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for arbitrary degrees and low values of n. The results are con- 
sistent with the Virasoro conjecture and also lead to explicit 
computations of all Hodge integrals in these genera. We also 
derive new recursion relations for simple Hurwitz numbers sim- 
ilar to those of Graber and Pandharipande. 

1    Introduction 

It is well-known that the intersection theory on the compactified mod- 
uli space Mgin of stable n-pointed genus-p curves, or equivalently the 
two-dimensional pure gravity, is governed by an integrable KdV hierar- 
chy [26, 38]. More precisely, the KdV hierarchy allows one to compute 
recursively the intersection numbers of tautological divisors on Mg^, 
for arbitrary g and n, in terms of two basic invariants in genus-0 and 
genus-1. Physically, it means the following: It is a common and useful 
practice to perturb a given quantum field theory by introducing into 
the action couplings to physical operators and to study the perturbed 
partition function which becomes the generating function for the corre- 
lators of the original theory. For example, in a topological string theory 
on a target space V, the physical operators are the cohomology classes 
7a of V and their gravitational descendants rm}a, m G Z>i. In this case, 
one considers a perturbation by 

oo 

E E C^-H. (i-i) 
rn=0laeH*(V) 

where To,a represents the primary field associated with the cohomology 
class ja itself. The parameters t^ are said to form the coordinates 
on the so-called large phase space2. In this setting, the KdV structure 
implies that the partition function of the perturbed topological string 
theory on a point target space, in which the puncture or identity oper- 
ator is the only primary field, is a r-function of the hierarchy and the 
r-function is uniquely fixed by the string equation. 

It was soon realized that the statement of the integrable structure 
can be rephrased in terms of certain differential operators on the large 

2Similarly, the small phase space refers to a space of deformations by only the 
primary fields; i.e. the subspace t^ = 0, m > 0, of the large phase space. 
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phase space which annihilate the r-function. It turns out that these op- 
erators furnish a representation of a subsector of the Virasoro algebra, 
and thus the KdV hierarchy of the intersection theory is also known as 
the Virasoro constraints [6]. 

One immediate generalization of the above picture is to introduce 
more primary fields by coupling the two-dimensional topological grav- 
ity to topological field theories. For example, coupling the topological 
minimal models to topological gravity leads to d < 1 topological string 
theories which are governed by W-algebra constraints, generalizing the 
Virasoro algebra. A more interesting and perhaps more physical way 
is to consider topological string theories on more general non-trivial 
target spaces. This approach has led to physical means of studying 
the Gromov-Witten (GW) invariants, of which the subject of quan- 
tum cohomology is a subset, on Fano and Calabi-Yau manifolds. Such 
physical models describe the intersection theory, sometimes called the 
gravitational quantum cohomology, on some suitably defined moduli 
spaces of stable holomorphic maps from Riemann surfaces to target 
spaces [3, 4, 27, 31]. Based on the previous examples, should one ex- 
pect some kind of an integrable structure to govern the intersection 
theory in these cases as well? 

Through a series of papers [9, 10, 11, 12, 13, 24], it has been indeed 
conjectured that there should exist a certain integrable hierarchy which 
underlies the gravitational quantum cohomology and which manifests 
itself again in terms of a set of differential operators forming a half 
branch of the Virasoro algebra: 

[Ln,Lm] = (n-m)Ln+m,   n,ra>-l. (1.2) 

This conjecture is now referred to as the Virasoro conjecture and has 
been proven up to genus-1 by mathematicians for manifolds satisfy- 
ing certain conditions [7, 32, 33]; in particular, for complex projective 
spaces F1. Historically, this conjecture is based on the discovery of a 
matrix model for the topological string theory on P1 [9, 10, 24]; the 
Ward identities for the matrix model form a Virasoro algebra. The 
authors of [10] have checked for a few cases that the intersection num- 
bers on the moduli space of stable maps indeed satisfy the constraints 
implied by their conjecture. Despite some curious matchings, there is 
yet no complete proof3 of their conjecture even for P1. 

3That is, except for a point and Calabi-Yau varieties of dimension greater than 
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In this paper, we take a retrograding step towards attempting to 
unravel the mystery of the Virasoro constraints for P1. At first sight, 
this example appears to be the simplest generalization of the pure grav- 
ity case, but it turns out that the only interesting GW invariants for 
P1 are the gravitational descendants. The reason is that the only pri- 
mary fields of the theory are the identity and the second cohomology 
class which can be eliminated via the puncture and divisor equations 
[24, 38]. We thus cannot obtain any nontrivial information by restrict- 
ing our attention to the small phase space, as was done in [12, 13], and 
we would need to consider various descendant GW-invariants to study 
whether there exist any possible constraints on the theory. Important 
ingredients in our computations of the GW-invariants are the known 
topological recursion relations (TRRs) in genera-zero, -one and -two. 

Incidentally, the relation between the TRRs and the Virasoro con- 
straints are not clear, even in the present case of P1. In the pure gravity 
case, the Virasoro constraints, or the KdV hierarchy, completely deter- 
mine all the correlators in all genera in terms of (To)oTo,o/ro,o)0 and (rijo)1, 
and there is no need for additional TRRs; the TRRs are thus redundant 
for a point target space. For higher dimensional target spaces, however, 
the Virasoro constraints by themselves are not powerful enough to de- 
termine all the correlators and require the help of additional TRRs. 
In fact, it is not known whether the Virasoro constraints, even if they 
were true, together with various TRRs, would be able to determine all 
the correlators for a non-trivial target space. Interestingly, for P1, the 
positive modes of the Virasoro constraints are not needed to compute 
all the descendant GW-invariants up to genus-2. That is, the TRRs of 
[11, 17, 38], together with the L_i and LQ constraints4, are enough to 
compute all the correlators in genus-zero, -one, and -two. At least in 
these low genera, it thus seems that the Virasoro constraints for P1 are 
redundant, and indeed, we have checked for many of the GW-invariants 
which we have obtained via TRRs that they actually do satisfy the con- 
straints. 

Before we proceed, it is perhaps necessary to clarify the nature of 
our work, so as to align the reader's line of thinking with our own. 

or equal to three. 
4These two constraints are proven to hold for all manifolds. The L_i constraint 

is the string equation of Witten [38], and LQ the equation of Hori [24] combining 
the dilaton, divisor and dimension equations. 
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The philosophy of this paper is not to prove any parts of the Virasoro 
conjecture. Instead, we admittedly take an un-innovative approach to 
computing the descendant GW-invariants of P1 by using the available 
topological recursion relations, and the numbers that we thus obtain 
are independent of the Virasoro conjecture. Since a genus-g recursion 
relation involves lower genus contributions, a mistake in genera-zero 
and -one would propagate through any subsequent computations in 
higher genera. We therefore check many5 of our results by verifying 
that they satisfy the Virasoro constraints in genera-zero and -one, which 
are rigorously proven to hold [7, 32, 33]. Based on those numbers, we 
are able to compute the genus-2 GW-invariants containing up to three 
arbitrary descendant fields, and we again check that they satisfy many 
of the genus-2 Virasoro constraints. As the Virasoro constraints in 
genus-2 are conjectural, our verification provides a minor support for 
the claim. 

This paper is organized as follows: We first compute the descendant 
GW-invariants and the Hodge integrals in genera-zero, -one, and -two 
just by using known topological recursion relations. In §3, we use these 
results to check the Virasoro conjecture by explicitly checking that the 
correlators satisfy the constraints. We also comment on the higher- 
genus cases and on the TRRs of Eguchi and Xiong [13]. In §4, which 
is independent of other sections, we derive new recursion relations for 
simple Hurwitz numbers in genera-zero and -one by using TRRs as 
well as by applying the Virasoro constraints discussed in the previous 
sections. The paper concludes with speculations and open questions 
regarding the relation between the TRRs and the Virasoro constraints. 

Notations 

Many different notations are being used by mathematicians and physi- 
cists. Here, we clarify the conventions that we use: 

5A computer program has allowed us to check that over 10,000 Virasoro con- 
straints are satisfied. 
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Tmja the ra-th descendant of a primary field 
7aGJHr2a(P1,C). See also (2.3). 

To,o the identity element in i7*(P1
) C). 

