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Abstract 

We show how certain F4 couplings in eight dimensions can 
be computed using the mirror map and K3 data. They perfectly 
match with the corresponding heterotic one-loop couplings, and 
therefore this amounts to a successful test of the conjectured 
duality between the heterotic string on T2 and F-theory on K3. 
The underlying quantum geometry appears to be a 5-fold, con- 
sisting of a hyperkahler 4-fold fibered over a P1 base. The natu- 
ral candidate for this fiber is the symmetric product Sym2(K3). 
We are lead to this structure by analyzing the implications of 
higher powers of E2 in the relevant Borcherds counting func- 
tions, and in particular the appropriate generalizations of the 
Picard-Fuchs equations for the K3. 
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1    Introduction 

We consider certain threshold corrections A(T, U) to F4 couplings in 
eight dimensional string compactifications with N = 1 supersymmetry. 
Such theories are obtained from the heterotic string compactified on T2 

(with moduli T, U plus 16 Wilson lines that we will suppress), or du- 
ally, from F-theory [1] compactified on elliptic fibered if 3's. Threshold 
corrections of this kind have been considered by various authors, either 
from the heterotic string point of view or from the dual Type I string 
perspective [14], [15], [25], [43]. Furthermore, an attempt was made 
in [25] to compute these couplings from K3 geometry in F-theory; it 
is the purpose of the present paper to extend and improve upon this 
approach. 

The motivation for studying this subject is, of course, not that eight 
dimensions would be phenomenologically very important, but rather 
that we expect to learn more about how to do exact non-perturbative 
computations in .D-brane physics.2 Experience suggests that when- 
ever we study BPS-saturated couplings [20], [4], [13] in an effective 
action, there should be a purely geometrical method for computing 
them. Indeed, we will argue that there is a beautiful structure behind 
the 7-brane interactions in eight dimensions: the relevant quantum ge- 
ometry appears to be a 5-fold, given by a fibration of a hyperkahler 
4-fold over a P1 base. This 4-fold is nothing but the symmetric product 
Sym2(K3) = ^ff^ of the underlying K3. 

For simplicity, we will focus in this paper only on a certain class 
of couplings for one-parameter families of elliptic if 3's, and intend to 
present a more thorough geometrical treatment in a companion paper 
[30]. We will consider couplings of the form rill consider couplings of the form 

Re[AGlG2(T)] Tr^ A FGl] A Tr[Fa2 A FG2] , 

> are non-abelian gauge groups (e.g., 1?8). There 

(i.i) 

where Gi^ are non-abelian gauge groups (e.g., 1?8). There is no holo- 
morphic prepotential underlying this kind of coupling. Recall that it is 
only the 17(1) couplings of the form RQ[^TTUU)FT

2Fu2 etc. that possess 
an underlying holomorphic prepotential, i.e., ATTUU ~ dT2du2G(T,U) 
[25]. The latter class of couplings, and their prepotentials will be dis- 
cussed in [30]. 

2Other interesting aspects of D = 8 theories have been recently discussed in [51]. 
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The situation in eight dimensions is analogous to the more familiar 
N = 2 supersymmetric theories in four dimensions, which are obtained 
from the heterotic string on K3 x T2 and from the type IIA/B strings 
on Calabi-Yau 3-folds: there is no holomorphic prepotential, .F, for 
couplings of the form Re[A;v=2(T, U)] TT[FG A FG],3 whereas there is 
such a prepotential for the couplings of the U(l) gauge fields FT and 
Fu. 

More explicitly, the Wilsonian one-loop heterotic string threshold 
corrections in four dimensions, after performing the modular integra- 
tions, can be expressed in terms of Borcherds modular products [10], 
[47], [49], [5], [9], [48] 

AN
=
=2(T,U)    =    log[tf] ,        where (1.2) 

(W)>o 

for some a, b. Here, qT = e27™T, qu = e2mV\ the product runs over 
k > 0, / G Z A k = 0, / > 0 in the chamber r2 = ImT > U* = ImU, 
and c(n) are the expansion coefficients of a certain nearly holomorphic 
and quasi-modular form,4 C(r) = X)c(n)#n- The precise form of the 
"counting function" C, depends on the model and specific gauge group 
factor that is considered [46]. 

In spite of the lack of a prepotential, there is a natural geometric 
formulation of the four dimensional couplings A ^=2 (T, [/), and this still 
involves the mirror map, and is closely related to the counting of elliptic 
curves.5 More precisely, the four-dimensional couplings are sections of 
a line bundle, which can be trivialized at large Kahler structures using 
the mirror map tk(zi) and the fundamental period WQ. Following an 
argument given in [40], ^detA;z(§^)zuo3+/ll'1~x/12 is an invariant ratio of 

3We consider only the perturbative one-loop piece in four dimensions, and send 
the dilaton to weak coupling, i.e., e_47r5 -> 0. In eight dimensions the heterotic 
one-loop result is supposed to be exact [14], [15]. 

4 A modular function is called nearly holomorphic if it is meromorphic with poles 
only at cusps (r = zoo for 51/(2, Z)), and we will call such a form quasi-modnldiT if 
it can be written in the form C(r) = P{E2^E^EQ)I'A™, where P is some (quasi- 
homogeneous) polynomial, A = 77

24
(T), and where En are the familiar Eisenstein 

functions. 
5The prepotentials for the couplings of FT and Fu are, of course, related to the 

counting of rational curves. 
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sections, whose only singularities can be on the discriminant locus of 
the CY 3-fold. Thus, denoting the components of the discriminant by 
Di and taking the logarithm, we know from this general reasoning that 
the couplings can be written in the form: 

A ^=2   = log n(A(^r)detH(^)^o /dZi\       x/12_3_ftlil (1.3) 

This has the same form as the topological partition function Ti [31], 
which counts elliptic curves in the 3-fold. The couplings differ from 
Ti in the values of the discriminant exponents o^, but we see here the 
sense in which the threshold couplings are related to the counting of 
elliptic curves. In practice, there is no easy way to determine the a^ 
other than by matching the asymptotic behaviour of (1.3) and (1.2) at 
large Kahler structures. 

By performing the relevant heterotic one-loop modular integrals 
[14]-[25], it turns out that the threshold couplings A^G^T, U) in eight 
dimensions have a product representation that is completely analogous 
to the four-dimensional expression in (1.2). One thus may expect that 
there should be some way to compute these expressions geometrically, 
similar in spirit to (1.3). It is the purpose of the present paper to show 
that this expectation bears out, by showing that the FQ1

2
FG2

2
 thresh- 

old corrections can be represented in a way analogous to (1.3) (where 
again a few parameters c^ need to be matched against the heterotic 
one-loop result). Our results make major use of, and indeed gener- 
alize the mirror map of the relevant K3 surface, and once again, the 
threshold corrections are related to counting elliptic curves in K3. 

In the next section, we will first analyze the structure of the rele- 
vant Borcherds products that underlie the heterotic one-loop couplings, 
for Gi52 = Es. The novel feature as compared to the well-known four- 
dimensional story is the appearance of E^2 in the counting functions. 
In Section 2.2 we translate this into properties of the Picard-Fuchs sys- 
tem that the geometrical (F-theory) formulation of the problem must 
provide. In Section 2.3 we generalize this to a whole sequence of models 
with different gauge symmetries, which have essentially the same struc- 
ture. In Section 3 we then interpret the inhomogenous Picard-Fuchs 
equations of Section 2.2 in terms of geometry, and are thereby naturally 
lead to symmetric products of K3 and their fibrations. 
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Finally, in appendix A we discuss some properties of quasi-modular 
Borcherds products, while in appendix B we present a streamlined tech- 
nique for the computation of the heterotic one-loop couplings. Here we 
also show that these couplings can be obtained concisely in terms of 
a generating function that has an intriguing interpretation in terms of 
D-strings. 

