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for arbitrary degrees and low values of n. The results are con-
sistent with the Virasoro conjecture and also lead to explicit
computations of all Hodge integrals in these genera. We also
derive new recursion relations for simple Hurwitz numbers sim-
ilar to those of Graber and Pandharipande.

1 Introduction

It is well-known that the intersection theory on the compactified mod-
uli space M, ,, of stable n-pointed genus-g curves, or equivalently the
two-dimensional pure gravity, is governed by an integrable KdV hierar-
chy [26, 38]. More precisely, the KdV hierarchy allows one to compute
recursively the intersection numbers of tautological divisors on Myn,
for arbitrary g and n, in terms of two basic invariants in genus-0 and
genus-1. Physically, it means the following: It is a common and useful
practice to perturb a given quantum field theory by introducing into
the action couplings to physical operators and to study the perturbed
partition function which becomes the generating function for the corre-
lators of the original theory. For example, in a topological string theory
on a target space V, the physical operators are the cohomology classes
7 of V and their gravitational descendants 7,, 4, m € Z>;. In this case,
one considers a perturbation by

Y e (1.1)

m=0y,eH*(V)

where 7y , represents the primary field associated with the cohomology
class v, itself. The parameters t2, are said to form the coordinates
on the so-called large phase space?. In this setting, the KdV structure
implies that the partition function of the perturbed topological string
theory on a point target space, in which the puncture or identity oper-
ator is the only primary field, is a 7-function of the hierarchy and the
7-function is uniquely fixed by the string equation.

It was soon realized that the statement of the integrable structure
can be rephrased in terms of certain differential operators on the large

2Similarly, the small phase space refers to a space of deformations by only the
primary fields; i.e. the subspace ¢t2, = 0,m > 0, of the large phase space.
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phase space which annihilate the 7-function. It turns out that these op-
erators furnish a representation of a subsector of the Virasoro algebra,
and thus the KdV hierarchy of the intersection theory is also known as
the Virasoro constraints [6].

One immediate generalization of the above picture is to introduce
more primary fields by coupling the two-dimensional topological grav-
ity to topological field theories. For example, coupling the topological
minimal models to topological gravity leads to d < 1 topological string
theories which are governed by W-algebra constraints, generalizing the
Virasoro algebra. A more interesting and perhaps more physical way
is to consider topological string theories on more general non-trivial
target spaces. This approach has led to physical means of studying
the Gromov-Witten (GW) invariants, of which the subject of quan-
tum cohomology is a subset, on Fano and Calabi-Yau manifolds. Such
physical models describe the intersection theory, sometimes called the
gravitational quantum cohomology, on some suitably defined moduli
spaces of stable holomorphic maps from Riemann surfaces to target
spaces [3, 4, 27, 31]. Based on the previous examples, should one ex-
pect some kind of an integrable structure to govern the intersection
theory in these cases as well?

Through a series of papers [9, 10, 11, 12, 13, 24], it has been indeed
conjectured that there should exist a certain integrable hierarchy which
underlies the gravitational quantum cohomology and which manifests
itself again in terms of a set of differential operators forming a half
branch of the Virasoro algebra:

[Ln, Lm] = (n = m)Lpym, n,m>—1. (1.2)

This conjecture is now referred to as the Virasoro conjecture and has
been proven up to genus-1 by mathematicians for manifolds satisfy-
ing certain conditions [7, 32, 33]; in particular, for complex projective
spaces P*. Historically, this conjecture is based on the discovery of a
matrix model for the topological string theory on P! [9, 10, 24]; the
Ward identities for the matrix model form a Virasoro algebra. The
authors of [10] have checked for a few cases that the intersection num-
bers on the moduli space of stable maps indeed satisfy the constraints
implied by their conjecture. Despite some curious matchings, there is
yet no complete proof® of their conjecture even for P!.

3That is, except for a point and Calabi-Yau varieties of dimension greater than



1724 J.S. SONG

In this paper, we take a retrograding step towards attempting to
unravel the mystery of the Virasoro constraints for P!. At first sight,
this example appears to be the simplest generalization of the pure grav-
ity case, but it turns out that the only interesting GW invariants for
P! are the gravitational descendants. The reason is that the only pri-
mary fields of the theory are the identity and the second cohomology
class which can be eliminated via the puncture and divisor equations
[24, 38]. We thus cannot obtain any nontrivial information by restrict-
ing our attention to the small phase space, as was done in [12, 13], and
we would need to consider various descendant GW-invariants to study
whether there exist any possible constraints on the theory. Important
ingredients in our computations of the GW-invariants are the known
topological recursion relations (TRRs) in genera-zero, -one and -two.

Incidentally, the relation between the TRRs and the Virasoro con-
straints are not clear, even in the present case of P!. In the pure gravity
case, the Virasoro constraints, or the KdV hierarchy, completely deter-
mine all the correlators in all genera in terms of (70,070,070,0), and (71,0),,
and there is no need for additional TRRs; the TRRs are thus redundant
for a point target space. For higher dimensional target spaces, however,
the Virasoro constraints by themselves are not powerful enough to de-
termine all the correlators and require the help of additional TRRs.
In fact, it is not known whether the Virasoro constraints, even if they
were true, together with various TRRs, would be able to determine all
the correlators for a non-trivial target space. Interestingly, for P!, the
positive modes of the Virasoro constraints are not needed to compute
all the descendant GW-invariants up to genus-2. That is, the TRRs of
[11, 17, 38], together with the L_; and Ly constraints*, are enough to
compute all the correlators in genus-zero, -one, and -two. At least in
these low genera, it thus seems that the Virasoro constraints for P! are
redundant, and indeed, we have checked for many of the GW-invariants
which we have obtained via TRRs that they actually do satisfy the con-
straints.

Before we proceed, it is perhaps necessary to clarify the nature of
our work, so as to align the reader’s line of thinking with our own.

or equal to three.