TO,! the basis ofH2(F\Z). 
t^ the coordinate associated with rm)Q! 

on the large phase space. 
(( )) a genus-g correlator in the large phase space. 
( ) a genus-c/ correlator at the origin 

of the large phase space, i.e. t^ = 0, Va, m. 
()  d a degree-d Gromov-Witten invariant in genus-g 

at C = 0,Va,ra. 
Cm }^k=l V*• 

• We call m the degree6 of the descendant rm>a. 

• Following the physics nomenclature, we sometimes call the n- 
point descendant invariant (rmi>ai • • • Tmnjan) an n-point correla- 
tion function, or simply an n-point functions. 

Technically, an n-point GW-invariant (Tmijai • • • Tmn)an) is a sum 
of Gromov-Witten invariants (rmi>ai • • • Tmn)Q:n) d in various de- 
grees with coefficients in the Novikov ring of P1, but since each 
correlator receives a contribution from only one specific degree, 
we will often use (rni>ai • • • T^^ and (rnuai • • • rnky0ik)gid inter- 
changeably. The degree d of the non-vanishing GW-invariant can 
be worked out easily from the dimension of the virtual fundamen- 
tal class [Mg,n(F\d)]v'lv. 

• Many terminologies from algebraic geometry are used in this pa- 
per without explanation, and we refer the reader to the available 
references for their definitions [5, 18, 23]. 

6This degree should not be confused with the degree of a stable map in 
Mg,n(F\d). 
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2    Computations of the Descendant GW- 
Invariants 

In this section, we compute the descendant GW-invariants of P1 in 
genera-zero, -one and -two by using the topological recursion relations 
of Witten [38], Eguchi-Hori-Xiong [11] and Getzler [17]. In general, a 
TRR in genus-# involves lower genus GW-invariants; as a result, the 
computational usefulness of a TRR depends on the knowledge of the 
lower genus invariants. We thus proceed systematically from descen- 
dant GW-invariants in genus-0 to those in genus-2. 

2.1    Properties of the Descendant GW-invariants 

The descendant GW-invariants, also known as the gravitational corre- 
lators, satisfy certain topological axioms which will be used throughout 
this paper. In this subsection, we briefly review these properties and 
refer the reader to [5] for details. 

Let M.gin(V, P) be the compactified moduli space of stable holomor- 
phic maps / : E —>■ V of genus-g n-pointed Riemann surfaces E to a 
smooth projective variety V, such that /*[E] = (3 E 1?2(V,Z). Let 
TT : Mg^+i^Vj/3) —> Mg^iViP) be the universal curve with n natural 
sections 

^ : Mg,n{V, fi) —> AW(^ /?) (2.1) 

associated with the n marked points. The tautological line bundle 
Ci —>• Mg^niy^ P) is defined to be cr*a;, where OJ is the relative dualizing 
sheaf of TT, and we denote its first Chern class, called the tautological 
^-class, by tpi. 

Let ev : A^^n(V,^) —» Vn be the evaluation map defined by 

ev : [/ : (E,^,... ,zn) -> V] G Mg,n{V,l3) 

^(f(z1)^..J(zn))eVn.   (2.2) 

Then, the descendant GW-invariant is defined to be 

(Tmi,ai ■ ■ ■ Tmn,an)g p := f ip?1---C Uev*(7ai ® • • • ® 7aJ. 

(2.3) 
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These invariants satisfy certain "axioms" which are generalizations of 
those occurring in the pure gravity case, i.e. in the case of a point 
target space. Specializing to the case of P1, they are: 

• Degree Axiom.    The GW-invariant (Tmijai • • -Trnn,OLn)g d van- 
ishes if n 

2d + 2#-2 + n^^(mi + cxi), (2.4) 
i 

where d 6 Z>o is the degree of the map, i.e. /#[£] = dp where /? 
generates the effective cycles of ^(F1,^). 

• String Axiom. For either n + 2flr>3ord>l,n>l, 

\'r0,07mi,ai * ' ' Tmn,ctn)gid V^'^J 

n 

—  / ^ vmi,ai " " * ^"Tni-i,ai-i^mi-l,aiTmi+i,ai^i ' ' ' Tmn,OLn/gid' 

i=l 

• Divisor Axiom. For either n + 2#>3ord>l,n>l, 

(To,iTmi)ai • • • rmn?an)5jd (2.6) 
n 

—  / v Vmi,ai * # ' /7"mi-i,a»_i'7mx--l,l+a»7mi+i,at+i " " * Trnn,an/g^d 

i 

+  d\Trni^ai ' ' • Tmn,an/g^d' 

• Dilaton Axiom. For either n + 2#>3ord>l,n>l, 

(n.oTmi^i * • • Tmn,an)g,d = {2g - 2 + n)(rmi,ai • • • Tmn,an)5jd. (2.7) 

In degree zero, there are the following exceptional cases: 

(T0,0T0,aT0,&)o 0     =      /    7a U 76 

24 (rO,l)i,o     =     -'< 

(TI5O)1)0    -    ^ 

The dimension of the virtual fundamental class is 

vdimtM^P1, d)) = 2{g-l) + 2d + n 
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Thus, from the degree axiom, we see that the non-vanishing GW- 
invariants are of the form 

Vni,0 * * * Tnk,0 ^rai,! ' ' ' Tmi,l)gjd 

where 
k £ 

2(g-l) + 2d + k = ^2ni + ^2rni. 
i=i i=i 

In particular, the only non-vanishing GW-invariants that do not contain 
the tautological ^-classes are: 

(TO,ITO,I • • • To,i)0)1 = 1    and    (ro,oro,oro,i)0)0 = 1 

in genus-0 and 

(To,i)i,o = ~^4 

in genus-1. All other non-vanishing GW-invariants thus contain the 
tautological -^-classes, and we call them descendant GW-invariants. 

2.2    Genus-Zero 

Topological recursion relations (TRRs) generally follow from the equal- 
ity of the tautological classes with boundary classes on the moduli space 
Jvig^n, and they are used to reduce the degree of the descendants in- 
side correlators. The TRRs for the generating functions of the GW- 
invariants of P1 are given by 

Vrai,airm2,a2Tm3,a3//() ~ Vmi-ljai^OjO/ZoVOjlTrr^,02^3,03//Q 

+ ((^mi-l,Q!iTo,l))o((rO,0/rm2,a2
/7-m3,a3))o- (2-8) 

We can compute the n-point descendant GW-invariants by using this 
relation and other topological "axioms;" the numbers that we compute 
are thus independent of the Virasoro conjecture. We will later use these 
information to test numerically the Virasoro conjecture in genus-2. 

We start with the two-point functions (Tmi?airm2)a2)0 by noticing 
that there are two ways of reducing the invariants ('rmi,ai/7"m2,a2ro,o)o- 
That is, we can either use the genus-0 TRR (2.8) to reduce the degree 
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of Tmuai or use the string equation to reduce the invariant into a sum 
of two-point functions: 

\/rmi-l,ai^m2,Q!2/o   ■" \rmi,a!irm2-1,0:2/0 V^*^j 

= (rmi-i,aiTo,o)0(To,irm2,a2)0 + (Tmi_i)airo,i)0(To,orm2)a2)0 

The two-point functions of the form (rmjaro,ig)0 can be computed by 
using the TRR of Eguchi-Hori-Xiong (B.l) and are given by (B.4). 
Now, (2.9) gives us a set of recursive relations among the two-point 
functions. For example, define 

X(m) = (T2m_i,oT2d-2m+l,o)o d       aild       Y(m) = (r2m,o7'2d_2m,o)0 d • 
(2.10) 

Then, we obtain the relations 

y (m) = -X{m) + A(m, d) and (2.11) 

X{m) = -Y(m - 1) + A(d - m + 1, d), 

where 
Afm A\      (-2cm-i-l/m)(-2Q_m) 
A(rn, d) = -—— —— (2.12) 

m[rn — l)!2(a — my.2 

and 
m 

Cm 

We can solve for X(m) and Y(m) recursively and obtain 

m 

(T2m-l,0T2d-2m+l,0)0)d = X(m) = 2 -^ + J^ Ai(A;, rf) , 
d- k=2 

m 

(T2m,0T2d-2mfi)0 d   =  Y{m) = -2 -^ + ^ A^fc, d) , (2.14) 
"• fc=l 

where 

Ai(fc,d)   =   A(A;,d)-yl(rf-A;+l,d), 

Ai(fe,d)   =   A(d-A; + l,d)-i4(ife-l,d), (2.15) 

and the summation is set to zero whenever the lower limit exceeds the 
upper limit. Other two-point functions are similarly determined, and 
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we summarize the results in Appendix B. The one-point descendants 
can be obtained from the two-point functions by using the string equa- 
tion. 

