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Abstract 

We consider M-theory compactification on Calabi-Yau 
threefolds. The recently discovered connection between the 
BPS states of wrapped M2 branes and the topological string 
amplitudes on the threefold is used both as a tool to com- 
pute topological string amplitudes at higher genera as well 
as to unravel the degeneracies and quantum numbers of 
BPS states. Moduli spaces of A;-fold symmetric products of 
the wrapped M2 brane play a crucial role. We also show 
that the topological string partition function is the Calabi- 
Yau version of the elliptic genus of the symmetric prod- 
uct of if 3's and use the macroscopic entropy of spinning 
black holes in 5 dimensions to obtain new predictions for 
the asymptotic growth of the topological string amplitudes 
at high genera. 

1    Introduction 

The study of Calabi-Yau threefolds has been a source of many new ideas 
in string theory. Not only are they useful as building blocks of various 
string compactifications, but they also provide interesting examples 
of exactly computable quantities in string theory. In particular they 
correspond to the "critical dimension" for the (N = 2) topological 
string. 

Topological strings, roughly speeking, count the number of holo- 
morphic curves inside the Calabi-Yau. As such, one would expect 
that they should correspond to the partition function of M2 (or D2)- 
branes wrapped around them. The connection at first sight seems some- 
what confusing: The topological string amplitudes exist for each genus, 
whereas the M2 brane (or D2 brane) degeneracies only care about the 
charge and not the genus of the curve representing it. It turns out, 
as discovered in [17] , that the genus dependence of the topological 
string amplitudes captures the SU(2)L representation content of BPS 
states corresponding to wrapped M2 branes upon compactifications of 
M-theory on Calabi-Yau threefolds. Here SU(2)L denotes a subgroup 
of the SO(4) rotation group in 5 dimensions.  This identification was 
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based on the target space interpretation of what the topological string 
computes [66], [75] and the contribution of BPS states to such terms 
(using a Schwinger 1-loop computation) [76]. 

Topological string amplitudes at genus 0 can be computed using 
mirror symmetry [68]. For higher genera, mirror symmetry is still a 
powerful principle and can be used to compute the amplitudes up to 
a finite number of undetermined constants at each genus [66] . Fixing 
the constant is called fixing the 'holomorphic ambiguity', and for the 
certain cases they were fixed for genus 1 and genus 2 in [65], [65] . The 
number of unknown constants grows with the genus. In certain cases 
one can use direct A-model localization [67] to fix these constants and 
in particular checking the integrality properties of topological string 
partition functions, anticipated in [17], at higher g < 5. 

In this paper we wish to use the reformulation of topological string 
amplitudes as a computation of BPS states in M-theory compactifi- 
cations [17] to make progress in explicit computations of topological 
strings at higher genera. The reorganization this introduces into topo- 
logical string amplitudes is to fix the BPS charge and consider all al- 
lowed genera of the M2 brane at the same time. For a given degree, 
there typically is a highest genus curve embedded in the 3-fold which 
realizes that class1 . One then studies the moduli space of that curve, 
together with the flat bundle over it. Understanding of the cohomology 
of this moduli space and the SU(2)L action on it, will in particular de- 
termine the BPS degeneracy and its SU(2)L quantum numbers. This 
in particular affects the topological string amplitudes for all Fr with 
r < g in a well defined way. The main aim of our paper is to develop 
techniques that at least in some cases allows us to extract from the 
geometry of this moduli space the SU(2)L action on its cohomology. 
We relate the degeneracies for a fixed SU(2)L spin, and in particular 
its contribution to Fr, to the Euler characteristic of the 5 = g — r fold 
symmetric product of the holomorphic curves in the Calabi-Yau 3-fold 
and to higher iVs (r < k < g). For S sufficiently small this space is 
smooth and its Euler characteristic can be computed. For 5 too big, 
in general this space is not smooth and the computation of its Euler 

1This highest genus is the arithmetic genus which we will often denote by g. 
The topological string amplitude at genus g usually denoted Fg has contributions 
from curves of different arithmetic genera. If the distinction is important we use 
the label r to refer to the worldsheet genus and write Fr etc. 
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characteristic requires more care. We will consider examples of both 
types. We also use these results to fix the holomorphic ambiguities 
for higher genera in some examples (and in particular we push up the 
computation of topological strings to higher genera). 

We will also discuss the connection of topological string amplitudes 
and the entropy of spinning black holes corresponding to M2 branes 
wrapped over "large" cycles in the Calabi-Yau. In particular we see 
how in the case of K3 x T2 the elliptic genus of the symmetric product 
of if 3's predicts complete answers to the SU(2)L action on the moduli 
spaces that we study. For a general Calabi-Yau threefold, we see how 
the black hole entropy predicts new growth properties for the topo- 
logical string amplitudes at higher genera that would be interesting to 
verify. 

The organization of this paper is as follows: In Section 2 we re- 
view the definition and some results related to A-model topological 
strings. In Section 3 we review the definition of some of the new invari- 
ants which allows one to rewrite topological string amplitudes using 
integral data. In Section 4 we show how the new invariants can be 
effectively computed in certain cases. In Section 5 we show that the 
same invariants can also be computed in a different way and be given 
a related geometric interpretation. In Section 6 we show in the case of 
K3 x T2 how the elliptic genus of symmetric products of K3 captures 
the BPS degeneracies of a wrapped M2 brane and show how our meth- 
ods can predict some of these results. In Section 7 we use predictions 
of macroscopic entropy of black holes to estimate the growth of topo- 
logical string amplitudes for high genera. In Section 8 we give some 
examples involving non-compact Calabi-Yau 3-folds and show how our 
methods work in those cases. In Section 9 we do the same, but in the 
context of compact CY 3-folds. In appendix A we discuss some aspects 
of del Pezzo surfaces and in appendix B we discuss some aspects of 
B-model topological strings. 

2    Topological Strings (A-model) 

In topological string theory (A-model) one considers maps from a Rie- 
mann surface E^ of genus g to a manifold which in the case of interest 
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in this paper we take to be a Calabi-Yau threefold X. The partition 
function depends only on the complexified Kahler moduli of X denoted 
by (tijti). In the limit whereby one fixes ti and takes the limit U —>> oo, 
a holomorphic anomaly decouples, and the theory becomes purely topo- 
logical. In particular, in this limit the Fg(ti) are obtained by considering 
holomorphic maps from the Riemann surface to X. Roughly speaking 
one has 

£    exp("/s 
Fg(U)=        2^       exp[-/   r(k) 

hoLmapfillg—tX 

where k is the Kahler class on X and f*(k) is its pullback to E. The 
above formula is not quite general because often holomorphic maps 
come in families. In these cases the sum is replaced by an integral over 
the moduli space of holomorphic maps representing some top charac- 
teristic class on the moduli space. More precisely, in the special case 
of Calabi-Yau threefolds that we are considering the formal dimension 
of the moduli space of maps is zero and when there is a moduli space 
of maps there is an equal dimensional space corresponding to a coker- 
nel of a bundle map. Thus the cokernel vector space forms a bundle 
on the moduli space of curves whose Euler class enters the relevant 
topological computation which enters in the above formula (for a more 
precise mathematical definition and a review of the subject see [68] ).2 

The result of such integrals for each fixed topological class of the image 
curve in X is known as the Gromov-Witten invariants. In other words 
one can write 

FgiU) = J2f94eM-diti) 

where di denotes the homology class of the image curve in terms of some 
basis for H2(X, Z) and fgj are the Gromov-Witten invariants. Since 
in most cases of interest the computation of /^ involves integrals over 
moduli spaces, there is a priori no reason for them to be integers, as they 
are not "counting" the number of holomorphic curves. However some 
surprising integrality properties have already been observed for small 
genus which we will review below. From the viewpoint of the topological 
string this integrality is very surprising and has not been explained. 

2 Strictly speaking, the obstruction spaces need not form a bundle, and there can 
be a virtual fundamental class in place of an Euler class. 
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An explanation of the observed integrality and its generalization to 
all genera has been found in [17] based on M-theory/type IIA duality 
which recasts Gromov-Witten invariants in terms of some new integral 
invariants n£. In this section we first review some aspects of topological 
strings. We then review the results of [17] in Section 3. 

2.1    The genus 0 contribution 

Let Lir(:r)  = YlkLi^~rxk^ ^e*    Li_r(^)  = — (rc^)rlog(l — x) and 
Lir(x) = — (/ ^Y log(l — x) then [29] gives a formal expansion 

Kpt 
3! 

/» oo 

+ */ c2J+|c(3) + ^n°Li3(^). (2.1) 
Jx d=l 

Here KQ is the classical triple intersection number on X, which 
comes from the degree zero maps. 

The curve counting function in genus zero is Kut = (dt)3Fo = KQ + 
J2™=1 Kdq

d. By 2.1, Kd is related to the n0
d by 

n\d 

It was observed that in this way of writing the Gromov-Witten in- 
variants the nd are integers [29] for the case of the quintic in P4 at least 
for degrees up to 300. This was later extended to all d which are not 
multiples of 5. 3 An explanation of this integrality was suggested in [29] 
as counting the "number of rational holomorphic curves" in Calabi-Yau 
space. This was further supported by the fact that it was shown in [9] 
that the n fold covering of an isolated holomorphic curve of degree d 
gives a contribution of 1/n3 to the Gromov-Witten invariant for de- 
gree dn in perfect accord with 2.2 . However the interpretation of nd as 
counting holomorphic rational curves in X is in general not the right in- 
terpretation. In particular a counter-example occurs even for isolated 

3Lian and Yau also proved integrality of the coefficients of the mirror map for 
the quintic, and in all the applications to toric hypersurfaces no non-integer n° ever 
appeared. 
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curves in the quintic. In [77] a contribution of n^ nod = 17,601,000 
plane curves with six nodes to total number of curves at degree five 
nl = 229,305,888,887,625 was found. There are three contributions 
to K10: degree 10 curves, double covers of degree 5 curves, and ad- 
ditional integer contributions for double covers of the 6-nodal curves 
corresponding to double covers with 2 components. Correspondingly 
for each double covering of a nodal curve there is a higher dimensional 
stratum and six points in M.o,o(X, 10) [68] . The contribution of the 
higher dimensional strata to the degree 10 curves must therefore be 
calculated by a virtual fundamental class calculation, which yields the 
usual 7^- and so the double covering contribution is ^ • nl smooth for the 
smooth d = 5 curves but (6+ ^) -n^ nod for the nodal ones. That means 
that the number4 of degree 10 curves on the quintic is not given by n?0, 

but rather by Nio = K10 - ^ - ^ - ^ - 6n^ nod, see Example 7.4.4.1 
and Theorem 9.2.6 in [68] . In particular 71% as defined in 2.2 has no 
interpretation as a "number" of curves, and there is currently no known 
mathematical reason to expect it to be integer! One aim of this paper 
is to outline a physically motivated geometrical definition of the njj, 
which makes the integrality manifest. 

More generally, let C C X be a sufficiently general smooth curve 
of genus g satisfying appropriate genericity hypotheses. Then Cg(h, d) 
denotes the contribution to Fg+h of maps whose image is C whose image 
has class d[C]. It is not yet clear if this notion is well-defined for g > 2. 

Extending [9] Faber and Pandharipande [22] prove that the multi- 
cover contribution Co(/i, d) of a P1 is described by 

Ccd,, i) = X,^ = ^J   with   *, = 1, Xl = 1.     (2.3) 

Here xiMg) — 2 L ^L, is the Harer-Zagier formula for the orbifold 
Euler characteristic of M.g in complete accordance with the predictions 
of M-theory [17] which will be discussed later. 

4We assume that there are finitely many curves (Clemens' Conjecture).   iVio 
could still contain multiplicity factors for certain curves. 
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2.2    The genus 1 contribution 

For r — 1 the situation is more interesting. The localization [22]  gives 

dM = ^, dM =0(h> 0). (2.4) 

There is no bubbling contributions of genus 1 curves to higher genus 
curves, i.e., Ci(/i, d) = 0 for h > 0 in accordance with the above and the 
zero-mode analysis in [65] . This is a feature one finds in the M-theory 
approach discussed in the next section. 

However the form of Fi discussed in the next section (which is most 
natural from the M-theory perspective) is (up to the i-terms) 

^^H^ + Ef^ + ^Li^). (2.5) 
d=l  ^ ^ 

Here, n^ is an invariant of certain BPS states typically associated 
to wrapping M2 branes around degree d elliptic curves E. This differs 
from the geometric substraction scheme 2.4, as it does not subtract all 
the multicovering maps from the torus to itself in the definition of the 
n\, but instead subtracts 1/d for the class d[E}. Substraction of these 
would yield5 [65] 

* = ^ + E (^SLii(^) + nf logntf)) (2.6) 
d=l  ^ ^ 

where n^1 corresponds to elliptic curves rather than BPS states. The 
reason for adding back in the multicover contributions is discussed from 
the BPS perspective in the next section. 

Comparing 2.5 with 2.6 

d,n d,n 

and keeping in mind the definition ^^ = Ylk\n h we see ^a^ ^e 

number of BPS states of charge d[E] is n^ = ^2m\d n^ as expected 
from adding up all bound states. 

5The genus zero contribution follows from 2.3  in both cases. 
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2.3    The constant map contribution 

We can compute for arbitrary genus in the simple case when the holo- 
morphic maps from the Riemann surface to X are just the constant 
maps. This is already a case where there is a moduli space of such 
maps. If the degree of the map / is 0 its moduli space splits into 

M9,n{X^)~Mg%nxX (2.7) 

where Mg,n in this case corresponds to moduli space of genus g domain 
curves. The relevant Gromov-Witten invariant in this case is given by 
\e(X) JM ^^(H) [66] where e(X) denotes the Euler characteristic of 
X and H denotes the Hodge bundle (coming from the space of holo- 
morphic one forms on the Riemann surface) over the moduli space. For 
the Hodge integrals involved in the above formula a closed formula was 
recently proven in [22] following the approach of [35], [24], [15], which 
yields 

This is in perfect agreement with the prediction for constant map 
contribution from the viewpoint of duality of type IIA and M-theory 
[17] . 