4These two constraints are proven to hold for all manifolds. The L_; constraint
is the string equation of Witten [38], and Lo the equation of Hori [24] combining
the dilaton, divisor and dimension equations.
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The philosophy of this paper is not to prove any parts of the Virasoro
conjecture. Instead, we admittedly take an un-innovative approach to
computing the descendant GW-invariants of P! by using the available
topological recursion relations, and the numbers that we thus obtain
are independent of the Virasoro conjecture. Since a genus-g recursion
relation involves lower genus contributions, a mistake in genera-zero
and -one would propagate through any subsequent computations in
higher genera. We therefore check many® of our results by verifying
that they satisfy the Virasoro constraints in genera-zero and -one, which
are rigorously proven to hold [7, 32, 33]. Based on those numbers, we
are able to compute the genus-2 GW-invariants containing up to three
arbitrary descendant fields, and we again check that they satisfy many
of the genus-2 Virasoro constraints. As the Virasoro constraints in
genus-2 are conjectural, our verification provides a minor support for
the claim.

This paper is organized as follows: We first compute the descendant
GWe-invariants and the Hodge integrals in genera-zero, -one, and -two
just by using known topological recursion relations. In §3, we use these
results to check the Virasoro conjecture by explicitly checking that the
correlators satisfy the constraints. We also comment on the higher-
genus cases and on the TRRs of Eguchi and Xiong [13]. In §4, which
is independent of other sections, we derive new recursion relations for
simple Hurwitz numbers in genera-zero and -one by using TRRs as
well as by applying the Virasoro constraints discussed in the previous
sections. The paper concludes with speculations and open questions
regarding the relation between the TRRs and the Virasoro constraints.

Notations

Many different notations are being used by mathematicians and physi-
cists. Here, we clarify the conventions that we use:

5A computer program has allowed us to check that over 10,000 Virasoro con-
straints are satisfied.
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Tm,a the m-th descendant of a primary field
Yo € H?**(P',C). See also (2.3).
0,0 the identity element in H*(P, C).
o1 the basis of H2(P!,Z).
e, the coordinate associated with 7, o
on the large phase space.
(), a genus-g correlator in the large phase space.
(), a genus-g correlator at the origin
of the large phase space, i.e. t& = 0,Va, m.
(V.a a degree-d Gromov-Witten invariant in genus-g
at t2, = 0,Va,m.
Cm > ker L/E.

e We call m the degree® of the descendant 7, 4.

e Following the physics nomenclature, we sometimes call the n-
point descendant invariant (7, 4, - - Tmman>g an n-point correla-
tion function, or simply an n-point functions.

e Technically, an n-point GW-invariant (T, ,a; * * * Tmp,an), 8 @ SUm
of Gromov-Witten invariants (7m;,e, *** Tmn,an), 4 10 various de-
grees with coefficients in the Novikov ring of P!, but since each
correlator receives a contribution from only one specific degree,
we will often use (7,0, * - Tnk’ak>g and (Ty, 0, Tnk,ak>g’ , inter-
changeably. The degree d of the non-vanishing GW-invariant can
be worked out easily from the dimension of the virtual fundamen-

tal class [M,,(P", d)] V.

e Many terminologies from algebraic geometry are used in this pa-
per without explanation, and we refer the reader to the available
references for their definitions [5, 18, 23].

6This degree should not be confused with the degree of a stable map in
Mg (P, d).
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2 Computations of the Descendant GW-
Invariants

In this section, we compute the descendant GW-invariants of P! in
genera-zero, -one and -two by using the topological recursion relations
of Witten [38], Eguchi-Hori-Xiong [11] and Getzler [17]. In general, a
TRR in genus-g involves lower genus GW-invariants; as a result, the
computational usefulness of a TRR depends on the knowledge of the
lower genus invariants. We thus proceed systematically from descen-
dant GW-invariants in genus-0 to those in genus-2.

2.1 Properties of the Descendant GW-Invariants

The descendant GW-invariants, also known as the gravitational corre-
lators, satisfy certain topological axioms which will be used throughout
this paper. In this subsection, we briefly review these properties and
refer the reader to [5] for details.

Let M, ,.(V,8) be the compactified moduli space of stable holomor-
phic maps f : ¥ — V of genus-g n-pointed Riemann surfaces ¥ to a
smooth projective variety V, such that f,[X] = 8 € Hy(V,Z). Let
T Mgni1(V,8) = Mgy.(V,3) be the universal curve with n natural
sections

0 : Mgn(V,8) — Mgns1(V, 8) (2.1)

associated with the n marked points. The tautological line bundle
L; = Mgy,(V,[) is defined to be 0w, where w is the relative dualizing
sheaf of 7, and we denote its first Chern class, called the tautological

Y-class, by ;.
Let ev : M, ,(V,8) — V™ be the evaluation map defined by
ev:[f:(Z,21,..0,20) = V] € Mya(V,B)
— (f(z1),.... f(z2)) € V. (2.2)
Then, the descendant GW-invariant is defined to be

<Tm1)al “.Tmn)a")g)ﬁ = /— i ;-nl .--¢Zln Uev*(’yal ®. o ®’yan)'
Mg, n (VB
2.3)



1728 J.S. SONG

These invariants satisfy certain “axioms” which are generalizations of
those occurring in the pure gravity case, i.e. in the case of a point
target space. Specializing to the case of P!, they are:

e Degree Axiom. The GW-invariant (Tm;a; *** Tmnan), 4 VaD©
ishes if

2d+29—2+n# Y (mi+a), (2.4)

where d € Zs is the degree of the map, i.e. fi[X] = d where B
generates the effective cycles of Hy(P',Z).

e String Axiom. For either n+2g>3ord>1,n>1,

(TOyOTmlyal e Tmn,an>g,d (25)

n
= E : <Tm1,al C Tmoy,io1Tmi—los Tmigr,ain 7 ° Tmn,an>g,d'
i=1

e Divisor Axiom. For either n+2g >3 ord > 1,n > 1,
(To1Tmyan " * Tmmsan) 4.4 (2.6)
n
= Z <Tm1,a1 e Tmi——lyai—lTmi—1,1+ﬂtiTmi+1,ai+1 e Tm"’a">g,d
i N
+ dTman Tmn,an>g,d'

e Dilaton Axiom. For eithern+29g>3o0ord>1,n2>1,

<Tl,OTm1,a1 T Tmman>g,d =(29—-2+ ) {(Tmi,ar * Tmn,an>gyd~ (2.7)
In degree zero, there are the following exceptional cases:

<TOyOTOya'TOyb>O’() = / 7a U 717
P!