The genus-0 TRR for the three-point GW-invariants are 

Vmi,aiTm2,a2'rm3,a3/o,d {Z.LO) 

(^mi-lJaiTO,o)o,d'(rO>l 7"m2,a2 Tms^o.d" if ml + al is odd> 

(rmi-i,a1Toli)0fd/+i(To,orm2,a2rm3ja3)0j<i//_ i    if mi + ai is even, 

where the degree d of the holomorphic maps must satisfy 

3 3 

2d + 1   =   y^ rrii + y^ OLJ , 

d'   -   mi+^1~1    and    d" = d-d'. (2.17) 

By the divisor axiom and the string equation, we can further manipulate 
the above quantities to produce two-point functions. For example, we 
have 

\r0,l rm2,a27Vn3,Q;3/0 (2.1oj 

— "   \'7m2,a2 Trn3,a3/0 + vm2 —l,a2+l ^3,0:3/0   '    vm2,a2 ^ms-l^s+l/o • 

Hence, using the previous computations of the two-point invariants, we 
can now also compute arbitrary three-point functions, whose closed- 
form expressions are possible but not instructive. We thus compute 
them numerically using a computer program and tabulate some of the 
invariants in Appendix C.l. 

Similarly and unfortunately, we have reduced the problem of com- 
puting the higher-point invariants to an exercise in computer program- 
ming. We differentiate the TRR (2.8) repeatedly and use the divisor, 
dilaton, and string equations to reduce the number and degrees of the 
fields appearing in the right-hand side of equation. Using this simple 
but tedious approach, we have completed a computer program which 
computes up to 7-point functions of arbitrary degrees and have included 
a few examples in Appendix C. 
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2.3    Genus-One 

Because there exists another TRR [38] in genus-1, it is also possible to 
compute the genus-1 descendant GW-invariants. For P1, the relation 
has the following simple form: 

(Tn,a})1 = ((Tn-l,a"ro,o))o((T0>l))l + {^-1^0,1} 0(TO,O}) 1 

1 
12 

+ -((rn-i,aro,oTo,i))0. (2.19) 

Setting all 1% = 0, (2.19) yields 

I   12 

/ \       _    j   n** (Cd ~ 2dcd-i - 1)    for d ^ 0 , 
{T2d+i,o)ud   -   i   j_ • ford = 0,   and 

(^.i>,-   =   -W- (2-20) 

To compute the two-point functions7, we differentiate (2.19) with 
respect to a descendant variable t^ and get an equation which is valid 
in the large phase space: 

(Tn,aTm,(3)}1 = ((Tn_ijaTm>0To,o» o((rO,l))i + «^n-llaTo,0»o<(rO>l^m>i8»i 

+ <(Tn-.l,aTm>/9To>l»0((ro,o»1 (2.21) 

+ ((Tn-l,aTojl»o((^0,OTm>i9»i + Y^((rn-l,«r^/?rO,070,l))o • 

At zero couplings, it becomes 

(T^aTm,/?), = - — (rn_i,arm^ro,o>0 + <Tn-2>a>o(rO,lrm,i8>1 (2-22) 

+ (Tn_iJaTo>l>0(rm_i>/3)1 + — (rn-i,aTmj/3ro,oTo,l>0 , 

which contains only genus-0 invariants and genus-1 one-point functions, 
upon using the divisor axiom. Closed-form answers for these two-point 
functions are again possible, but they are not perhaps so illuminating. 
We thus omit the explicit expressions in the paper but list some of their 
values in Appendix C.2. 

7There are of course a few obvious ones that one can compute by using the divisor 
and string equations. For example, one can show that {rotiToti)1 = 0, {TitoTo,i)1 = 
-1/24, (TLon^ = 1/12- 
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It is clear that the higher-point genus-1 descendant GW-invariants 
can be similarly computed in terms of the gemis-0 and the lower-point 
genus-1 invariants by repeatedly differentiating (2.19). We have again 
implemented the algorithm into a computer program which computes 
up to 5-point functions of arbitrary degrees, and we have also tabulated 
a collection of our results up to 3-point functions in Appendix C.2. 

2.4    Genus-Two 

Combined with our previous computations, we now use a genus-2 TRR 
[17] to compute up to 3-point descendant GW-invariants in arbitrary 
degrees. Getzler's TRR (A.3) directly leads to the one-point functions, 
and their derivatives yield the desired two- and three-point functions 
(See Appendix C.3). One could also obtain the same numbers by using 
the two-point function TRRs (A.4). 

2.5    Hodge Integrals 

This section marks the end of our torture with programming. 

Let TT, E and uo be as in §2.1. The Hodge bundle E = TT^CJ over 
J^-g.niy^) is a rank-g sheaf of holomorphic sections of iJ0(E,a;s), 
where a;^ is the canonical sheaf of E. The A; classes are defined to 
be the i-th Chern classes of the Hodge bundle, and a generalization of 
the Gromov-Witten integral of the form (2.3) including the A-classes is 
called a Hodge integral. In [15], Faber and Pandharipande have found 
a set of differential operators that annihilate the generating function for 
Hodge integrals. In principle, their theorem allows one to compute the 
Hodge integrals on the moduli space of stable maps in terms of the de- 
scendant Gromov-Witten invariants. In practice, however, it is difficult 
to compute the GW-potential in the large phase space, and it is pre- 
cisely for this reason that some kind of an integrable structure such as 
the Virasoro constraints is desirable in studying the intersection theory. 
It is, however, often the case that the Virasoro constraints alone are 
not strong enough to determine the GW-invariants on non-trivial target 
spaces. In this paper, we have taken a different approach to computing 
the invariants, and we have seen that for P1, the known topological 
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recursion relations allow one to compute all the GW-invariants up to 
genus-2. Using these results, the work of Faber and Pandharipande 
completely determines all the Hodge integrals for P1 up to genus-2. 

The expressions of the differential equations for P1 are particularly 
simple: 

{chu_1{E)))a = 
B2e 

{T2e,o}g - 2J *m {{l~m+2i-l,o))i 9     (2£)\ 

oo 

- 5^*m ((Tm+2^-l,l»^ + 5^(-1)m«rml0^-2-m,l»^i 

2i-2 

m m=0 
21-2 

9'+g"=g rn=0 

where B2e are the Bernoulli numbers. 

The first non-trivial Hodge integral is (TO,O AI)1 0, which can be com- 
puted explicitly as follows: 

(ro,oXi)10   =    f   _    AiCd^J-AO 

=    f c1(¥
1)X1 

J¥1xMi,i 

= 2/- JMi,i 
AI 

1 

12' 
(2.23) 

where we have used the formula for the Euler class of the obstruc- 
tion bundle from [29], Mumford's relation A^A^ = 0, and the numerical 
value of fjj Ai = 1/24 from [15]. As simple illustrations, we have im- 
plemented our computer program to compute this and other arbitrary 
Hodge integrals involving up to two-descendants in genus-1. ( See Ap- 
pendix C.2 for a partial list.) The genus-2 cases are similarly treated: 
The £= 1 relations in (2.23) lead to Ai Hodge integrals, and the Mum- 
ford's relation 2A2 = A^ yields the A2 integrals. Since the algorithm is 
obvious by now, we do not explicitly carry out the computations. 
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3    Virasoro Constraints 

Let Z be the generating function8 for GW-invariants: 

Z = exp 
g \ \m,a /  / 

(3.1) 

and define zn9g to be the genus-^ contribution9 to Z 1LnZ. The Vira- 
soro constraints for P1 are 

Zn,g   =   0 
oo 

= J2  [a(m'n)*m (Tn+mfi}i 
m=0 

+ 2 P(m, n) t0
m {Tn+m-iti}g + 7(m, n) 4 ((Tn+m,1))s 

-a(l,n){{Tn+1,Q))g-2(3(l,n)(Tn,1))g (3.2) 
n-2 

+ ^28(m,n) 
m=0 

((/rm,lrn-m-2,l))^_i+    2^    (Trn,l))g> (Tn-m-2,l))gff 

9'+9"=g 

where we have assumed that n > 0 and the constants are given by 

'(n + m)\\ 
a(m, n)   =   m 

ml 

P(m,n)   = 

7(m,n)   = 

(n + m)\ 
m\ 

(n + m + 1)! 

