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1    Introduction 

Suppose that M is a complete Einstein manifold of negative curvature 
and dimension n+1 and that the conformal boundary of M, in the sense 
of Penrose [1], is an n-manifold N. This means that M is the interior 
of an n + 1-dimensional manifold-with-boundary M, whose boundary 
is N, and that the metric g of M can be written near the boundary as 

g = ^(dt2+gij(x,t)dxidxj), (1.1) 

where t is a smooth function with a first order zero on <9M, and positive 
on M, and gij(x^t)dxzdx:j is an ^-dependent family of metrics on M. 
Thus, t > 0 on M and t = 0 on N. In this situation, go = g(x, 0) is a 
metric on N. If t is replaced by a different function with a first order 
zero on <9M, say tf = eut, then go undergoes a conformal transformation 
9o —> 9Q = e2a;<7oj so N actually has a natural conformal structure but 
not a natural metric. If, in the conformal class of metrics on JV, there 
is a representative with positive (or zero, or negative) scalar curvature, 
then we say that JV has positive (or zero, or negative) scalar curvature. 

There is a correspondence between conformal field theory on iV and 
quantum gravity, or string theory, on M [2] - [4]. To be more precise, 
the correspondence asserts (see [4], section 3) that to do conformal field 
theory on TV with a given conformal structure go on N, one must sum 
over contributions of all possible n + 1-dimensional Einstein manifolds 
M with conformal boundary A^ and induced conformal structure go. 
Actually, the full correspondence involves a number of additional details 
that we will omit in the present paper. For example, one usually must 
consider not n + 1-dimensional Einstein manifolds M, but manifolds of 
dimension n + k + 1 obeying appropriate supergravity equations and 
asymptotic at infinity to X = M x y, where Y is a fixed compact 
A:-manifold characteristic of the conformal field theory that one chooses 
to consider. (Examples are given in [2].) Our results could possibly 
be extended to theorems about the possible X's (showing for example 
that under suitable hypotheses the ideal boundary of X is connected), 
but for simplicity we will consider only the case that X = M x y, and 
analyze the possible M's. 

Topological Conditions 

Presented with this correspondence, one wonders how one can char- 
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acterize the M's that exist for given iV. Are there general topological 
conditions on M? For some choices of iV, can one find all of the M's? 
In this paper, we will prove the following general restriction: if JV has 
positive scalar curvature (and is nonempty), then ifn(M;Z) = 0. We 
explain below the physical interpretation of this restriction. 

The role of positive scalar curvature is suggested by the most canoni- 
cal example of a complete, negatively curved Einstein manifold, namely 
hyperbolic space Hn+1, or - as it is known in the supergravity literature 
- Anti de Sitter space AdSn+i. In this case, the conformal boundary 
AT is a sphere Sn, with the standard conformal structure which has as 
a representative the standard "round" metric. This metric certainly 
has positive scalar curvature. Because of the basic role played by this 
example, the correspondence between quantum gravity in n +1 dimen- 
sions and conformal field theory in n dimensions is sometimes called 
the AdS/CFT correspondence. 

In general, conformal field theory can make sense on a manifold 
of negative scalar curvature, but the specific conformal field theories 
that arise in the AdS/CFT correspondence, at least in the examples 
studied so far, are well-behaved only when the scalar curvature of A^ 
is non-negative. In the important case that A' is a four-manifold, this 
can be seen directly: in this case, the conformal field theories are four- 
dimensional gauge theories which contain scalar fields whose potential 
is unstable if the scalar curvature of N is negative. More generally, one 
sees by considering the action of a suitable brane in M [5], [6] that if N 
has negative scalar curvature, the theory is unstable. The argument, 
whose details we recall in section 2, is made by considering a brane in 
M whose worldvolume is a codimension one hypersurface S C M. One 
considers the brane action L(S) (which we will define in section 2) and 
shows that it is unbounded below if N has negative scalar curvature. 
If N has positive scalar curvature, the theory is stable, and if JV has 
zero scalar curvature, it may be stable or unstable depending on further 
details. 

Two Puzzles Concerning The AdS/CFT Correspondence 

We therefore limit ourselves to the case that Af has positive scalar 
curvature. Consider the following two puzzles concerning the AdS/CFT 
correspondence: 
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(1) Can it happen that N is not connected but is a union of dis- 
joint components JV*, i = 1,..., s, each of positive scalar curvature? If 
so, the AdS/CFT correspondence does not make much sense. For con- 
formal field theory on a union of disjoint manifolds N = UiNi is just 
the product of the theories on the different iVj's. There is no evident 
way to couple them, and hence no candidate for how to interpret the 
contribution of an M whose boundary is UiNi. 