1
(o)1 = —5

1
<7-1,0>1,0 = E

The dimension of the virtual fundamental class is

vdim(Mgy, (P, d)) =2(g — 1) +2d+n .
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Thus, from the degree axiom, we see that the non-vanishing GW-
invariants are of the form

<Tn1,0 © Trg,0 Tma, 1 Tmz,1>g,d

where
k ¢
2(g—1)+2d+k=2n,~+2mi.
1=1 =1

In particular, the only non-vanishing GW-invariants that do not contain
the tautological 1-classes are:

(To1701 - - To,l)o,l =1 and <7'0,07'0,0"—0>1>0,0 =1

in genus-0 and
1
()0 = —57

in genus-1. All other non-vanishing GW-invariants thus contain the
tautological 1-classes, and we call them descendant GW-invariants.

2.2 Genus-Zero

Topological recursion relations (TRRs) generally follow from the equal-
ity of the tautological classes with boundary classes on the moduli space
Mg, and they are used to reduce the degree of the descendants in-
side correlators. The TRRs for the generating functions of the GW-
invariants of P! are given by

«Tml a1 Tma,0n Tma,a3 ))0 = «Tml -l,1 TO,O» 0 «TO,lez a2 Tms,as ))0
+ {Tmi-1.01 7'0,1»0 <<TO,OTm2 ,a2Tmas,as »o- (2.8)

We can compute the n-point descendant GW-invariants by using this
relation and other topological “axioms;” the numbers that we compute
are thus independent of the Virasoro conjecture. We will later use these
information to test numerically the Virasoro conjecture in genus-2.

We start with the two-point functions (7m,a;7ms,q.), Dy noticing
that there are two ways of reducing the invariants (T, a;Tms,q:70,0),-
That is, we can either use the genus-0 TRR (2.8) to reduce the degree
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of Ty, 0, OF use the string equation to reduce the invariant into a sum
of two-point functions:

<Tm1—1,a1Tm2,a2>0 + (Tml,alez—l,a2>o (29)
= (Tim1=1,0070,0)0 {T0,1 Tma,02) 0 F (Tm1—1,0170,1) {T0,0Tmasa2 )

The two-point functions of the form (7, 4704), can be computed by
using the TRR of Eguchi-Hori-Xiong (B.1) and are given by (B.4).
Now, (2.9) gives us a set of recursive relations among the two-point
functions. For example, define

X(m) = (Tom-1,0T2d-2m+10) , a0Dd Y (M) = (Tom 0T2d-2m,0), , -

(2.10)
Then, we obtain the relations
Y (m) = —X(m) + A(m,d) and (2.11)
X(m)=-Y(m—-1)+A(d—-m+1,d),
where (=2 1 /m)(=2 )
_\=4Cp—1 — L/M)—2C4—m
A(m, d) = m(m — 1)12(d — m)!2 (2.12)
and

1
n= T (2.13)
k=1

We can solve for X (m) and Y (m) recursively and obtain

(Tom—1,0T2d-2m+1,0)4 ; = X (M) = 24 d|2 + ZKI(k, d),

(Tom,0T2d—2m,0),, = Y (M) = —2 — 4 4 ZAl(k d), (2.14)

where

Ai(k,d) = A(k,d)—A(d—Fk+1,d),
A(k,d) = A(d—k+1,d)— Ak —1,d), (2.15)

and the summation is set to zero whenever the lower limit exceeds the
upper limit. Other two-point functions are similarly determined, and
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we summarize the results in Appendix B. The one-point descendants
can be obtained from the two-point functions by using the string equa-
tion.

The genus-0 TRR for the three-point GW-invariants are

<Tm1,ale2,asz3,a3)o,d (2.16)
_ ) (P10 70,00, (70,1 Timza0 Tma,aa o, 47 if my + o is odd,
(Tml—l,a170,1>0’ &+ %(To,o Tma,az Tms,a:,)o’ &1 if my + a3 is even.

where the degree d of the holomorphic maps must satisfy

3 3
2d+1 = Zmi+2ai,
=1 =1

my+a; —1

U
d 2

and d'=d-d . (2.17)
By the divisor axiom and the string equation, we can further manipulate

the above quantities to produce two-point functions. For example, we
have

<TO,1 Tmz,Otszs,Ot:;)o (2'18)

=d’ (Tm2,a2 Tm3,013>o + <Tm2—1,az+1 ng,a;,)o + <TMZ,¢12 Tm3—1,03+1>0 .

Hence, using the previous computations of the two-point invariants, we
can now also compute arbitrary three-point functions, whose closed-
form expressions are possible but not instructive. We thus compute
them numerically using a computer program and tabulate some of the
invariants in Appendix C.1.

Similarly and unfortunately, we have reduced the problem of com-
puting the higher-point invariants to an exercise in computer program-
ming. We differentiate the TRR (2.8) repeatedly and use the divisor,
dilaton, and string equations to reduce the number and degrees of the
fields appearing in the right-hand side of equation. Using this simple
but tedious approach, we have completed a computer program which
computes up to 7-point functions of arbitrary degrees and have included
a few examples in Appendix C.
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2.3 Genus-One

Because there exists another TRR [38] in genus-1, it is also possible to
compute the genus-1 descendant GW-invariants. For P!, the relation
has the following simple form:

(Tnads = (T-1a70,000{T01}1 + {T-1,0T01)0(T0.0)

1
+ E«Tn—l,aTO,OTO,l»O : (2.19)

Setting all t2 = 0, (2.19) yields

1
_ gz (ca —2dcg—1 — 1) ford#0,
(aasrolia = { é ford =0, and
1—2d
(oatha = ~5pgm (2.20)

To compute the two-point functions’, we differentiate (2.19) with
respect to a descendant variable t°, and get an equation which is valid
in the large phase space:

(TnaTmpads = (Ta-1,aTm,870,0)0{70,1); + {Ta-1,a70,0) 0 {70,17m,801
+ {Tn-1,0Tm,670,1) o (70,01 (2.21)

1
+ (Tn-1,a70,1)o{T0,0Tm8), T+ ﬁ((Tn—l,aTm,ﬁTo,oTo,l»o :

At zero couplings, it becomes

1

(Tn,aTm,p), = —Q‘(Tn—l,afm,ﬁfo,o)o + (Tn—2,0)4(T0,1Tm,8), (2.22)

1
+ (Tn-1,a70,1) o {Tm-1,8); T+ E(Tn—l,aTm,ﬁTO,O"bJ)O )

which contains only genus-0 invariants and genus-1 one-point functions,
upon using the divisor axiom. Closed-form answers for these two-point
functions are again possible, but they are not perhaps so illuminating.
We thus omit the explicit expressions in the paper but list some of their
values in Appendix C.2.