3    M-theory/Type IIA interpretation of 
the Fg 

Recently a series of integer invariants nr
d were defined [17] for each 

Calabi-Yau threefold X, labeled by a degree d G i?2(X, Z) and a pos- 
itive integer r. Their definition was motivated by consideration of M- 
theory on Calabi-Yau threefolds. The topological significance of these 
new invariants is that they can be used to rewrite Fr in terms of them. 
In particular they explain the integrality properties of Fr for all r and 
reproduce the expected integrality properties for genus r = 0,1. 

The definition of these invariants was motivated by consideration of 
the spectrum of BPS states in M-theory compactification on Calabi-Yau 
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3-fold. The spectrum in turn (in simple situations) can be computed 
by considering a certain SU(2) action on the cohomology of the moduli 
space of holomorphic curves in a Calabi-Yau X together with a flat 
bundle. We will now review the definition of these integral invariants. 

3.1    The new invariants 

The invariants defined in [17] are given as follows: Consider M-theory 
on a Calabi-Yau threefold X. This gives an N = 2 theory in d = 5. 
This theory has 62 {X) gauge fields. The states in d = 5 are labeled 
in particular by the charge under these C/(l)'s, which thus correspond 
to an integral element d e #2(^5 Z). Fix the subsector of the Hilbert 
space with charge d and consider all states in this sector which are 
BPS states. These arise in M-theory by considering M2 branes in X 
wrapped around supersymmetric cycles in the class given by d. In 
particular their mass is fixed by the Kahler class of X and is given by 
diU. The BPS state in addition is labeled by how it transforms under 
the spatial rotation group in 4 +1 dimensions which is 50(4), or more 
precisely SU(2)L X SU(2)R. In particular we can write the degeneracy 
of the BPS states together with their 50(4) quantum numbers as 

^,0)0 2(0,0) ®(BNlJR[(jL,jR)]. (3.1) 
3LJR 

The numbers NjL jR denote the number of BPS states with charge 
represented by the class d and with SU(2)L X SU(2)R representation 
given by the rerpresentation (JL,JR), where JL,JR £ (1/2)Z and denote 
the spin of the representations. 

The number of BPS states is not an invariant of the theory and it 
can jump. Two (short) BPS multiplets can join and become a (long) 
non BPS multiplet. For example, changing the complex structure of the 
Calabi-Yau X will change the numbers NfLijR. However, the left index 
of the representation does not change. In other words, if we consider the 
degeneracies with respect to SU(2)L and sum over all SU(2)R quantum 
numbers multiplied by (—l)2^ = (—l)Fi*, then this weighted sum of left 
representations does not change. There are well known examples, e.g. 
[78], where the individual right spin content changes under complex 
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structure deformation. Consider a P1 fibered over a genus g curve 
Cg. The right Lefschetz decomposition of the base M = Cg is [|] + 
2g[0]. Vanishing complex volume of the P1 corresponds to a special 
value on the Coulomb branch (j) = 0 with a SU(2) gauge enhancement 
and g hypermultiplets in the adjoint representation. Higgsing w.r.t. 
to the diagonal components of the hypers corresponds to a complex 
structure deformation and breaks the gauge group to U(l) and 2g — 2 
charged hypers, which geometrically corresponds to a splitting of the P1 

fibration into 2g — 2 isolated P^s, whose right spin content is (2g — 2)[0]. 
It is more useful for comparison with topological strings to choose a 
different basis for the SU(2)L representations. Let 

7r=[(3)+2(o) 

Using this basis, the procedure is 

NLUIULJR)} ^Y,NfLjR(-l)V«(2jR + l)[(jL)] = 5>SJr    (3.2) 
r 

The above equation defines the invariants nr
d which appear in the 

partition function of the topological string. According to [17] we have: 
oo oo 1      • . x  2r-2 

771 = 1 

The argument leading to this identification is that the topologi- 
cal string can be viewed as computing ^ FrR\Flr~2X2r~2 amplitudes 
in four dimensions upon considering type IIA compactification on the 
Calabi-Yau. Here R+ and F+ denote self-dual parts of the Riemann 
tensor and graviphoton field strength, respectively [66], [75] . Then a 
1-loop Schwinger computation as in [76] with the BPS states running 
around the loop relates the BPS content of states in 5-dimensional 
M-theory to corrections to R\F+~2 amplitudes. The appearance of 
the extra sum over m in 3.3 is related to the momentum a BPS state 
in 5 dimensions can have when compactified on a circle down to 4 
dimensions. These appear as 'multi-cover' contributions in the topo- 
logical string context, as first noticed for the case of genus 0 by [79]. 
The term (2 sin ^)2r in the above formula arises from computation of 
Tr(—l)2-7L+2-7Hexp(2imAJ|) in the Ir representation, where J| is one of 
the generators of SU(2)L. 
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3.2    The higher genus contributions 

Expanding 3.3 gives back 2.1, i.e. the naive multicovering formula 
2.2 for the rational curves, which first was empirically observed in [29]. 
Of course the physical picture relates the integers nr

d naturally to the 
number of BPS states. Note also that with the ("-function renormaliza- 
tion one gets the well known [29] subleading contribution to the genus 
zero pre-potential x(X)C(3)/2 from 2.73.3 . 

Using genus r = 0,1 as a model, we can try to recursively define nr
d 

by 

k\d ^ ^ 
h<r 

where Kd are the Gromov-Witten invariants defined by Fr = ^ Kr
dq

d. 
This is the approach taken in [68] for r = 0,1; there the numbers nr

d are 
called instanton numbers (see [68] for a precise version of the integrality 
conjecture for r = 0). 

For the elliptic curve T2 and any n, we can consider n D2 branes 
wrapped on T2. In this case as discussed in [17] to count the number of 
BPS states we should consider the moduli space of stable rank n bundles 
on T2. There are indecomposable (semi)stable U(ri) bundles over T2, 
which corresponds to a BPS bound state of n D2 branes wrapping T2 

(the corresponding space for genus 0 is empty which is why we do not 
have bound states of n D2 branes on a genus 0 curve). This explains 
the scheme used in the previous section in defining the BPS numbers 
for genus 1. 

For the genus 2,3 expansion we have 

*=i4+i(^+n0ij-i(rt   (3-4) 

^3 = — + Y (-^2 - -Ul + n*\ Li_3(/) (3.5) 3        1451520     j^ V 6048  d     12  d      d)        w ' v     ' 
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and similarly for higher genus 

(-irxi£2rff2r_2i 
4r(2r-2)!(2r-2) K     > 

B2r\n
0

d        2(-iynl r-2      , 
^\2r(2r - 2)\      (2r - 2)\ 12     d +E 

There is a subtlety for genus r > 2 in that n D2 brane bound states 
can deform off the supporting genus r curve. This is briefly discussed 
in [17] and is a topic for further study. 

Computation of nr
d 

The identity 3.3 reexpresses topological string amplitudes in terms of 
integral quantities nr

d defined in terms of the BPS spectrum of M-theory 
on Calabi-Yau threefolds according to 3.2 . If one finds a simple way 
to compute the new invariants nr

d this would translate to a practical 
method of computing topological string amplitudes. 

In [17] it was shown how one goes about computing nr
d (at least in 

certain good cases). The basic idea is to consider the moduli space of 
M2 branes, which gets translated using M-theory/IIA duality to the 
study of certain aspects of moduli space of D2 branes. One considers 
supersymmetric D2 branes whose class in X is given by [.02] = d. 
The moduli space of such configurations is given, in addition to the 
embedding of the D2 brane, by the choice of a flat bundle on the brane. 
In general if we have N coincident branes, we will have to consider 
also the moduli of flat U(N) bundles in addition to the moduli of the 
embeddings of the D2 branes. Let us consider the simple case where we 
have a single D2 brane in class d and let us denote by M the moduli 
space of holomorphic curves in X in class rf, together with the choice 
of the flat bundle on the Riemann surface. Let M denote the moduli 
space of holomorphic curves in class <i, without the choice of the flat 
bundle. Then we have a map 

M->M. 
Let us assume that generically the Riemann surface has genus g. Then 
the above map has generically a fiber which is T2^, i.e., the Jacobian of 
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the Riemann surface. However generally speaking there are loci where 
the genus g surface become singular. For example it can develop nodes 
by having some pinched cycles. Similarly the Jacobian torus becomes 
singular in this limit.6 Nevertheless, one expects the total space M to 
be smooth (similar to description of elliptic fibration of K3 where the 
fibration becomes singular at 24 points, but the K3 is smooth). Because 
of this smoothness, for many questions it is possible to treat the above 
fibration as if there are no degenerate fibers. In particular, consider the 
integral (1,1) form k corresponding to the fiber T29 (usually denoted 
on each non-degenerate fiber by k\fiber = 9 = dzQmQ^dz*). We will 
assume, as is the case with smooth Jacobian varieties, that k makes 
sense as an integral (1,1) class in M.. 

Consider the cohomology of the manifold Ad. These will correspond 
to BPS states in M-theory compactification. Moreover the SU(2)L 

quantum numbers get morally identified with the SL(2) Lefschetz de- 
composition in the fiber direction (i.e. using A: as a raising operator) and 
the SU(2)R quantum numbers get morally identified with the SL(2) 
Lefschetz decomposition in the base direction (i.e. using the Kahler 
form on the base). In other words we have [17] : 

H*(M) = Y,Nf1Jj{iberJb2ase} (4-1) 

from which we can read off nr
d according to 3.2. There are precise 

statements that can be made: the usual Lefschetz decomposition of the 
cohomology M is identified with the diagonal 51/(2) C SL(2)fii)er x 
SL(2)base, and the SU(2)R content of the highest left spin is identified 
with the Lefschetz decomposition of H*(M). 

There are two particularly easy cases to compute from the above 
definition, namely: 

n9
d   =(-l)dimMe(M) (4.2) 

where e(...) denotes the Euler characteristic of the space. The relations 
follow from the definition of what the double Lefschetz action is. As 
we will demonstrate in the next section, the other non-vanishing n's, 
i.e. the nr

d for 0 < r < g can also be related to particular combinations 

6More precisely, the compactified Jacobian becomes singular in this limit. 
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of Euler characteristics of certain subspaces in M. Sometimes we will 
write r = g — 6 where 8 is a positive integer less than or equal to g. 

The existence of such a double Lefschetz decomposition is expected 
from the M-theory description of the BPS states in 5 dimensions and 
so it should be possible to rigorize the existence of the above double 
SL(2) decomposition of the cohomology of M. However here we would 
like to get the new invariants with the minimal amount of assumptions 
about the properties of M. As we will discuss in the next section 
all we really need for computation of nr

d is the existence of a smooth 
manifold A4 and an integral (1,1) class k which on smooth fibers is 
the canonical (1,1) class on the Jacobian torus. This will also lead to 
a simple formulation for the computation of all nr

d in terms of Euler 
characteristics of relative Hilbert schemes, which are frequently easy to 
compute. 

r 4.1    Computational Scheme for n 

As is clear from 4.1 and 3.2 all we need to compute the nr
d is the 

Lefschetz action in the fiber direction. We will see that in fact we can 
compute nr

d without this assumption in a reasonably general setting. 

For each point on the base M let C denote the corresponding Rie- 
mann surface and ,7(0) its Jacobian. The Riemann surface together 
with the choice of p points on it, is what is called the Hilbert scheme 
of p points on C, and denoted by Hilb^C). [80]: 

fp : Hm/(C) -+ J(C) (4.3) 

whose image is denoted by Wp. We can relate the cohomology of Wp 
to the cohomologies of both Hilbp(C) and J(C), thereby relating these 
two cohomologies directly. 

We have the map H*(WP) —>• H*(J(C)), which by Poincare duality 
is identified with a map i : H*(WV) —> H*(J(C)) whose image we 
wish to compute. Let 9 € iir1'1(Jr(C)) be the cohomology class of 
the zero locus of the theta function on J{C). Since the image Wp of 
fp is dual to 09~p/(g — p)\ [80], the composition of the restriction map 
r : H*(J(C)) -> H*{WP) with i is (up to the constant which we ignore) 
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just the multiplication map 

e9-p:ir{J(C))-+H*{J{C)). 

Since there is also a map f* : H*(WP) —>• H*(RiW?(C)), we expect to 
be able to relate iy*(Hilbp(C)) with the image of 0*-*. 

Here is our strategy. Once we understand this relation, we consider 
varying the point on the base M. In this way the Abel-Jacobi map fp 

gets promoted to a map 

fp : C^ -> M. (4.4) 

Here C^ denotes the moduli space of holomorphic curves of degree d 
together with the choice of p points on the Riemann surface.7 Therefore 
we relate H*{CV) to the image of multiplication by k9~p on H*(M), 
where k is the 577(2) raising operator in the fiber direction. This can 
be used to compute ng

d~   according to 4.1 and 3.2. 

Before we carry this out, it is first convenient to review some facts 
about the cohomology of the Hilbert scheme of p points on the Riemann 
surface C. Let C be a smooth curve of genus g. Then we have for its 
cohomology, as an SU{2) Lefschetz representation 

H\C) = (±) 0 ^(O). (4.5) 

For a smooth curve, its Hilbert scheme is the same as its symmetric 
product. Taking symmetric products, we have for the Lefschetz 577(2) 
decomposition 

fr(Hilbfc(C))   =   ($Symr(^)®Ak-r(2g)(0) (4.6) 

k 

-   ©L-rJU) v& — Tj 
r=0 

7More precisely, we choose a length p subscheme Z of the curve C, which means 
that dim Oz = P- For smooth curves, a length p subscheme is the same thing as 
a subset of p points of C (including multiplicity). If the curve is singular, these 
notions can differ. In Section 5, we will see how the difference plays a crucial role 
in relating our methods to geometry. 
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Note that since the 2g(0) represent odd cohomology of C, we must 
antisymmetrize. 