(2) For given TV of positive scalar curvature, can M contain "worm- 
holes" ? A wormhole is obtained by cutting out two balls from a man- 
ifold Mo and then gluing together their boundaries to make a new 
manifold M. If M can have such wormholes, then to understand the 
conformal field theory on iV, we will have to come to grips with the 
strange behavior of quantum gravity in the presence of wormholes [7], 
[8]. 

We will resolve both of these problems by showing that they simply 
do not arise for N of positive scalar curvature. This follows from our 
result that for such TV, ifn(M;Z) = 0. Indeed, in (1), if the number 
of boundary components is greater than one, then a hypersurface that 
is near one of the boundary components (defined by an equation such 
as t = 6, where t is the coordinate used in (1.1) and t = 0 defines 
the boundary in question) is a nonzero element of Hn(M;Z). Hence 
vanishing of Hn(M\ Z) implies that N is connected. Likewise, in (2), a 
spacetime M with wormholes would have nonzero Hn(M] Z), since the 
boundary of either of the balls removed from MQ is a nonzero element 
of Hn(M] Z). Hence vanishing of Hn{M] Z) implies that there are "no 
wormholes." 

Results of this type definitely depend on N having positive scalar 
curvature. For example, let Q be any compact negatively curved Ein- 
stein manifold of dimension n, with metric gijdxldxK Then a complete 
Einstein metric of negative curvature on M = Q x R is given by the 
simple formula 

ds2 = dt2 + cosl^tgijdx^x^ (1.2) 

The conformal boundary of M consists of two copies of Q, at t = 
±oo. This shows that if the conformal boundary of M has negative 
scalar curvature, then Hn(M]Z) can be nonzero. Note that in this 
example, each component of N has negative scalar curvature. In fact, 
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our proof shows that Hn(M\ Z) = 0 if any component of JV has positive 
scalar curvature. 

An interesting corollary of the fact that, under the stated hypothe- 
ses, iV must be connected is that the natural map from 7ri(N) to 7ri(M) 
is surjective. (For example, M must be simply connected if iV is sim- 
ply connected.) Otherwise, by taking a suitable cover of M, one could 
make an example with disconnected N of positive scalar curvature. 

Structure Of The Argument 

The proof that iJn(M;Z) = 0 for a boundary of positive scalar 
curvature will be made by showing, by a local calculation, that the 
brane action L(S) cannot have a minimum, and also by showing, using 
nonlinear analysis, that there is a minimum in each nonzero homology 
class if the boundary has a component of positive scalar curvature. 
Combining these results, it follows that Hn(M] Z) = 0 if the boundary 
has such a component. The local computation is presented in section 
2 and the global one in section 3. 

2    Local Calculation 

Let M be an n + 1-dimensional Einstein manifold of negative curvature 
and nonempty conformal boundary, for some n > 2. Let S be a compact 
hypersurface in M. We denote its area or volume as A. Since M has a 
nonempty boundary, the volume form 0 of M is exact, say 0 — dA for 
an n-form A. The brane action (for a BPS brane) is defined by 

L(E) = A-n f A. (2.1) 

Note that if E is the boundary of a domain Q, we have 

L(Z) = A-nV (2.2) 

where 

V = f 0 (2.3) 
Jn 

is the volume enclosed by E.   A is not unique, but changing A will 
add to L a term that is a constant in each homology class, and this 
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does not affect the variational problem that we will consider below. 
(In the physical application, A is an n-form field of the appropriate 
supergravity theory, and any choice of A makes sense.) 

The importance of positive curvature for the boundary is that it is 
necessary in order to ensure that I/(E) is bounded below. This follows 
from a computation performed in [5] and in greater generality in [6]. 
As in the introduction, we write the metric near the boundary as 

ds2 - - (dt2 + g^x, tfdxW) . (2.4) 

We consider E to be homotopic to the boundary and to be defined by 
an equation t = t(xl). We write 

fsr^)     for„>2 
|2e-> forn = 2. v     ' 

The brane action then becomes for small t or equivalently large (f) 

^^ /E d^^g{\dcl>\2 + jgEjy^ 

L = < +0((/)2^-4)/(n-2)))    for n > 2;        (2.6) 

| /s d
2x^/g (\d(f)\2 + (j)R + 0(e-^)) for n = 2. 