"There are of course a few obvious ones that one can compute by using the divisor
and string equations. For example, one can show that (79,170,1), = 0, (T1,070,1), =
—1/24, <7’1’0’7'1’0)1 = 1/12
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It is clear that the higher-point genus-1 descendant GW-invariants
can be similarly computed in terms of the genus-0 and the lower-point
genus-1 invariants by repeatedly differentiating (2.19). We have again
implemented the algorithm into a computer program which computes
up to 5-point functions of arbitrary degrees, and we have also tabulated
a collection of our results up to 3-point functions in Appendix C.2.

2.4 Genus-Two

Combined with our previous computations, we now use a genus-2 TRR
[17] to compute up to 3-point descendant GW-invariants in arbitrary
degrees. Getzler’s TRR (A.3) directly leads to the one-point functions,
and their derivatives yield the desired two- and three-point functions
(See Appendix C.3). One could also obtain the same numbers by using
the two-point function TRRs (A.4).

2.5 Hodge Integrals

This section marks the end of our torture with programming.

Let m,¥ and w be as in §2.1. The Hodge bundle F = m,w over
M, a(V,B) is a rank-g sheaf of holomorphic sections of H(Z,ws),
where wy, is the canonical sheaf of ¥. The ); classes are defined to
be the i-th Chern classes of the Hodge bundle, and a generalization of
the Gromov-Witten integral of the form (2.3) including the A-classes is
called a Hodge integral. In [15], Faber and Pandharipande have found
a set of differential operators that annihilate the generating function for
Hodge integrals. In principle, their theorem allows one to compute the
Hodge integrals on the moduli space of stable maps in terms of the de-
scendant Gromov-Witten invariants. In practice, however, it is difficult
to compute the GW-potential in the large phase space, and it is pre-
cisely for this reason that some kind of an integrable structure such as
the Virasoro constraints is desirable in studying the intersection theory.
It is, however, often the case that the Virasoro constraints alone are
not strong enough to determine the GW-invariants on non-trivial target
spaces. In this paper, we have taken a different approach to computing
the invariants, and we have seen that for P!, the known topological
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recursion relations allow one to compute all the GW-invariants up to
genus-2. Using these results, the work of Faber and Pandharipande
completely determines all the Hodge integrals for P! up to genus-2.

The expressions of the differential equations for P! are particularly
simple:

(ehac-s()), = o [((Tze,o»g S5 (rmeaeeno)),
20—-2
Zt (Trmt20-1,1) +Z " (T, 0T20—2— m1))
m=0
20—2
3 Y ) <<m_2_m,1>>g,,],

where By, are the Bernoulli numbers.

The first non-trivial Hodge integral is (7o /\1)1, ,» Which can be com-
puted explicitly as follows:

(Too M)y, = / O A(a®) - )
PlxMji 1

= / C1 (Pl ) )\1
PlxMj 1

= — (2.23)

where we have used the formula for the Euler class of the obstruc-
tion bundle from [29], Mumford’s relation A\¢A;y = 0, and the numerical
value of [5; A\ = 1/24 from [15]. As simple illustrations, we have im-
plemented our computer program to compute this and other arbitrary
Hodge integrals involving up to two-descendants in genus-1. ( See Ap-
pendix C.2 for a partial list.) The genus-2 cases are similarly treated:
The £ = 1 relations in (2.23) lead to A; Hodge integrals, and the Mum-
ford’s relation 2\, = A\? yields the ), integrals. Since the algorithm is
obvious by now, we do not explicitly carry out the computations.
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3 Virasoro Constraints

Let Z be the generating function® for GW-invariants:

Z = exp Z M\29-2 <exp (Z tfnrm,a> > , (3.1)
g m,a

g

and define 2, 4 to be the genus-g contribution® to Z71L,Z. The Vira-
soro constraints for P! are

Zng =0
= i [a(m, 2) 8, (aima,
m+ 28(m, ) t2, (Tapm-1,1),, + ¥(m, 1) th, (Toim,1) ]
= o(1,n) (Tnr10), = 2B8(1,n) (), (3.2)
+:§)5(m,n)[ T Tn-m—-2.1),_ 1+,+§,:_g Tm1) (<Tn_m_2,1>>g,,} ,

where we have assumed that n > 0 and the constants are given by

a(m,n) = m (M> ,

ml
Bomm) = CE 14 (e — )]
y(m,n) = W ’
d(myn) = (m+D!(n—m-—1). (3.3)

3.1 Genus-Zero

The genus-0 Virasoro constraints are

0= Zn,o

87 is called the partition function in the physics literature.
9That is, the coefficient of A\29-2 in Z~'L, Z.
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=3 [alm, ), (Tasmody + 2.B0m,m) th, (Tam-11)s

+ 7 (m,1) 8, (Tatm )|
— a(1,7) (Tasr0)o — 28(1,7) (T )

n—2

+ Z 6(m,n) <<Tm,1>>o <<7n~m—2,1)>0 . (34)

m=0

Taking derivatives of (3.4) with respect to the variables t%, yields a set of
equations which the GW-invariants must satisfy. Let Z = {1,2,...k}
and J = {1,2,...¢} be two index sets, and Z',Z",J’, and J" their
partitions into two complementary subsets. The set Z labels the de-
scendants of the identity and J those of the hyperplane class. Then,
one finds

0= E a(m;,n) <Tn+mi’0<Hij70)Tsl’1 ...7'5,_,,1>

i=1 j#i
- a(]" n) (Tn‘i‘lyonl,O e ka,0T81,l e T‘Sl,l)o

k
+ 2 Z ﬁ(m,, Tb) <7-n—1+mi,1 ( H ij,O) Te1,1° " st1>
i=1 j#i
- 2:8(1’ ’n’)(Tn,lel,O © Tmg, 07,17 0" Tse,1>o