For convenience, we explicitly list the first two cases of 4.6 

/r(Hilb2(C)) = (1) e (2g) Q) 0 (2/ - ^)(0) (4.7) 

/r(Hilb3(C)) = Q) 0 (2g)(l) e ^ - g) (±) © 

The Jacobian i7(C) is a principally polarized abelian variety [80], 
so as we have already mentioned has a canonical Kahler class 9 G 
^1,1(t7(Cf)), whose corresponding divisor is the zero locus of the theta- 
function on J(C). It is straightforward to check that the resulting 
Lefschetz SU{2) representation content of H*(J(C)) can be identified 
with ip, which is the representation we defined before. Furthermore, 
the class 6 in this context is identified with the SU(2) raising operator 
k. So 99~pH*(iJ(C)) is the same as k9~lpIg) and we are just dealing 
with a simple problem in the representation theory of SU(2). 

One easily proves by induction that 

r=0 

as an SU(2) representation. It follows immediately that 

69-lH*(J{C)) = e (2g) [0], 

e<>-2H*(J(C)) = [1] © (2g) © (2g2 - g - 1) [0], (4.9) 

P 

69-pH*(J(C)) = 
r=l 

2g  \      f      2g 

p — r J      \p — r — 2 
in general. 

In 4.9 we are being a bit imprecise with notation, since the kg~vIg are 
not representations of SU{2). What we mean by [r/2] is a collection 
of r + 1 classes of the form v, kv, k2v,... krv.   We are not assuming 
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that v is killed by the SU{2) annihilation operator. Here v can have 
any U{\) charge m > —r, so that [r/2] has U(l) charges shifted to 
m,m + 1,... ,m + r. 

Now we are ready to relate H* (Hilt/1^(C)) and the image of multi- 
plication by 09~p. We can write the precise relationship by comparing 
4.5 and 4.6 with 4.9 : 

H*(C) = k9-lIg 

#*(Hilb2(C)) = k9-2Ig®{0) (4.10) 

i/*(Hilb3(C)) = k9-zIg®H*{C) 

ir(Hilbp(C)) = k9-pIg®H*{m\bv-2{C))  in general. 

Note that i takes H^Wp) to H29-2P+i{J{C)). This shift by 2g - 2p 
is precisely what is needed to match up the U(l) charges in 4.10, which 
is understood as an identification of f/(l) charges. 

Again by induction we note from 4.9 that 

2 p~1 

Tr(-l)FF-% = -{g - p) l[(2g - i) = a(g,p) (4.11) 

Now we vary over M. We write the representation of the BPS states 
as R = ^2sn9~sIg-s. Allowing the curve to vary over the moduli space 
of the curve M., we get from 4.10 

H*(Cm) = k9-lR 

H*(C^) = k9-2R®H*(e(0)) (4.12) 

H*(C{3)) = k9-3R®H*(C(1)) 

H*(C{p)) = k9-pR®H*(Cip-2))  in general 

with the definitions C^ = M and C^ = C. We now apply Tr(-1)F to 
both sides of 4.12, and get, using 4.11 

(-l)dim^)+<5(e(C(5)) - e(C(5-2))) 
5 

= ^2a(g-p,5-p)n9-p,   for 8=1,...    (4.13) 
p=0 
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where we set e(C^_1^) = 0, a(<7,0) = 1.   In particular, the first two 
equations read 

(-l)dim(^+1e(C(1)) = (2g - 2)n9 + n9'1 

(-l)dim^) (e(CM) - e(C^)) 

= ^{2g - 2)(2g - l)n9 + (2g - ^n9'1 + n9'2 (4.14) 

= l(2g- 2){2g - l)n9 + {2g - ^n^1 + n^"2 

If we solve 4.14 and n9 = (-l)dim(M)e(C^) for n9, n9'1, n9'2 we 
get 

n9'1 = (-i)dim(x)+i ^^(i)) + (2p _ 2)e(M)) (4.15) 

n9-2 = (.^dimCAO Lc^) + (2g-A)e{C{l)) + h2g - 2)(2g-5)e(C(0))\. 

In general one shows that the solution to 4.13 yields 

rf = n9-5 = (_i)dim(A<)+* ^ b{g - p, 5 - p) e(C{p)), (4.16) 
p=0 

with 
fc-i 

big, k) = hg-l) Xl{2g - (k + 2) + i),    b(g, 0) = 0. 
i=l 

Note that we do not require the Lefschetz action on M to apply 
these formulas, only the Lefschetz action on the spaces C^k\ These 
exist whenever the spaces C^ are smooth. 

5    Considerations of Enumerative Geome- 
try 

In this section, we put forward some natural geometric principles which 
allow us to relate the invariants nr

d to computations on other, but re- 
lated geometrical objects. Moreover, this reasoning points us to in- 
troduce correction terms for certain families of reducible curves.   We 
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illustrate our formulas by a few examples which yield numbers which 
can be checked by other methods. More systematic checks are done in 
the remaining sections of this paper. 

In the previous section we have seen thatrthe contribution of a family 
of genus g curves to FQ comes from the e(M). Since the general fibers 
of M, are Jacobian varieties, they have Euler characteristic 0 and hence 
do not contribute to e(A/t). This is similar to the situation considered 
in [27]. There, the calculation of e(A4) can be localized to a calculation 
on the set of nodal curves. For a genus g curve we would like to be able 
to compute e(M) by localizing on curves with g nodes. 

An additional motivation comes from a glance at 4.2. It is natural 
to expect from 4.2 that there would be subspaces 

M = MoCM1c---cM6C...cMg = M (5.1) 

such that ng
d~

6 = (—l)d[mMse(Ms) for some suitable spaces Ms- 

Quite independently of the existence of such subspaces, we can still 
ask for a localication type of computation for all these cases, as in [27]. 
Consider for example the 8 = g case. In this case we are degenerating 
the curve of genus g to genus zero with g nodes. On the other hand, 
the genus 0 isolated curves have information only about the IQ content 
of BPS states. Since an isolated genus g — 6 curve has information only 
about the Ig-s content of BPS states, one would expect that ng

d~ which 
counts BPS states in the representation Ig-s is localized on curves of 
genus g — 8. This reasoning would thus lead us to identify 

where Ms C M denotes the moduli space of irreducible curves with 5 
ordinary nodes, i.e. with genus r = g — 5. Note that this proposal also 
fits with the top genus contribution where 5 = 0, namely 

n9 = (-i^-^eOM). (5.3) 

where we have noted that A4 parameterizes generic genus g curves. 
Regardless of the existence orjiefinition of Ms and the localization of 
its Euler characteristic to e(Ms) we would like to explore the poten- 
tial validity of 5.2 and in particular see if we get a match with the 
computations done in the previous section.8 

3 We could use the relation of invariants to classes considered in the previous 
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5.1    Alternative interpretation of the nr
d 

In this section, we undertake the geometric calculation of the desired 
formulas. Recall that in [27], a formula for n0 was derived assuming 
that the singular curves in the relevant family of curves had only nodes 
as singularities. In our situation, we will make similar simplifying as- 
sumptions on the geometry of the singular curves in our family. Our 
viewpoint is that since we expect to derive formulas which are generally 
valid, we are free to make extra assumptions in order to derive them. 
In fact, our assumptions rarely hold, but we will be able to argue that 
the formulas obtained are sound. In this way, we greatly enhance our 
ability to calculate geometrically. 

Calculation of invariants of Ms can be tricky due to the irreducibil- 
ity requirement. It is easier instead to study the spaces Ms, the set 
of curves with 5 nodes, dropping the irreducibility hypothesis. It is 
easier still to consider Ms, the closure of the Ms in M. The spaces 
Ms parametrize curves with at least S nodes, and also curves with pos- 
sibly more complicated singularities or higher multiplicities. We will 
calculate e(Ms) using a simple topological argument in certain good 
situations. 

Let us consider a special case where many of the difficulties are 
supressed. Suppose that all curves Ci parametrized by the points of 
Mi — Mi+i have exactly i nodes for 0 < i < 5, where we have put 
Mo = M. Then the Euler characteristic of d is 2 + i — 2g. 

If in addition Ms+i is empty, then Ms = Ms = Ms — Ms+i. We 
next set out to calculate e(Ms)- Note that if the curves of e(Ms) are 
irreducible, so that Ms = Ms, then we can calculate nr = n9~6 from 
this Euler characteristic using 5.2. We are continuing to assume that 
Ms is smooth. 

Recall that the Hilbert scheme Hilb^C) of degree k subschemes 
of a single curve C parametrizes subsets S C C of k points. The 
points of S are allowed to occur with multiplicity. There is a bit more 
structure placed on the higher multiplicity points which are located at 
the singularities. We will give examples later. For the moment, we just 

section to construct spaces formally related to what we want, but that viewpoint 
does not appear useful in the present context. 
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observe that this Hilbert scheme has dimension k. 

Let TT : C -» M be the universal curve, so that if m G Ai corre- 
sponds to a curve Cm C X, then C C X x M is such that 7r~1(m) = 
Cm x {m}. For each fc, let TT^ : C^ —> JW be the relative Hilbert 
scheme of degree k subschemes of the fibers of TT. In other words, we 
build C^ from the universal curve by taking the Hilbert scheme of 
the curves Cm = n~l(m) for each m e M, and C^ is constructed as 
the union of these as m varies in M. Thus the fiber of TT^ over m is 
Eilbk(Cm), and C^ has dimension dim M + k. 

Our assumptions imply that all fibers of C^ over points of Mi — 
M.i+i have the same computable Euler characteristic, which will be an 
explicit function f(g,i,k) of g, z, and k. We will calculate f(g,i,k) 
explicitly soon for all g and a few values of i and k. 

Then letting Q ^ be the preimage under 7^ of .M;, we get 

e(Cn - eO =7^«, *) (eCM) - e(M+1)). 

Note that C^ is empty. Summing these equations from i from 0 to 5, 
we get an equation expressing e(C^) in terms of the e(.A4;), 0 < i < S. 
If we generate 5 such equations by taking k from 1 to 5, then these 
equations can be solved for the 5 variables e(.M;), 1 < i < 5. In 
particular, we can solve for e(M8) — e(A4j) in terms of these e(C^) 
and e(M). 

As already stated, this gives the desired formula for rf when the 
irreducibility assumption holds. 
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We now carry out this procedure for small 5. The results are 

e(Mi)   =   e{C) + (2g - 2)e{M) 

e(M2)   =   e(C^) + (2g-A)e(C) + ^(2g-2)(2g-5)e(M) 

eCMa)   =   e(C^) + (2g-6)e(C^) + \(2g-4)(2g-7)e(C) + 

\(2g-2)(2g-6)(2g-7)e(M) (5.4) 

e(Mi)   =   e(CW) + (2^-8)e(C(3)) + ^(2^-6)(2^-9)e(C(2)) + 

±(2g-4)(2g-8)(2g-9)e(C) + 

l(2p - 2){2g - 7)(2g - 8)(2g - 9)e(M) 

These formulas suggest that in general, we have 

e(Ms)   -   e(CW) + (2g - 26)e(CV-V) + 
6   1 

J2 ^(2g -25 + 2i-2)(2g-25 + i-3)x        (5.5) 
i=2 

x(2g-2d + i-4)'--(2g-25- Ije^^"0) 

where we have put C(1) = C and C(0) = M.  These are precisely the 
formulas given in 4.16, as we asserted at the beginning of this section! 

Consider for example the case when X is a local P2. Since homoge- 
neous polynomials of degree d in the three variables have (d+2)(d+l)/2 
coefficients and scalar multiplication of the equation does not alter the 
curve, with get M = Pd(d+3)/2. In particular, if d = 4, we get that 
M = P14, with Euler characteristic 15. To understand C, we consider 
the projection C -> P2. The fiber over p G P2 is the set of plane quar- 
tic curves which contain p, and this is a P13 for all p, as the equation 
/(p) = 0 imposes one linear equation on the 15 coefficients of /. Thus 
C is a P13 bundle over P2, hence smooth, and e(C) = (3)(14) = 42. We 
therefore get e(Mi) = 42 + 4(15) = 102. 

Note that Mi = Mi in this instance. To see this, observe that a 
reducible curve of degree 4 would have to be the union of a line and 
a degree 3 curve, a union of two degree 2 curves, or more degenerate 
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configurations. All such curves must have at least 3 nodes or worse 
singularities, so are not contained in Mi. But it is not true that M2 is 
empty in this case. Nevertheless, we find from table 4 that nl = —102, 
exactly as we would have found if M2 were empty! 

This situation turns out to be quite common. We derive formulas 
for the nr, and they turn out to have greater validity. 

A few words are in order now about the assumption we made that 
Ms+i is empty. Recall that we want to derive a formula for e(M.s)- 
But this Euler characteristic is only asserted to correctly calculate the 
appropriate nr if Ms is smooth. This is relevant because at a point of 
M5+1 C Ms, the space Ms tends to be singular. Here is the reason. 
If C has S + 1 nodes, then choosing any subset of 5 of these nodes, we 
get a branch of Ms which parameterizes curves for which the last node 
is allowed to smooth out while the original subset of 8 nodes remains 
nodal. Since there are S + 1 choices of subsets of S nodes, we see that 
Ms has 6 + 1 branches at a general point of Ms+i- In particular, Ms 
is singular. 

Said differently, once we assume that M is smooth, then the as- 
sumption that Ms+i is empty is quite natural. Once we drop the 
smoothness assumption, then there is no reason that the formula n9~s = 
e(Ms) should be valid. The pleasant surprise is that we have discov- 
ered that the formula we derive for the n9~6 are correct more generally. 
In fact, these formulas do not always compute the e(Ms), but that is 
of no concern to us: the bottom line is that the formulas compute the 
invariants that we are actually interested in. 

