebra with g(M2) - g{Mi) hypermultiplets in 
the vector 2k — 1 representation. In the case of $0(8) with Z3 or 63 
monodromy, a similar analysis yields ^(Mz) - g(Mi) hypermultiplets 
in the 7 representation of 02- 

This agrees with the various computations in [8] where Mi = P1. 
Let M2 be the double cover of Mi branched at b points. Thus g(M2) = 
|6 — 1. Then, for example, in the f4 case we should have |6 — 1 26's. 
This agrees with section 4.3 of [8] by identifying the branch points with 
the b = 2n + 12 zeroes of p2n+i2- 

One might note that the above cases with Z2 monodromy may be 
combined into a simple rule as follows. Let s be the simply-laced Lie 
algebra which contains the actual gauge symmetry algebra Q as a subal- 
gebra invariant under an outer automorphism given by the monodromy 
action. (In fact, in each of the above cases, the outer automorphism 
which we use actually has order 2 as an automorphism of 5, not merely 
order 2 as an automorphism of the Dynkin diagram.) We may then 
decompose the adjoint representation of 5 as follows 

Ad(s) = Ad(fl) 0 V. (6) 

where V- is a (possibly reducible) representation of 0 on which the 
generator of the Z2 outer automorphism acts as —1. The above rules 
may be combined to say that we obtain g(M2) -g(Mi) hypermultiplets 
in the V- representation. As we have already noted above in the case 
g = g2 ? the rule will be different if the monodromy group is not Z2. 

8The explanation given here was applied in [11] to obtain a detailed picture of 
the surfaces which collapse as the gauge symmetry is enhanced. 
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x(n + 4) x2(n + 6) 
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II 

Figure 3: The generic case of Spin(9) gauge symmetry. 

In fact, we will see more generally in section 4.1 that if the outer au- 
tomorphism representing the monodromy has higher order, the simple 
rule expressed in equation (6) must be modified. 

In addition to these "non-local" hypermultiplets coming from ra- 
tional curves moving in families one may also obtain further hyper- 
multiplets from collisions of curves of reducible fibers as in the In-Im 

collision discussed above.9 Note that some simple collisions may just 
induce monodromy without further contributions (that is, their contri- 
butions are completely accounted for by the representation VL obtained 
in eq. (6) ). As an example we show in Figure 3 the generic case of a 
Spin(9) gauge symmetry in F-theory. 

This figure shows an 1^ fiber along a section of the Hirzebruch sur- 
face Fn. This section has self-intersection +n and is denoted Co in the 
notation of [18]. In the most generic situation, the rest of the discrim- 
inant locus of the elliptic fibration will consist of Ii fibers along curves 
which intersect Co as shown in Figure 3. Generically there are two types 
of collisions occurring with the frequencies shown. A lengthy computa- 
tion shows that the n+4 cubic collisions10 produce extra rational curves 
in the fiber but no monodromy while the 2(n + 6) transverse collisions 
produce monodromy but no extra rational curves. Thus the 2(n + 6) 
collisions produce n + 5 of the vector 9's of so(9). An analysis of the 
rational curves in the cubic collision shows that we have n + 4 spinor 

9An argument for why certain hypermultiplets appear to be "local"—i.e., tied 
to isolated rational curves—or "non-local" was given in [29]. 

10Locally these cubic collisions may be written in Weierstrass form as y2 = x3 — 
3s2t2x -f 2ss(s + t3) where s and t are affine coordinates in F_n. 
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16's. Assuming n ^ — 4, the existence of these spinors shows that the 
gauge group must be Spin(9). This agrees perfectly with section 4.6 of 
[8]. Similarly all the other results of [8] may be confirmed. 

Finally in this section let us return to the case of Z2 monodromy 
acting on a curve of su(2fc) singularities to give an effective 0p(A;) gauge 
symmetry. We will consider the Higgs branch in which we give expecta- 
tion values to the hypermultiplets so as to break completely this Qp(k) 
gauge symmetry. Recall that the geometry of moduli spaces of super- 
symmetric field theories in question imply that the dimension of this 
Higgs branch should equal the total dimension of the representations of 
charged hypermultiplets minus the dimension of the gauge group which 
is broken. We will observe that the geometry is in accord with Theorem 
1. We do this by describing the deformations after shrinking all of the 
curves in the fibers to zero volume. In section 4.2 we will use the ideas 
introduced here towards the justification of our Main Assertion stated 
in the next section, which states that the gauge algebra in the case of 
5u(2fc + 1) with Z2 monodromy is 5p(fc). 