[1 + m(cn+m - Cm)] , 

ml 
§(m,n)   =   (m + 1)! (n — m — 1)! . (3.3) 

3,1    Genus-Zero 

The genus-0 Virasoro constraints are 

0 = zni0 

8Z is called the partition function in the physics literature. 
9That is, the coefficient of X29'2 in Z-lLnZ. 
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OO 

= Y^ La(m'n) ^ ((rn+m,o))o + 2 /3(m, n) 4 ((rn+m_i}i))0 
m=0 

- a{l,n) ((rn+i,o»0 - 2/3(l,n)((rriji))0 

n-2 

+ J2 S(m> ^ fel))o ((rn-m-2,l))o  ' (3-4) 
m=0 

Taking derivatives of (3.4) with respect to the variables t^ yields a set of 
equations which the GW-invariants must satisfy. Let I = {1,2,... k} 
and J = {1,2,...^} be two index sets, and l',l",J', and J" their 
partitions into two complementary subsets. The set 1 labels the de- 
scendants of the identity and J those of the hyperplane class. Then, 
one finds 

0 = Y1 a(mi'n) ( Tn+™i>0 ( El rmi'0 ) W *"" ^^ / 

- a(l, n)(Tn+i^TV^o • • • Tmfcjoraiji • • • T^>I)0 

+ 2 ]P ^(mi, n) / Tn_i+m.,i f JJ rmj,o j r5lji • - • r^,! ) 

- 2)5(1, n)(rn}1rmi)o • • • rmjb>orsl>i • • • rS£>i>0 

+ 5^ 7(sa, n) / rmi,o • • • rmfc,oTn+5a,i f JJ W J / 
a=l \ ^b^a '  / Q 

n-2 

j] 5^ <y(5, n) ( T,,I f n T»H.O ) (n r-.i 
9=0 X',X",J',J" \ ^iel' ' ^aej' / 

rn-g-2,i( n T^'OJ (n ^.O) •        (3-5) 
V «cT// /       ^ ha Til 'I 

The Virasoro constraints are actually proven to hold in genus-0 [32], 
and we have numerically checked that the constraints (3.5) are indeed 
satisfied for roughly 5000 cases containing up to four-point functions. 
This test makes it fairly certain that our computer generated answers 
of the genus-0 GW-invariants are correct. 
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3.2    Genus-One 

Since P1 has a semi-simple quantum cohomology, the Virasoro conjec- 
ture is true also in genus-1 [7, 33]. In this case, the Virasoro constraints 
take the form 

0 = £n,l 
oo 

= Yl [a(m>n)*m <(rn+m,0))i 
m=0 

+ 2/3(m, n) t0
m ((Tn+m_i)i))1 + 7(m, n) 4 ((r^+^i))^ 

- a(l,n) K+i,oK - 2/3(l,n) ((r^)), 
n-2 

+ Yl 5^ n>)   I^'1 r"-^-2,l))o + 2((Tm,l))o((^n-m-2,l))l]    ,      (3-6) 
m=0 

and they yield constraints that are similar to (3.5). Using the genus-0 
and genus-1 descendant invariants that were computed in §2.2 and §2.3, 
we have checked that over 7000 Virasoro constraints which involve up 
to 4-point genus-1 GW-invariants are satisfied. 

3.3    Genus-Two 

The status of the Virasoro constraints in genus-2 is still conjectural, and 
it would be interesting to see if the GW-invariants which are obtained 
from either rigorously derived TRRs or algebraic geometry actually 
satisfy the Virasoro constraints in this case and in higher genera. 

We have checked that our results are indeed consistent with about 
1100 Virasoro constraints containing up to 3-point genus-2 invariants. 
As previously mentioned, one could use either (A.3) or (A.4) to check 
the consistency with the topological axioms and the Virasoro conjec- 
ture. 
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3.4    Speculations on Higher-Genus Cases:   TRRs 
and Localizations 

We find that the Virasoro constraints by themselves do not provide 
an efficient computational tool unless we already know many of the 
GW-invariants that are to be used in the constraint equations. In the 
pure gravity case, the Virasoro constraints relate Tn+^o with T^O? thus 
providing an effective recursions among the descendants. In the P1 case, 
however, the Virasoro constraints relate T^+^O with rn)i, but there is no 
relation between rn>i and Tn-i^. This pattern of recursion explains why 
the Virasoro constraints generally cannot determine the GW-invariants 
by themselves. 

Motivated by the previous computations, it is tempting to speculate 
that there may exist higher-genus TRRs that completely determine the 
GW-invariants. The only higher-genus TRRs that are known to us 
so far are those found by Eguchi and Xiong in [13]. Unfortunately, 
their derivation crucially depends on the assumption that the genus- 

g free energy Tg{t) = (exp (Y,m,aCrm,a)) is a function of genus-0 

correlation functions in the large phase space. That is, their derivation 
assumes that 

where uaia2...ak := ((ro^ai • • "fyaJo = 0*+1Jb/^o"'^ofc- At first 

sight, it tells us that a genus-g GW-invariant can be expressed in terms 
of genus-0 invariants; more precisely, it determines the functional de- 
pendence of the free energy on the variables t^ through the genus-zero 
quantities uai (t),uaia2 (£),..., Uaw-asg-i (*)• In the rest of this section, 
we use the technique of localization10 to comment on the validity of this 
assumption for complex projective spaces P admitting torus actions. 

We will be very brief and use the results of [22, 28]. Given a com- 
pact complex projective variety V and a holomorphic vector bundle 

10We are grateful to Prof. Tian for suggesting this analysis. We are ineluctably 
led to make it absolutely clear at this point that we do not have a satisfactory 
understanding of the ideas involving localizations and that the ensuing statements 
are only speculative. As we do not feel competent enough to present a rigorous 
proof, we are somewhat reluctant to present our arguments here. Nevertheless, 
with the hope that our honesty would engender further objectivity and caution 
from the readers than they would normally require, we proceed. 
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E ->► V, equipped with a torus action T ^ C* x • • • x C* on (V, E), 
the Atiyah-Bott fixed points formula reduces the integrals of charac- 
teristic classes of E over V to new integrals over fixed loci of the torus 
action on V [1, 2]. Recall that the GW-invariants are defined to be 
integrals of certain characteristic classes over the virtual fundamental 
class [Mg,n(V, P)]™. The torus action on V can be naturally lifted to 
Mg^iViP) by translating the stable maps. The work of Graber and 
Pandharipande [22] states that for non-singular projective varieties V, 
there exists a localization formula for the virtual fundamental class 
[Mg^iV, f))]™, and thus the associated GW-invariants can be defined 
by integrals over the virtual classes of the fixed loci of the torus action 
on the moduli space. In particular, the localization formula holds for 
projective spaces P, and the final result which we need is that an arbi- 
trary GW-invariant of F* can be expressed as a sum of Hodge integrals 
over products of the moduli spaces Mg'^' of pointed Riemann surfaces; 
that is, roughly 

IT        •••T        )     -V/*    ^i      ^ weights (38) 

where the sum is over all the fixed loci represented by certain "graphs" 
F, e(7Vpir) is the Euler class of the virtual normal bundle to .Mr, ^ the 
pull-back of the first Chern class of the cotangent bundle at z-th marked 
point on the Riemann surface, and the "weights" are determined by the 
torus action and on the cohomology classes 7ai G iy*(P,C). Further- 
more, the fixed loci represented by the graph F are products of the 
moduli spaces of pointed stable curves: 

Mv =  Y[ ^MMi;) , (3.9) 
vertices 

with g(v) < g representing the arithematic genus of the contracted 
component of the domain curve. We refer the reader to [22, 28] for the 
specific definitions of the notations which are actually not so essential 
for our discussion. 

The Euler class e(iVpir) of the virtual normal bundle introduces the 
A-classes, and the resulting Hodge integrals can be reduced to pure tp 
integrals by using Faber's algorithm [14]. Now, we recall the fact that 
for the intersection theory of the tautological divisors on the moduli 
space of stable pointed curves, the genus-# free energy, for g > 0, is 
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actually a function of the genus-0 correlators [8]: 

^(i)point = F9(u
{1\t), • • • , u^-2\t))point, (3.10) 

where u := ((Toro))0 = d2J:ro/dto dto and u^ = dlu/dt^. Combined with 
the localization formula (3.8), the form of (3.10) implies that indeed 
each GW-invariant can be expressed in terms of ^Q:i(0),nQ:iQ:2(0),..., 
^aia2-a30-.i(O) and the values of their derivatives at the origin of 
the phase space. This statement is however much weaker than the 
assumption (3.7). That is, our analysis does not show that the func- 
tional dependence of Fgit) on t^ is only through u^it),^^^),..., 
uaiol2...olz ^(t). Even though we cannot prove the statement at the mo- 
ment, we believe that our approach deserves a further consideration. 