_We now have to say something about a common situation when 
Mi 7^ Mi, namely when there are reducible curves in our family with 
exactly i nodes. We expect a nice geometric situation when all compo- 
nents parameterizing reducible families are irreducible components of 
M6. 

Here is the problem. If a curve C has S nodes and is irreducible, then 
its desingularization C has genus g — S and comes with a map C —>• C 
which gives an explicit geometric contribution to the instanton sums. 
However, if C has 5 nodes but is reducible, then its desingularization 
at 8 nodes can split C into disjoint components. Since the worldsheet 
must be connected, such a configuration does not contribute to the 
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instanton sums. However, it does contribute to our calculations which 
have ignored the issue of irreducibility. We must find a way to correct 
for this. 

We consider such a component which parameterizes reducible curves 
of the form C = Ci U C2 U... U C^. Some of the curves C* may also have 
a fixed number of nodes, hence a fixed geometric genus r*. Explicitly, 
if Ci has degree d* and Si nodes, then r* = (d* - l)(dj - 2)/2 - 6i. Since 
each degree di is strictly less than the degree d of C, we can inductively 
compute the instanton numbers rfj. for their respective degrees and 
geometric genus. 

Suppose that these curves split into disjoint components after desin- 
gularizing at the 5 nodes. We propose that this component contributes 
Yli^d- to the numbers naively computed by multiplying formulas 5.4 
and 5.5 by the appropriate sign. In other words, we are proposing the 
following algorithm for computing the instanton number of genus r < g 
associated to a family of curves of arithmetic genus g. 

Supposing that C^ is smooth for 0 < k < g, we put S = g — r and 
calculate (-l)dimMse(M5), where by e(Ms) we mean the value calcu- 
lated from 5.4 or 5.5. Then identify any components Mi,... Mr of Ms 
which parameterize reducible curves. Each component Mj gives a con- 
tribution of the form Yli nr£. as explained above. We have introduced a 
second subscript on d and g to emphasize that we may have to consider 
several components. Our proposal is then 

T n = (-l^^eiMs) " EIK- ^ 
j=l    i 

We illustrate again when X is a local P2 and again d = 4. This time, 
we will calculate the genus 0 instanton number. We have to impose 
5 = 3 nodes to get the genus to 0. We have already computed that 
e(M) = 15 and e(C) = 42. We consider the map P2 : C(2) -► Hilb2P2 

which takes a multiplicity 2 scheme in a degree 4 curve and views it as 
a multiplicity 2 scheme in P2. We can compute the Euler characteristic 
of Hilb2P2 either from counting fixed points of a torus action or from 



1470 S. KATZ, A. KLEMM, AND C. VAFA 

the generating function 

oo oo 

Y^ e (HilbfcP2) qk = Y[(l - qn)-3. (5.7) 
A;=0 n=l 

Either way, we get 9 for this Euler characteristic. It is not hard to see 
that the fiber of p2 over any point Z G Hilb2P2 has codimension 2 in the 
space of all degree 4 curves, as this fiber is just the space of all quartics 
containing Z. Said differently, the condition that f\z = 0 places 2 
independent linear conditions on the 15 coefficients of /. If Z = {p, #}, 
these two conditions are just f(p) = f(q) = 0. If Z is concentrated 
at a single point, then after a change of coordinates we can write Z 
locally as y = x2 = 0. The space of / which contain Z is just the 
space of (not necessarily homogeneous) degree 4 polynomials in x and 
y whose constant terms and coefficient of x vanish, again a codimension 
2 linear subspace. After projectivizing, This space is therefore a'P12, 
with Euler characteristic 13. We therefore see that C^ is smooth, and 
we compute that e(C(2)) = 9 • 13 = 117. 

Similarly, we get that C^ is smooth and e(C(3)) = 22 • 12 = 264, 
since Hilb3P2 has Euler characteristic 22 by 5.7 and the space of quartic 
curves containing a fixed multiplicity 3 scheme is a P11. 

Now using these numbers and g = 3 in 5.4, we get e(Ais) — 222. 

But this is not the entire story, since there are reducible quartics 
which are unions of lines and cubic curves which have three nodes. 
Lines and cubics have respective instanton numbers 3 and —10. Since 
the space of three nodal curves has dimension 11, we therefore get 
the corrected number n0

4 = (-1)11222 - (3)(-10) = -192. This is in 
agreement with the value we will exhibit from the B-model in Table 4 
of Section 8.3. 

We think of our calculational method as giving corrections to 5.4 
and 5.5. Unfortunately, it does not apply in all cases, since the C^ can 
be singular. The simplest case we are aware of is rig in local P2. This 
case has 5 = 8, and for 5 < 8 our method applied successfully every time 
we are able to check it by mirror symmetry or localization [67]. Our 
proposal is therefore a very powerful check of the M-theory integrality 
prediction. We presume that the eventual reconciliation with more 
general cases (including rig) will come from more subtle corrections. 
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As an interesting aside, we note that our method sometimes applies 
nevertheless when C^ is singular. The simplest case is if C C X is 
a single isolated curve of arithmetic genus 1 with a single node. The 
identity map C —> C is a genus 1 stable map, and the normalization 
map P1 —> C is a genus 0 stable map. It is clear that these are the 
only degree 1 stable maps onto C up to isomorphism. We arrive at the 
conclusion that n1 = 1 and n0 = I.9 Since M is a point, we get from 
5.3 that n1 = 1. As for the genus 0 contribution, the first line of 5.4 (or 
more simply, the method of [27] ) gives n0 = 1, since C = C has Euler 
characteristic 1. 

Continuing with this digression, note that this reconciles the count 
of BPS states with stable maps of degree 1 for any isolated irreducible 
curve of arbitrary genus and number of nodes. Suppose that an ir- 
reducible curve D has arithmetic genus g and k nodes. By [82], the 
compactified Jacobian of D is isomorphic to a product of factors. One 
factor is the Jacobian J(D) of the smooth genus g — k desingularization 
of D. There are k other factors, one for each node, and each of these 
are isomorphic to the curve C above with genus 1 and a single node. 
By [17], J(D) contributes an /^ representation, and we have just 
established that each copy of C contributes an Ii +10 representation. 
So the total representation is 

v* ® (A+/o)fc = E (J V*- (5-8) 
6=0   ^   ^ 

The right hand side of 5.8 predicts n9~s = (£). This matches the 
stable maps perfectly, as we get a genus g — k stable map by picking S 
of the k nodes and partially normalizing D only at this subset. Since 
there are Q) ways to do this, we have complete agreement. 

We now derive 5.4, beginning with 5 = 1. Since all smooth curves 
of genus g have Euler characteristic 2 — 2g, we get 

e(C) - e(Cx) = (2 - 1g) {e(M) - e(Mx)) . 

By our assumption that all curves of M\ have exactly one node, we 
have 

e(C1) = (3-2(/)eCMi)> 

9The higher degree invariants have recently been computed in [81]. 



1472 S. KATZ, A. KLEMM, AND C. VAFA 

since one nodal curves have Euler characteristic 3 — 2g. Adding these 
two equations, we obtain 

e(Ml) = e{C) + {2g-2)e(M), (5.9) 

which is the first equation in 5.4. 

The case of 8 = 2 requires additional explanation. 

We have to calculate e(M.2). We have the equations 

e(C2)   =   (4-2p)eCM2) _ 

e(Ci)-e(C2)   =   (2>-2g){e{Ml)-e(M2)) 

e(C)-e(Ci)   =   {2-2g){e(M)-e{Ml)) 

obtained as before. Adding these equations gives 

e(C) = (2 - 2g)e{M) + efMi) + e(A*2). (5.10) 

We next derive another equation to eliminate e(Mi) by considering 
C^2^. As above, let Ct- be the restriction of the map C^2) —> M to 
the part lying over A^ C M for z = 1,2. We calculate the Euler 
characteristics of the strata C\ — Q+\, a new point needing explanation 
being the role of the nodes. Writing the node locally as xy = 0, we see 
that there is a P1 moduli space for the schemes of multiplicity 2 at the 
origin. Recall that locally schemes are the same thing as ideals, so a 
scheme of multiplicity 2 at the origin is just an ideal / of polynomials 
in x, y such that the origin has multiplicity 2. It is easy to see that 
/ must be generated by a linear and a quadratic polynomial in x,y, 
both vanishing at the origin. Given a linear polynomial ax + by, there 
is actually no need to specify a choice of quadratic polynomial q(x,y), 
since g, taken together with the quadratic polynomials x(ax + by) and 
y(ax + by) spans a 3 dimensional space, necessarily the entire space 
of quadratic polynomials vanishing at the origin. Explicitly, these are 
the schemes Zaib defined by the ideals /aj& = (ax + by,x2,xy, y2), where 
(a, b) G P1. Note that xy G Jaj&, so that the Za^ are indeed contained 
in the nodal curve. 

This is the new ingredient that we need to calculate the Euler char- 
acteristics of the strata. To get Hilb2(C), where C is a curve with i 
nodes, we take its second symmetric product, and replace the single 
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point 2 (node) with a P1, for each node. This says that since C has i 
nodes, then 

e(Hilb2C)   =e(Sym2C)+z (5.11) 

= (»V)+i. 

This leads immediately to the equations 

e(42))   =    ((5-2
2*)+2)e(A*2) 

e{C?) - e(Cf)   =    ((4"2^)+l)(e(M)-e(A?2)) 

e{CV) - eiC?)   =   ^~2
2g))(e(M)-e(M1)) 

We add these equations and obtain 

e(CW) = (3 ~2
29y(M) + (4 - 29)6(14,) + (5 - 25)e(M2).   (5.12) 

We now can eliminate e(M.i) from 5.10 and 5.12 and get 

e(M2) = e(m\b2(C/M)) + (2g - 4)e{C) + (g - l)(2g - 5)e(M), 
(5.13) 

the second equation in 5.4. 

We turn next to 5 = 3. The calculation begins as in the previous 
cases, and we get the equations 

e(C)   =   (2-2g)e(M) + e(M1)+e(M2) + e(Ms) 

e(cW)   =    ^~2
29y(M) + (4-2g)e(Ml) (5.14) 

^5-2g)e(M2) + (6-2g)e(M3). 

We now have to bring in C^3) to derive one more equation for the 
purpose of eliminating e(Mi) and e(.M2)- We have to explain how to 
calculate C^\ So we need to know how to calculate the Euler char- 
acteristic of Hilb3 of a curve C of arithmetic genus g with i nodes for 
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i = 1, 2, 3. We study the map Hilb3C ->• Sym3C and see where it fails 
to be an isomorphism. This is precisely over the points 2p + q and 3p 
of Sym3C, where p G C is a node and q / p is arbitrary. As in the 
discussion leading to 5.11, we replace 2p + q by P1 x g, where P1 is the 
P1 of tangent directions to C at p. So for each node p^ we replace a 
subset {pi} x C - {pi} by P1 x C - {pj, adding z(z + 1-2^) to the 
Euler characteristic. As for 3p, we write the node locally as xy — 0 and 
look for multiplicity 3 schemes contained in xy = 0 and concentrated at 
(0, 0). It suffices to compute the Euler characteristic, which is just the 
number of fixed points of a torus action (x, y) i-» (iax, tby) where a / b 
are arbitrary. These are just the points (x,y3), (y,x3), and (x2,xy,y2), 
so the Euler characteristic is 3.10 This gives 

e(Hilb3C)   =    (4 + i~29\+i(i + l-2g) + 2i 

4 + i-2g\      ...     n 3     yJ +z(z + 3-2^). 

We now immediately get the equations 

e(Cf) - e(Cf)   =    ( f "3^) + 4 " 2*) (e(M2) - e(M3)) 

e(Cl3)) - e(^3))   =    ((6 "3
2^ + 2(5 - 2*)) (e(M) - e(M2)) 

e(CW) - e(Ci3))   =    ((7~3
2^+3(6-2^)(e(M)-e(^1)) 

Adding, we get the formula 

,3,      {4-2g\_,ijl, ,   f{4-2g <n = (     3 ») e(M) + (^    2    J + 4 - 25 j e^O (5.15) 

+ ( f5 "2
2') + 6 - 2*) e(A*a) + ((6 -2

2g) + 8-2,) c(^,). 

10It can be seen that the set of all multiplicity 3 schemes is isomorphic to P2, 
while those contained in the nodal curve are P1 UP1, the first P1 being {(ax + 
by2, x2,xy, y2)} for (a, b) G P1, the other P1 being obtained by interchanging x and 
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We can now solve our 3 equations in 5.14 and 5.15 for e(Ms)i ob- 
taining 

e(M3)   =    e(C(3)) + (2^-6)e(^) + (^-2)(2^-7)e(C)(5.16) 

+l(g-l)(g-3)(2g-7)e(M), 

the third equation in 5.4. 

The same method applied to S = 4 yields the fourth equation in 
5.4. We use the general fact that the Hilbert scheme of multiplicity k 
points concentrated at a node has Euler characteristic k. This fact can 
be easily verified using fixed points of torus actions. We have already 
seen this result explicitly for k < 3. 

Note that it is clear that this method of calculation generalizes to 
arbitrary genus. We do not know how to carry this out in closed form, 
but do presume that the answer is given by 5.5 since we have derived 
this in 4.16 and we will offer several checks of these formulas in later 
sections. 