2
+ E :’Y(Sa’ n) <Tm1,0 * Tmg,0Tn+sq,1 ( H st,l) >
a=1 o

0

0

b#a
n—2
Z Z 6(q’n)<Tq,l(HTmi,0) ( H TSa,1)>
q=0 II,III,jI’JII iEI’ G.EJ’ 0

The Virasoro constraints are actually proven to hold in genus-0 [32],
and we have numerically checked that the constraints (3.5) are indeed
satisfied for roughly 5000 cases containing up to four-point functions.
This test makes it fairly certain that our computer generated answers
of the genus-0 GW-invariants are correct.
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3.2 Genus-One

Since P! has a semi-simple quantum cohomology, the Virasoro conjec-
ture is true also in genus-1 [7, 33]. In this case, the Virasoro constraints
take the form

O=Zn1

il

oo

= [a(m, n) t?n (<7n+m,0>> 1

+ 2B(m,m) €, (-1, + ¥(m, 1) (T )]
~ a(L,n) {rasod, — 2B(L,m) (),

£ 8m,m) (s Tty + 2imi)o{rmezi)s] » (36)

and they yield constraints that are similar to (3.5). Using the genus-0
and genus-1 descendant invariants that were computed in §2.2 and §2.3,
we have checked that over 7000 Virasoro constraints which involve up
to 4-point genus-1 GW-invariants are satisfied.

3.3 Genus-Two

The status of the Virasoro constraints in genus-2 is still conjectural, and
it would be interesting to see if the GW-invariants which are obtained
from either rigorously derived TRRs or algebraic geometry actually
satisfy the Virasoro constraints in this case and in higher genera.

We have checked that our results are indeed consistent with about
1100 Virasoro constraints containing up to 3-point genus-2 invariants.
As previously mentioned, one could use either (A.3) or (A.4) to check
the consistency with the topological axioms and the Virasoro conjec-
ture. )
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3.4 Speculations on Higher-Genus Cases: TRRs
and Localizations

We find that the Virasoro constraints by themselves do not provide
an efficient computational tool unless we already know many of the
GWe-invariants that are to be used in the constraint equations. In the
pure gravity case, the Virasoro constraints relate 7,419 with 7,9, thus
providing an effective recursions among the descendants. In the P! case,
however, the Virasoro constraints relate 7,41, with 7, 1, but there is no
relation between 7, ; and 7,_1 9. This pattern of recursion explains why
the Virasoro constraints generally cannot determine the GW-invariants
by themselves.

Motivated by the previous computations, it is tempting to speculate
that there may exist higher-genus TRRs that completely determine the
GW-invariants. The only higher-genus TRRs that are known to us
so far are those found by Eguchi and Xiong in [13]. Unfortunately,
their derivation crucially depends on the assumption that the genus-

g free energy Fy(t) = <exp (Ema thm,a)> is a function of genus-0

9
correlation functions in the large phase space. That is, their derivation
assumes that

}-g(t) = fg(ual (t), Uaiay (t), <oy Uy apeeagg—1 (t)) (3-7)

where Uq,ay-a, = {70,0T0,01 * " To,0 g = OF+LF, /0t) - - - Otg*. At first
sight, it tells us that a genus-g GW-invariant can be expressed in terms
of genus-0 invariants; more precisely, it determines the functional de-
pendence of the free energy on the variables ¢2, through the genus-zero
quantities Uq, (t), Uayas (), - - - » Uayag--as,—s (£)- I the rest of this section,
we use the technique of localization!? to comment on the validity of this
assumption for complex projective spaces P" admitting torus actions.

We will be very brief and use the results of [22, 28]. Given a com-
pact complex projective variety V' and a holomorphic vector bundle

10We are grateful to Prof. Tian for suggesting this analysis. We are ineluctably
led to make it absolutely clear at this point that we do not have a satisfactory
understanding of the ideas involving localizations and that the ensuing statements
are only speculative. As we do not feel competent enough to present a rigorous
proof, we are somewhat reluctant to present our arguments here. Nevertheless,
with the hope that our honesty would engender further objectivity and caution
from the readers than they would normally require, we proceed.
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E — V, equipped with a torus action T ~ C* x --- x C* on (V, E),
the Atiyah-Bott fixed points formula reduces the integrals of charac-
teristic classes of E over V to new integrals over fixed loci of the torus
action on V [1, 2]. Recall that the GW-invariants are defined to be
integrals of certain characteristic classes over the virtual fundamental

class [M,,.(V,8)]V*. The torus action on V can be naturally lifted to
M, .(V,B) by translating the stable maps. The work of Graber and
Pandharipande [22] states that for non-singular projective varieties V/,
there exists a localization formula for the virtual fundamental class
[M.n(V,8)]V, and thus the associated GW-invariants can be defined
by integrals over the virtual classes of the fixed loci of the torus action
on the moduli space. In particular, the localization formula holds for
projective spaces IP", and the final result which we need is that an arbi-
trary GW-invariant of P" can be expressed as a sum of Hodge integrals
over products of the moduli spaces M, of pointed Riemann surfaces;
that is, roughly

_ ma . gyma Weights
<Tm1,a1 Tmn,an>g,d Z . ¢1 wn G(NFI) (38)

r /Mr

where the sum is over all the fixed loci represented by certain “graphs”
T, e(Ng¥) is the Euler class of the virtual normal bundle to M, 1; the
pull-back of the first Chern class of the cotangent bundle at i-th marked
point on the Riemann surface, and the “weights” are determined by the
torus action and on the cohomology classes 7., € H*(P",C). Further-
more, the fixed loci represented by the graph I' are products of the
moduli spaces of pointed stable curves:

-A_/{l" = H m‘g(v),val('v) ) (39)

vertices

with g(v) < g representing the arithematic genus of the contracted
component of the domain curve. We refer the reader to [22, 28] for the
specific definitions of the notations which are actually not so essential
for our discussion.

The Euler class e(NgF) of the virtual normal bundle introduces the
A-classes, and the resulting Hodge integrals can be reduced to pure
integrals by using Faber’s algorithm [14]. Now, we recall the fact that
for the intersection theory of the tautological divisors on the moduli
space of stable pointed curves, the genus-g free energy, for g > 0, is
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actually a function of the genus-0 correlators [8]:
fg(t)point = fg(u(l) (t)7 T au(3g_2)(t))point ) (310)

where u 1= (1970, = 8°Fo /Oty Oty and u» = H'u/dty'. Combined with
the localization formula (3.8), the form of (3.10) implies that indeed
each GW-invariant can be expressed in terms of uq, (0), Uayay(0),- - -,
Uayag--az,_ (0) and the values of their derivatives at the origin of
the phase space. This statement is however much weaker than the
assumption (3.7). That is, our analysis does not show that the func-
tional dependence of F,(t) on t% is only through ua, (¢), Yayas (t), - - -,
Uayag--as,_1 (t). Even though we cannot prove the statement at the mo-
ment, we believe that our approach deserves a further consideration.