We let TT : M2 —> Mi be an unramified (for simplicity) double cover 
of Mi. In addition, we denote by L : M2 —> M2 the involution which 
exchanges sheets of the double cover. We now describe a local Calabi- 
Yau threefold X containing the geometry of $u(2A;) with Z2 monodromy 
over Mi. First we construct a Calabi-Yau threefold Y with an s\x(2k) 
fibration over M2 without monodromy. Then X will be constructed as 
a Z2 quotient of Y. 

We construct a singular threefold inside the bundle V = K^ 0 
KM2 © KM2 as the variety defined by the equation 

xy = z2k (7) 

where x and y are in K^ and z is in XMS- This threefold has an 
A2k-i singularity along M2, which is identified with the zero section 
of V. It has trivial canonical bundle by the adjunction formula. In a 
moment we will construct a nowhere vanishing holomorphic 3-form on 
it, giving independent verification of this fact. The desired threefold Y 
is obtained by blowing up the singular locus k times in the usual way 
to obtain a chain of 2k — 1 ruled surfaces over M2. 

To obtain the desired geometry, we take the quotient of Y by the 
fixed point free involution obtained by using 1 on M2 while sending 



LIE GROUPS ... Ill 

(x,y,z) to (y,x,—z). Note that the fibers of KM2 over p G M2 and 
L(P) G M2 are canonically identified with the fiber of KMX over 7r(p), 
so this map makes sense. Using the explicit description of the blowup 
and the fact that x and y are interchanged, it follows that there is Z2 
monodromy. 

To show that the quotient X by this involution has trivial canonical 
bundle, it suffices to show that the involution preserves the holomorphic 
3-form on Y. It suffices for our purposes to compute on the singular 
model. Let ou be any holomorphic 1-form on M2. Then 

cu A dx A dy A dz (8) 

is a holomorphic 4-form on V with values in K^1. Now, thinking of 
a; as a section of KM2 , we divide by u to obtain the nowhere vanishing 
4-form 

(LJ A dx A dy A dz) /uo (9) 

on V with values in K^ which is independent of a;. Finally, the residue 

Res fMcfeA^AdaQM 

is the holomorphic 3-form on the singular model of Y. It is clearly 
invariant under the involution. 

The deformations of X may be described as the deformations of Y 
in V which preserve the involution. The general deformation of Y (up 
to change of coordinates) is given by 

2k 

xy = z2k + Y,fiZ2k-\ (11) 

where the fi are sections of K%
M . Note that we are implicitly assuming 

g(M2) > 0 to construct these deformations. The invariance condition 
is that fi lies in the (—l)*-eigenspace of L. 

We now count parameters. The +l-eigenspace of H0(Kl
M2) has 

dimension (2z — l)(g(Mi) — 1), while the —1-eigenspace has dimension 
(2z — l)(g(M2) — g(Mi)). Thus the dimension of the Higgs branch is 

(3 + 7+--. + (4fc-l))(p(M1)-l) 

+ (5 + 9 + • • • + (4k - 3))(g(M2) - ^Mx)) (12) 

= k(2k + l)(p(Mi) - 1) + (k{2k - 1) - 1) (g(M2) - g(M1)). 
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This is exactly the number of parameters freed up from the ^(Mi) 
adjoints and g(M2) — g(Mi) copies of the A2 representation by Higgsing 
an sp(k), as expected. We have implicitly assumed that there are no 
global obstructions to the local deformations that we have constructed 
above, and our parameter count is consistent with this assumption. 

4    The case of monodromy on 5u(odd). 

While we appear to have given fairly general rules in the previous sec- 
tion for computing the massless particle spectrum of an F-theory com- 
pactification, there are actually many cases where the rules we have 
given so far become difficult to apply. 

In particular, Witten's analysis of the moduli space of rational 
curves in [6] assumes that everything is smooth (and reduced). This 
need not be the case. We will discuss some awkward cases which appear 
quite commonly in F-theory. 