Here we have identified E with the boundary at t = 0, and we regard 
gij(x, 0) as a metric ^ on E; R is the scalar curvature of this metric. 1 

The brane action is conformally invariant; indeed, under t —> e^t (where 
u is a function on the boundary, that is, on E), we have gij —>• e2u}gij 
and in view of (2.5) 

_^  f exp(-(n - 2)u)/2)<f>     forn > 2 

}(f) — CJ for n = 2. 

For L to be bounded below, it must be bounded below in the region of 
large 0, where the corrections in (2.6) can be dropped. Whether this 
is so depends, for n > 2, on the spectrum of the conformally invariant 
operator 

 _^; A+i^i)* <2-8> 
1In deducing (2.6), one uses the Einstein equations to determine the behavior of 

gij(x,t) near t = 0. For details, see [6], eqns. (3.6)-(3.8). 
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where A is the Laplacian. If A' is positive definite, L is bounded below 
at least in the region of large 0; if it has a negative eigenvalue, then L 
is unbounded below; and if the smallest eigenvalue of A' is zero, then 
one must consider the correction terms in (2.6) to determine if L is 
bounded below in the large 0 region. The lowest eigenvalue of A' is 
positive, negative, or zero depending on whether, in the conformal class 
of the metric g^ on E, there is a representative of positive, negative, or 
zero scalar curvature. 

Thus we learn that, for n > 2, stability requires that E have non- 
negative scalar curvature. For n = 2, the same conclusion can be 
reached by first replacing g with a conformally equivalent metric e2ug 
with constant i?, and then noting that for constant (/) and (f) —>► +oo, L 
is bounded below if R > 0 and unbounded below if R < 0. 

Properties Of A Minimum Of L 

So far we have merely summarized the considerations in [5], [6]. 
Now, assuming that the boundary of M has positive scalar curvature, 
we want to try to get a restriction on the topology of M. The com- 
putation performed above suggests that (for a boundary of positive 
scalar curvature) L is bounded below. If so, we may expect that L will 
have an absolute minimum for each nonzero choice of the homology 
class of E in Hn(M]Z). (The reason that one suspects a minimum 
for each homology class, not each homotopy class, is that in varying a 
hypersurface E to minimize L, E may develop a singularity. In passing 
through such a singularity, the homology class of E does not change, 
but the homotopy class may.) The existence of such a minimum will 
be proved in section 3. We will now show, however, by a local compu- 
tation that L cannot have a minimum. Combining these results, it will 
follow that Hn(M\ Z) = 0, which is the result that was promised in the 
introduction. 

We assume that the Einstein manifold M obeys 

Ru^-ngu. (2.9) 

(The choice of constant on the right hand side is correlated with the 
choice of constant n multiplying the second term in the brane action 
(2.2). We denote indices of M by /, J, K = 1,..., n + 1 and indices of 
the hypersurface E by i, j, k = 1,..., n.) 
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We now want to study a hypothetical extremum S of L. We suppose 
that S is an embedded submanifold. In a neighborhood of E, we can 
pick one coordinate, r, to be the distance from E, and pick the other 
coordinates x1 so that the metric near E is 

ds2 = dr2 + gijix, r)dxidxj. (2.10) 

We let Qij = <7y (x, 0) be the metric on E, and we write 

9ij = 

9ij = 

dr 

d2gij{x,r) 
dr2 

r=0 

(2.11) 
r-0 

(Thus, the second fundamental form of E is g/2, and the mean curva- 
ture is Tr g-1g/2.) 