2    Borcherds products and mirror map 

2.1    Building blocks 

To simplify the discussion, we focus here on the model with Es x Es 
non-abelian gauge symmetry and fixed modulus U — p = e27rz/3; we 
will later show how our arguments can easily be generalized to a whole 
series of one-parameter models. 

An algebraic representation of the relevant singular if 3 with two E% 
singularities is given by 

Wfoj/.O  = y2 + ;r
3 + £5(£-l)(£-^(r))  = 0.        (2.1) 

The mirror map, namely the map to the flat coordinate T, is [36], [25] 

z\T)  =   (y/-j(T)/172& +y/l- i(T)/1728)2 , (2.2) 

which is nothing but the hauptmodul for a certain Z2 extension of the 
modular group, 5X(2,Z). It is more convenient for our work to use 
51/(2, Z) modular forms, and so we introduce 

Z(T)  =     1      Z*^        -   ™ (2 3) 

Our task is to represent the F4 heterotic threshold corrections, as 
computed [15] and rederived in appendix B.2, in terms of the mirror 
map pertaining to the KS surface (2.14). The product form of these 
looks exactly like (2.1), but with U = p: 
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&EsE> (T) = -48 log[tt] 
U=p 

with a = -2 , b = 0 , 

and counting function 

E2E4 — E§ C = 1J- 
12 r?24 

AWT) =-24 log[*] 
U=p 

with o = 8 ,6 = 12 , 

and counting function 

c = 1^1 
12 ry24 

[^l^ - 2^2£;6 + JE£] .  (2.4) 

We see (due to the finite number of quasi-modular forms with a given 
degree) that all couplings are composed out of a finite number of build- 
ing blocks. Most importantly, note that there are two kinds of ingredi- 
ents: 

(i) those terms that are fully modular and are polynomials in the 
Eisenstein series E^r) and E§(T) 

(ii) those terms that are quasi-modular, because they involve powers 
of £2(7-). 

The theorems of Borcherds [16] state that the product \I/(T, U) in 
(1.2) has good modular properties essentially if C(r) is a modular func- 
tion6. However these theorems do not apply if C contains E2. This 
means that while the pieces of (2.4) that do not contain E2 map into 
the ring of modular functions generated by ^(T), z(T) — 1 and ^(T)', 
the E^-parts cannot map into this ring. However, as we will see in 
the next section and in appendix A, we can make good use of the fact 
that the E2 pieces arise from taking derivatives of true modular forms 
(and that the E2 pieces can be removed from the counting function 
by further judicious differentiation). In this spirit, we parametrize the 
non-modular pieces in the following way: 

l   dE,E,  _        1   (1   3     1   2     1 \ 
Cl   =   IriTr^F' -   "^U   4     3   6     6   2   4   V  ' 

6If the counting function, C, has weight zero then the constant term of its q- 
expansion is required to be divisible by 24. 
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Co    = 
1   d\2El 

2iridTj   rj24 

 1_ /13 
~7724 V36 

2 1 1 \ 7713     i 7712      | 771     771     TTt        i 77l2 77l2    I 

and define 

IMiT)  = ai log k     i\Ci(kl) 
QT

1
    11   (l-«rV) 

(fe,0>o 
U=p 

,    * = 1,2. 

(2.5) 

where a^ are some normalization constants that will be fixed later (ai = 
-3, a2 = -9/2). Combining this with the modularly well-behaved 
pieces, we can now rewrite the threshold couplings in terms of these 
building blocks in the following way: 

A(T) = -48(log [z(T)ai(z'(T))a2(z(T) - I)"3] 

+ 0i/xi(r) + /WT)) •   (2.6) 

Explicitly, comparing with (2.4), we find that7 

AEsEt : ai = "2, a2 = 0, a3 = 0, ^ - -1, A> = 2/9, (2.7) 

AESES • ai = -16, ^2 - 18, as = -9, Pi = -1/2, p2 = 1/9. 

Equation (2.6) is the analogue, and in fact the generalization of the 
threshold formula (1.3) in four dimensions. Indeed the corresponding 
four-dimensional expression can be written exactly in this form, but 
with 02 — 0- Note that the four-dimensional expression (1.3) is mod- 
ular as a function of all the Calabi-Yau moduli, including the dilaton 
modulus zs ~ e -ATVS The lack of modularity (due to the /ii) comes 
from identifying the perturbative coupling, 5, and extracting the weak 
coupling limit. The non-modular function fii — \og(z) then turns up as 
the finite residue in limsf-^log^s) — S). (The log(2;) term subtracts 
the singularity at T = U = p.) 

7Note that AE8E> - 2AE8E8 = 2881og[7y(r)24], which represents the eight di- 
mensional analog of the well-known result [7] about differences of four dimensional 
threshold couplings. 
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The vanishing of fa is a reflection of the fact that for the four- 
dimensional gauge couplings, E2 appears only linearly in the counting 
function, and not quadratically. The new feature in eight dimensions 
is thus the presence of the function ^ whose Borcherds formula has 
a counting function containing Ef. This raises the question as to how 
such functions would naturally appear from the intrinsic geometry of 
if3. In fact, counting functions of curves of algebraic genus g with 
n-nodes, passing through g points on if 3, have been found in [33]: 

c9 = 
d £cs(n)<f =   (g-E2(q)) 

71=0 v{q) 24 

These involve arbitrary high powers of £"2, and in particular one has: 
1     i7>2 171 

Ci — Y2 V4 • ^^S means th^ t^e threshold corrections in eight di- 
mensions can formally be related to the counting of nodal elliptic curves 
in if 3. 

2.2    Picard-Fuchs equations with sources 

We now wish to relate the functions ^ to the geometry of the dual F- 
theory: that is, to the geometry of the relevant elliptically fibered if 3 
(2.1). In practice this means that we want to obtain a generalization 
of the usual Picard-Fuchs operator. At U = p, this PF operator is of 
second order, and after transforming to the variable z(T) in (2.3), it 
becomes: 

£(2)    =    i 
z 

K - z (02 + - ez + 
1 

12 
(2.8) 

where 0Z = z-^. The fundamental solutions to jC^Wi(z) = 0 are given 
by the periods 

(2.9) 

As was noted in [18], there is a canonical association of (2.8) to the 
following third-order operator: 

£(3)  = 
1 

0 9Z + 9Z + 0Z + l (2.10) 
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The two operators C^ and C^ are naturally related with one an- 
other for a number of reasons. First, their fundamental solutions are 
quadratically related: 

u^z)  = mj-i Wi  = Tj (E,)1'2 ,        j = 0,1,2, (2.11) 

where C^Ui(z) = 0. This fact will be important later when we discuss 
the interpretation of the underlying geometry. 

More generally, these two operators satisfy some interesting identi- 
ties when filtered through the mirror map: for any function f(z) one 
has 

z £<2> {f(zw0(z)) = -^y (e2
qT f(z(qT))) w, , (2.12) 

z C^ U{z)^{z)) = -^i-y {61 fizfa))) UJO . 