We begin with a discussion of a case which has caused some con- 
fusion in the literature—that of Z2 monodromy acting on a gauge al- 
gebra of 5u(2k + 1). The approach of asking for the largest subalgebra 
invariant under an outer automorphism is not that helpful in this case. 
Putting h = 1 in eq. (4) shows that 5o(2k+ 1) is one possibility. De- 
composing 2k + l8Lsk + l + k and putting 

h = \    0   10, (13) 

(where / is the k x k identity matrix) shows that sp(fc) is another 
possibility. (This form of h is nicely adapted to the action on the Dynkin 
diagram.) Now it so happens that dim(so(2fc + 1)) = dim(sp(A;)) (and 
that this is the largest dimension which can occur). So which is the 
gauge algebra that F-theory actually wants? 

Using the approach of section 2 we immediately run into a problem. 
One of the ruled surfaces, which we will denote Si, swept out by the 
reducible components of the fibers will look inevitably locally like the 
surface 

y2 -X
2
z = o (14) 
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singular 

Figure 4: The singular surface for monodromy in su(3). 

in C3. We show a sketch of (the real version of) this surface in Figure 4. 
Each line Ci in this surface crosses another line C{ in the same class. 
In the case of $u(2k + 1) for k > 1 there will be other smooth surfaces. 
This case is a little hard to visualize. In Figure 5 we show the case of 
monodromy acting on $u(5). (In this case S2 is the surface z — x2.) 
The thick lines at the bottom of this sketch show the fiber over a branch 
point of M2 -> Mi. 

The problem is that it is not clear what value we should give to Si D 
Ci since Ci meets the singular line in Si. The most naive interpretation 
of Figure 5 is to completely ignore the fact that 5i is singular and from 
the figure read off the intersection matrix 

(Sincj)=(^l J,). (15) 

This would imply that the gauge algebra is £u(3). In general, according 
to this argument, Z2 monodromy acting on $u(2k + 1) would produce 
su(k + 1)—neither of the possibilities suggested above! It would be the 
most obvious algebra suggested by "folding the Dynkin diagram up" 
by the outer automorphism. 

We could get an $p(k) Cartan matrix from the case in question 
if we could somehow tie Ci and €[ in Figure 4 together. That is, 
somehow the rules of 2-brane wrapping would have to assert that Ci 
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Figure 5: The singular surface for monodromy in 511(5). 

may not be wrapped alone—one must also wrap the intersecting curve 
C[ simultaneously. Since Si is singular, there is no known reason for 
ruling such a possibility out. By considering the reducible curve Ci+Cf

1 

as a single curve, we effective replace 5i by a simple ruled surface. Thus 
we would reduce Figure 5 to Figure 1. That is, the case su(2k + 1) is 
reduced to su(2k) and so we get $p(k) under monodromy. 

At this point therefore we do not really seem to know what the gauge 
algebra is. The geometry seems to suggest $u(k + 1) or sp(k) while the 
outer automorphism argument suggests sp(k) or so (2k + 1). We will 
now give various arguments in support of the following assertion. 

Main Assertion . For an F-theory compactification on an elliptic 
threefold with a curve of hk+i fibers (which locally suggests a symmetry 
of su(2k + 1)) with Z2 monodromy, the resulting gauge symmetry is 
5p(k) (provided that the R-R fields are set to "zero"). 

This assertion corrects some statements which appeared in earlier 
literature where it had been assumed the resulting gauge symmetry was 
so(2k + 1) for reasons we discussed above. As mentioned in the intro- 
duction one can show that the spectrum of various F-theory models, 
such as point-like instantons on a Dn singularity, is anomaly free for 
sp(k) but inevitably would have anomalies in some cases had the gauge 
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algebra contained so (2k + 1) ii 

Note that the outer automorphism of SU(2fc +1) which yields sp(k) 
actually has order 4, since its square is conjugation by the matrix 

-/   0 0 
0   1 0 
0   0 -/ 

hh = h2 = I    0   1      0    , (16) 

where I is the k x k identity matrix; h2 is not a central element of 
SU(2A;+1). This outer automorphism of course still induces the required 
reflection of the Dynkin diagram, as we explained near the end of section 
2. 