6    Application to Counting M2 branes in 
K3xT2 

Before we come to the application of the formalism developed in Sec- 
tions 4 and 5 to the general case of Calabi-Yau threefolds, we consider 
the simpler K3 x T2 case11. In this case the topological string ampli- 
tudes are rather trivial (except for genus 1 which is 24 times the loga- 
rithm of the 77 function). The reason for this triviality is also easy to 
explain from the view point of BPS degeneracy of wrapped M2 branes 
in M-theory compactification on K3 x T2: The BPS spectrum of states 
which preserve exactly 1/4 of the supersymmetry (which has the same 
amount of supersymmetry preservation as for the M2 branes wrapped 
around a generic Calabi-Yau) are longer: They are in general of the 
form 

R®!*;®!* (6.1) 

11A similar analysis can be done for T4 x T2 with symmetric product of KS 
playing the same role as symmetric product of KS plays here. 
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where R is some representation of SU(2)L x SU(2)R and /f = (1/2,0) + 
2(0,0) and Jf = (0,1/2) + 2(0,0). These states were recently [83] start- 
ing from a type II one-loop computation. We observe here that there 
is an extra factor of /f in the above representation. When we con- 
sider the relevant index contributing to topological string amplitudes, 
by summing over the right representation with a (—l)FiS the If1 factor 
kills the contribution. The geometric explanation of this, in term of the 
moduli space we have discussed is that the moduli space of M2 brane 
configurations is a product space with a factor including a T2. This is 
because we can use the U(l) x U(l) symmetry of the T2 to obtain a 
new holomorphic curve from any given one. This introduces an extra 
factor Jf in the representation. The only case where this action is triv- 
ial, and the /f is absent from the above representation, is if the M2 
brane lies entirely in the T2, i.e. it is a point in K3 and wraps the T2. 
From the point of view of representation theory the fact that the If1 

does not appear in that case is that this BPS state preserves 1/2 of the 
supersymmetry and so it is a shorter multiplet. The moduli space of 
the M2 brane wrapping T2 and projecting to a point in K3 is simply 
if 3, whose Euler characteristic is 24. Taking into account the N fold 
bound state which always exists at genus 1, we reproduce the predic- 
tion of the topological string amplitude at genus 1 and its vanishing at 
all other genera. 

However, clearly there is an enormous amount of information in 
precisely which representations R appear in 6.1 . In particular, for 
these BPS states, we can omit the factor of /f*, and again concentrate 
on the SU(2)L action and sum over the right states (with a (—1)

FR
) 

and define the degeneracy number nj, just as in the generic Calabi- 
Yau case. Here d is an integral H2 class of K3 x T2 and r labels the 
SU(2)L representation content in terms of Ir. We can still ask how to 
compute nr

d numbers using the techniques of this paper. For simplicity 
of notation we consider a "topological string amplitude" Fr using these 
numbers as input parameters, without worrying whether or not they 
come from any 2d topological theories12. 

The class d can be viewed as coming from a class C G H2(K3) and 

12It is likely that they do. For example it is natural to expect that by some inser- 
tion of operators at higher genera one can effectively "cancel" the J-f* contribution 
above. For example an insertion of / JLJR on the world sheet, where JL,R denote 
the left- and right-moving [7(1) currents of N = 2 algebra may do the job. 
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a class in H2(T2) defined by an integer M times the basic class. By 
diffeomorphism symmetry of K3 the number of BPS states for d = 
[C,M], as far as the C dependence goes should only depend on C2 = 
2N — 2. Thus we can recast the computation in terms of finding the 
degeneracy associated to the choice of two integers (iV, M). 

6.1    Zero winding on the T2 

Let us first consider the case where M = 0, i.e. that the BPS states 
correspond to wrapping only the K3 space, and to a choice of a point 
on T2. The T2 space enters in a rather trivial way (simply giving the /f 
factor noted above) and essentially drops out of further consideration 
for this case. We are then just asking about the BPS spectrum of M2 
brane wrapped over M-theory compactifications on if 3. Since M-theory 
on K3 is dual to heterotic string on T3 [84], the heterotic string dual 
gives an immediate prediction for the number of BPS states, as well 
as their SU(2)L x SU(2)R quantum numbers. The answer for the di- 
mension of the representation R (summed over all states weighted with 
(—1)

FL+FR
) gives the degeneracy of the left oscillator of the heterotic 

string at level N. In other words 

E^oV=n \24' ij. (1 _ qny 

This structure follows from the fact that there are 24 left oscillators 
al_n where i runs from 1 to 24 and n runs over all positive integers. For 
example, if iV = 3, the BPS states are specified by the symmetrization 
of the states 

of the heterotic string. In fact we can also easily read off the SU(2)L x 
SU(2)R content of these states as well, because the SU(2)L x SU(2)R = 
50(4) is identified with its canonical embedding in 50(24). In other 
words, each oscillator a?_n corresponds to the representations13 

[aLB] = 20(0,0)+(|,| 

13The same reasoning applies to the SU(2)L X SU(2)R decomposition of rational 
elliptic surfaces. This makes it easy to calculate the higher genus invariants in a 
fixed class [B] + n[F] [5] . 



1478 S. KATZ, A. KLEMM, AND C. VAFA 

We can thus decompose the BPS states above in terms of the SU(2)L x 
SU(2)R quantum numbers inherited from each oscillator. For example, 
the contributions of the three types of states given above are 

'22' 
(O,O)+(22

1)Q,^+20((l,l) + (O,O)) 

+ (1,1) + (1,0) + (0,1) + (0,0) + 20(0,0) + Q, 0 

= 1984(0) - 504 (i ) + 64(1) - 4 I ^ 

where we have summed in the last expression over the right represen- 
tation with (—1)^. Reexpressed in the Ig the result reads 

3200/o - 8OO/1 + 88/2 - 4/3 . (6.2) 

The above calculation can be easily systematized by writing the 
oscillator partition function for the oscillators in the representation 
20(0,0) + (|, |), one for each integer. In particular one obtains 

00 .j 

11 (1 - gn)20(l _ yg»)2(l - y-lg«)2 ^'^ 

OO 

= E (-ir^o^-y-^v. 
r=0,d=0 

On the right-hand side nr
N0 is the number of BPS states in the 

representation If with charge whose square is 27V - 2. The identifica- 

tion follows by noting that Ig contains ( ^) states with Jf eigenvalue 

i/2, or alternatively since Ii has one state with Jl eigenvalue ±1/2, 
while Ig = lfg. The expression 6.3 contains information about all 
genus, and with 3.3 one can resum it to write the total free energy 
as F = ]£m=i —F(m), where the last sum is over the multicovering 
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contributions with14 

F<™>=(2sin^y2x (6.4) 

OO 1 n i . 

Of course all information about the nr
d is already in F^. 

Let us summarize for concreteness some of the low degree invariants. 

nJV,0 r = 0 1 2 3 4 5 6 

iV = 0 1 
1 24 -2 
2 324 -54 3 
3 3200 -800 88 -4 
4 25650 -8550 1401 -126 5 
5 176256 -73440 15960 -2136 168 -6 
6 1073720 -536860 145214 -25670 3017 -214 7 

Table 1: The weighted sum of BPS states nr
N{) for classes in the KZ. 

These predictions for the spectrum of BPS states for M-theory com- 
pactification on K?> is based on duality with heterotic strings. One can 
ask if one can derive these spectra directly in M-theory context. In par- 
ticular as discussed before, we would have to study the moduli space 
of holomorphic curves in if 3 together with a flat bundle, in the class 
C whose self-intersection is 27V — 2. This has been considered [85], and 
the above result from heterotic string was reproduced. The basic idea is 
rather simple: With some choice of complex structure, we can assume 
K2> is an elliptic surface over P1. Moreover, by global diffeomorphisms 
we can assume the cycle C is represented by the class [B] + N[F] where 
[B] denotes the class of the base P1 and [F] denotes the class of the 

14This decomposition into spins gives the higher genus result also for curves in 
the K2> classes of K2> fibered threefolds. If we take into account the multiplicity due 
to base P1 integration (—2) and the lattice sum, captured already at genus zero, 
and multiply therefore by (—2)E4L(q)Ee(q) we get the higher genus answer for the 
KS fibration X24(l, 1,2,8,12), which was obtained from a one loop computation in 
[25]. 
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elliptic fiber. The moduli space of curves in this class corresponds to 
degenerate Riemann surfaces of genus iV and is simply given by the 
choice of iV points on P1 to which the N elliptic fibers are attached. 
In the computation of the BPS states, we are instructed to consider 
also flat bundles on the Riemann surface. In this degenerate limit, that 
choice is easy: it simply corresponds to the choice of a flat bundle on 
each elliptic fiber. That in turn is equivalent to a choice of a point on 
a dual elliptic fiber. All said and done, the choice of N points on P1 

and a point on the dual elliptic fiber over each point, shows that the 
moduli space of curves with the flat bundle is equivalent to the choice 
of N points on the T-dual K3. Since the ordering of the points are 
immaterial, this corresponds to the TV fold symmetric product of if 3, 
or more precisely, the Hilbert scheme of N points on K315. Thus the 
moduli space is given by 

^ = Hilb"(lir3) 

The cohomology of this space can be identified in the usual way [86] 
with the Hilbert space of 24 oscillators at level A7", and exactly repro- 
duces the above results for the heterotic string. Moreover the SU(2)L x 
SU(2)R decomposition can also be deduced from the corresponding de- 
composition for the cohomology of a single copy of if 3. With the 
identification of SU(2)L with the elliptic fiber direction and SU(2)R 

with the base directions, we immediately get the decomposition 

24->20(0,0)+Q,| 

as this is the unique representation whose diagonal 577(2) content is 
(1) 0 21(0), the Lefschetz representation of K3, while the SU(2)R con- 
tent of left-spin 1/2 is (1/2), the Lefschetz representation on the base 
M = P1. This reproduces the result based on duality with heterotic 
strings given above. 

In [27], the coefficients c^ of io? which as discussed is the Euler 
characteristic of Hilb^ifS), were related to genus zero curves coming 
from degenerate genus iV curves with exactly N nodes.    As the N 

15It would be nice to make this argument mathematically more rigorous. What 
has to be checked is that this correspondence continues to hold when several fibers 
are allowed to coincide. The details will require a mathematical study of sheaves 
on non-reduced curves. 
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continuous parameters of the moduli space P^ of the genus N curve are 
completely killed by the imposition of the TV nodes, this eventually leads 
to the counting of points. Here we consider the intermediate cases, the 
genus N — S curves, where we impose 0 < S < N nodes. As this leaves 
a 5 dimensional moduli space, an appropriate virtual fundamental class 
on this space is needed to reduce the dimension to 016. The formula 
5.2 is equivalent to the assumption that the obstruction bundle in the 
case of a smooth moduli space is the cotangent bundle, since the Euler 
class of the cotangent bundle is the Euler characteristic of the moduli 
space up to sign. 

For example, the coefficients in 6.2 correspond to invariants nl as- 
sociated to genus r = 0,1,2,3 curves obtained by putting nodes on 
the degree d = 3 genus g = 3 curve. The moduli space of such curves 
has dimension r = 0,1, 2,3, and the virtual fundamental class has the 
same codimension. So the n^ (and multiple cover/bubbling contribu- 
tions) can be thought of as computable by taking the virtual class and 
performing an additional localization on the positive dimensional mod- 
uli space Ms of curves with 8 nodes. By the discussion of Section 4 
and 5, we can instead calculate these using the invariants e(CU^) for 
k < 5. In other words, in this case we have two geometric models for 
computing rtfNOy One is based on the Hilbert scheme of iV points on 
if 3, which we have already discussed, and it agrees with the predicted 
answer from heterotic string. Another way to compute these numbers 
is to follow the strategy developed in previous sections and relate these 
numbers to e(CUX This will be useful, as it will also tell us how in 
some cases where these spaces are singular, we may nevertheless define 
unambiguous answers. 

Let's check a few cases of these numbers. For any N, we have 
M = PN. 

For iV = 0, the moduli space is a point, and n® = 1. 

For N = 1, the moduli space is M = P1, giving n\ = —2 by 5.3. 
Choosing the complex structure so that the K3 is elliptically fibered 
and our family of curves is the fiber class, we see that C is just the K3. 
So from [27] or from 5.4, we get n? = e(C) = 24. 

16 A related problem was considered in [87], where the dimensions of the moduli 
space was reduced to 0 by forcing the curves to go through k — S points. 
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For TV = 2, we again get n^ = 3 (and more generally, n9
g = 

(—l)9(g + 1)). Let us choose the complex structure to be that of 
S = P(l,l,l,3)[6]. The projection TT : S -> P2 onto the first 3 co- 
ordinates is a 2-1 cover. The inverse images C via TT of the lines in P2 

define the genus two curves. To see this, letting H be the hyperplane 
class of P2 we compute 

C2-(7r*(//))2=7r*(point) = 2, 

since 2 points of S lie over a point of P2. Since C2 — 2JV — 2 = 2, this 
verifies that the genus is TV = 2. To calculate C, as usual we project 
C onto S and note that the fiber is always P1 as follows. Given a 
point p of a curve C (so that (p, C) G C), the curves C through p are 
in 1-1 correspondence with the lines of P1 through 7r(p), and this is 
always a P1. This gives e(C) = e(S')e(P1) = 48, and by 5.4, we get 
74 =-(48 + 2-3) = -54. 

But now something interesting happens. The space C^ is not a 
projective bundle over Hilb2(S'). To see this, let's pick a point Z of 
Hilb2(5). This usually projects via TT to a point Z' of Hilb2(P2). When 
this happens, there is a unique line £ connecting the two points of Zr 

in P2, hence a unique curve C = 7r~l(£) in S passing through the 
two points of Z. So we might have thought that C^ is isomorphic to 
Hilb2(S'), with Euler characteristic 324. But this is not true! If the 
point Z consisted of the 2 points of TT

-1
^) for any point p G P2, then 

it maps via TT to just the point p of P2. There is a P1 of lines through 
p, whose inverse images via TT are a P1 of curves in 5 through Z. In 
other words, there is an isomorphic copy of P2 embedded in Hilb2(S') 
via the map p H* 7r-1(p), and each of these points gets replaced by a 
P1 in C{2). It is not difficult to see that C(2) is the blowup of Hilb2(5) 
along P2. This tells us that C^ is smooth, so that 5.4 applies. It also 
tells us that e(C^) - e(Hilb2(5)) + e(P2) = 324 + 3 = 327. Now, 5.4 
gives nl] — 324. We will give a physical way to calculate e(C^) using 
K3 x T2 soon. 