From this and (A.6) it follows that the functions we seek, /^-(z), satisfy 
the following inhomogenous, or "source" PF equations: 

£(2) (//! uo(z))        = zuo (2.13) 

where we have fixed the normalization constants, oi = —3, 0,2 = —9/2, 
in (2.5) by requiring "unit sources" on the right-hand sides of these 
equations. The solutions of these equations are ambiguous up to addi- 
tions of the homogeneous solutions, which amount to irrelevant addition 
of terms linear in T to fii and up to quadratic terms in T to 112. 

Amongst other things, these equations mean that at U = p the 
Borcherds products /^ become solutions to relatively simple linear sys- 
tems of equations. In particular, note that £^(£^(/ii WQ{Z))) — 0 and 
£(3)(£(3)^2 ^(2))) = 0. In other words, we find that the ingredients 
Hi in the threshold corrections (2.6) satisfy generalized hypergeometric 
equations of fourth and sixth order, respectively. 

The question arises as to the physical and geometrical interpreta- 
tion of the inhomogenous Picard-Fuchs equations (2.13). We derived 
them by working backwards, i.e., by investigating how to reproduce 
the threshold corrections originally obtained from the heterotic string. 
However, before we discuss the physical and geometric interpretation, 
we first wish to generalize our ideas to a larger class of models. 
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2.3    Generalization to certain one-parameter fam- 
ilies of KS's. 

Consider the sequence of models that have been introduced in ref. 
[25]. They represent certain one-parameter8 families of singular K3 
surfaces, with the special property that the modulus TS of the elliptic 
fiber (the type IIB string coupling) remains constant over the base P1. 
These families can be represented by the following polynomial equations 

W(x,y,O = 0- 
(Es2H0

2)      :     / + a;3 + £5(£-l)(£-**(T))     =0 
|,2 + a.3 + a.^_1)(e_J?.(r))    =0   (2il4) 

y2 + :r3 + £4(£-l)2(£-z*(T))2 = 0 
y2 + x3 + e^-lf^-z*(T))3 = 0. 

(^2ffi2) 

(EQ  H2  ) 

(D44) 

The first model is exactly the model with Eg x Eg gauge symmetry 
that we discussed above. Each of these models has four singularities 
in the z-plane of the indicated types, leading to corresponding gauge 
symmetries in D = 8 (the Kodaira singularities of type Hn lead to 
gauge groups An). There exist actually further models of the same 
kind, which we will not discuss in great detail in the following (but 
which could be treated in a similar way). That is, the list of one- 
parameter families with constant coupling and four singularities in the 
z-plane includes also the models (ESHQD*), {E-JHID^), (E^i^iV), 
{E8HoE6H2), (Ee2DAH0) and (H2

2D,E8). 

One feature these models have in common is that their mirror maps 
are uniformly given by certain Thompson series; this is much in line of 
the findings of ref. [18]. The abovementioned models indeed match very 
well with the list of replicable arithmetic triangle functions discussed 
in [27]. More specifically, explicit computations show that the mirror 
maps are determined by the Schwarzian equation 

-^-2{^)2  =  -WW", (2-15) 

where 

QW = i { 
l-A2       I-//2       \2 + ^-S-l\ 

z*2        (z* -1)2 z*(z* -1)      J   '       K      ) 

8The T2 modulus U, as well as the Wilson lines, are frozen to particular finite 
values [25]. 
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The solution of (2.15) is given by the Schwarzian triangle function 

TOO  = sCA,^!/;**), (2.17) 

where (TTA, TT/X, TTU) are the angles of the relevant fundamental domain 
(which depends on the specific model). We list these and other data, 
partly taken from [27], in Table 1. 

Elliptic Constant  Angles 
Singularities IIB (A,/i, i/) 

coupling 

Hyper- 
geometric 
indices 
(a, 6; c) 

Inverse mirror map  = 
Hauptmodulz*(T) 

rn 2 TT 2 Jz/7   ill 

77> 2TT 2 
i^6  fl2 

ESHQD^ 

E6H2D4 

ESHOEQH2 

2 n. c J 

P 
i 

P 
any 

j^e D4H0 

H*>
2
DAEZ 

P 
P 

(o,|,o) 
(0,^,0) 

(0,i,0) 

(0,0,0) 

V6' 6' 1) 

(ii1) 
V3' 3' 1/ 

V2>2'    / 

vO, 3, 3)    (fi' 2' ■*■/ 

(o,|,l) 
(0,|,|) 
(o,|4) 
(1 I I) 
V6' 3' e/ 

f1 i 1) 

(3, 2'''■) 

(g'3'   ) 

U' 3' 6/ 

1 / yy(T) x24 
64^(2^/ 
1 / ^(r) 02 

27VT;(3T)/ 
_j_/iKT)_x8 

16VT;(4T)/ 

v/3i(<9|(2r)-e7ri/36'4(2r))3 

9<9|(2T)^(2T)6l|(2r) 
»(ffl2r)+igj(2r))4 

8<9|(2T)^(2r)(9|(2r)     i 

V/3i(7?
6(2r)+3x/32y76(6T))2 

367yb(2r)^(6r) 1 

Table 1. Complete list of one-parameter families of K3 surfaces with four 
elliptic singularities and constant coupling. The triple (A,/i, v) describes the 
angles of the fundamental region of the relevant triangle group, and (a, 6; c) 
the indices of the corresponding hypergeometric equation. Every vanishing 
angle corresponds to a cusp and thus to a decompactification limit ImT —> 
00; the last two models obviously do not have such a limit (J = j/1728). 

Note that for these models all monodromies (induced by encircling 
the four singularities in the z-plane) are of finite order. As was dis- 
cussed in [25], this means that the geometry of the singular if3's can 
be described by a finite covering of the z-plane and thus effectively 
reduces to the one of Riemann surfaces; the four 7-planes then corre- 
spond to the branch points of these curves. More specifically, for the 
four models in (2.14) one finds the following Zjv-symmetric curves 

"N X 
N = r1^-ix*-**) (2.18) 
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of genus g = N — 1, where TV = 6,4,3,2, respectively. Indeed, 
the relevant period integrals VJI = f . dxd^/(dyW(x, y, ^)) of the 
K3 surfaces (2.14) can be directly obtained from the curves (2.18). 
This can be seen by changing variables in the integral by setting x = 
v zW-im^-iy/Nfe-z*)*/*, Upon which the integral then factorizes 
illt0: / TJ^T / gi-i/N^-iji/i^-^^i/iv- The integral over v is simply a 
constant normalization, and we thus reduce the relevant K3 periods to 
the periods of the Z^ curves: 

"/FT iN(i-\yiN{ii-z*(T)yiN ' 

This can also be interpreted [25] as integrals over open string metrics 
[28], d£l~Iz=i(£~&)~1/'12- The periods may be written as hypergeomet- 
ric functions 

^0        =   (-l)-2/Ar7rcsc(7r/^) 2*1 (l/N, l/N^z*) (2.19) 

C7!        = ^-1/iV(-l)-2/iV7rcsc(7r/7V) 2F1{l/N, 1/JV, 1; 1/^*) . 

of the corresponding (a, 6;c) type, as indicated in Table 1. The flat 
coordinate is then alternatively given by T — WI/WQ. 