We can describe a fluctuation in the position of E by specifying r 
as a function of x. To determine the conditions for E to be a local 
minimum of L, we need to evaluate L up to second order in r. Writing 
p = g + rg + \r2g + ..., we calculate to this order 

A= fdnxyjdet(gij + dirdjr) 

= Idnx^feU) (l + r-Tr g-'g + j(Tr g^g)2 

+^IV g-"g - jTz {g-'gg-'g) + ^rf) • (2.12) 

Also, to this order 

nV = const + n f' (Fxjg (r + ^Tr g^g J . (2.13) 

So 

L = A - nV 
//' T T TIT 

cTx^g (-Tr g^g -rn + -(IV g-lgf - —Ti g^g 

+j (Tr g-lg - Tv (g^gg-'g)) + ^H2) . (2.14) 
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The condition for L to be stationary at r = 0 is 

Tr g^g = 2n. (2.15) 

For r = 0 to be a local minimum requires 

TV g-lg > IV (g^gg^g). (2.16) 

If iV is a real symmetric n x n matrix, then 

Tr AT2 > -(Tr AT)2, (2.17) 
n 

with equality only if and only if N is a multiple of the identity. Applying 
this to iV = g'1^ for which Tr N = 2n, we learn that 

1* {g-'gg-'g) > 4n, (2.18) 

with equality precisely if g = 2g. 

Now we look at the Einstein equations. If T are the (r-dependent) 
Christoffel symbols of E in the metric gij(x, r)dxldxj, then the nonzero 
Christoffel symbols F of M in the metric (2.10) are 

1 jfc - i jk 

Fjk = ~7,9jk jk        j* 

1 ,. 
Iti = n^gjs- (2.19) 

Let i?ij and R be the Ricci tensor and scalar of £, and Rij, R the 
analogous objects of M. The relevant part is 

Rrr = -^Tr g-lg + ^Tr g-lgg-lg (2.20) 

Now we use the Einstein equations at r = 0; the equation Rrr = 
—ngrr = — n gives 

ilV (^^) - ilif (r1^1^) = n. (2.21) 

Using also the inequality (2.16) that followed from stability, we get 

An > lY {g-lgg-lg). (2.22) 
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Comparing to (2.18), we learn that all the inequalities must be equali- 
ties, forcing g = 2g, R = 0, and Tr g^g — 4n. 

So the possibility that the action L has a stable nondegenerate min- 
imum is excluded. Note that the analysis has been purely local and 
makes no assumption about the global structure of M. 

As for the case of a degenerate minimum where the order r2 term 
vanishes, a further analysis that we will explain momentarily shows 
that this can happen only in an example of the following type. If the 
metric gij on E is Ricci-flat, then the metric 

ds2 = dr2 + e2rgijdxidxj (2.23) 

on Rx E obeys the n+1-dimensional Einstein equations with cosmolog- 
ical constant. For any constant c, the submanifold Ec of R x E defined 
by r = c is a stationary point of L. The action I/(EC) is independent 
of c, so this is a degenerate critical point. Conformal infinity consists 
of a copy of E at r = oo, with zero scalar curvature. Thus this type 
of example is impossible if we assume that the boundary has positive 
scalar curvature. (In this type of example, there is also a sort of cusp at 
r = — oo, so there is no Penrose compactification even with nonpositive 
curvature on the boundary.) 

We conclude by giving the proof that a degenerate minimum of L 
must be of the form just described. Let L(c) = L(EC). We have from 
(2.14) 

^ = - I cTx^gF (2.24) 

where 

F = n-±Tr g-ig. (2.25) 

Since we assume that L is locally minimized at c = 0, we have dL/dc > 
0 for small positive c, and hence 

fdnx^gF<0. (2.26) 

On the other hand, 

^F = ^Tr (g-'gg-'g) - ±Tr g-'g. (2.27) 
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Using (2.21), this becomes 

dF 1 
— = -n + -Tr(g-1gg-1g). (2.28) 

Using (2.17), with N = g^g, this implies an inequality 

dF 1 
^->--F(2n-F). (2.29) 
dr n 

We have F(0) = 0, since So is a critical point of L(S). For small positive 
r, F has the same sign as F' since F(r) — $*dtF'{t). (2.29) implies 
that if F{r) is negative for small positive r, then dF/dr is positive. 
This is a contradiction, so F > 0 for small positive r. 

Comparing to (2.26), we learn that F is identically zero for all suffi- 
ciently small positive r. It follows from (2.24) that L(c) is independent 
of c for small positive c. As we deduced from (2.22), at any value of c 
for which dL/dc = d2L/dc2 = 0, we have dgij/dc = 2g^. Hence 

gij(x,c)=e2cgij{x,0) (2.30) 

for sufficiently small positive c. By real analyticity (or the Einstein 
equations) this is true for all c, and the Einstein equations (2.9) also 
imply that gij(x,0) is a Ricci-flat metric on S. Thus, we have shown 
that a degenerate minimum of the functional L(E) has the special form 
given in (2.23) and in particular cannot exist if the boundary has pos- 
itive scalar curvature. 