4 Recursion Relations for Simple Hurwitz
Numbers

Hurwitz numbers, whose study had been initiated by Hurwitz more
than a century ago [25], count the number of inequivalent ramified cov-
erings of a sphere by Riemann surfaces with specified branching condi-
tions over one point called co. The original approach of Hurwitz relates
the problem to transitive factorizations of permutations into transpo-
sitions. Recently, new insights have been gained from developments in
the absolute and relative Gromov-Witten theory [21, 30, 37].

In this section, we take a very modest goal of obtaining new re-
cursion relations for the genus-0 and genus-1 simple Hurwitz numbers
which enumerate the coverings with no ramification over co. We take
two different approaches which yield similar but inequivalent recursion
relations. In the notations of the previous sections, the genus-g simple
Hurwitz numbers are defined!! by the descendant GW-invariants of P!

as
HY = <7'12§+2g_2> . (4.1)
g

We first show that the genus-0 and genus-1 TRRs immediately lead
to relations among the simple Hurwitz numbers in these genera. We
then use the Virasoro constraints to derive new relations which could
be generalized to higher genera.

11\We are grateful to R. Vakil for this definition.
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4.1 From Topological Recursion Relations

In this subsection, by using the TRRs (2.8) and (2.19), we derive a new
recursion relation for simple Hurwitz numbers in genus-0 and reproduce
the known result of Graber and Pandharipande in genus-1.

Claim 4.1. The genus-0 simple Hurwitz numbers satisfy

)(d k—1)(d—k—2)(k+1)°Hp,  HY _;. (4.2)

Proof. We need the following equations which are implied by the string
and the divisor equations:

(roamoorin ), = (k=1 K (5%,

0

<7'0,17'0,17'12”i>0 = (k+1) <7’11 o (4.3)

and similarly for <7'0 07-12’“ 1> and <7'0 174 1) Differentiating the genus-0
TRR (2.8) yields

2n—3 om —3
<Ti1{ o = Z ( e ) [(7’017'00’7'11> <’7'017'1n —-1 o

£=0

+ <7'017'017'1 1> <7'007'12" —tt O]

n—1

2 —
Z( v )(7'0 17'007'12’i 1> <7'017'127i 2k>0
4 Z <2n 3) <7_017_017_1 1> (rogrin2-1 .
k=0

where we have used the fact that many of the correlation functions
vanish for dimensional reasons and we have relabeled indices. Now,
using (4.3) and relabeling the summation yields the desired result. O

Together with the initial conditions HY = 1 and HY = 1/2, these
recursion relations easily determine all the simple Hurwitz numbers
in genus-zero. The formulae (4.2) are qualitatively similar to those
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found by Graber and Pandharipande [16], but they are in fact different
recursion relations.

Similarly, we use the genus-1 TRR to derive recursion relations for
genus-1 Hurwitz numbers Hj = (1{9),

Claim 4.2. The genus-1 simple Hurwitz numbers satisfy
d—1

H;=2) k(d—k)(2d - 2k+1)(2k 2>HkHd_
k=1

1 2 0
+ A (d-1)(2d-DH] (44)

Proof. As in the proof of (4.2), we differentiate the genus-1 TRR and
use dimensional arguments to get

"\ (2n—1 n
= (2k— ><7'017'007'121 > <To17'121 2 1
= (2 -1 n
+ < % ><701T01711> (oot ), + 55— 12 URLK R
k=0

Taking caution that (791), = —1/24, we obtain (4.4) upon using the
divisor and the string equations. O

Unlike the genus-0 case, with a minor rearrangement of terms, it is
easy to see that our recursion relation (4.4) is actually equal to that of
Graber and Pandharipande.

4.2 From Virasoro Constraints

It is also possible to derive new recursion relations for genus-g Hur-
witz numbers by combining the Virasoro constraints with some TRRs.
Namely, the L; Virasoro constraints yield

3HY 3< 2d+29‘2>g (4.5)
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= 3(2d + 29 — 3) <7-2 17.12¢i+2g 4> <7,2 0712?29 3> .
9 g

For example, for genus-0, we deduce

Claim 4.3. The genus-0 simple Hurwitz numbers HS satisfy the recur-
sion relations of the form

d-3
HY = (2d - 3) Z(k +1)(d—k-1) [ (2d2; 6) (2k+1)

k=1

2d -6
+ (2k _ 1) (2d — 2k — 3)] Hyp o HY oy

12 /2d—5
- ng_;( 2% ) (k+1)(d—k —1)[(2k — 1)(2d — 2k — 3)
+2k(2d — 2k — 5)| Hp, 1 Hy .,
4
+3(d—1)(2d - 3)Hg_,. (4.6)
Proof. We need the following two recursion formulas which are obtained

from the genus-0 TRR:

<7'2,17'12,T>0 = (m+ 1)(7‘12"1" .

+n§(k+ 1)(m — k+1)[(2";k_ 2) (2k +1)

k=1

v (56 71) m—2k+ 0] (T, @

and
(s, 07'1"”'1) —(m+1)(2m+1 (TfT)
+Z( ) (k+1)(m—k+1)
[k —-1)(2m — 2k + 1)
+2k(2m — 2k — D)) (75) (#77%*) . (48)
The L; Virasoro constraint (4.5) now implies our claim. O

Similarly, after some algebra, one can show



1744 J.S. SONG

Claim 4.4. The genus-1 simple Hurwitz numbers satisfy

4 &L 21
Hi = EH: <2k B 2) k(d — k)(2k — 1)(2d — 2k + 1) HYHY_,
d(d—1)(2d — 1)
+ ( )1(8 ) Hg' (4.9)

It can be easily checked that these relations are actually different
from (4.2) and (4.4) and from the ones obtained by Graber and Pand-
haripande.

Remark. It is important to note that since the Virasoro conjecture
has been proven to hold in genera-zero and -one, the recursion relations
(4.6) and (4.9) are also true and are not mere conjectures. Indeed, we
have verified numerically that they lead to the correct simple Hurwitz
numbers.