This modifies the analysis which led to eq. (6) as follows. We let the 
outer automorphism of order 4 act on s and decompose into eigenspaces: 

Ad(s) = Ad(fl) QV-QVi® V-i, (17) 

each of which will be a representation of g (possibly reducible). As 
before, the eigenspaces for eigenvalues ±1 can be accounted for by cer- 
tain positive roots which are left invariant under the involution and 
by certain pairs of positive roots which are exchanged under that in- 
volution. The moduli space for the former is Mi and for the latter is 
M2; when we consider the quantization of the D2-branes wrapped on 
the corresponding curves, we find 2(/(Mi) half-hypermultiplets for each 
of the invariant roots, and 2g(M2) half-hypermultiplets for each of the 
pairs. Since each pair contributes to both the +1 and —1 eigenspace, 
this adds up to a total of 2g(Mi) half-hypermultiplets in the adjoint 
representation of g, and 2g(M2) — 2g(Mi) half-hypermultiplets in the 
representation V_. 

We have yet to account for the representations Vi and V-i. In fact, 
these are the roots which contain either C or C", which—as we have 
argued above—cannot occur as wrapped D2-branes at the generic point 
of the parameter curve Mi if we are to reproduce the Cartan matrix 
compatible with our Main Assertion (or at least, such wrapped branes 
cannot produce vector multiplets).12 However, as we will see in sec- 
tion 4.1, the representations Vi and V-i do occur in the hypermultiplet 

11 See the footnote in section 4 of [14] for a full description; further calculations 
of anomaly cancellation conditions in [30] also support our Main Assertion. 

12We remain mystified as to the exact mechanism which obstructs D2-branes from 
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spectrum—perhaps because at the branch points of the map M2 -4 Mi, 
C and C" are identified and there is no apparent obstruction to wrap- 
ping the D2-brane there. 

To be more concrete concerning the case at hand, with 5 = su(2k + 
1)? g = sp(fc), and the outer automorphism determined by the h in 
eq. (13), we have 

F_ = A2C2fc = (A2C2fc)o © C, (18) 

the second exterior power of the fundamental of sp(k) (which has a 
trivial one-dimensional summand), and 

Vi^V-i^C™, (19) 

the fundamental representation of sp(fc). 

Thus, the predicted spectrum is: 

• g(Mi) hypermultiplets in the adjoint representation 

• g(M2) - g{Mi) hypermultiplets in the second exterior power rep- 
resentation (including its trivial summand), and 

• additional hypermultiplets in the fundamental representation. 

In fact, an anomaly calculation [30] predicts that there will be pre- 
cisely 2g(Mi) - 2 + §6 - 2(g(M2) - p(Mi)) + |6 such hypermultiplets. 
One possible interpretation of this formula is that there are two fun- 
damentals (Vi and V-i) associated to the parameter curve M2 and an 
additional half-fundamental at each branch point.13 

4.1    The case of 5u(3) -> sp(l). 

A Kodaira type IV fiber would intrinsically produce an su(3) gauge 
symmetry but monodromy may act on this fiber producing the case of 

wrapping these unions of curves, or which removes the vector multiplets from the 
spectrum of the wrapped branes. Note that Freed and Witten [31] have observed 
obstructions in D-branes related to anomalies. 

13There are other possible interpretations; for example, one can form the degree 
four cover M3 of Mi which corresponds to the order four element of SU(2k + 1), 
and express things in terms of the genus of M3. 
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interest. At first sight this might not look like such a good candidate for 
examination since su(2) = £p(l) = so(3)! However, the hypermultiplet 
spectrum will allow us to distinguish the cases. 

Consider the case of amassing point-like Es-instantons on an orb- 
ifold point of a K3 surface along the lines analyzed in [32]. We will be 
interested in the case of four instantons and six instantons on a C3/Z3 
quotient singularity. From result 3 and figure 7 of [32] we may deduce 
the spectrum without encountering any difficulties. In the case of four 
instantons, the Z3 singularity may actually be partially resolved to a Z2 
singularity without affecting the particle spectrum. This Z2 singularity 
may then be effected by a "vertical" line of I2 fibers (in the notation of 
[32]). The six instanton case is effected by a vertical line of I3 fibers. 
The results are 

• 

• 

For four point-like i?8-instantons on a Z3 singularity we have a 
nonperturbative enhanced gauge algebra of su(2) with hypermul- 
tiplets in four 2 representations. 