In the above, we can replace the Einstein equation Ru = —ngu 
by an inequality RJJ > —ngu, since this would only improve the cru- 
cial inequality (2.21). Physically, this corresponds to having additional 
matter fields excited in an asymptotically AdS spacetime. 

We summarize our results as follows: 

Theorem 2.1. The functional L(E) = A — nf^A for an embedded 
hypersurface S in an n + 1-dimensional Einstein manifold M of Ricci 
curvature greater than or equal to —n does not have any local minimum. 
Any critical point of this functional is either unstable or is neutrally 
stable and of the form given in (2.23). The neutrally stable case is only 
possible if the Ricci curvature is precisely —n. 
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3    Existence 

In this section, we will prove existence theorems for a hypersurface 
E, in a given homology class, that minimizes the functional L(E) = 
Area(S) — nf^A. Here S is a hypersurface in a complete n + 1- 
dimensional manifold M of Ricci curvature — n that has a conformal 
boundary as described in the introduction and the last section. 

If instead M were compact, and we have an upper bound on the 
area of S and a lower bound on L(S), then existence of a minimizing 
hypersurface E in a given homology class in M follows from very general 
grounds. In fact, any sequence of hyper surf aces of bounded area in a 
compact manifold has a convergent subsequence. For compact AT, if 
we assume that E is an embedded hypersurface, then both the upper 
bound on the area in a minimum of L(E) and the lower bound on L(E) 
follow from the fact that the potentially negative term — n /s A in the 
definition of L(E) is bounded below by minus the volume of AT. So if 
we make AT compact by cutting off the "ends," then E exists. 

The E obtained this way, as the limit of a sequence of embedded 
hypersurfaces E* chosen to minimize lim^oo £(£*), might a priori have 
very bad singularities. However, rather deep results in geometric mea- 
sure theory [9] - [12] show that such a limiting E has singularities only 
in codimension > 7. (These results are obtained for area-minimizing 
hypersurfaces. The possible singular behavior at interior points of M 
of a hypersurface minimizing L = A — n/Ais the same as for area- 
minimizing hypersurfaces, since the second term is less important near 
a singularity.) Existence of a minimizing hypersurface E that is smooth 
except in high codimension is good enough for our purposes, because 
the arguments of section 2, though formulated for smooth E, can be 
extended to the case that E has a singularity of high codimension. 2 

To apply this existence result for E to the case that AT is noncom- 
pact and has a Penrose compactification, we first introduce a cutoff 
in the volume of M as follows.   We recall that near each conformal 

2Curiously, in supersymmetric examples of the AdS/CFT corresponce (and in 
fact, in all known examples) the dimension of M is at most seven and hence the 
dimension of S is at most six. So in the known applications, S is always smooth. 
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boundary component dMi of M, the metric of E looks like 

— (dt2 + gij(x,t)dxldx3) , 

with the boundary being at t — 0. We cut off the "ends" by restricting 
to t > Ci, with €i a small positive function on dMi. With M made 
compact in this way, existence of E follows by the argument above. 
The main technical step in the present section is to prove, under certain 
conditions, that if the Q are sufficiently small, then the minimizer E 
(or at least one of its components) does not intersect the boundary of 
M. Once this is known, a comparison with Theorem 2.1 will give our 
restrictions on the topology of M. 

We turn now to the proofs. We begin with some preparations. The 
following is a well-known fact: 

Lemma 1. Let d be the geodesic distance function from a point XQ 

in a manifold M whose sectional curvature has an upper bound given 
by k > 0. At points where \fkd < 7r/2 and d is smooth, the second 
derivative (the Hessian) of d, in directions orthogonal to the tangent 
vector of the shortest geodesic joined to XQ, is not less than 

1   y/kd 

dtan\/fcd 
(3.1) 

Proof.    Let (j(s,t) : (—a, a) x [0,/] —> M be a family of geodesies so 
that 

cr(s,0) = a;o        for all 5, 

and at s = 0, ^<J{S,1) is perpendicular to ^-(0,/).  We also suppose 
that cr(s, /) is a geodesic. We shall parametrize cr(0, t) by arc length so 

dcr that t = length a(0,t). Then J(t) = £cr(s,t) 

for all t. Direct calculation shows that 
s=0 

is perpendicular to ^ 

ds2 length( 
fl F d    2      C 

a(s,t)       = —J    - / 
s=o     JQ      dt J0 

"' D      Ti TkdaJ da1 

RijklJ J IttH dt.   (3.2) 