In general, if the map C^ -» ]iiibk(K3) is a projective bundle, 
then we see that C^ is smooth, and its Euler characteristic is (g — k + 
l)e(HilbA;(/<'3)), where g is the genus N. We can then calculate n9^ 
using 5.5. If it is not a projective bundle, then there are two problems. 
First, the Euler characteristic is more difficult to calculate. Second, and 
more seriously, the space C^ need not be smooth, so there may be a 
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virtual fundamental class to calculate instead of the Euler characteristic 
and our formulas need not be valid. 

Let's check N = 3. We have M = P3 and n^ = -4. It is not 
hard to see (and we will check presently) that C and C^ are projective 
bundles, so that e(C) = 3-24-72 and e(C^) = 2 • 324 = 648. This 
gives, by 5.4, nj = 72+4-4 = 88, and nl = -(648 + 2-72 + 2-4) - -800. 

To compute e(C^), we choose our K3 to have the complex structure 
of a degree 4 hypersurface S C P3, and the genus 3 curves C to be the 
plane sections of S (which are all degree 4 plane curves). Note that there 
is a P2 of planes passing through any point of S, and a P1 of planes 
containing any 2 points of 5, verifying the projective bundle structure 
on C and C^ just mentioned. Given three points of 5, there is typically 
a unique plane containing these points (the plane they span), but this 
fails when the 3 points lie on a line £, in which case we get a P1 of 
planes. In other words, the set of triples of collinear points in S forms 
a subset T of Hilb3(S'), and we replace T by a P1 bundle over T to get 
C*3). Thus e(CW) = e(Hilb3(5)) + e(T). 

There is an alternative way to describe T. Let po G S be arbitrary. 
Let £ be any line containing po (for fixed po, there is a P2 of such lines). 
Then £nS consists of 4 points, of which po is one of them. So there are 
3 remaining points pi,P2,Ps, which collectively give a point of T. Thus 
the data of T is a point of S and a point of P2, and so T is smooth and 
e(T) = e(S')e(P2) = 72. Furthermore, it is again straightforward to 
check that C^ is the blowup of Hilb3(S') along T, so is smooth. Thus 
e(C(3)) = 3272 (which we will check soon by a different method), and 
by 5.4, n° = 3272 + 0 - 72 + 0 = 3200. 

In principle these calculations can be continued to higher TV, at the 
expense of having to use increasingly difficult projective geometry to 
complete the calculation. We will return to more of these calculations 
shortly when we see that many of the moduli spaces Ai for K3 x T2 

with M 7^ 0 are precisely the relative Hilbert schemes C^ for 7^3! 
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6.2    More general H2 classes in if 3 x T2 

We will now relax the assumption that M = 0 and also consider the 
case where the M2 brane wraps M times around the T2. When M = 0 
we used three ways to compute it in the previous section: One was the 
duality with heterotic strings. The other was the direct definition in 
M-theory, leading to Hilbert scheme of K3 and the third one, was based 
on the methods we developed in this paper. The first two approaches 
gave a complete answer, whereas the third approach was somewhat 
incomplete (even though in principle one should be able to push that 
program of computation sketched in some cases in the previous section). 
For the case when M ^ 0 it turns out we only know one method to 
compute the exact answer and that is based on duality between M- 
theory on K3 x T2 and Type IIB string on K3 x S1. The other two 
methods, are more difficult and we do not know how to use the direct 
definition of BPS states of M2 brane to obtain the results predicted by 
this duality. We will discuss aspects of these computations in special 
cases below. But first we show what the duality between M-theory and 
type IIB predicts for all the numbers rtfN Mi defined before. 

M-theory on T2 is dual to type IIB on S1. Through this duality 
the M2 brane in 9 dimensions, gets mapped to a D3 brane wrapped 
around S1. Moreover the momentum quantum number around S1 of 
type IIB gets mapped to the quantum number of the M2 brane wrap- 
ping number over T2. Now consider compactifying further on a K3. 
Then an M2 brane wrapped in some 2-cycle class of K3 x T2 given 
by [C, M], gets mapped via this duality to D3 branes wrapped around 
C x S1 carrying momentum M around S1. In fact, in the type IIB 
setup, these are exactly the class [88]. Let us consider the limit where 
the K3 is small. In this limit we have an effective leftover 1 + 1 dimen- 
sional worldvolume of the D3 brane which is a supersymmetric sigma 
model on Sym^if 3). Thus the moduli of D3 branes in the class C of 
K3 with C2 = 2N - 2 is given by SymN(K3) x i?4, where the extra 
R4 comes from the position of the D3 brane in the rest of the space. 
Thus the low energy dynamics of the 1+1 dimensional effective theory 
is a supersymmetric sigma model on this space. We are considering the 
spatial direction to be wrapped over an S'1 and we are looking for states 
which preserve 1/4 supersymmetry in the full theory, which correspond 
to states which preserve 1/2 supersymmetry in the 1 + 1 dimensional 
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sigma model. These come from states with purely left-moving oscilla- 
tor excitations, and restricting to the ground states of the right-moving 
Hilbert space. Moreover if we are interested in M2 brane BPS states 
with wrapping number M around T2, we should look at left-moving 
oscillator excitation M. The SU(2)L x SU(2)R symmetry is realized in 
the Hilbert space of the sigma model by a left-moving current algebra 
which realizes SU(2)L and a right-moving current algebra [89], as far 
as the degrees of freedom is concerned on the symmetric product of 
if 3's. However for the R4 factor, the SU{2)L current algebra is a right- 
moving current and the SU(2)R current is a left-mover17. Summing 
over the R states with (—1)

FR
 is exactly the definition of the elliptic 

genus of the sigma model on SymN(K3) x R4. It was in fact the elliptic 
genus that was used to verify the predictions for black hole entropy [88], 
[89] ! So in this case we see that the left/right asymmetric treatment 
of the SU(2)L x SU(2)R is exactly the same as the useful elliptic genus 
index for supersymmetric sigma models, which has the required sta- 
bility under deformations which allows one to predict at least a lower 
bound for the black hole entropy. The spinning quantum number of 
the black hole gets mapped in this case to the j£ quantum number. 
We will use this link with black holes in the next section to connect the 
growth of nr

d with predictions based on black hole entropy for M-theory 
compactification on a general Calabi-Yau 3-fold. 

Due to interest from black hole physics the elliptic genus of sym- 
metric products of K3 has been computed, including the modification 
due to the J^ quantum number [90]. Let us denote the elliptic genus 
of a general manifold M 

x(M;^) = Trw(-l)VV=    E    C(M'0^ (6-5) 
M>o,iez 

then the orbifold construction of [90] gives for the TV-fold symmetric 

17The reason for this switch, relative to the KS degrees of freedom is that in the 
gauge theory language in 6 dimensions (as in the dual D1-D5 brane dual systems), 
KS degrees of freedom come from the Higgs branch and the i?4 from the Coulomb 
branch, and the fermions in these two multiplets have opposite 6-dimensional chi- 
ralities. This translates to the statement that the 50(2) and 50(4) chiralities are 
oppositely correlated in the two cases. This in particular means that the left-moving 
fermions do not carry any SU(2)L quantum number for the i?4 sigma models. Of 
course the bosonic oscillators are vectors and do carry both quantum numbers. 
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product SymAr(M) 

EpNx(SNK3]q,y)=        n        n-pAWW^r       (6-6) 

The elliptic genus of the K3 can be easily made concrete from an 
orbifold representation of the KZ (e.g. K3 = TA/Z2) or a Landau- 
Ginzburg description as 

X(tf3;*,y) = 24 fM^V - 2-^^ " ^^ ^'^ 2 

^3(9) / ^4       V   n 

We note the first terms of this expansion 

40: -+20+2y = 2 
y 

20      128 
+20 [0],   q1:— + 216 - 128y + 202/2. 

y2      y 

Clearly the g0 part of 6.6 gives 6.4 back. So far we ignored the fact 
that the momentum can be distributed in the space time directions as 
well. Taking this into account (and noting as discussed before that the 
SU(2)L current algebra is not active as far as the left-moving fermions 
from the RA part are concerned) we get for the single cover contribution 

m>0,l€Z 

=:(2si4)2       ^       cN,M,Lp
N

q
MeiL\ (6.7) 

As with 6.4, we can sum over all multicoverings F^m>) to obtain the 
free energy. Moreover we may multiply by a lattice theta functions if 
we wish to exhibit the sum over classes in H2(K3, Z) . 

Let us recapitulate the dictionary which relates this to the counting 
of M2 branes of M-theory in K3 x T2. N corresponds to the genus g 
of a smooth curve in the K3, which after a suitable complex structure 
deformation can be always thought as a curve C with degree N with 
respect to an elliptic K3's fiber class which has degree 1 in the base 
class. The powers M correspond to the degree with respect to the T2. 
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The powers L (note the y -» 1/y symmetry) correspond to the number 
of nodes 5, and for a given class [M, iV] we have 8 — N + M — L. 

Let us consider the case 5 = 0 first. Geometrically the moduli 
space of these curves is modeled by CLp the degree M relative Hilbert 
scheme of the universal curve. To see this, note that a general curve of 
this type consists of a sort of "comb", the union of a single curve C on 
the K318 and M copies of T2. The only moduli is where on C to attach 
the copies of T2. This is given by specifying the M points on C, and 
the total moduli is CLA where C[N] is now the universal curve of genus 
iV on the K3 (i.e. there is no T2 being considered at all). 

By the general formula, n?MN, = (-l)dimMe(M), the arithmetic 

genus g being M + N. The CN,M,M+N give the Euler number e(CLi') 

at least for the case that CLJ is smooth and the relevant class for the 

obstruction theory is in the cotangent bundle of .M. If CLi is singular 
then the physical prediction CJV?M,M+JV should calculate an integral over 
a suitable, but not yet understood, virtual fundamental class, the result 
of which we may call in a slight abuse of notion also e(CLJ). The 
important point here is that we find that the relations between the 
nr

d and the so defined e(CL ^ are exactly reproduced by our general 
formula 4.16 ! 

Let us list the predictions for the values for the e(CL^) = n[M,N\ ~ 
CN,MM+N and compare with the direct computation in several cases. 

18 We have adjusted the complex structure of the K3 away from the elliptically 
fibered structure, so instead of C being the base plus g fibers, the curve C is typically 
irreducible. 
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r>9 M = 0 1 2 3 4 5 6 
N = 0 1 -2 3 -4 5 -6 7 

1 -2 24 -48 72 -96 120 -144 
2 3 -48 327 -648 972 -1296 1620 
3 -4 72 -648 3272 -6404 9600 -12800 
4 5 -96 972 -6404 26622 -51396 76955 
5 -6 120 -1296 9600 -51396 185856 -353808 
6 7 -144 1620 -12800 76955 -353808 1150675 

Table 2: The weighted sum of BPS states n9
NiM for classes in K3 x T2 

with 5 = 0. 

These moduli spaces are the relative Hilbert schemes of the K3. The 
Euler characteristics of these relative Hilbert schemes can be sometimes 
computed directly, and are in agreement when smooth. As usual, we 
have M = P9. As for the computation of C^M\ this is our standard 
method. We consider the map p : C^ -> EilbM(K3). If this is a 
projective bundle then we can immediately compute e(C^M>)). If not, 
then we analyze where it fails to be a projective bundle and correct as 
appropriate. 

Letting C be the universal curve on a general K3 of genus N, we have 
seen from the comb description that Ai = C^M\ leading to n?M j^ = 

e(C(M)) when C(M) is smooth. In particular, this occurs if JV is large, 
with the asymptotic formula 

"IMM = (-l)N+M(N + 1 - M)e(HilbM(K3)),        N » 0 

which is consistent with the appearance of the columns of the above 
table. The deviations from this formula occur when there is not a 
projective bundle structure for C^ -> HilbM(if3). We have already 
explained this for M = N = 2 and for M = N = 3. 

Let's look at N = 4 and M = 3. We choose the complex structure 
to be that of 5 = P4[2,3], the intersection of a degree 2 hypersurface Q 
and a degree 3 hypersurface T. The curves of genus 4 are the hyperplane 
sections. By dimension reasons, we might expect the fibers of C^ —> 
Hilb3(S') to be P1, but if the 3 points happen to lie on a straight line, 
there is a P2 of hyperplanes through the line, giving a fiber of P2 rather 
than P1. Let's call this locus B C Hilb3(S'). Now, if 3 points of S lie 
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on a line t, then the quadratic equation defining Q has at least 3 zeroes 
on the line I, hence vanishes identically. Thus £ C Q. Conversely, any 
line contained in Q will meet S in 3 points (the three points where the 
line meets T). This shows that B is the set of lines contained in Q. 
So C^ is a P1 bundle over Hilb3(£), except over B where it is a P2 

bundle. This gives e(C^) = 2-e(Hilb3(Sr))+e(B). We can use standard 
techniques in algebraic geometry [91] and the Schubert software [92] to 
compute e(B) = 4. This gives the invariant 6404, in agreement with 
the table. 

We can also check the N = 1 row. We have by 5.3 raj^i = 

(—l)M+1e(C(M)), where C is the universal curve of the elliptic fibra- 
tion. If C is a smooth fiber, then the corresponding fiber of C^ is the 
Mth symmetric product of C, which has Euler characteristic 0. So it 
is only the 24 singular fibers that contribute to e(C^M^). Each of these 
singular fibers C has exactly one node, so e(HilbM(C)) = M by the 
discussion in the paragraph following 5.16. This gives e(C(M)) = 24M, 
or n Af+l 

[1,M] (-1)M+124M, in agreement with the table. 

Note that the symmetry of the table is immediate from duality and 
our calculations, but the geometric content of this symmetry is non- 
trivial, even in identifying the JV = 1 row with the M = 1 column. 