For six point-like i?8-instantons on a Z3 singularity we have a 
nonperturbative enhanced gauge algebra of 5u(2) ©su(3) 0su(2) 
with hypermultiplets as (2,1,1) 0 (2,3,1) 0 (1,3,1) 0 (1,3,1) © 
(1,3,2)0(1,1,2). 

We may also produce exactly the same physics by using a vertical 
line of type IV fibers. The configurations of curves of Kodaira fibers in 
the base of the elliptic fibration is shown in Figure 6 for the cases of 
four and six instantons respectively. These diagrams are again similar 
to those presented in [32] and represent the situation after the base has 
been blown up the requisite number of times. The short curved lines 
represent fragments of the the curve of Ii fibers. 

Let us begin with the case of six instantons on the right of Figure 6. 
The lines of type II fibers produce no gauge symmetry enhancement. 
The upper and lower diagonal lines of type IV fibers each collide once 
transversely with a line of type II fibers and once non-transversely 
with the curve of Ii fibers. Actually these collisions are very similar.14 

Each of these collisions produces Z2 monodromy in the type IV fiber 
14Indeed for a special choice of moduli, the line of Ii fibers can be turned into a 

line of type II fibers intersecting the line of type IV fibers transversely. 
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Figure 6: Four and Six Point-like instantons on Z3 orbifold points. 

producing the geometry of Figure 4. Thus each of these diagonal lines 
of type IV fibers produce an su(-2) (or sp(l)) gauge symmetry. 

The remaining vertical line of type IV fibers collides with the other 
two lines of type IV fibers. Resolving this collision shows that no mon- 
odromy is induced. Thus this vertical line represents an 5u(3) gauge 
symmetry. An analysis of the collisions shows that there would be 
an induced hypermultiplet in the (3,3) of su(3) © 5u(3) for each colli- 
sion if there were no monodromy. Clearly from the desired spectrum 
above, this (3,3) must break up as (2,3) © (1,3) of su(2) © su(3). 
This tells us immediately that the inclusion su(3) D £u(2) produced by 
the action of the monodromy produces a decomposition of the funda- 
mental of 5u(3) via 3 —> 2 © 1. This rules out the natural embedding 
su(3) D 50(3) = su(2) for which 3^3. 

We are left with having to account for a hypermultiplet 2 in each of 
the 5u(2)'s. This must come from the monodromy-inducing collisions 
of the diagonal lines of type IV fibers with the lines of type II and type 
Ii fibers. As these collisions are all the isomorphic locally, each collision 
must produce a half-hypermultiplet 2. This is in agreement with our 
comments concerning the Vi and V-i representations at the end of the 
previous subsection. The collision point is the point around which the 
monodromy acts and so it associated with the location of the curve 
denoted D in Figure 4. 

The choice of associating this su(2) as the k = 1 case of 5p(k) or 
5u(A;+l) differs as explained above by whether we view the positive root 
of su(2) as being associated to Ci or to Ci+Cf

1. Clearly in the latter case 
we have 2D = C + C\ as divisor classes and so D naturally generates 
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the 2 as required. If only Ci were identified as the positive root then D 
would produce nothing new. Therefore we can only correctly identify 
the spectrum F-theory in the case of the geometry on the right-hand 
side of Figure 6 if we take one of roots of the gauge algebra to be Ci+C|. 
That is, there really does appear to be a rule in string theory which 
allows 2-branes to wrap Ci + C[ together but not Ci or C[ individually. 

We can further verify our picture by considering the spectrum for 
four instantons on the left of Figure 6. There are four collisions with 
the vertical line of type IV fibers, each producing monodromy. Thus, 
g(M2) — 1 and there are 6 = 4 branch points. Following the arguments 
at the end of the previous subsection, we thus predict a spectrum con- 
sisting of one hypermultiplet in the A2C2 = C representation (from 
!/_), and 2(g(M2) — g(Mi)) + |6 = 4 hypermultiplets in the fundamen- 
tal representation (i.e. V±i). This precisely agrees with the spectrum 
found above: there are four 2's of su(2). Even the V- representation 
"1" occurs correctly: it is the deformation a la Wilson [28] of Mi, or 
in physical terms of the heterotic string, it is the deformation of the Z3 
singularity to a Z2 singularity which does not affect the spectrum as 
noted earlier. 