The issue is to compute couplings of the form AG1G2(T)FG1
2
FG2

2 

(1.1), where Gi^ are the non-abelian gauge groups of any two given 
7-planes, out of the total of four. As discussed in [25], the primary, 
and potentially singular contribution to this coupling comes from inte- 
grating out the exchange of the RR four-form tensor field C^ between 
the two given 7-planes, simply because each of the planes carries a 
world-volume coupling of the form C^ A F^ A F^. 

It was proposed in [25] that the coupling should be given by a loga- 
rithmic correlation function between the two relevant branch points (7- 
planes) of EAT.

9
 This correlator is supposedly nothing but the Green's 

function £/EiV between appropriate 1/iV-period points of a scalar field 
onE^v, ie, AGlG2 ~ £s"(£i,£>). 

The problem is that a Green's function is not uniquely defined since 
there is the freedom of adding a non-singular piece to it, £/EiV(£i, ^2?^) 
-> G

EN
(^I^2,T) + Pi^T).  The canonical choice for it, given by the 

9We suspect that this can be naturally expressed in terms of a "logarithmic" 
conformal field theory, along the lines of ref. [26]. 
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prime form, turns out not to give the complete result in general. More 
precisely, somewhat tedious explicit computations show that the canon- 
ical Green's function between any two relevant branch points Zi is com- 
posed out of the Hauptmodul z* (T) and has the general form 

SSL&.&T) = iog[z*ai(i-*T2(0Q3] (2-20) 
form 

for an appropriate choice of a^ (this is essentially a combination of the 
generalized Halphen functions discussed in ref. [27].) We find that this 
Green's function yields the correct result for the couplings (1.1) only 
for the model with D^4 gauge symmetry, as was shown in ref. [25].10 

The point is that the prime form (2.20) describes only the "modular" 
part of the threshold correction, but misses the functions ^ in (2.6). 
Physically, (2.20) describes only the tree-level exchange of C fields, but 
misses certain instanton contributions. Namely, loops of (p, q) strings 
in the £-plane will be closed in general only on the covering surface £#, 
so that such strings effectively wrap the Riemann surfaces. Wrapping 
entire world-sheets of such strings will thus in general generate extra 
instanton-like contributions. In the D^ model considered in [25] there 
are no such instanton corrections (fc = 0) because £2 has genus g = 1, 
so that from the point of view of the (p, q) instantons the situation is 
like a type IIB compactification on T2 with maximal supersymmetry: it 
is known [29] that for this compactification there are no (p, q) instanton 
corrections to parity-odd couplings. 

The functions /^ to be added to the canonical Greens functions 
(2.20) can be obtained in exactly the same way as we did before. We 
first perform a quadratic change of variables,11 

^ - -4(r^j? • (2-21) 

10
Note that the heterotic loop computation in [25] missed a term, which slighly 

modifies the result given in [25]; however, the correlators can be still represented 
in the form (2.20) with the choice: (ai,0:2,0:3) = (1,-1,0), (-1,-1,0), (-1,1,0) 
referring to A12, A13, Ai4(T), respectively. The correct computation can be found 
in a separate erratum. 

11For Es-kHkD42 (k = 0,1,2), the transformation is z(T) = -^JP*T)), 
which maps to the equations (2.22) and (2.24). For E$HOEQH2, we have sim- 
ply z(T) = z*(T) which maps to these equations for N = 3. For the last two 
entries in Table 1, the transformation (2.21) maps to hypergeometric systems of 
types 2Fi(l/12,1/4; 5/6, z) and 3^2(1/6,1/2,1/3; 2/3,5/6, z), respectively. 
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in terms of which the Picard-Fuchs operators are: 

/.(2)    = 
1 

0, 2     2N    \ z     2     2N 
(2.22) 

where N  =   2,3,4,6, respectively.    The fundamental solutions to 
C-N'zui(z) = 0 are 

wi (z) = T t^o . 
(2.23) 

The third-order operators that are associated with (2.22) are simply 
[18] 

'(3)    = 
'AT     — ^ -z (e*+1-h)(dz+12){ez + h (2.24) 

whose solutions are again quadratic in terms of wf. Wj(z) = Wj-i Wi 
We can then analogously write down the source equations: 

dft (HI w^z))   =  Wo 
(2.25) 

which finally determine the extra contributions, [j,i(z(T)). Once again, 
for simplicity we have chosen to normalize the fii to satisfy these equa- 
tions with "unit source". 

In order to test our ideas explicitly, we now consider the remaining 
models in the list (2.14), i.e., the ones with (E6 x A2)2 and (E7 x Ai)2 

gauge symmetry, and compare the geometric data with the heterotic 
one-loop couplings (these one-loop couplings are are computed in ap- 
pendix B). Since these models have a greater variety of non-abelian 
group factors than the E& x E& and Z}/ models, there are more cou- 
plings to test. 

The upshot is that we indeed find that the generic expression (2.6) 
reproduces the heterotic one-loop results, provided that we 
choose the coefficients 0^,$ appropriately (where, of course, z*(T) = 
-±(ri(T)/ri(3T))12 or z*(T) = -^(T)/^))24, respectively, and 
where fii^ are the solutions of (2.25) with N = 3,4). Explicitly, by 
matching the asymptotic g-expansions of these building blocks with 
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the heterotic couplings (B.26) at U = p — 1 [25], we have for the E6 

model: 

A^cr)      = log [s-^V -1)2/3] - ^i + m^ 
AE6A2(T)        = log [z*-Ve(z* - I)"1/3] + ^ (2.26) 

^AAT)        = log [z*-1/3(z* - 1)-W] + ^ 

A^^CT)       = log [z*-^(z* - I)2/3] + iMl + ^^ . 

Quite similarly, for the £"7 model we find that at U = 1 + i: 

AE7E7,(T) = log [S-1'1*^ - 1)^] - i^ + i^ 

AS7Al(r) = log [^-1/24(^ - I)"1/12] + JLfr (2.27) 

A^^r) = log [z*-^(z* - 1)-^] + ^ 

AAlill/(T) = log [z-1/12^ - I)1/6] + ipx + ^ . 

Thus, including the results of [25] and of Section 2.1, we have verified 
that for all 7^3 surfaces in (2.14) we can match the geometric data 
to the corresponding heterotic one-loop results. This represents, we 
believe, the most complete quantitative test of the heterotic/F-theory 
duality to date. 

3    Interpretation and Discussion 

We have demonstrated that the inhomogenous Picard-Fuchs equations 
(2.25) carry the relevant information about the FA couplings (1.1). We 
now give two interpretations of these equations. 

The first is to note that the structure of the inhomogenous Picard- 
Fuchs equations is highly reminiscent of the equations of Seiberg and 
Witten [35]. Indeed, the geometry of the specific families (2.14) of sin- 
gular elliptic K3's effectively reduces to the one of SU(N) SW curves. 
More generally, remember that the periods, a and a/), of the Seiberg- 
Witten differential satisfy a first order system of differential equations: 

d d 

Q-; aD  = w1 , —a = wo, (3.1) 

where the functions Wi are the standard periods (2.19) of the Z^ curves 
(2.18). 



1590        W. LERCHE, S. STIEBERGER, AND N.P. WARNER 

For our quartic gauge couplings in eight dimensions it is not first 
order, but second order operators ^C^ whose application yields the 
standard periods of the curves. This means that //i may be seen as 
a period of another meromorphic differential on these Riemann sur- 
faces. Similarly, since the differential operators £}/ are the PF opera- 
tors associated [18] with the K3 manifolds X6(l, 1,1,3), X^l, 1,1,1), 
X2)3(l, 1,1,1,1) and X2)2,2(l) 1,1,1,1,1), respectively, this suggests that 
one could associate fi2 with the periods of certain meromorphic differ- 
entials on these K3 surfaces. 