4    Recursion Relations for Simple Hurwitz 
Numbers 

Hurwitz numbers, whose study had been initiated by Hurwitz more 
than a century ago [25], count the number of inequivalent ramified cov- 
erings of a sphere by Riemann surfaces with specified branching condi- 
tions over one point called oo. The original approach of Hurwitz relates 
the problem to transitive factorizations of permutations into transpo- 
sitions. Recently, new insights have been gained from developments in 
the absolute and relative Gromov-Witten theory [21, 30, 37]. 

In this section, we take a very modest goal of obtaining new re- 
cursion relations for the genus-0 and genus-1 simple Hurwitz numbers 
which enumerate the coverings with no ramification over oo. We take 
two different approaches which yield similar but inequivalent recursion 
relations. In the notations of the previous sections, the genus-g simple 
Hurwitz numbers are defined11 by the descendant GW-invariants of P1 

H9
d := (rlT9-2), ■ (4-1) 

We first show that the genus-0 and genus-1 TRRs immediately lead 
to relations among the simple Hurwitz numbers in these genera. We 
then use the Virasoro constraints to derive new relations which could 
be generalized to higher genera. 

11 We are grateful to R. Vakil for this definition. 
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4-1    From Topological Recursion Relations 

In this subsection, by using the TRRs (2.8) and (2.19), we derive a new 
recursion relation for simple Hurwitz numbers in genus-0 and reproduce 
the known result of Graber and Pandharipande in genus-1. 

Claim 4.1. The genus-0 simple Hurwitz numbers satisfy 

H0
d=^(2d

2k
5)(d-k-l)(d-k-2)(k + irHl1Hlk_1. (4.2) 

Proof. We need the following equations which are implied by the string 
and the divisor equations: 

(rciTcorff1},   =   (2^-l)fc2<r1
2

)
fcr2>0 

(To)iro)iT1
2,fc1>0   =   (* + l)2<73>0, (4.3) 

and similarly for (TO^T^ i-1)  and (TO,ITII) . Differentiating the genus-0 
TRR (2.8) yields 

27i-3 

«>„ = E ( 73) [(^XJ/TcirS-'-1^ 

+ <'-0,iT0,1r1',I>o(r0,„r?,r'-'>o] 

El Zn       O \   / 2k—1\   / 2n—2k\ 
[ 2k - 1 j V0>lTo>oTM    /o\To'irl-l      /o 

+ E CM 3) <'-o..ro,1T3»„,„T£-M-1>0 . 
k=0  v ' 

where we have used the fact that many of the correlation functions 
vanish for dimensional reasons and we have relabeled indices. Now, 
using (4.3) and relabeling the summation yields the desired result.    □ 

Together with the initial conditions HJ = 1 and iJi? = 1/2, these 
recursion relations easily determine all the simple Hurwitz numbers 
in genus-zero.   The formulae (4.2) are qualitatively similar to those 
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found by Graber and Pandharipande [16], but they are in fact different 
recursion relations. 

Similarly, we use the genus-1 TRR to derive recursion relations for 
genus-1 Hurwitz numbers H^ = (rf i)    : 

Claim 4.2. The genus-1 simple Hurwitz numbers satisfy 

H} = 2J2 k2{d - k)(2d -2k + l) (HI ^ H0
k Hlk 

k=l ^ ^ 

+ ±d2(d-l)(2d-l)H0
d   (4.4) 

Proof. As in the proof of (4.2), we differentiate the genus-1 TRR and 
use dimensional arguments to get 

El 2^1 — 1 \   / 2k—1\   / 2n—2k\ 
[ 2k - 1 j V0'iro'oTi.i    /oVro>lTM     A 

k=i ^ ^ 

k=0   ^ ^ 

Taking caution that (ro,i)1 = —1/24, we obtain (4.4) upon using the 
divisor and the string equations. □ 

Unlike the genus-0 case, with a minor rearrangement of terms, it is 
easy to see that our recursion relation (4.4) is actually equal to that of 
Graber and Pandharipande. 

4.2    From Virasoro Constraints 

It is also possible to derive new recursion relations for genus-g Hur- 
witz numbers by combining the Virasoro constraints with some TRRs. 
Namely, the Li Virasoro constraints yield 

3H9
d : = 3(r1

2j+29-2} (4.5) 
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= 3(2d+ 2g - 3) (T^*-^ - (T2,OT^
29
-

3
); 

For example, for genus-O, we deduce 

Claim 4.3. The genus-0 simple Hurwitz numbers H® satisfy the recur- 
sion relations of the form 

d-3 

H0
d = (2d-3)J2(k + m-k-l) 

fc=i 

'2d -6 

(2d-6\ 
\   U   ) 

(2k + 1) 

+ 2k_1 l(M-»-3) TTO      TJ-O 
nk+lnd-k-l 

1   d-S 

k=l 

2d -5N 

2A; 
(fc + l)(d -k-1) [{2k - l)(2d - 2A; - 3) 

+ 2*(2d-2fc-5)]flt.1fl2_Jk_1 

+ |(d-l)(2d-3)flS_1. (4.6) 

Proof We need the following two recursion formulas which are obtained 
from the genus-0 TRR: 

fai^>0 = (m + l)<7#>0 

+ i:£(k + l)(m-k+l)\(2m
2-

2)(2k + l) 
k=l L \ / 

Kfci>0(rrr
2fe>0     (4-7) 

and 

+ itt:1
2) (*»-»+!) 

(^wr1).=-("■+JX
2
"

1+ix^r >„ 
m—1 

2m- 1 
+ E(Zm2fc ^(fc + lKm-fc + l) 

fe=i ^ ^ 

• [(2fe-l)(2m-2fc + l) 

+ 2A;(2m-2fc-l)](r1
2fc

1>o(r1
2r2fc>0. 

The Li Virasoro constraint (4.5) now implies our claim. 

(4.8) 

□ 

Similarly, after some algebra, one can show 
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Claim 4.4. The genus-1 simple Hurwitz numbers satisfy 

H< = i E (It 12) *(d - w2* -1)(2<i -2k+v H°H'-'' 
+ ^-IMM-l^ (4 9) 

It can be easily checked that these relations are actually different 
from (4.2) and (4.4) and from the ones obtained by Graber and Pand- 
haripande. 

Remark. It is important to note that since the Virasoro conjecture 
has been proven to hold in genera-zero and -one, the recursion relations 
(4.6) and (4.9) are also true and are not mere conjectures. Indeed, we 
have verified numerically that they lead to the correct simple Hurwitz 
numbers. 

Further investigation is needed to gain a geometric understanding 
of the recursion relations that we have obtained. 

It is also possible to obtain similar relations for higher genus simple 
Hurwitz numbers from (4.5), but there are two important distinctions 
from the above two cases. Firstly, the Virasoro constraints are still 
conjectural in genus-2 and higher, thus the resulting recursions are 
not rigorous, even though they will provide an interesting check for 
the conjecture.    Secondly, there are no effective TRRs that can be 

used to express (T^IT-J^"^
-4

 \  and (^o^i4-2^-3 )  in terms of Hurwitz 

numbers. In principle, Getzler's TRRs (A.3) in genus-2 could be used to 
express these quantities in terms of lower genus simple Hurwitz numbers 
and Hi, for k < d. The TRRs however involve a large number of 
terms and render computations somewhat intractable. As there already 
exists a much simpler recursion relation [21], we omit the derivation 
here. In higher genus, we are not aware of any effective TRRs that 
can be applied. What seems to be required in this study is a TRR 
that eliminates the descendant T2}a from correlators, just as the string, 
divisor and dilaton equations eliminate the 70,05 7O,I and T^Q insertions, 
respectively. It would be interesting to see if there exists a geometric 
reason for such an equation. 
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5    Conclusion 

In principle, one could, with much patience and stamina, extend our 
program to higher genera. Being novices that we are in computer sci- 
ence, we however stop at genus-2 and would now like to discuss what 
we have learned from these exercises. 