Assume the sectional curvature YlRijkiX%XkYiYl to be less than 
A;||X||2||y||2 when X JL Y. Then we see that 

-length(.)|^o>/o    -    -k]o (3.3) 
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Assuming \/kl < |, the right hand side is minimized by setting 

m = =^j(i). (3.4) 

Hence 
d2 

ds2 

Vk 
— length (a)       > "—=-. (3.5) 

*=o     tan(Vkl)' 

Let p = d2. Then the second derivative of p is not less than 

2Vkd 

ta.n(y/kd) 
(3.6) 

if the derivatives are taken along directions orthogonal to the shortest 
geodesic joint to XQ. It is not less than 2 if the direction is tangential to 
the shortest geodesic joint to XQ. Hence the second derivative is always 
not less than 

Let E be a hypersurface with mean curvature bounded above by c.3 

Then restricting p to E, we find 

Asp > nf{p) - 2c^. (3.8) 

This follows because the second derivatives on E differ from the ones 
on E by the second fundamental form after being renormalized by the 
gradient of p, whose norm is less than 2d = 2y/p. (The first derivative 
of the geodesic distance is not greater than one.) 

Let us now assume that distance from x £ E to dM is greater than 
VR. Integrating the above inequality on E D {p < i?}, we obtain 

2VR Area [E n {p = R}} > f(nf(p) - 2cy/p). (3.9) 

(Here we have used the fact that, since the normal derivative of d is 
at most 1, the normal derivative of p is not greater than 2\/R when 

P = R-)  
3In the notation of section 2, the mean curvature is Tr g~1g/2. 
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Let F(R) = Volume [S n {p < R}]. Then 

dF        1 
—- > —7= Area [E n {p = R}} 
dR - 2y/R L       XH        n 

>   r     fnf(t)-2cy/i\ 
Jp<R \ IP<R \ 4fl 

(3.10) 

> inf ("M-2**) FiR). 
-t<R\ 4JR / 

In particular, 

where 

(logF^y^Oogjy^))' (3.ii) 

w-^tf^mzze)--.)}.   (,12) 
When R -> 0, H(R) -)■ i?"72 and F(i2) - Ci?"/2. Hence 

Lemma 2. Let E be a hypersurface with a mean curvature bounded 
above by c in a manifold M whose sectional curvature is bounded above 
by a constant k. Let XQ G E be a point so that the distance from XQ to 
dM is greater than R. Then if R < -jr and if the geodesic distance (of 

M) from XQ is smooth within BXQ(R) the ball of radius R, then the area 
of BX0(R) fl E is not less than cRn where c depends only on dimM, 
VkR and cR. 

The assumption that the geodesic function from XQ is smooth will 
be true if R is small enough. This can be seen as follows. The only 
reason that the geodesic distance may not be smooth at x is that there 
may be two distinct geodesies with shortest distance joining x to XQ. 

By minimizing the distance of such geodesies, one can find a point x 
so that the distinct geodesies at x have exactly opposite directions and 
hence there is a smooth geodesic loop at XQ. 

Let us now assume that for some constant a > 0, the map 
7ri(BXQ(aR)) -* 7ri(BXQ(R)) is trivial. Since i£ <.j^p the exponen- 
tial map from the tangent space at XQ is non-singular everywhere in a 
ball of radius R. 
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The geodesic loop at XQ bounds a disk within BXo (R) and hence can 
all be lifted up to the tangent space. This is not possible as the lifting 
of any geodesic at XQ must be a straight line and cannot be a closed 
loop. 

The condition for smoothness of geodesic distance is therefore sat- 
isfied if we can find a > 0 so that 7ri(BXQ(aR)) —> 7ri(BXo(R)) is trivial 
for all 0 < R < ^ and for all XQ with distance greater than R from 
dM. This condition is clear for manifolds with compactification of the 
type described in section 1. 

From now on, we shall choose R so that all the above assumptions 
are satisfied. 

Suppose {xi, X21..., xm} are points on E so that the balls BXi(^) are 
mutually disjoint and S C ("1^.(7?). We also assume distances from Xi 
to DM is greater than f. Then Area (E) > £. Area (£Xi(f )n£). Since 
each Aie3)(BXi(^) D E) is bounded from below by a positive constant 
depending only on R, c and \/fc, we conclude that m is dominated 
by Area(E). This number m can be considered as a quantity that 
measures the outer diameter of E. 