A second, and more directly useful interpretation can be given for 
the second order equation in (2.25) for fii, and this will then help us to 
get a better understanding of the third-order equation. 

As mentioned earlier, the function /^i naturally appears also in the 
four dimensional, N = 2 supersymmetric theories arising from 3-fold 
compactifications of type II strings. This function is essentially the 
difference of log^s) — S in the large base space limit of the relevant 
Calabi-Yau 3-fold (in which the non-perturbative contributions to the 
threshold corrections drop out). The relevant 3-folds are known to be 
K3 fibrations [3] over a P1 base, and this implies that the Picard-Fuchs 
operators of these Calabi-Yau manifolds must involve, in some way, the 
differential operators ON' in (2.22). 

More precisely, the "fibered" PF operators are obtained, to leading 
order in zs ~ e~A7rS, by the replacement 9* —> 0Z(9Z — 26]

Zs) in the first 
term of ON\ If one now recalls that 5^0 ~ (log(zs) + /ii — log(z))zuo is 
a period of the Calabi-Yau manifold and if one keeps all the finite terms 
in the Calabi-Yau Picard-Fuchs system in the limit as S —» oo, one finds 
that 9Zs (log(zs)vjo) contributes a finite term that may be written as a 
£(2)((//i — log(2:))?z7o) = 29ZWQ. This equation then trivially reduces to 
(2.25). 

In other words, the source term of the inhomogenous second order 
equation (2.25) is nothing but a remnant of the heterotic dilaton in the 
large base space, or weak coupling limit. 

This suggests a natural interpretation of the third order equation 
(2.25), which appears only for the eight dimensional, but not for the 
four dimensional couplings. A crucial insight can be gained by paying 
attention to the structure of the solutions of the homogenous equation, 
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£H LOi(z) = 0: the three solutions are nothing but quadratic products of 
the ordinary K3 periods. We believe that these periods are to be inter- 
preted as those of the symmetric product, Sym^ifS), of the underlying 
K3. 

The appearance of Sym^ifS) is indeed quite natural in the context 
of D-brane physics. That is, the contribution to the couplings (1.1) 
we consider comes from pairs of 7-branes, and a system of two branes 
(or points on K3) is thought to be described by a non-linear sigma- 
model whose target space is Sym2(K3) [34]. Since this is a hyperkahler 
manifold,12 and a sigma-model on such a space has N = (4,4) super- 
symmetry, the quantum cohomology is trivial and this is exactly what 
is reflected by the product structure of the periods. 

More generally, any hyperkahler manifold has a holomorphic (2,0)- 
form and a holomorphic (4,0)-form (which may be thought of as the 
square of the (2,0)-form). It is the variation of the Hodge structure 
of the holomorphic (2,0)-form and (4,0)-form that seems to underly 
our two functions //i and ^2- More precisely, what we should have is 
a fibration of these forms, which -in the large base limit- manifests 
itself in the source terms of the inhomogenous equation (2.25). The P1 

fibration yields in total a 5-fold, and indeed it was suggested in [25] a 
5-fold should underlie the F4 couplings in eight dimensions. 

We have made extensive, and thus far unsuccessful, attempts to 
obtain algebraic (hyperkahler-fibered) 5-folds, whose Picard-Fuchs sys- 
tems would reduce to the source equations presented in this paper. 
However, it is notoriously difficult to find algebraic descriptions of hy- 
perkahler manifolds [39], and so our lack of success may merely be 
reflection of this fact. 

The question whether the threshold corrections described in this 
paper can indeed be realized in terms of a fibration of Sym2(i;f3) or 
not, has potentially important physical significance. Remember that 
what we just have been arguing is that the heterotic one-loop couplings 
are given by the large base space limit of this fibration, just as for the 
well-known couplings in four dimensions. However, in four dimensions 
this is not the full story, in that the expansion away from the large base 
space limit gives the dilaton dependent, non-perturbative corrections 

12 For a review and references, see [39] (and also [37], [38]). 
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to the one-loop couplings. 

One may thus be tempted to ask for an interpretation of the higher 
orders of expansion in the base-space parameter, zs, of the 5-fold. It 
has been suggested [14] [15], however, that the heterotic one-loop correc- 
tions to FA are exact in eight dimensions and that there are no further 
non-perturbative corrections. If this were true, then the source equa- 
tions discussed in this paper would indeed capture the complete story. 
However, being related to a singular geometrical limit, this seems a 
little unnatural; perhaps there is, in fact, a physically meaningful extra 
dependence on a geometrical modulus which perturbs away from the 
singular limit. In fact, it is known that Sym2(iif3) has an extra modulus 
that controls the blow up of its Z2 singularity,13 

dimif^Sym^irS))   = dimff1'1^) + 1  = 21, (3.2) 

and it is a non-trivial fact [38] that this modulus behaves exactly like a 
string coupling constant. We hope to give a more detailed presentation 
of these matters elsewhere. 
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A    Quasi-modular Borcherds products 

It was shown by Borcherds that if the "counting function" C(r) = 
Y^ c(n)qn is a true modular form of weight —5/2, then there is a canon- 
ical choice of the exponents a, b in 

*  =   (qTr(qu)b    Hi1' ^V)^0 > (A-1) 
(fc,0>o 

13It deforms Sym2(iir3) to a smooth Hilbert scheme [37]. 
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such that ^ is a meromorphic modular form of (T, C/)-weights (c(0)/2, 
c(0)/2). Moreover, the zeroes and poles of ^ are given precisely by 
the vanishing of the various factors in the product. Perhaps the most 
familiar example of these Borcherds formulae is: C(r) = Ef/A — 744 
then for T2 > U2 one has a = —1,6 = 0, and 

#0  = j(T)-j(U). (A.2) 

We want to find some form of generalized Borcherds formulae for 
simplifying modular products involving £2. Counting functions involv- 
ing E2 can be obtained by differentiating modular polylogarithms. That 
is, consider 

(-1    \ 2n+l 

— I ]r   c(kl) £W [«rV] , (A.3) 
71-2' (A;,l)>0 

where the poly logarithm is defined by (a > 1): 

£ia(z) = Yl ^ ' With  fe)"   ^"W = "^^ - Z)  '       (A-4) 
p>0 " 

and, as usual, the sum in (A.3) runs over the positive roots k > 0, / € 
Z A fc = 0, Z > 0. It then follows that if one defines ^ by taking 
log(*) = (—-^dudrYx^ then ^ has counting function (2^5r)

nC(r). 

The issue is that the obvious modular quantity (A.3) has polyloga- 
rithmic singularities, while the natural meromorphic object, *, is not 
modular. However one can find a meromorphic, modular object by fur- 
ther differentiating log^). It is elementary to show that if F(~2m\T) 
is a modular form of weight -2m, then Gf(2m"f2) = f^*^ F^~2m^ is a 
modular form of weight 2m + 2. That is, G?(2m+2) contains no E^s. 
Moreover J^F(~2m) is an quasi-modular function that contains a fac- 
tor of EipFt'2171}. Thus not only is it most natural to think of any E2 
in C(r) as coming from derivatives of other modular forms, but one can 
render such functions modular once again by taking a suitable number 
of derivatives. For example, define: 

*«   = G1 n (i-o-v)**0 ,<=i,2 
(A!,0>0 

1   d E4Ee 
Ci 

2iri dr 7/(r)24 
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1      n-El + \El + \E2E,E, ) ■ (A.5) 
77(T)24 V2   4     3   6      6J 

1    d\2  El 
27ridTj //(r)24 

-1    /IS.     2_2     1 
r-fi'd + 7:^ + —E2E4ER + //(r)24 V36   4     9 

One can easily check that (^dr)2^ = (984- j(r))jE?4 and (^dr)^ = 
(240 — J(T))EQJ which are modular forms of weight 4 and 6 respectively. 