It is instructive to recall how the KdV conjecture for pure gravity, 
stating that the intersection theory of tautological classes on M.g.n is 
governed by the KdV hierarchy and the string equation, was proven by 
Witten in genera-zero and -one [38]. First, recall the algebro-geometric 
way of determining the descendant integrals: In genera-zero and -one, 
purely dimensional arguments require the non-vanishing descendant in- 
tegrals to include a certain number of puncture and dilaton operators. 
Then, the string and dilaton equations are used to reduce the integrals 
to (TQO) in genus-0 and (TI)O)1 in genus-1, whose values can be deter- 
mined from algebraic geometry. Witten's proof is based on the fact 
that the string and dilaton equations and the initial values of (TQ0) 

and (Tifl)^ which together determine all the descendant integrals com- 
pletely, can be derived12 from his KdV conjecture. Hence, the algebraic 
geometry and his KdV conjecture yield the precisely same algorithm 
for computing the descendant integrals in genera-zero and -one. In the 
case of point target space, there is thus no further need to invoke addi- 
tional topological recursion relations, which are nevertheless consistent 
with the KdV structure. 

Something similar but crucially different persists in the picture of 
the Virasoro constraints for P1 in low genera. One could compute all the 
GW-invariants in genera-zero, -one and -two by using only the string, 
divisor and dilaton equations together with the aforementioned topo- 
logical recursion relations. On the other hand, the Virasoro constraints 
are not strong enough to determine the GW-invariants by themselves. 
It thus seems that the Virasoro constraints are weaker than the topo- 
logical recursion relations. As we have checked numerically, the GW- 
invariants obtained from the TRRs satisfy the Virasoro constraints in 
genus-zero and -one, as they should according to the rigorous proofs 
of mathematicians, and even in genus-two, which has yet no direct 

12More precisely, the dilaton equation can be derived from the string and the 
KdV equations. 
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proof. Thus, as in the pure gravity case, the TRRs are consistent with 
the conjectured integrable hierarchy manifested by the Virasoro con- 
straints which however, unlike the pure gravity case, do not determine 
the generating functions completely. 

The relations between the TRRs and the Virasoro constraints ap- 
pear to be quite mysterious. Even in the case of pure gravity, although 
the TRRs seem redundant, it is not known how to derive them directly 
from the KdV hierarchy or whether it is possible to do so at all. An 
analogous question in the case of P1, in which the TRRs and the Vira- 
soro constraints reverse their roles in some sense, would be: Do TRRs 
imply Virasoro constraints in genera-zero, -one, and -two? Since L_i 
and Z/2 generate the (half branch of) Virasoro algebra and since I/_i 
is just the string equation, which is true for general topological string 
theories, in order to answer the question, one only needs to prove that 
the TRRs imply the L2 condition. We have tried an inductive approach 
to show that all derivatives of the L2Z vanish by the TRRs and the 
L_i constraint, but it does not seem possible to prove the statement. 

The study of Virasoro constraints is presently only at its rudimen- 
tary stage, and any subsequent effort to understand their hidden struc- 
ture would require unraveling their relation with various topological 
recursion relations and also with the constraints arising from the study 
of Hodge integrals. In this paper, we have used the L_i,Lo conditions 
and TRRs to compute the descendant GW-invariants of P1 in low gen- 
era. The ineffectiveness of the Virasoro constraints suggests that there 
may exist an enlarged algebra including the Virasoro algebra and giv- 
ing us a "master" hierarchy encoding the TRR relations in all genera. 
Since the virtual localization technique expresses all GW-invariants in 
terms of Hodge integrals over products of the moduli space of stable 
pointed curves [22], it is also tempting to speculate that the Virasoro 
conjecture and the TRRs can be translated into a statement of some 
kind of an integrable hierarchy involving the very large phase space of 
Manin and Zograf [34]. 
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A    Topological Recursion Relations 

We here summarize the topological recursion relations that form the 
essential bases for our discussion. 

Genus-Zero [38]: 

\\ Tmi,ai 77712 .o^Tms,as//0 = \Vmi-l,ai'rO,0//o\vO,lrm2,a2'r7n3,a!3//() 

+ Vmi-l,aiTo,l))o(\T0,oTm2,a2rm3,a3//o  •        (A.l) 

Genus-One [38]: 

((7-n,a))i = ((7-n-l,aTo,o))o((T0,l))l 

12 + ^Tn_1,aro,i»0^To,o^1 + :^((rn-i)a"ro>oTo,i)>o •    (A-2) 

Genus-Two [17]: 

((Tfc+2,a))2 = ((Tfc+l)aTo,a))o^a6 ((70,42 

+ (Tk,aTo,a))0vab((r1,b}2 

-(Tk,aTo,a}0Vab(To,bT0,c}0r]Cd(To,d))2 

+ ^ (rk,aTo,aTo,c))0vab(ro,b))1r]cd(r0td))1 

+ J^ ((Tk,aT0,aT0,c))0riabVCd{(T0,bT0,d))1 

- ^5 ((rfc)aro,a»1^
aSc<£((To>6ro>cTo,d))0 
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13 
+ 24Q ((rfc,aTo,aro)bro,c))077aV((ro,d))1 

+ ggQ (Tk,aT0,aT0,bT0,cT0,d}0r)abVCd , 

(A.3) 

where the metric is given by r)ab = <5a,i-&- 

For two-point functions13 in the large phase space, the relations are 

{Tk+l,xn+liy}2 

= «n!+l>aJTo»2((r/jyro,a»0 + (l~k,xTo,a))0{Tl+l,yTQ))2 

- {rk,xroJ0(TiiyT0ib))0(r^))2 

+ 3 ((rMr/)2/T0
a))0 [((riia))2 - ((ro.aro.ft^o^^] 

4 4 

23 1 
+ ^((TMr/,yTo,aroro,6))o((ro))i + ^((rMro,aroro,6))oK^o))i 

1 1 
+ ^(<^Mro>>i(<r/,yro>aTorol6>>0 - ^(<rfc,a.r/>yr^>>1((rolarorol6>>0 

7 1 
+ ^{n,xriiyTo1arofi))Q{TS4))1 + -^(rk,xro,aroJb))0(ri,yT^))1 

+ — ((rfc^^^roXro^ro6^ , for fc, / > 0, (A.4) 

where TQ := r]abTo,b> 

B    Genus-Zero Two-Point Descendants 

The GW-invariants of the form (TmjaTo^)0 are easily obtained by using 
the following TRR for two-point functions [11] which is valid in the 

13We thank C.-S. Xiong for providing us with this corrected version of the TRR. 
We have checked the consistency of these relations against (A.3) up to 3-point 
functions at the origin of the phase space. 
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large phase space: 

{(Tn,aT0,l3))0 = 
'0     n + a + f3 

where the matrix M is given by 

[Mj((Tn_1)aTo,7))0 - 2((rn_1,Q+1ro,/3))0]  , (B.l) 

(B.2) 

When all the couplings are turned off, the matrix M takes the form 

Mf 0   2 
2   0 

(B.3) 

Prom (B.l), one finds 

(T2n+l,1^0,o)0in + 1     =     (T2n,l)0iB + 1   = 

n2 

('?"2n)0''0,o)0,n     —     (7'2n-l,o)0i 

(T2n+l10T0,l)Oin + 1 

(n + 1)! 

2cn 

(n!)= 
1 

n + iy (n!)2 -2cn n + 1 
(B.4) 

For more general invariants, we use the approach discussed in §2.2: 

(r2m,or2d-2m,o)0)d   =   -2 -^ + J^ Ai(fc, d) 
d!' A:=l 

('72m-l,0/7'2d-2m+l,o)0) d     =     2 -JJ + ^ Ai (fc, d) (B.5) 
k=2 

where 

Ai(ib,d)   =   A{k,d)-A(d-k + l,d) 

Ai(fe,d)   =   A(d-A; + l,d)-i4(A:»l,d) . 