Let us now assume that M is a compact manifold with boundary 
components dMi,..., dMk. We assume k > 1. We consider domains fis 

with boundary components given by <9M2,..., dM^ and an embedded 
hypersurface E which is (compactly) homologous to dMi. Then 

L(E) = Area(E)-n f A 

= Area(E) + 5^ /     A-nVol(fts). (3.14) 

If EQ minimizes I/(E), 

Area(Eo) - nVol(fiEo) < Area(<9Mi) - nVol(Af). (3.15) 

Assume that EQ can be written as Ei + • • • + E*.. Then either one 
of E; is in the interior of M or all of them, intersect dM, In case all 
of them intersect <9M, we argue as follows. We consider first the case 
that all of the E^ intersect one of the dMj with j' > 1. From the above 
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inequality (3.15), we know 

Y^ Area(£*) < Area(aMi). (3.16) 

By Lemma 2, the diameter of each E* is dominated by Area(Ei) 
and hence by aArea(<9Mi) where a depends only on the upper bound 
of the sectional curvature of M and the lower bound of the injectivity 
radius of M. (The mean curvature of each Ej is n, according to (2.15).) 

If Q is the complement (in M) of the neighborhood of Uj>i(5M7) 
with radius of aArea(<9Mi), then (as we are assuming that each E» 
intersects one of the dMj with j > 1) Q C (M\Q^0) and (3.15) shows 

^Area(Ei) < Area(5Mi) - nVol(Q). (3.17) 
i>i 

In particular, Area (<9Mi) + nVol (M\Q) > n Vol (M). 

We have then proved the following lemma: 

Lemma 3. On a compact manifold M with boundary dMi, dM2,..., 
dMk, let Ei + • • • + E, 6e a sum of embedded cycles that minimizes 
the functional L(E) = Area(E) - nVolfi(£,<9M2,... ,dMk), on the 
homology class of dMi. Then one of the E* ;s does not intersect dM2 U 

n VolM > Area(aMi) + n VolBd(dM2 U • • • U dM*) (3.18) 

^Ziere d = a Area (c?Mi); 5^ Z5 ^/ie ball of radius d around dM2 U • • • U 
dMk and a depends only on the upper bound of the sectional curvature 
of M and the lower bound of its injectivity radius. 

In the case that M is obtained from a manifold with a Penrose 
compactification by "cutting off" the ends by t > e, for i > 2, the 
inequality in Lemma 3 is obeyed if the e; are sufficiently small. 

We still need a condition to ensure that a component of E does 
not meet dMi. When dMi is a conformal boundary at infinity, the 
computation at the beginning of section 2 suggests that E will not be 
near dMi if dMi has positive scalar curvature; we want to make this 
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more precise. In the present discussion, we have cut off the ends of M 
and dMi is an ordinary boundary; positive scalar curvature at confor- 
mal infinity implies that (when dMi is sufficiently close to infinity) the 
mean curvature of dMi is greater than n. 

Thus in general the assumption we want is that dMi has mean 
curvature greater than n. There is a foliation in a neighborhood of 
dMi so that the leaves are given by level sets of the distance function 
to dMi. The mean curvature of the nearby level sets is still greater 
than n. The (outer) normal of these level sets defines a vector field v in 
a neghborhood of dMi whose divergence is given by the mean curvature 
of the level sets. Hence 

div^>n. (3.19) 

Now if Tii intersects <9Mi, we can replace E* by intersecting it with 
the level sets and obtain a new surface £». By applying the divergence 
theorem (as norm(?;) = 1) to the domain f2 bounded by the difference 
of Yii and Ej, we get 

-/ Jn 
Area E* < Area E7; — / div v 

'n 
< AreaEi-nVol^). (3.20) 

From this inequality, it is clear that £(£;) < L(£i). Hence Ej cannot 
be part of the minimum of the functional L. In conclusion, if dMi has 
mean curvature strictly greater than n, it does not intersect any of 
the £;, and hence under the hypotheses of Lemma 3, there must be 
a component E* which does not intersect any boundary components 
dMj. We can deduce the following: 