Further investigation is needed to gain a geometric understanding
of the recursion relations that we have obtained.

It is also possible to obtain similar relations for higher genus simple
Hurwitz numbers from (4.5), but there are two important distinctions
from the above two cases. Firstly, the Virasoro constraints are still
conjectural in genus-2 and higher, thus the resulting recursions are
not rigorous, even though they will provide an interesting check for
the conjecture. Secondly, there are no effective TRRs that can be

2d+2g—4 2d+29-3\ . .
used to express <7'2,17'1’1+ g > and <7'2,07'1’1+ g > in terms of Hurwitz
g g9

numbers. In principle, Getzler’s TRRs (A.3) in genus-2 could be used to
express these quantities in terms of lower genus simple Hurwitz numbers
and H?, for k < d. The TRRs however involve a large number of
terms and render computations somewhat intractable. As there already
exists a much simpler recursion relation [21], we omit the derivation
here. In higher genus, we are not aware of any effective TRRs that
can be applied. What seems to be required in this study is a TRR
that eliminates the descendant 7, , from correlators, just as the string,
divisor and dilaton equations eliminate the 79, 79,1 and 7 ¢ insertions,
respectively. It would be interesting to see if there exists a geometric
reason for such an equation.
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5 Conclusion

In principle, one could, with much patience and stamina, extend our
program to higher genera. Being novices that we are in computer sci-
ence, we however stop at genus-2 and would now like to discuss what
we have learned from these exercises.

It is instructive to recall how the KdV conjecture for pure gravity,
stating that the intersection theory of tautological classes on M., is
governed by the KdV hierarchy and the string equation, was proven by
Witten in genera-zero and -one [38]. First, recall the algebro-geometric
way of determining the descendant integrals: In genera-zero and -one,
purely dimensional arguments require the non-vanishing descendant in-
tegrals to include a certain number of puncture and dilaton operators.
Then, the string and dilaton equations are used to reduce the integrals
to (73,0)0 in genus-0 and (71,), in genus-1, whose values can be deter-
mined from algebraic geometry. Witten’s proof is based on the fact
that the string and dilaton equations and the initial values of <T§”0>0
and (71,0),, which together determine all the descendant integrals com-
pletely, can be derived!? from his KdV conjecture. Hence, the algebraic
geometry and his KdV conjecture yield the precisely same algorithm
for computing the descendant integrals in genera-zero and -one. In the
case of point target space, there is thus no further need to invoke addi-
tional topological recursion relations, which are nevertheless consistent
with the KdV structure.

Something similar but crucially different persists in the picture of
the Virasoro constraints for P! in low genera. One could compute all the
GW-invariants in genera-zero, -one and -two by using only the string,
divisor and dilaton equations together with the aforementioned topo-
logical recursion relations. On the other hand, the Virasoro constraints
are not strong enough to determine the GW-invariants by themselves.
It thus seems that the Virasoro constraints are weaker than the topo-
logical recursion relations. As we have checked numerically, the GW-
invariants obtained from the TRRs satisfy the Virasoro constraints in
genus-zero and -one, as they should according to the rigorous proofs
of mathematicians, and even in genus-two, which has yet no direct

12More precisely, the dilaton equation can be derived from the string and the
KdV equations.
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proof. Thus, as in the pure gravity case, the TRRs are consistent with
the conjectured integrable hierarchy manifested by the Virasoro con-
straints which however, unlike the pure gravity case, do not determine
the generating functions completely.

The relations between the TRRs and the Virasoro constraints ap-
pear to be quite mysterious. Even in the case of pure gravity, although
the TRRs seem redundant, it is not known how to derive them directly
from the KAV hierarchy or whether it is possible to do so at all. An
analogous question in the case of P!, in which the TRRs and the Vira-
soro constraints reverse their roles in some sense, would be: Do TRRs
imply Virasoro constraints in genera-zero, -one, and -two? Since L_,
and L, generate the (half branch of) Virasoro algebra and since L_;
is just the string equation, which is true for general topological string
theories, in order to answer the question, one only needs to prove that
the TRRs imply the Ly condition. We have tried an inductive approach
to show that all derivatives of the LyZ vanish by the TRRs and the
L_, constraint, but it does not seem possible to prove the statement.

The study of Virasoro constraints is presently only at its rudimen-
tary stage, and any subsequent effort to understand their hidden struc-
ture would require unraveling their relation with various topological
recursion relations and also with the constraints arising from the study
of Hodge integrals. In this paper, we have used the L_;, Ly conditions
and TRRs to compute the descendant GW-invariants of P! in low gen-
era. The ineffectiveness of the Virasoro constraints suggests that there

~may exist an enlarged algebra including the Virasoro algebra and giv-

ing us a “master” hierarchy encoding the TRR relations in all genera.
Since the virtual localization technique expresses all GW-invariants in
terms of Hodge integrals over products of the moduli space of stable
pointed curves [22], it is also tempting to speculate that the Virasoro
conjecture and the TRRs can be translated into a statement of some
kind of an integrable hierarchy involving the very large phase space of
Manin and Zograf [34].
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A Topological Recursion Relations

We here summarize the topological recursion relations that form the
essential bases for our discussion.

Genus-Zero [38]:

<<Tm1,a1 Tma,az Tms,as ) 0= «Tnu—l,oa 7'0,0»0 <<TO,ITm2,az Tmas,a3 ) 0
+ «Tml -l 7-0,1»0 <<7-0,07-m2,a2 Tms,as »o . (A 1)

Genus-One [38]:

<<Tn,a>>1 = ((Tn—l,a70,0>>o(<7'0,1>>1
+ (rasatondolmods + 15 {raoramoomady - (A2

Genus-Two [17]:

(Ths2,0)2 = (Ter1aT0.0)o™ (o)
+ «Tk,aTO,a))onab((Tl,b»2

- «Tk,aTO,a ))077ab ((7-0,57-0,6» 077°d ((TO,d» 2

+ _7“ «Tk,aTO,aTO,c» 077“6 <<70,b>> 1 776d ((TO,d>> 1

10
1
+ ) (Tie,0To0,aT0,e) o114 (T0,6T0,4),
ab_cd

~ %40 (Tr,aTo,a)) 1171 (T0,6T0,cT0,d)
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13