The rules of 2-brane wrapping are therefore rather unusual for the 
curves Ci and €[. As observed previously, away from the branch points, 
a 2-brane can never wrap Ci or C[ individually. However, as we have 
just seen, at the branch points where Ci and €[ coincide, the 2-brane 
is allowed to wrap the curve. In fact, when this wrapping is taken with 
both orientations, a hypermultiplet in the 2 of su(2) is produced for 
each branch point. 

Since Ci lies in the singular surface 5i it is perhaps not surprising 
that the usual rules of 2-brane wrapping appear to break down. Any- 
way, since this same Si appears as the "end" component for the higher 
rank gauge groups of this type, assuming string theory wraps branes 
around curves in Si in a similar way in that context, we arrive at our 
Main Assertion. 
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4.2    Deformation to the su(even) case. 

We can also give a different argument in favor of the 5p(k) gauge group 
in case Mi has positive genus. Let us start with the case of l2k+2 
fibers with Z2 monodromy. By Theorem 1, this leads to a sp(k + 1) 
gauge group and at least one adjoint hypermultiplet. We will show in 
a moment that the corresponding A2k+i singularity can be smoothed 
to an A2k singularity with Z2 monodromy. This corresponds to giving 
a nonzero vev to a semisimple element of the adjoint hypermultiplet, 
and the $p(k + 1) gauge group gets Higgsed to some rank k subgroup 
0 C 5p(k + 1). We still have to determine what 0 without knowledge 
of the u(l)sp(k + 1) that acquires a vev. Clearly $p(k) C sp(k + 1) is 
possible, so we could have g = $p(k). We now argue that Q = so(2k + l) 
is impossible. 

Lemma 1. There is no embedding of$o(2k + l) in sp(k + l) for k > 1. 

Proof This argument is due to R. Zierau. Suppose that there were an 
embedding of jSfo(2fc + 1) in $p(k + 1). Then the fundamental 2k + 2 
dimensional representation ^+2 of sp(k + 1) would restrict to a rep- 
resentation of $o(2k + 1), which necessarily decomposes as a funda- 
mental representation V^k+i of 50 (2k + 1) plus a trivial representation. 
The alternating form on V2k+2 restricts to a alternating form on V^k+i- 
Since V^+i is odd dimensional, this form is degenerate. It's nullspace 
W C V2AJ+1 is invariant under $0 (2k + 1), and is a proper subspace 
since the alternating form on V^+i is not identically zero. This is a 
contradiction. 

The singular surface in question given by eq. (14) may be written 
as 

y2 = x2z, (20) 

and thought of as a double cover of the xz-plane branched along z = 0 
and doubly along x = 0. It is the double branching that makes the 
surface singular. We may smooth the surface by deforming to 

y2 = x(x - e)z. (21) 

Now the double branching has been split to x = 0 and x = e. For 
a fixed value of z this process replaces a nodal rational curve by a 
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smooth rational curve, where the nodal rational curve can be viewed as 
two rational curves intersecting transversely at a point. That is, each 
pair of intersecting lines in Figure 4 is replaced by a single line and the 
surface is smoothed. 

This smoothing process is remarkably benign at the level of global 
geometry. It is often possible to perform it even when the geometry of 
the ambient threefold, X, is completely smooth at all times. 

We can then derive the 5p(k) gauge symmetry indirectly as follows. 
The existence of the deformation shows that 2-branes are not allowed 
to wrap the individual lines of Figure 4. The deformation converts each 
pair of lines into a single new line. Thus if physics is not discontinu- 
ously affected by the deformation, the 2-branes contributing to vector 
particles must only be allowed to wrap the pairs of line in Figure 4 
together. As we have observed in the discussion immediately preceding 
the Main Assertion, we can now conclude that we do indeed obtain 
5p(k).15 

There is of course a problem with the proof of our Main Assertion by 
this argument—there may be global obstructions to such a deformation. 
Wilson's criterion suggests that such deformations only occur when 
g(Mi) > 0, where Mi is the base of the fibration of Figure 4 as a ruled 
surface. We address this in part by giving an example of a deformation 
when g(Mi) > 0. 