Lemma 4. Let M be a compact manifold with boundary components 
dMi,..., dMk. Assume that dMi has mean curvature greater than n. 
Let Bd(dM2,..., dMk) be a neighborhood o/dil^U- • -UdMk with radius 
d = a Area (dMi), where a depends only on the upper bound of sectional 
curvature of M and the lower bound of the injectivity radius of M. 
Assume that 

nVol [M \ Bd(dM2,..., dMk)] > Area(aM1). (3.21) 

Then when we minimize the functional L(E) = Area(E) — nf^A 
among embedded surfaces homologous to E which bound a domain with 
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9M2 U • • • UdMk, there must be a component o/E which does not touch 
dMi U • • • U dMk. The singular set of S is a closed set with at least 
codimension seven Hausdorff dimension. 

This last statement follows from regularity theorems of geometric 
measure theory. The fact that the singular set has large Hausdorff 
codimension allows us to use arguments of section two. What one 
needs is to introduce in the computations in section 2 a cut off function 
cp which is zero on the singular set and one outside an ^-neighborhood 
of the set. The contribution of V<p is ^. But the singular set has small 
measure and the integral of |VV|2 tends to zero when e -> 0. 

If the number of dMj is greater than one, so that dMi is not ho- 
mologous to zero, then a minimum of 2/(E) exists in the homology class 
of dMi (as explained at the beginning of this section) and Lemma 4 
gives a condition in which the minimum has a component that does not 
intersect the boundary of E. But the existence of such a component 
contradicts Theorem 2.1 if the Ricci curvature of M is not less than 
—n. So we conclude: 

Theorem 3.1. Let Mn+1 be a compact manifold with Ricci curvature 
not less than —n. Let dMi be one of the boundary components of M 
so that RdMi — RM > fain + 1) along dMi. Assume that 

nVo\[M \ Bd{dM2,..., dMk)] > Area(<9Mi), (3.22) 

where d depends only on the upper bound of the sectional curvature of 
M and the lower bound of the injectivity radius. [Bd(dM2j... ,dMk) 
is the neighborhood of radius d around the components of dM \ dMi.] 
Then DM has only one boundary component. 

The above inequality on the volume is true if the boundary com- 
ponents dMi, i > 2, are far away from dMi. If M is obtained by 
cutting off the "ends" in a Penrose compactification, we can obey this 
inequality by moving the dMi, i > 2, close enough to infinity. 

In the statement of Theorem 3.1, the condition ROMX—RM > ^ri(n+ 
1) ensures that the mean curvature of the boundary is greater than n. 

Hence we have: 
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Theorem 3.2. Let M71"1"1 be a complete manifold without boundary with 
Ricci curvature not less than —n and with a Penrose compactification 
such that at least one component of the conformal boundary of Mn+1 

has positive scalar curvature. Then the conformal boundary of Mn+1 

is connected. More generally, let Mn+1 be any complete manifold with 
curvature bounded from above and with Ricci curvature not less than 
—n. Suppose dM is compact and RQM — RM > ^n(n +1) along dM. If 
the injectivity radius of M is bounded from below by a positive constant, 
then M is compact, with connected boundary dM. 

Proof. If M is not compact, we can exhaust M by subdomains whose 
boundary is dM and <9M2,..., dMk. We can make (M \ Bd(dM2,..., 
dMk)) to be arbitrarily large because M is complete and noncom- 
pact and we can put an arbitrarily large number of balls BXi(R) in 
M \ Bd(dM2,..., dMk) as long as the subdomain is large. Hence, we 
can obey the inequality in Lemma 4. 

Theorem 3.3. Let M be as in Theorem 3.2., Then the natural map 
7ri(dM) —> 7ri(M) is surjective. 

Proof. Otherwise a non-trivial element of 7ri(M)\7ri(9M) exists. We 
can form a covering manifold M of M making use of this element. This 
M would have disconnected components. 

Theorem 3.4. Let M be as in Theorem 3.2. Then Hn(M; Z) is zero. 

Proof. Let So be a fixed embedded cycle representing an element in 
Hn{M\2i). Then we can study the functional -L(E) among embedded 
hypersurfaces E homologous to SQ. In this case, EUSQ is the boundary 
of a domain with components counted with multiplicity plus or minus 
one (according to the orientations). We can then apply Stokes's theo- 
rem on each subdomain to conclude that [J^ A| is bounded by VolM 
and /E  |A|. The rest of the proof is the same as before. 
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