Similarly, we find 
^ 771 

{T2m,lT2d-2m-2,l)Qid     =      1(1 _ -iw +'^2^(ktd) 

(B.6) 

d(d-l)! 
fc=i 
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d-1 

where 

A2(k,d)   =   M{k,d)-M(d-k,d) 
K2{k,d)   =   M(d-k,d)-M(k-l,d) 

M(M) = {knd-k)\d-k-i)^        (B-8) 

Finally, we have 

^ 771 

(T2m,0T2d-2m-l>l>of d     =     3^ + ^ A3(&, d) 
A!=l 

- 7n 

<T2m_i,or2d-2m,l>o.d     =     "^ + Yl ^^ ^  ' (B-9) 
k=2 

where 

A3(k,d)   =   W1(k,d) + W2(Kd) 
Asfad)   =   -W1(k-l,d)-W2{k,d) 

2cfc_i + 1/k 
W1(k,d)   = 

k(k - l)\2{d - k)\2 

w^ - (t-iWdlT+iXJ-^p •       (ai0) 

Note that the summations are set to zero whenever the lower limit 
exceeds the upper limit. 

C    Partial Lists of the GW-Invariants 

For those who are interested in the numerical values of the GW-invari- 
ants and for the sake of completeness, we here present, in fine prints, a 
few examples of the non-vanishing invariants. In most cases, we omit 
the ones that can be reduced by using the string, dilaton, or divisor 
equations. 
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C.l    Genus-Zero Descendants 

1-Point Descendants 

n 

10 

(7"2n+l,o)0,B + 1 

-2 

TT 

432000 

5184000 W 
502704000 W 

22759 36000 

16591^1^944000 

1659191 4400000 

22083843782246400000 

n (T2n,l)o.n + l 

0 1 
1 1 

4 

2 1 
36 

3 1 
576 

4 14400 

5 1 
518400 

6 25401600 

7 1625702400 

8 1 
131681894400 

9 13168189440000 

10 1593350922240000 
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2-Point Descendants 

I — (7'2n,0r2d-2n,o)o,c I — {T2n-l,QT2d-2n+lfl) 0 

d 2n 2d-2n 

10 

12 
10 

3456 

1152 

432000 

-12000 

6QQQ_ 

.aiMooa W 
10368Q0 W 

£_ 

15552 

1 = (T2n lT2d_2n-2,l)0,d 

d 2n 2d - 2n - 2 / 

1 0 0 1 
2 0 2 i 

2 

3 0 4 f 

3 2 2 1 
3 

4 0 6 1 
144 

4 2 4 1 
16 

5 0 8 1 
2880 

5 2 6 180 

5 4 4 1 
80 

6 0 10 1 
86400 

6 2 8 3456 

6 4 6 864 

d 2n-l 2d - 2n + 1 / 

1 1 1 2 
2 1 3 3 

4 

3 1 5 11 

3 3 3 50 
27 

4 1 7 25 
3456 

4 3 5 59 
128 

5 1 9 432000 

5 3 7 641 
13?i0P 

5 5 5 2000 

6 1 11 5184000 

6 3 9 m 
41472 

6 5 7 5184 

I = (^2n-l,l/7"2d-2n-l,l)0)C 

d 2n-l 2d - 2n - 1 / 

2 1 1 i 
2 

3 1 3 I 
6 

4 1 5 1 
48 

4 3 3 1 

]fi 

5 1 7 1 
720 

5 3 5 I 
120 

6 1 9 1 
17280 

6 3 7 1728 

6 5 5 864 
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I — {T2n,0T2d-2n-l,l) 0t I — {T2n-l&T2d-2n,\) 0t 

d 2n 2d-2n-l 
1 

_3£. 

_17 

 sm. 

576 

14400 

~600 

43200 

d 2n-l 2d-2n / 

1 1 0 -1 
2 1 2 _i 

2 3 0 — 4 
3 1 4 1 

3§ 
3 3 2 7 

9 
3 5 0 J8 

4 1 6 I 
576 

4 3 4 9 
64 

4 5 2 13 
64 

4 7 0 47 
1728 

5 1 8 14400 
5 3 6 n 

900 
5 5 4 ""P 
5 7 2 29 

] 350 
5 9 0 tar 

86400 
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3-Point Descendants 

I = (/7"m,0/7"n,0^,o)0 I = (TmJlTnllT^i)0 

m n 
-2 

—5" 

"IT 

-8 
-3 

_61_ 

m n £ / 

1 2 1 
1 4 i 

4 
2 3 2 
2 5 f 

3 4 I 
8 

4 5 1 
48 

2 2 2 1 
2 2 4 1 

4 

2 3 3 1 
4 

2 3 5 1 
24 

2 4 4 1 
I6 

2 5 5 i 
144 

3 3 4 i 
16 

3 4 5 T 
96 

4 4 4 64 
4 5 5 1 

576 
5 5 4 

57(5 
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I = {Tm,lTnflTifl) 0 I = (7"m)l'?"n,in?,o)0 

m n £ / 

1 2 3 2 
1 2 5 3 

4 
1 3 4 5 

1 4 5 ll 
16 

2 2 2 1 
2 2 4 5 

4 
2 3 3 4 
2 3 5 3 

2 
2 4 4 25 

I6 

2 5 5 
3 2 3 1 
3 2 5 3 

3 3 4 
4 

3 4 5 IS 
32 

4 2 2 I 
4 

4 2 4 5 
ifi 

4 3 3 1 
4 3 5 3 

4 4 4 
fi4 

4 5 5 9 
64 

5 2 3 I 
6 

5 2 5 1 

5 3 4 s 
24 

5 4 5 64 

m n £ / 

1 3 -2 
1 5 3 

4 
2 2 -1 
2 4 5 

4 
3 3 -1 
3 5 3 

8 
4 2 1 

4 
4 4 5 

5 3 1 
6 

5 5 1 
16 

2 2 3 -2 
2 2 5 3 

4 
2 3 2 I 

2 
2 3 4 5 

8 
2 4 3 1 

2 
2 4 5 if 

Ifi 
2 5 2 1 

2 5 4 48 

3 3 3 1 
2 

3 3 5 J 
!? 

3 4 2 I 
8 

3 4 4 32 

3 5 3 f 
V2 

3 5 5 r 
32 

4 4 3 1 
8 

4 4 5 3 
64 

4 5 2 1 
48 

4 5 4 5 
192 

5 5 3 T 
72 

5 5 5 i 
192 
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C.2    Genus-One Descendants 

l-Point Descendants 

n 

11 
13 
15 
17 
19 
21 

(^.o), 

^ 

-* 

3456000 W 
Ah ffl 

00 

-42fi^ sooo 

109247; ^ ^(KL 

39820' f#f Rfinnn 

3<)82nfin48fifiR6nnnnn 

n 

10 
12 
14 
16 
18 
20 

<rn,l)1 

24 

2±_ 

-IT 
864 

13824 

38400 qp 
12441600 W 

609638400 

2601123840 W 
3160365465600 m 

3i6n.sfi54fi5finnnn 

1-Point Hodge Integrals 

m 

10 
12 
14 
16 
18 
20 

(Tm,oAi), 
"X" 

W 
1036800 ug 

4imL 

30481 <)2nnn 
T ̂  

-^1 1)8000 

2212255S25920QQ 

3382060486656000 

m 

11 
13 
15 
17 
19 
21 

(Tm,lAi)1 

24 

144 

J728_ 

34560 

1036800 

43545600 

24385,53600 

175575,859200 

15801827328000 

1738201006080000 
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2-Point Descendants 

m n \Tm,0Tn,0/1 

■¥■ 

*■ 

8294 f 

6912 

4i 
as- 

27648 r 

-loafi 

"sr? 

-fflF 

1492992 

1®*- 
447|gZ6 

 82944 

m n {TmyTnfl)^ 

ITT 

# 
460« 

TDT 

_82a ̂ . 

-191 -w 
41472 

* 

-^ 18_ 

20736 

^ fi- 

sii2 

497664 

1 864_ 

1728 

■« 

68 

2985984 

-a2 

-$r 5fi_ 

JJi 
^ 

55296 

13824 ^ 

1536 F 
Q48_ 

186624 

m n 

10 

(Tm>lTWti)1 

144 

128_ 

17280 

■m. 

^ 
32_ 

1382 f 

MM. W 
_4fiQi T- 

-W Ma_ 
1382400 

-3? 

F 
96 

41472 ¥ 
414720 

ft: 

HP- 
1152 

^ 
48 

497664 

—ffl^ 
1990656 W 
995328 
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2-Point Hodge Integrals 

m n (Tm,OTn,oAl)1 

10 

10 

10 

10 

10 

■£ 
^ 

J2QI36 36 

'-ti*- 
■ffl 

M. 