Now consider xi — d^d^log^i) and X2 = diId^log(^2)* These may 
be viewed as modular "polylogarithms" of the form (A.3) with n = — 2 
and n = —3. The functions £za for a < 0 are rational, and indeed 
the corresponding modular "polylogarithms" are the positive weight 
automorphic forms generated via the Hecke transformations, and are 
thus nearly holomorphic modular forms [16]. The weights of these 
modular "polylogarithms" is the same as the weight of the counting 
function, and so the functions Xi and X2 have (T, U) weight (4,4) and 
(6,6) respectively. One can use this, and the manifest zeroes and poles 
of vpj to uniquely identify the Xi- We will not do this here, but instead 
focus on the special point U = p = e2™/3. 

Since we are taking U = p, we will only be interested in the modular 
and holomorphic properties as a function of T. We therefore consider 
the pj = (ijlog(^j)\u=p with the constants dj as in (2.5), and define 
i&j = (JLjdTy+1 11^ j = l52. The function $7 is thus a modular form 
of weight 2(j + 1). From the product formula (A.5), and the fact that 
Ci ~ — - + const + ..., one sees that the the functions log(^ri) are only 
singular at T = U = p, and moreover, at this point $1 and $2 have 
double and triple poles respectively. One can also easily see that $1 
and $2 both vanish at T = zoo. This determines the functions $» up 
to overall normalizations, and the latter can be fixed by using the fact 
that E^T)/E§(T) ~ — ^(r — p) as r -> p and using (A.5) to obtain the 
coefficient of the pole in $j. One needs to be a little careful in that the 
product in (A.5) has a simple zero at T = [/, but in the limit U -> p 
this becomes a triple zero because U — p is a Zs-orbifold point of the 
fundamental domain. One finds: 

$1  =  1728 ^- ,        $2  =  1728 ^4 ■ (A.6) 
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B    Elliptic genera and heterotic ^-correc- 
tions 

In this appendix we compute the one-loop threshold corrections in the 
heterotic string picture. They are needed in Section 2 for the compar- 
ison with the geometric K3 data. In subsection B.l we will first write 
a compact generating functional, from which these couplings can be 
obtained by differentiation and which has an interesting D-string inter- 
pretation. In B.2 we consider the model with E$2 gauge symmetry, and 
in B.3 we extend this to the remaining models with [E7 x SU(2)]2 and 
[E6 x SU(3)]2 gauge symmetry. Finally, in B.4 we collect some data on 
Jacobi forms. 

B.l     1/2 BPS-saturated Fn-amplitudes 

We will present here a formal expression for heterotic one-loop cor- 
rections to TrFn, (TrFn/2)2,... (in general n-derivative) gauge cou- 
plings (n=even), where the gauge fields originate from E$ x E'8 and 
where the trace is taken in the adjoint representation. Furthermore, 
we restrict to T2 x X heterotic string compactifications and 1/2-BPS 
saturated amplitudes. The latter restriction guarantees that the whole 
left-moving fermionic part of the partition function (supplemented with 
2n fermionic zero modes) cancels against the left-moving bosonic oscil- 
lator contribution. This leads to a world-sheet torus integral whose 
integrand is essentially the product of the torus partition function 
Z2fi(T,U) and the holomorphic genus $-n(g, y). More precisely, we 
have 

ACiwW2)2 = (B.l) 

1      d71    f d2T 

(2m)n dz71 l   [Z2a(q,q) $_n(g,7/)-c(n/2)(0)] 
J       T2 z=0 

where $-n(q, y) = e ^.^(g, y) with y = e27Tiz and q = e27riT. As 
usual, the non-harmonic pieces are needed for modular invariance and 
come from the coincidence of external gauge legs. The parameter, ?/, 
represents one of the skew eigenvalues of the background gauge field, 
F.   Here we simplify our calculations (without loss of generality) by 
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restricting attention to a single such parameter. The constant C(n/2) (0) 

in (B.l) is defined to be £2 (q)§-n(q, l)|coeff(g0) and is needed to keep 
the integral IR-finite. The $_n(g, y) are Jacobi functions with weight 
—n and index m = 4, and we define their expansion coefficients c(k, b) 
by: 

$-n(q,y) = J2   E   c(Ml/V (B.2) 
A;>0 b2<4mk 

In contrast to (B.28), the function <f>-n(q,y) has a well-behaved 
transformation behaviour: 

'CLT + b Z 
^=(cT + d)-n^n(T,z)  . 

^cr + a  cr + d/ 

It is this property that allows to use in (B.l) the orbit decompositon 
method of [7], and after some work to eventually arrive at (for the 
chamber T2 > U2 and regularization e —> 00) 

gn 

7n/2}2 (TrF^y        (2<Ki)n dzn X 

. b  (k,l)>0 P>O sjp' - T2U2 

-2«(kT2+lU2)^-^   2«ip{kTl+lUl) c(kl, b)yb + he. 

+E 
U2 y^      2 

j>o J      mz T2 

i>o Vyj2 

n/2 

T2C/2 / 
•2 _   mz^     ,        e 

^ T2C/2 ^ 7TT2U2 

(B.4) 

c(0,b)yb 

5=0 coeff(tf0) 

-C(n/2)(0) In e + JE + 1 + In 

n/2 

3\/3/. ^=0 

2n/2 V^^; with Jr72(y-§-)n$(q,y)       =• J2 ^2 Fs. Note that the last four terms 
z=0        s=o 

give simply polynomials in T2 and C/2. 
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The formula (B.4) can be easily generalized to combinations 
TrFi Tri<2n/2 of different gauge groups, by including further Wil- 
son lines Zi = TrF^ and differentiating with respect to them (z2 -> 

The complicated formula (B.4) has an intriguing physical interpre- 
tation in term of the dual Type I string picture of the heterotic string, 
by recognizing the exponentiated square root as a Born-Infeld action 
(this generalizes the observations of [14]). Specifically, in eight dimen- 
sions where n = 4, (B.4) can be rewritten in terms of the Born-Infeld 
action of a JD-string, which reads [50]: 

SBi[G,B,r,C2] = f (Pae-+y/det(g + B + T) - i f C2 ,        (B.5) 

0 f 
where T = . „ is the open string world-volume U(l) gauge back- 

ground field. Moreover, in (B.5) we also have the induced moduli fields 
Gap = GijdaXidpX*, Bap = BijdaXtdpXi (in what follows B = 0) and 
the RR 2-form C2 on the world volume. The sum k > 0, / e Z in (B.4) 
over the heterotic winding states thus can be seen as the D-instanton 
sum, so that 

H™-)2 = ^E   A,   I e-S'MSM ^(U,Vd^) 
F=0 

(B.6) 
df* ^ y/det(g + F) 

with the D-brane complex structure U = ^=^ + ft^^^S^ gauge 

field e"*/ = izkJm^, e'^Vdetg = kpT2 and C2 = kpTi. On the other 

hand, the part of (B.4) that does not involve winding states (k = 0) 
gives the perturbative contributions in Type I language [14]. 