+ '2'4_0 <<Tk,a T0,a70,670,c )) onaand << 7-0,d >> 1
ab cd

960 ((Tk,aTo,aTo b70,c70 d)>077 n

(A.3)

where the metric is given by 74, = 04,15

For two-point functions!3 in the large phase space, the relations are

<<Tk+1,ac7'l+1,y>>2
= (Tht1,270 »2 <<Tl,y7'0,a>>o + (k270 a>)0<<71+1,y761 »2
— (o700 0Ty 7000 (76702

+3 (7271476 Vo [{T10)s — (T0.aT05)0(70)]

¥ Tolramymanonolrhrdd, + ;‘«Tk,m,a» (78 70)0 ks
+ ool o) () = £ (Tkamamoadolrsmos, 7,
b2 amgroats st + 418 (s rondolmsidy

+ 25 e (i ma§rosdo — sl (ot mady

¥ o (e moamsdolrindd, 3—10<<Tk,m,afo,b>>0<<n,y7373>>1
¥ -31—0<<Tk,m,m,b>>1<<n,y7373>> s manymaolrsros),
+ 5; Ty oaTsTos8)s, for k12 0, (A.4)

where 78 := 1%7y,.

B Genus-Zero Two-Point Descendants

The GW-invariants of the form (7, 47o,8), are easily obtained by using
the following TRR for two-point functions [11] which is valid in the

13We thank C.-S. Xiong for providing us with this corrected version of the TRR.
We have checked the consistency of these relations against (A.3) up to 3-point
functions at the origin of the phase space.
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large phase space:

1
(Tn,aT08) = pr—— (M} {(Ta-10T04)0 = 2(Tn-1,04170,8)o] » (B-1)
where the matrix M is given by
2
MB — «70,07'0,1))0 ) ) B.2
* ( 2{m0a70,1)e  {m0070,000 (B2)
When all the couplings are turned off, the matrix M takes the form
0 2
B —
Ma—(20). (B.3)
From (B.1), one finds
1 2
(7-2n+1,17-0,0>0’n+1 = (7-2n,1>0’n+1 = [(n—-l-l)_'}
| 1 1
(Ten1T01)g npy = nti) )
2c,
<T2n,07-0,0>0,n = <T2n—l,0>0,n = _(n!)2

1 1 1
<7'2n+1,07-0,1>0,n+1 = (-m) (—n|)—2 |:—2 C, — n——ﬁ] . (B4)

For more general invariants, we use the approach discussed in §2.2:

c m
(T2m0T2d-2m0)g s = —2 d_,dz + Z Ay (k,d)
' k=1
c L~
(Tom—1,0T2d-2m+10)04 = 2 a—% + Z Ay (k,d) (B.5)
T k=2

where

Ay(k,d) = A(k,d) — A(d—k+1,d)

Ai(k,d) = Ad—-k+1,d)—A(k—1,d). (B.6)
Similarly, we find

1 m
(TomiT2d-2m—21)0 s = T —Topa + Z As(k, d)
e T G- 1)E T L
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d—
(Tom—1,1T2d-2m—1,1)0 4y = d(d— 1)'2 + ZA2 k,d), (B.7)

where

As(k,d) = M(k,d)— M(d—k,d)
Ag(k,d) = M(d—k,d)— M(k—1,d)

1
M = .
k4 = BrE—RE-—r-DP (B8)
Finally, we have
<7-2m,0T2d—2m——1,1)0’d = d'2 + ZAg (k,d)
1 LA
(Tom-10T2d-2m,1)0 4 = e + kz As(k,d) , (B.9)
=2
where
A3("1,‘1) = Wl(k, d) + W2(k,d)
As(k,d) = —Wi(k—1,d) — Wa(k,d)
_ 2c,1+ 1/k

Wik, d) = k(k —1)12(d — k)12
Wa(k,d) = 21 . (B.10)

(k—1)E2d—k+1)(d— k)2

Note that the summations are set to zero whenever the lower limit
exceeds the upper limit.

C Partial Lists of the GW-Invariants

For those who are interested in the numerical values of the GW-invari-
ants and for the sake of completeness, we here present, in fine prints, a
few examples of the non-vanishing invariants. In most cases, we omit
the ones that can be reduced by using the string, dilaton, or divisor
equations.
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C.1 Genus-Zero Descendants

1-Point Descendants

I n I <Tzn+1’0>0,ni1 ] | n | <T2"’1>0,n+i |
0 -2 0 1
3 T
: i .
; 5 o
’ e SR
4 " 432000 4 1441190
5 —_49 5 1
5184000 518400
6 —__121 6 N
592704000 25401600
7 —__rel 7 N S
2275%385999 1625702400
8 - M%—WAQQQ 8 Jm
9 1659191 8694400000 9 13168189440000
10 | — 33711 10 1
22083843782246400000_| 1593350022240000
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2-Point Descendants

I = (T2n,0T2d-2n,0); 4

J.S5. SONG

I= (T 2n—1,0T: 2d—2n+1,0>0, d

|d]|2n]|2d—2n| I| [d][2n—1]2d—2n+1| I|
1] 0 2 -2 [1 1 1 2
2] 0 4 =21 |2 1 3 2
2] 2 2 2] |3 1 5 i
3] 0 6 —ss | |3 3 3 2
3] 2 4 2 4 1 7] =
41 0 8] —=| |4 3 5 B
41 2 6 e 1 9| o
41 4 4 2| |5 3 7]
S 0 10 _43I23n700 5 o 5 2%507_0
5| 2 8 =] |6 1 11| s
5| 4 6 | [ 6 3 9| a5
6| 0 12| —2==| |6 5 7] 5
6| 2 10| =2
6] 4 I
6| 6 6 =

I = (Ton1T2d-2n-2,1) 4 I = (Ton-1,1T2d—2n-1,1),

[d]2n]2d—2n—2] I] [d|[2n—-1]2d—-2n—-1] |
1] 0 0 1 2 1 1 >
2| 0 2 5 3 1 3 2
3] 0 41 & 4 1 5| &
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3-Point Descendants
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C.2 Genus-One Descendants

1-Point Descendants
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1-Point Hodge Integrals
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2-Point Hodge Integrals

J.S. SONG
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3-Point Descendants
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C.3 Genus-Two Descendants

1-Point Descendants
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2-Point Descendants
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3-Point Descendants
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