1036800 

-^f1- 

-^ 
207: 

27 
13T 
6m2 

1036800 r 
^^ 

■« 

3M- 
_4I w m 52. 

nm92 
.1 m AA. 

_22 m w_ 

m 808 

11C)4.393600 

m n (Tm,lrn,l^l)i 

0 1 1 
12 

0 3 1 
72 

0 5 1 
48 

0 7 I 
432 

0 9 1 
6912 

2 6 
4 l 

I6 

6 1 

V08 
8 6912 

10 I 
28800 

2 3 8 

2 5 1 
36 

2 7 1728 

2 9 1 
5760 

3 4 24 

3 6 864 

3 8 1 
3304 

3 10 345600 

4 5 576 

4 7 1152 

4 9 Y 
138240 

5 6 864 

5 8 V 
82944 

5 10 259200 

6 7 62208 

6 9 155520 

7 8 124416 

7 10 I 
2764800 

8 9 2211840 

9 10 49766400 

m n (Tm,0<7Vi,lAl)1 

 x~ 
 £■ 
 :£■ 
 144 

 ?- 
144 

::f- 

J44 

3f- 
1728 

'vm 
"5184 
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3-Point Descendants 

I = (<7"m,OTn,OT^o)1 

m n 

"3456 

192 

TTI- 
it 

:iiif 
1728 

I = (/7'm?lTn,lT^l)1 

m n 

#■ 

ae. 

-^ 

■if 

* 

-w- 
_aii t- 

-#- 

"38 
-13824. 
JIM 

ipaes 
i^3 

■^ 

^L 
41472 

-^ = (Tm.lT^oT^o)! 

m 
"jT" 

—IT 

86j 

78f- 
ffl- 

-M: 
777j 

-2¥- 
#- 

&. -M 
-"S- 

-#- 

^88 

-aiW- 
144- 

?#- 

U 
13824 

_21 if 

T5t 

^T- 

31104 
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1 = (Tm,iT M^oK 
m   |   n   |   i   \ '   1 

1 3 
^ 

1 5 "* 
2 2 1 

4 
2 4 !27 

3? 
2 6 Rfi4 
3 3 7 

3 5 _1I 
4 2 -<fk 
4 4 ~M 
4 6 ^S 
5 3 ~ra 
5 5 -RT* 
6 2 144 

6 4 

6 6 inafis 
2 2 3 -+4 
2 2 5 _3 

2 
2 3 2  1. 

2 3 4 -fqi 
2 3 6 ""^fi 
2 4 3 -IS 
2 4 5 "'tis 
2 5 2 ~j> 
2 5 4 11.^2 
2 5 6 

2 6 3 -^i 
2 6 5 -M 
3 3 3 ~M 
3 3 5 89 

3 4 2 -^ 
3 4 4 -^M 
3 4 6 fiQIQ 
3 5 3 -^ 
3 5 5 -w 
3 6 2 "fifi* 
3 6 4 3?U 

3 6 6 - fiyjk 
4 3 -p 
4 5 -ife 
5 2 -^ 
5 4 -^il 
5 6 - 4y,^ 
6 3 1798 

4 6 5 lUUT 

5 5 3 

5 5 5 "TTp 
5 6 2 ^f 
5 6 4 -*S£ 
5 6 6 631 

6 6 3 —1R552 
6 6 5 -7?7fi 
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C.3    Genus-Two Descendants 

l-Point Descendants 

n 

11 
13 
15 
17 
19 
21 
23 
25 

(rn,o)2 
XT 
ML 

-5XS 

W3 

D8Q_ 

Wf 
829 $? mo 

_2Q& m )QQ£L 

1463, ^M '0000 

2621S W 2000 

9556fK^^440000 

31856483R 
^^ 

igQOQQQO 

6n5728286,';ia87584nnnnnn 

n 

10 
12 
14 
16 
18 
20 
22 
24 

(rn,l>2 

5760 

1920 

JfiSQ- 

iyp 
1105920 w 

-mmsL W 
2985984000 W 
2322432000 W 

6242' m 1600 
758487711744000 
^ 

25282923724800000 m 
437033395814400000 
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2-Point Descendants 

m 

10 

n 

10 

10 

10 

10 

10 

\Tm,0Tn,o}i 

2«80 

^ 
5fi0 

iff 368 

2211840 

W- 

6635520 

ML 

42: mF 
4Q766< 

T m 
66351 
^^ »■ 

-^ 

"T9i iW 
35831}; W- 

595 

■^ ^r 
-T« 

560 
19723 

^TiafifiopQ m 53^ 

siPgf 60 

42QQR1696000 

m 

10 
10 
10 
10 

n 

10 

10 

10 

10 

10 

(Tyn>lTn>o)2 

7 
1920 22Q 

-f4 

121L 

1105920 

■W 
JflgL 

139J}fi4 

-if 
if 

-M 
fl2Q_ 

12441600(1 

-ffi^- 

m- 
6035520 

7680 

4^ 
-ra^1- 

~< ̂ ^^ 
1432032000 W 

eiis 

*« 
np^Rjit; sr 

-^M1- 
Sf1 

40 

.^17760^0 

m? ^m* 
m» am- 
7166! ft 60 

-W1- 
-J^^1- 

JJ. £IL 

8?!M 
2866, 

-ifflffl0- 
^a MH m. 

mm nn 

4777S744nnn 

m 

10 

n 

10 

10 

10 

10 

10 

V 771,1^71,1/2 
"gr 

_ii w- 
92160 

■W 
S_ 

3840 

5888 1658/ 
1711 

2764800 

» 
;0720 

■W 
-L2afioa SP 
Mm- 

i» 

m 320. 

ifisss? r- 
-leef- 

iftfelO 523 
99532800 

-* 
4Q_ 

_1J m 60 

4976,64000 
TB: if 

■^ 

S8Q_ 

_aa ̂  
mo. 

59719680 m 
juq&p 00 

2« 
720 

23887872000 
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3-Point Descendants 

I = (TmflTn,OT£,o)2 I = (Tm,lTn,iTAi)2 

m n 
"TT 

-# 
■»■ 

-§ 7M- TT 

m 
41472Q 

"^T 

-» 

-M: 
mi- 
fiQi2n *? 

"TO m 
.£29; 

"T^ » 
995328 

m n 
—61 

i1- 
HS- 113^ 

-3a t- 
"^BT 

2Q736Q TT 

■iQ3m- 
TR 

520_ 

-La» 

* 

Iff- 
3040 

J2Q73( IT 

-ie» 

^s 
it IL 

1658880 



1764 J.S. SONG 

I = (Tm,lTnfiTe,o) 2 (Tm,lTn,lTefl)2 

'-mr 
'-Mt 

-Sififfi- 

* 

■W- 

-iM- 

-JHfi- 
-Mit- 

1w- 
afifflE- 

2d9M 

dfflf- 
-iiiif- 

rfflffi- 
2fSf1- 

^fflff1- 
sMgfr 

ffl- 
mhWP 

m n £ I 

1 5 ■fin 
2 2 TO 
2 4 TW 
2 6 ~"^W 
3 3 i^ 

3 5 -*jjfr 
4 2 1(20 
4 4 

4 6 25687 

5 3 4fi?n 

5 5 -A 
6 2 l«V 

6 4 -W)fi 
6 6 13ft2Jj 

2 2 3 
ftf* 

2 2 5 -^f 
2 3 2 

2 3 4 - ffe 
2 3 6 4?472 
2 4 3 1 

2 4 5 

2 5 2 1 1 520 
2 5 4 

2 5 6 -*w 
2 6 3 

2 6 5 syia 

3 3 3 
ft2Jfi 

3 3 5 -m 
3 4 2 

3 4 4 -m 
3 4 6 29155 

3 5 3 -T^m 
3 5 5 -  ^OAb 
3 6 2 rilia: 
3 6 4 - ^JjMn 
3 6 6 - 2

b
4ss3on 

4 4 3 ~ft 
4 4 5 -f^lP 
4 5 2 2^040 
4 5 4 - olkjln 
4 5 6 ~^¥f 4 6 3 

4 6 5 - 2
&
n 7 j^ 

5 5 3 _t^" 
5 5 5 -i||| 
5 6 2 - qpjj4 
5 6 4 """nw 
5 6 6 

6 6 3 
R4W IP 

6 6 5 - Aq J^Q20 
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