We now apply the generating function in (B.4) to the three physical 
models that we discuss in the present paper. 

B.2    Gauge group E& x Es 

Literally taken, the expression for ATTFJ*   in (B.l) directly applies to 
heterotic compactifications on: (i) K3 x T2 (for n = 2), or (ii) T2 (for 
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n = 4). Indeed, using 

y-fy) JEMV) ^ = 4[%) E^y) 
z=0 

(B.7) 

=   -(E2E4-E6), (y—)   JE8(q,y) 

4 
=   o (E2E4 — 2E2E& + E4) . 

z=Q 

we can immediately rederive from (B.4) the results of [4] and [15]: 

(i) F2 in d = 4, with <]?_2 (<?,?/) = E6JE8(q,y), 
n2 

ATVF^   =   4Re| ^2 c{l){kl)Cii(x) 
(fc,0>o 

3 
z{kl) [{kT2 + lU2)Ci2{x) + ^£>h{x)\ } 

-c(1)(0)ln(/CT2C/2)- 
7rc(0) Ul 

15   T2 
(B.8) 

^.^m,^, 
with ^(y*yq>_n(q,y) = Emc(s/2)(m)qm ,5^0, $-n((Z, 1) := 

^=0 

^mc(m)gm and /C = ^e1 7f;. This gives precisely the integrals J, J 
given in eq. (A.31) and (A.47) of [4]. 
(ii) F4 in d = 8, with $_4(g? y) = ^Ml: 

A(1vFi)2       =-c(2)(0)ln(/CT2[/2) 
^8 

+4Re{^ c^k^Ci^x) 
(k,l)>0 

£» -i , 

^^(fc/) (A;T2 + lU2)Ci2{x) + — £i3(x) 

9 
27r 

TT^If/l 
c(A;/) (kT2 + lU2yCi3(x) (B.9) 

+—(fcT2 + lU2)CU{x) + ^hix)] } 

27rc(1)(0)^2
2 _ 6c(1)(0)C(3)     47rc(0) £/2

3 

15      72 TT^C/S 105   T2
2 
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This gives precisely the integrals given in eq. (E.27) of [15], which we 
need in section 2.1. 

The correction Arr^ ^^2 , which we also need in section 2.1, is 
#8 -Eg 

easily obtained from (B.9) by replacing the coefficients C(s/2)(n) with14: 

JE8(q,I)2 

T/24 

5>,(m)rf" = ! (*£)' J*l™»*^ (B.10) 

Vc(2)(m)^ ,3/   d \2 JEs(q,yi)JEs{q,y2) 
+ - \ vi—)  ZM  4 V py-ij v 

2 
■ =-( —} ( A^ JEMyi)JE&(q,y2)\ 

We see that the (harmonic) £ii-term arises from maximally differenti- 
ating the Jacobi function <&-n(q, y), i.e., its coefficients C(n/2)(kl) involve 

powers of E^ ■ On the other hand, for the maximally non-harmonic 
terms (proportional to (T [/wa) ^e coefficients c{kX) of $_n(9,0) ap- 
pear. In fact, the expressions in the brackets [ ] are precisely the Bloch- 
Ramakrishnan-Wigner polylogarithms [5], [11]. 

B.3    Gauge groups GxG' cE8xE'8 

Threshold corrections for gauge groups G x G' C Eg x E^ are obtained 
by introducing Wilson lines. We consider two cases: (/) [SU(2) x ET}2 

and (//) [517(3) x EQ]
2
, for which appropriate (discrete) Wilson lines 

are: 

(/)      a{ = |(1, -1,0,0,0,0,0,0), i(l, -1,0,0,0,0,0,0) , (B.ll) 

(//)      a[ = |(1,1, -2,0,0,0,0,0), |(1,1, -2,0,0,0,0,0) . 

The internal part of the partition function Z(i8,2) (<?, q) [6] becomes a Z^ 
orbifold with Kahler modulus T = MT and complex structure modulus 

14The last term becomes -192^2. 
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U = U/M (where M = 2 and M = 3, respectively): 

^sX,?)'M) = E    E    e^mi#¥^ C(M(,) , (B.12) 
(h,g)    mi<™i 

It is shifted by 0 = ^(0,0,1,0) in (PL,PR) € M,2 and 0 = oi in 
Es x E's with: 

^2 

(B.13) CQ := C{ofi)(q) =-^ = rj     (ZEoZAo + ZEiZAi)   , 

d := C(oti)(«) = \v-2im + 03204
6)2 = V-

2
HZEOZAO - ZEiZAl)

2 . 

We have introduced here the lattice partition functions for E7 [41] and 
An 

ZEo = el(2r) + 7eU2T)el(2r) 
ZEi=el(2T) + 7eU2T)6l(2T) 
zAo = e3(2T) 

ZAl = 02 (2r) . 

(B.14) 

The twisted sector functions follow from modular invariance. Similarly, 
for the EQ model we get: 

Co 
El 

(q)   =   ^ = V-24(ZEoZAo + 2ZEiZAh)
2 (B.15) 

Ci := C(i,8)(q) = £(1,02)(g) = ff^iz&ZjQ - zEiZAi)2, 

where we have introduced the following E^ [41] and ^-characters: 

ZEO   =   ^{03(3r)03(r)5 + 04(3T)04(r)5 + 02(3r)02(r)5} 

ZEI = \{e[1/
0
3](^)e2(r)6 + d[A/

0
3]^r)ei(r)'i 

-pl0[4/3](3r)04(r)5} 

ZET   =   ^{0[5;3](3r)02(r)5 + 0[2/3](3r)03(r)5 (B.16) 

-p0[2/3](3r)04(r)5} 
ZAo   =   03(2r)03(6r) + 02(2r)02(6r) 
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4/3 
L 0 J 

ZA   =   03(2T)9    1° (6T) + 02(2T)0 \0 (6r) 
1/3 

0 

Again, the twisted sector functions follow from modular invariance. The 
dependence on the skew eigenvalues of F may be easily introduced for 
each sector by replacing the ^-functions with Jacobi functions (B.29): 

{I)    JEIM 2/I12/2) = ZEo{q, yi)ZAo(q, y2) - ZEi (g, y^Z^ (q, y2) 
(B.17) 

{ii)  JE6,MIviiV2) = ZEiiq,yi)ZA%{<i,2/2) -zEi{q,yi)zAi(q,2/2), 

for the coset i = 1. For the subsequent world-sheet r-integration, it is 
convenient to express the orbifold sector sum in (B.12) as sum over the 
cosets [8] 

Zfo q, f, U), ^vtY, <P
]PL?

 ^
PL?

 , * = 1, • • • , M + 1 ,      (B.18) 
Ai 

with the Ai = {mi G MZ; 777,2, ni,n2 G Z}, A2 -= {ni G ^; ^1,^2? ^2 G 
Z} etc. and ^ = vol(N2^i) — (^ M'• • • ' M)- ^e function 
T2Z(g,5,r, t/)i is invariant under ro(M)r x r^M)^ x TQ{M)fj. 