We can also consider the more difficult situation where we put nodes 
5 = N + M — Z/>0. Some invariants for 8 = 1 are given in the table 
below. 

"■N,M M = 0 1 2 3 4 5 6 
N = 0 0 0 -6 16 -30 48 -70 

1 24 0 216 -432 768 -1200 1728 
2 -54 720 -162 5712 -9768 15552 -22680 
3 88 -1488 11832 -4368 83496 -135456 204872 
4 -126 2376 -23016 138696 -65112 884184 -1398486 
5 168 -3360 36000 -258048 1292712 -701856 7546536 
6 -214 4440 -50328 396392 -2324790 10160160 -6086258 

Table 3: The weighted sum of BPS states n^ ^ for classes in K3 x T2 

Note that the M = 0 column reproduces the K3 results found ear- 
lier. 
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7    Black Hole Entropy and Topological 
Strings 

As discussed in the previous section in the context of M-theory com- 
pactification on K3 x T2, the spectrum of M2 branes wrapped around 
various cycles for large enough cycle classes would physically corre- 
spond to black holes. Moreover the SU(2)L content of the BPS state 
corresponds to the spin of the black hole. In such a case the growth of 
wrapped M2 branes in a given H2 class and with given spin is antici- 
pated by the Bekenstein-Hawking entropy of macroscopic black holes, 
which has been verified. Moreover, there are index-like quantities ap- 
pearing in topological string theories, computed as a sum over the right- 
moving states with (—1)

FR
, which in the type IIB setup is perturbation 

invariant and is related to the computation of the elliptic genus. These 
are exactly the kind of computations which yield black hole entropy in 
the regimes where string perturbation breaks down. 

It is thus natural to expect that this relation between BPS states 
in M-theory compactification on a general Calabi-Yau threefold con- 
tinue to hold, namely the growth of the left BPS degeneracy with fixed 
SU{2)L content but summed over right SU(2)R quantum numbers with 
(—1)

FR
 will also yield the black hole entropy. In what we shall write 

here we will not worry about numerical constants in the formula for the 
growth of black hole entropy. 

If we consider the macroscopic prediction for black hole entropy 
coming from a large charge d » 1 and for a given j£ = m spin one 
obtains [89], in the regime d » m and d :» 1, 

Nd,m - expVrf3 - m2 (7.1) 

This is meant to convey the exponential growth and its dependence 
in uniform rescaling of d and m, and is valid up to numerical coefficients 
in the exponent. Also there may be a sub-leading power law correction 
prefactor in front of the exponent. 

One can try to compare this macroscopic prediction with the micro- 
scopic prediction. Since the SU(2)L content of the black hole entropy 
is captured by the numbers nr

d, we can compare with the total number 
of BPS states with charge d and with J£ spin m. All we need to do is 
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to recall that the full representation of the BPS states with charge d is 
given by 

9 

R=[J2nr
dIr}®I1 (7.2) 

r=0 

This sum is finite, as for a given degree there is a maximum genus 
:ve which r< 

state we have 

TrIky
Ji = (y^+y^y 

curve which realizes it.  Moreover if we consider the Ig content of the 

\2k 

This in particular means that the number of states in Ik with </£ = m 
spin is given by 

2k 
k + m 

Applying this to 7.2 we see that the number N^m is given by 

2r + 2 Nd,m = J2 r 
d l r + l + ra 

r 

Comparing this with the growth expected from macroscopic consider- 
ations 7.1 , we get the prediction in the limit d>>.l,d>>m 

5>5 (r +ri++2m) ~ e**^^ ^ 

This is a very delicate sum, in that nr
d are typically very big numbers 

for d large, which alternate in sign when one changes g by one unit, 
as we have seen in many examples in this paper. It is known that nr

d 

for a fixed r grows with large d as exp(d). This however, is not in 
contradiction with the prediction 7.3 as one is summing over all non- 
vanishing r, and for large d's the allowed range in r is also large. In 
other words one is considering a different region of parameters and the 
equation 7.3 is a new prediction of the growth of these numbers in a 
different direction. It would be interesting to verify them (some special 
cases of this formula for Calabi-Yau threefold has been verified in [93] 
in the context of elliptic 3-folds). 
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8    Computations in local Calabi-Yau 
geometries 

In this section we will apply the techniques developed in sections 4 and 
5 to local Calabi-Yau geometries. By a local Calabi-Yau model we mean 
the total space 0(KB) —> B of the canonical line bundle fibered over a 
(two) dimensional Fano19 variety B. For the base B we discuss here del 
Pezzo surfaces P2, P1 x P1 and En, the blow up of P2 in n = 1,... , 8 
points20. To calculate the invariants for a curve with S nodes we have 
to calculate e(C^) for k < 5, which is easy when there is a bundle 
structure pk : C^ —> Hilb^(J5). For a given degree d we find in general 
a bound 8 < 5max(d) for which this is true. For instance, on P2 the first 
restriction comes from 5maa;(6) = 8. In general one can show that in this 
case Srnax(d) = d + 2. Another complication arises when the curves are 
reducible. However we found a systematic procedure to account for the 
corrections due to reducible curves, which gives the expected answer 
whenever e(C^) could be calculated using the bundle structure. The 
information from these calculations were sufficient to fix the S-model 
ambiguity up to genus g = 4,5 in the examples. When there is no 
bundle structure for C^ the modeling of these spaces becomes more 
complicated. While the bundle structure guarantees smoothness, we 
find in examples21 that some of the spaces lacking the bundle structure 
are singular. Hence the Euler number e(C^) has to be replaced by 
an integral /rC(fc)i (hop over a suitable virtual fundamental class. We 
have not attempted to define this virtual fundamental class. However 
in K3 x T2 case the quantity /rC(fc)i c appeared in two places in our 
calculation fitting exactly our approximation of H*{J{C)) as expressed 
in C^ by 4.16 . We are therefore optimistic that there is natural 
definition of Icm^r ctop for the non-smooth C^ in the general case, 
which calculates the nr

d invariants by the formulas in sections 4, 5. 

19The condition for B to be Fano can be relaxed, see [74] . 
20 Quantum intersection rings on these surfaces were [94]. In these cases the 

dimension of the moduli space of the curves is reduced to zero by requiring the 
curves to go through fixed points. There is no obvious relation between these 
invariants and the ones we calculate and relate to M-theory BPS states [95]. 

21C(8) at d = 6 and C^9) at d = 7 on P2 to be discussed below. 



M-THEORY, TOPOLOGICAL STRINGS ... 1493 

8.1    Basic concepts 

First we need to calculate the Euler number of the moduli space e(Ai) 
for the non-degenerate curves C, which are embedded in the surface 
B. More precisely, these curves are characterized by the fact that 
their geometric genus and their arithmetic genus coincide. We obtain 
the dimension of the deformation space Pi/0(O(C)) from x(0(C)) = 
E^ol-1)^^)) under the assumption that H\0(C)) = H2(0(C)) 
= 0. This is true [96]. Then, using adjunction 

C2 + KC = (2g - 2) 

and the Riemann-Roch formula 

x(o(c)) = ^c + i, 

we obtain x(^(C)) = 9 + d, where d is the degree of the curve with 
respect to the anticanonical class —K of B. Since the moduli space is 
obtained by projectivizing H0(O(C))^ we get as the result 

e(M) = e(P9+d-1) = (g + d). (8.1) 

To be concrete, recall that the classes on a En del Pezzo are the 
P2 hyperplane class H and the exceptional divisors of the blowups e* 
in n points pi,... ,Pn? with H2 — 1 and e^e^ = — 5^ (for P1 x P1 

see the later discussion). A curve of multidegree (a; &i,... , 6n) refers 
to the class of curves obtained from blowing up the plane curves of 
degree a which pass through the point pi with multiplicity 6^. These 
curves have class aH — Y^hEi. We will typically rearrange the order 
of points to write the hi in nonincreasing order. We will also omit the 
hi which are 0. And we will use exponential notation bk to refer to a 
subsequence of k copies of b. The exceptional divisors e^ do not fit into 
this classification scheme and will be denoted separately. To follow the 
subsequent discussion one needs an overview over the low degree classes 
in the del Pezzos surfaces, which we provide in Appendix A. They are 
ordered with respect to their arithmetic genus 

(a-l)(a-2)     JU&^-l) 
E^^     (8.2) 
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and their degree with respect to the anticanonical class of the del Pezzos 
-KEn =SH- £?=1 a 

n 

d = 3a-J2bi . (8.3) 
i=l 

Let us consider as an easy example the Ei del Pezzo surface. As it 
was observed by mirror symmetry in [42] there are invariants22 n[a = 
2a+ 1 from curves wrapping 1 times the base H and a times the fibre 
H — ei of the Hirzebruch surface Fi = Ei, i.e. since a = HC and 
1 = (H — ei)C these genus zero curves are in the class (a; a — 1) and by 
8.3, 8.1, 5.3 we immediately obtain the mirror symmetry prediction. 

To calculate the invariants for curves with one node 5 = 1 we need 
next to determine the Euler number of the universal curve e(C). We 
first fix a class [C] with a curve C of arithmetic genus g and degree 
d in it. Then we calculate the contribution of a nodal curve in [C] to 
the invariant n^-1 at genus g — 1 by 4.16 or 5.4, 5.3. In the simplest 
situation the nodal curve is irreducible. The space C, comes with a 
fibration structure as follows. Fixing the location of a point on the 
curve gives a linear constraint in the moduli space P^+d~1 of the genus 
g curve. As the point is free to vary over JB, C comes with a natural 
fibration C -> B which, if it is smooth, gives rise to the Euler number 

e(C) = e(P9+d-2)e(B) = (g + d- l)e(B) . (8.4) 

In general if there is the bundle structure pk : C^ -> Hilb^(JB) 
then 

e(C<*>) = e(P^-1-fc)e(Hilbw(5)) (8.5) 

with J2ke0m^k\B))qk = fin (i- n)e(B) • The easiest example for the 
treatment of reducible curves is the calculation of n® in P2 in section 
5.2 (after eq. 5.7). In the case of general del Pezzo surfaces we have to 
sum over various classes as will be explained in Section 8.5 for the case 
of the E5 del Pezzo when we calculate njj. 

22 Which resum to the logarithm capturing the running of the gauge coupling in 
the N=2 gauge theory at the appropriate locus in the moduli space. 
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8.2    (!)(-l)eO(-l)->P1 

The conifold geometry does not support higher genus curves and the 
only rational curve that exists is the P1. Therefore the Fg of the type 
IIA topological theory23 are completely governed by the multicover and 
bubbling contribution of this one rational curve. In this sense this 
simplest Calabi-Yau background to which 2-d gravity can be coupled is 
completely solved by 2.3 in full accordance to 3.3 . It is interesting that 
in this case the part of the Fg which follows from the anomaly can be 
made vanishing in the holomorphic limit by noting that there is a gauge 
choice in which all propagators of Kodaira-Spencer become identically 
zero, compare [67] . In this sense all holomorphic information here 
actually comes from the ambiguity. 

8.3    Local P2: <9(-3) -> P2 

This is the next simplest case. This geometry supports an infinite 
number of curves of different arithmetic genera, making the geometry 
much more interesting than in the conifold case. 

We first present the result for the invariants. The numbers in the 
Table 4 marked with a diamond were obtained with the technique dis- 
cussed in sections 4 and 5, as explained in detail below. Once we can fix 
the holomorphic ambiguity completely for a genus r, which was possible 
up to r = 5 in this case (see sect 8.6), the B-model gives an immediate 
answer for Fr at all degree d. Using this .B-model result integrality of 
the n^ was checked up to d = 300. For r = 6,7,8 we could determine 
the ambiguity only up to S = {2,4,6} constants, which can be param- 
eterized by the n^, d = 8,... 8 + Si. Assuming that they are integer we 
checked that the .B-model gives rise to integer nr

d up to d = 300. As 
a further check we compared with the calculation in [67] , which uses 
the c = 1 KDV hierarchy and direct localization techniques. Numbers 
marked with a star were calculated this way. 

The r = 1 numbers listed in Table 4 follow the geometric subtraction 
scheme 2.4 . The differences in genus 1 between the geometric and the 

23 Not to be confused with the IIB asymptotic behavior at the locus where an S3 

shrinks, which we discuss in Sections 2,5,6. 
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physical subtraction schemes A^ = (n^ — n^1) are A6 = —10, Ag = 231, 
Ag = —10 and Axo = 4452 up to given order. 

d r = 0 1 2 3 4 5 
1 st 0 0 0 0 0 
2 -6J 0 0 0 0 0 
3 27$ -10J 0 0 0 0 
4 -192J 231* -102J 15? 0 0 
5 1695J -4452J 5430? -3672? 1386? -270J 
6 -17064* 80948* -194022* 290853J -290400J 196857° 
7 188454 -1438086 5784837 -15363990 29056614 -40492272 
8 -2228160 25301295 -155322234 649358826 -2003386626 4741754985 
9 27748899 -443384578 3894455457 -23769907110 109496290149 -396521732268 

10 - -360012150 7760515332- -93050366010 786400843911- -5094944994204 26383404443193 

d        r = 6 7 8 9 10 11    12 13  14 15 
1      0 

4 0 
5 21° 
6 -90390° 
7 42297741°- 

0 

0 
0 

27538° 
-33388020° 

0 

0 
0 

-5310° 
19956296°- 

0 

0 
0 

585° 
-9001908° 

0 

0 
0 

-28° 
3035271°- 

0    0 

0     0 
0     0 
0    0 

-751218°132210°- 

0   0 

0   0 
0   0 
0   0 

-15636°1113°- 

0 

0 
0 
0 

-36° 

Table 4: The weighted sum of BPS states nJJ for the local P2 case, (d is the degree w.r.t. H) 

We now turn to a more detailed discussion of our methods outlined 
in Sections 4 and 5. We will give the results in terms of the degree d 
to the extent possible. 