We return to the setup introduced at the end of section 3. Using 
the notation leading to eq. (11), we write the equation 

xy = z2k+2 + f1z
2k+l. (22) 

This gives su(2k + 1) with Z2 monodromy at the generic point of Mi. 
The deformation is simply 

xy = z2k+2 + fiZ2k+l + €f2Z2km (23) 

15Note that the fact that hypermultiplets may arise from wrapping 2-branes 
around the individual lines is not compromised by this argument. When we deform 
the curve of A2k singularities to a curve of A2k-i singularities we may affect the 
geometry of some points on this curve. Thus hypermultiplets which were "spread" 
over the whole curve of singularities may be localized to isolated rational curves by 
this deformation process. Massless vectors cannot come from such isolated curves. 
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To make sense of this, we have to say a little more about the blowup. 
The A2k blowups are determined by a procedure given in [33] after 
choosing an ordering of the 2k+ 1 factors of z2^2 + fiz2k+1 + ef2Z2k = 
z2k(z2 + fiz + e/2). Choosing the (z2 + fiz + 6/2) factor to be in the 
middle, we obtain the desired geometry. The last blowup creates a 
single ruled surface, which smooths out the singular component. It is 
immediate to see from the description in [33] that for generic fc this is 
a smooth deformation of the desired type. 

In this model, we have placed a restriction on the genus and have 
introduced localized matter at the zeros of /1. However, if we are 
willing to accept that the process of gauge symmetry enhancement is 
dictated by local geometry then this example is enough to justify our 
Main Assertion. 

5    Numerical Oddities 

Finally we close with a note on the peculiar numerical predictions dic- 
tated by anomaly cancellation in the six-dimensional physics produced 
by F-theory compactified on X. This has been discussed in many places 
before (for example [34]) and is often used as a method of enumerating 
the spectrum of hypermultiplets. Here we have outlined a systematic 
way of constructing the hypermultiplet spectrum and so the anomaly 
constraint becomes a peculiar numerical property of the geometry of 
an elliptic Calabi-Yau threefold. 

For completeness we will repeat the anomaly condition here. We 
consider an elliptic fibration TT : X -> E with a section. Let G be 
the gauge group (or algebra) in six dimensions and p(E) the Picard 
number of E. Then anomaly cancellation along the lines of [35] yields 
the following 

dim G - Y^ d dim Ri = 29/?(s) * 302> (24) 
i 

where the hypermultiplets fall into representations Ri of G and Si is 
equal to 1 if the representation is real or | if the representation is com- 
plex or quaternionic (pseudoreal). Note that the trivial representations 
also contribute to the sum. These can be determined from the fact that 
the number of neutral hypermultiplet moduli are equal to /i2'1(X) + 1. 
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As an example consider the extreme case of G = EQ
7
 X F4

16 X G^2 X 

SU(2)32 corresponding to 24 point-like i?8-:mstantons on a binary icosa- 
hedral quotient singularity in the heterotic string [32]. The Calabi-Yau 
threefold for the F-theory description of this has p(E) = 194. Applying 
the methods of sections 3 and 4.1 to this threefold we also arrive at a 
spectrum of hypermultiplets of a (1,2) 0 (7,2) for each of the 32 copies 
of G2 x SU(2).16 These representations are quaternionic. Equation (24) 
then reads 

5592 - (i x 32 x 16 + 12) = 29 x 194 - 302. (25) 

The anomaly condition in eq. (24) has been verified in situations 
illustrating Theorem 1 and our Main Assertion (see the footnote in 
Section 4 of [14]). 

Note that one may obtain further conditions from the anomaly can- 
cellation condition. For example one may require the vanishing of co- 
efficient of each "tr(F4)" term in the anomaly. See for example [34, 9]. 

It would be very satisfying to give a purely geometric proof of 
eq. (24) and the other anomaly conditions. (A geometric proof which 
covers a wide variety of cases has recently been constructed [30].) Sadly 
at present the origin of this formula without using string theory is some- 
thing of a mystery. Note that the existence of a section in the fibration 
TT : X —>• E is necessary for this to work. If this requirement is not sat- 
isfied then there is no six-dimensional physics and the condition need 
not be satisfied [18] (for an example, see [36]). 
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