After expressing the G x Gr currents as E& x £^8 currents, we follow 
[42] to extract the relevant gauge contractions: 

A™*™? = /^i^'^'^-^ + ^aiJ 
2    M+l 

2     i=l 

Zfaq^U)* (B.19) 

^G,<(?i!/li|/2)^G',i(9,1/3^4) 
7?24 

-1/^(0) 
^=0 

with 6, =    d4    JG
"
JG

'* 
dvldvl n24 

Zi=0 
^kb{k)iqk. This expression is the gen- 

eralization of (B.l) to subgroups G x G' C Eg x E'8. We have displayed 
the coefficients (o?,/?, 61,62) in the following tables, next to two addi- 
tional numbers c, 6, which will prove to be useful later to write down 
the final result in a closed form: 
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TiFZlrFJ a b 6i b2 c b 
TrFlTrF^, 0 •2 

49 0 0 0 '2 
49 

TrFlTrFl, 0 2 0 0 0 2 
TrFlTrF*. -6 '2 

7 0 21 0 2 
7 

TrFlTrFl 6 2 
7 -21 0 -6 2 

7 

TrFlTrFl 0 '2 
147 63 63 2 2 

49 

TrFiTrFi 0 2 -5 7 

Table 2.   Coefficients (a, 6,6Z) in (B.19) for heterotic F4 corrections with 
gauge group [EjxSU(2)]2. In addition, A^^   = —^A^^ \2 and A^^   = 

TrFjTrFl a b &1 b2 c b 
TrFl6TrF|, 0 i 

8 0 0 0 i 
18 

TrFlTrFl, 0 1 
2 0 0 0 1 

2 

Tri^TrFj, -3 1 
6 0 18 0 1 

6 

TrFLTrFi 3 1 
6 -18 0 -3 1 

TrFiTrFi 0 1 

?4 36 36 3 
2 

1 
18 

Tri^Tr^l 0 4 -3 9 

Table 3.   Coefficients (a, 6,6$) in (B.19) for heterotic F4 corrections 
with gauge group [E6 x SU(3)]2.  In addition, A^^   = —\ArTrF2 p 

and ATWT^ = 0. 

The techniques to perform world-sheet torus integrals over Narain 
coset sums 

1 FF1 C  rft       ^^ 

m 
z=0 

(B.20) 

have been developed in [8] and extended15 in [25]. Essentially, A inte- 

15Later, in [44] also integrals over coset sums have been calculated by an inde- 
pendent method. These results completely agree with our findings in [25]. 
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grates to a sum over two sectors: 

1      dn 

x 

2 
(27rz)n dzn 

{[£££ 
b    k>o p>0   A/p 

lez, ^ MT2U2 

-2n(kT2+lMU2)Jp' 2        mz^ 
MT2U2   2irip(kTi+lMUi)  „  Cufi^i   i.\„.b diMklJW 

mMz2 

T2U2 

2 

-M^iu^-^1 e27ripik^+lUl) ^^ b)yb 

l>0 p>0 \fp 2     mzz 

T2U2 

-^yF&eww ^btf 

2 -2irlU2 
=e 

+ 
yP T2U2 

, /p2_ mz2 

VP       T2U2 ^iplU,   C2(0fb)yb + hCi 

+ 

j>0 yji j* -mz2M2^ 

V"7 ^t/a V7 T2^ 

)]ci(0,6)y6 

T2U2    '   7rT2i72 

+( r^—r-   / 2- )}c2(o,b)yb}  (B.21) 
/o2 _   m^2 /n2 _   mz2    , 

V-7 ^2^2 V T2U2 T2U2 

M+l n/2 

T2U2    '   7rT2C/2 

2=1    S=0 
coeff(g0) 

-(C(n/2),i(0) + c(n/2))2(0))[ln6 + jE + l + ln(^)] 
^=0 

n/2 

with 2^2(2/§)n$i(g,l/)     n =: E ^^M- Similar as for the £8 model 
z=0 5=o 
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(B.7), we need for case (i): 

(y%)   Jij7'l((?'yi'y2) 

= ^ietiEM + ej) + el - 2^}] , [y-^) J^g,yi,y2) 

2 

JE.A (Q, V^, 2/2) 
zi=0 

Zi=0 

(B.22) 

- \-A^2{Q\ + ^44) - 302
8 - 2^ - 2^ + 203404

4] 
48 

and for case (ii): 

2 

Jifk.i (<7,3/i, 1/2) 
Zi=0 

ft   \ 
y-g-j JE6,i{q,yuy2)    n (B-23) 

1 /   ft \ 
= ^/ol/o-3/3-^2/1), [y-Q-^) JEe,i{q,yuy2) 

= ^/o(/o +9/3-^/1) 

with A = Z^o, /o = (gg)3 and /s = (^)3. 

While we need in the present paper only the harmonic pieces of the 
threshold corrections, it may nevertheless be instructive to the reader to 
note how easily also the non-harmonic terms derive from our generating 
formulae (B.4) and (B.21). Evaluating the harmonic part of (B.19), we 
then arrive at our final result (after dropping the pieces linear in T2, 
which may be easily derived from (B.22) and (B.23)): 

^Sg^l   =   4Re{-aln7?(f)77(t/) 

-cl)lnri{^)ri(U) - cblnr)(T)ri{MU) (B.24) 

(k,l)>0 

(k9l)>0 

with the coefficients bfp defined by: 
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d V       , \ (    d x2 

y^—    JGMIV^V*)  y^~    JG',i(q,yi,y2)\ 

= ^6f(m)^.   (B.25) 
m 

analogous to (B.10). 

In order to facilitate the comparison with the geometrical formulae 
of section 2.3, we present here the first terms of the asymptotic g-series 
of the corrections (B.24) for the E§ model (which indeed coincide with 
the q expansions of (2.26)). In fact, the geometrical couplings were 
defined at a fixed value of [/, and it is not entirely trivial to evaluate 
(B.24) at this value. Explicitly, for the 2?6 model, where U = T"1 • p = 
p — 1 [25], we find the following expansions: 

AE6EAT) = -llog(q) + 6q + Uq
:i-^f + 0(q)5 

^M (T) = ^logfo) -2<7+15<?
2-H^! + ^ + o(qf   (B.26) 

AiWCT) = | log(<?) + 18 9
2 - 36 9

3 + 135 g4 + 0(qf 

AA2A2,(T) = -ilog(<?) + 24<?-81<?
2 + 392<73 -imq* + 0{qf . 

Moreover, the solutions of the inhomogenous PF equation (2.25) for 
N = 3 look: 

^i(T)     =   108 q-486 q2 +2268 q3-10989 q4 + 0(q)5fi2(T) 

=   108 q - 810 q2 + 4572 q3 - 24597 q4 + 0{qf .     (B.27) 

B.4    Jacobi functions 

A Jacobi form (for more details see [45]) /S)m of weight s and index m 
enjoys 

M^'-b) = ^ + dye^fs,m{T,z) , 
\CT + a cr + dJ 

fs,m(r, Z + \T + LI)= e-2^x2T+2^fs,m(r, z) , (B.28) 
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f0r ( c   d ) e SL(2, ^ and X^eZ- With 

(9, y) = Yl g5("+HVi("+H/3 y"+5a (B.29) 
n6Z 

the function 

JEa(q,y)   ■=   ^S^^ffl^'^ 
K/3) 

=    1 + g(126 + 56y-2 + 56y2 + y'4 + y4) + 

is a Jacobi function of weight 4 and index m = 4, whereas 

(B.30) 

(B.31) 

has index m = 1 {JEsiQiV, 

9 ,e2 = e ,03=0 

= E^i(q,y2)).  We use the notation 9i = 

and 04 ^[i1 
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