Since the degree d plane curves have moduli space M = pd(d+3)/2^ 
we have from 5.3 that 

n(d-m-2)/2 = (_1)«K*f3)/2(d+ 1)(d+ 2)/2i 

This is in complete agreement with Table 4. 

Note that if d > 3, then any reducible curves must have at least 
2 nodes or worse singularities. This is seen by considering the ways 
that a degree d curve can split into curves of degrees di with ^ di = d, 
together with the observation that general plane curves of degrees di 
and dj meet in didj points. Therefore we only need the first term on 
the right hand side of 5.6 to compute instanton numbers with 5 = 1. 

Note that the fiber of C -> P2 is the set of degree d plane curves 
containing p, which is a p<W)-i.   Thus e(C) = e(P2)e(P^+3)/2-1)5 
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or 3d(d + 3)/2.  Using the first equation of 5.4 and 5.6 together with 
g = (d - l)(d - 2)/2, we get a formula 

nd(d-3)/2 = (_l)(W)/2 fd\ id2 + d_Z)y 

which agrees with the results found for d = 3,4,5,6 in Table 4 above. 

As our next check for P2, we observe as before that for d > 4, all 
reducible curves have at least 3 nodes. So as above, the calculation 
simplifies for 6 = 2 and d > 4 by requiring only the first term on the 
right hand side of 5.6. 

Consider the map p2 : C^ -> Hilb2P2. The fiber of p2 over Z e 
Hilb2P2 is the set of plane curves of degree d containing Z C P2. Either 
Z = {p, q} or Z consists of a point p G P2 and a tangent direction at p. 
Either way, we see that it is two conditions on a plane curve to contain 
Z (to say that C contains Z = (p, v) with v G TpP2 means that p G C 
and v is tangent to C at p). Thus the fiber is a pd(d+3)/2-2. This gives 

e(CW)   =   e(P^+3)/2-2)e(Hilb2P2) 

We get from the second equation of 5.4 and 5.6 

n(d*-3d-2)/2 = ^^dCd+s)^ L fd(d + 3) _ 1
> 

+ (d2 - 3d - 2) • 3- ,2       o^      o^    o^ + 3) 

(^)(^3d-3)(-2)). 

In particular, we verify that nl = 231, as noted earlier, as well as 
n| = 1386. 

Continuing, we have that for d > 5, all reducible curves have at 
least 4 nodes, so the calculation for 5 = 3 simplifies. We consider the 
map C^ -> Hilb3P2, and check that the fiber is always a p^+sVs-a^ 
yielding e(C(3)) = 22((d + 4)(d - l)/2). Using the third equation from 
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5.4 and 5.6, we get 

+ ((d-l)(d-2)-6)9( 

2 
d(d + 3) 

+ 
2 / 

((d - l){d - 2) - 4) ((d - l)(d - 2) - 7) /3d(d + 3)' 

,   ((d-l)(d-2)-2)((d-l)(d-2)-6) 
+ :        e x 

((d-l)(rf-2)-7)fd + 2- 

In particular, substituting d = 5,6 into 8.6, we get n\ = —3672 and 
nl = 27538, see Table 4. 

We recall from Section 5 that we can also handle the situation where 
there are reducible 3 nodal curves, namely d = 4. The problem is that 
we have the locus of quartic curves which are unions of a cubic and a 
line. We saw how this leads to 714 = —192. 

The case of n5 is even more interesting, in that there are two extra 
components contained in Me- The first component is the union of 
degree 2 and degree 3 curves, contributing n^nl = 60, and the second 
component is the union of lines and degree 4 curves with 2 nodes, 
contributing n^nl = 693. According to 5.6, we substitute d = 5 in 5.5 
with S = 6 and g = 6 and subtract the contributions of 60 and 693, 
obtaining n^ = 1695, as in Table 4. The e(C^) can be computed as 
above because in these cases the projection C^ -> HilbfcP2 is a bundle 
of projective spaces and e(HilbfcP2) can be computed by 5.7. 

Using 5.5 and 5.6, we can verify UQ for r > 3. The projection C^ -> 
Hilb^P2 is again a bundle of projective spaces for k < 7. Recall that 
this bundle structure implies that C^ is smooth, so that our method 
applies. Thus we have a check of our method for each S < 7. 

This bundle structure does not occur in general. In the computation 
of TTJ, we encounter the map C(8) —> Hilb8P2. Over a general point of 
Hilb8P2, the fiber is a P27-8 = P19

7 as a multiplicity 8 scheme usually 
imposes 8 conditions on curves of a given degree.   But now suppose 
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the 8 points all lie on a line L, and we identify the projective space of 
degree 6 curves containing these 8 points (some of which may coincide). 
For such a degree 6 curve, the restriction of its degree 6 equation to 
L has 8 zeros, hence vanishes identically. Thus the degree 6 equation 
contains the equation of the line as a factor, and we can multiply it 
by an arbitrary degree 5 polynomial and obtain a degree 6 polynomial 
containing the desired 6 points. Since the degree 5 polynomials form a 
P20, we get a fiber of P20 rather than P19 in this case. 

The lack of a bundle structure for p8 : C® —> Hilb8P2 causes us 
to ask if our methods apply in this case. We have to see whether or 
not C^ is smooth. Consider the projection 7r8 : C(8) -> P27 onto the 
other factor. That is, given an element (C,Z) of C^s\ so that C is a 
plane curve of degree 6, and Z is a multiplicity 8 scheme in C, i.e. 
an element of Hilb8C, put 7ra(C,Z) = C, where C is now identified 
with the corresponding element of Ad = P27. Since the fibers of TTS 

are all 8 dimensional, we can see that C^ has dimension 27 + 8 = 35. 
To show that C^ is singular, we need only exhibit a single element of 
C^ at which the tangent space of C(8) has dimension strictly greater 
than 35. Since the tangent space of C^ at (C, Z) is naturally identified 
with the space of first order deformations of the pair (C, Z), we need 
only find a (C, Z) for which we can exhibit 36 independent first order 
deformations. 

Towards this end, for C we take a degree 6 curve l(xi,X2,X3)2f(xi, 
X21X3) = 0, where I is linear and / is homogeneous of degree 4 in the 
homogeneous coordinates (rsi, X2, £3) of P2. For Z we take any 8 points 
on the line l(xi, £2, £3) — 0, which can possibly occur with multiplicity. 

Note first that we have 16 independent deformations obtained by 
moving these 8 points arbitrarily in P2 while keeping C fixed. This is 
because of the factor of Z2, which ensures that all motions of the points 
stay within C to leading order. Then we take the 20 deformations noted 
above, where we fix Z, but now vary the degree 6 curve to an arbitrary 
curve of the form l(x^y^z)g(x^y^z) = 0, where g is homogeneous of 
degree 5. These 20 deformations are in fact honest deformations, not 
just first order deformations. Combining these two classes of first order 
deformations where we deform C and Z separately, we have all together 
the needed 16 + 20 = 36 deformations. 

While our methods gave the correct results for singular moduli 
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spaces arising from isolated nodal curves in Section 4, we are not so 
lucky this time. The calculation based on 5.5 and 5.6 differs from the 
value of nl in Table 4 by 45. We expect that the singular locus of C^ 
provides a correction term to 5.6, much as the second term of 5.6 can 
be viewed as providing a correction to 5.5. This is a topic for future 
investigation. If such a correction can be understood, then we can find 
Fg for all g geometrically! 

We close our discussion of the local P2 with a tantalizing observation 
about the correction. We see that the image of the singular locus of C^ 
via the projection 7r8 : C^ -> P27 is the set of curves which factor into 
a degree 1 factor with multiplicity 2 and degree 4 factor. This locus is 
parameterized by P2 x P14, which has Euler characteristic 45, exactly 
equal to the desired correction! 

But we can't get too excited yet about this observation. The sin- 
gular locus itself is a P8 bundle over this space, since we must consider 
Z itself, and Hilb8 of a line is just P8. So the singular locus of C^ is 
parameterized by a space of Euler characteristic 9-45. 

Nevertheless, we suspect that this is more than a coincidence. For 
d = 7, we see that C^ can be singular when the degree 7 curve factors 
into the square of a linear factor times a degree 5 factor. This space 
is parameterized by P2 x P20, which has Euler characteristic 63. Once 
again, this is exactly the discrepancy between the value of rij computed 
using the B-model, and the value computed by 5.6! These examples 
provide a big hint which needs to be better understood. 

8.4    Local P1 x P1: 0{K) -► P1 x P1 

As expected from the Segre embedding of P1 x P1 into Ps as a degree 
2 surface, we have the diagonal perturbation of the local P1 x P1 case, 
i.e. ^2i+j=rn?jXP = rir2(1'1'1'1^ which we have checked for genus 0,1. 
Still saying it differently it sums up the instantons in the compact 
elliptically fibered CY over FQ which survive the limit where the fibre 
volume becomes infinite. 
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d r = 0 1 2 3 4 
1 -4° 0 0 0 0 
2 -4° 0 0 0 0 
3 -12° 0 0 0 0 
4 -48° 9 0 0 0 
5. -240° 136° -24° 0 0 
6 -1356 1616 -812 186° -16° 

7 -8428 17560 -17340 9712 -3156° 

8 -56000 183452 -302160 307996 -206776 

9 -392040 1878664 -4688912 7590720 -8583824 

10 -2859120 19027840 -67508988 159995520 -274149876 

Table 5: The weighted sum of BPS states nr
d for the local P1 x P1 

case. 

We now compute the <> numbers in Table 5 geometrically. We recall 
that a curve of bi-degree (a, b) on P1 x P1 has total degree d = a + 6, 
genus g = (a - 1)(6 - 1), and M = p(«+i)(*+iM. By 5.3, this gives a 
contribution of (_i)(<H-i)(&+i)-i(a + ^ + ^ to n^-1)*6"1). 

If d = 2k is fixed, then relative to all possibilities for d = a + 6, the 
choice (a, b) = (fc, k) gives the maximum possible genus (k — I)2. Thus 

n, J"1)2 = (-l)fc2+2fc(fc + l)2 = (-!)*(* + I)2. 

This verifies our results for k = 1, 2, and 3. 

If d =y2k + 1, then the maximal genus k(k — 1) is attained for 
(a, b) = (k + 1, k) or (fc, k + 1). We may as well consider one of these 
cases and multiply the result by 2. By 5.3 we get 

n k(k-l) 
2k+l -2(k + l)(k + 2), 

where the definite sign follows since (k + 2)(k + 1) is always even. This 
verifies our results for k = 0,1,2. 

We next turn to curves with 1 node, 5 = 1. If d = 2k + 1, then 
the only contributions to T^I+I come from (a, b) = (k + l,k) or 
(A;, k + 1). If d > 5, there are no reducible curves of these bi-degrees 
with only 1 node. We restrict to the first case and will later multiply 
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the contribution by 2. The map C —> P1 x P1 has fiber over p the space 
of curves of bi-degree (k + 1, A;) which contain p, a p(fc+2)(^+i)-2 This 
leads to e{C) = 4((fe + 2)(A; + 1) - 1) - A{k2 + 3A: + 1). We get 

nfkti~l = 2 (4(fc2 + 3A; + 1) + (2k(k - 1) - 2)(A; + 2)(A; + 1)) , 

which in particular verifies 77-5=136. 

If d = 2k and k > 2, a new interesting possibility arises, which is 
typical in the sequel. We get contributions to rcj^T ~1 some 0f which 
have 5 = 0, while others have 5 = 1. The former type comes from 
(a, 6) = (A; + 1, k — 1) or (A; — 1, A; + 1). This gives a contribution of 
2(-l)*(*+2)-1A;(A; + 2) by 5.3 . The 6 = 1 contribution comes from 
(a, b) = (ft, A;), and we get (-l)(*+1)2-2(4((Jfc + I)2 - 1) + (2(A; - I)2 - 
2)(A: + I)2) from the first equation in 5.4 together with 5.6, as there 
are no reducible curves of this bi-degree with only 1 node. Combining 
these two contributions gives 

nfk-
2k   =   (-1)*(*+2M 

(2A;(A; + 2) + 4 ((* + I)2 - l) + (2(A; - I)2 - 2) (A; + I)2) , 

which agrees with Table 5 for k = 2,3. 

We next consider the case of d = 7, g = 4. Here there are the 
possible bi-degrees (4,3) and (5,2). Since the latter case already has 
g = 4, we get a moduli space Ai = P17, which gives a contribution of 
—18 by 5.3. Curves of bi-degree (4,3) have genus g = 6 and M = P19, 
with e(M) = 20. We get as usual e(C) = 19 • 4 = 76 and e(C^) = 
18 • 14 = 252 (we have used e(Hilb2(P1 x P1) = 14 here). So the second 
equation of 5.4 together with 5.6 gives a contribution of (—1)17(252 + 
8 • 76 + 5 • 7 • 20) = —1560, as there are no reducible curves of this 
bi-degree with 2 nodes. Combining with the —18 and multiplying by 2 
to account for bi-degrees (3,4) and (2,5), we get the consistent answer 
-3156. 

More interesting is the geometric calculation of nl?. We have to 
consider bidegrees (4,1) and (3,2). The first case is handled by 5.3, 
and we get —10. In the second case, we have g = 5 = 2, e(M) = 12, 
e(C) = 4 • 11 = 44, e(CW) = 14 ■ 10 = 140. There are also reducible 
curves of type (1, 0) U (2, 2) with 2 nodes. By 5.3 , we have n% = —2 
and n^ = 9. So by the second equation in 5.4 and 5.6, we get n^ = 
-(140 - 12) - (-2) • 9 = -110. Thus ng = 2(nj|>0 + n^) = -240, in 
agreement with Table 5. 



M-THEORY, TOPOLOGICAL STRINGS 1503 

8.5     Other local Del Pezzo geometries: E5, i?6, £7, 
and E$ 

The E5 del Pezzo: 

d r = 0 1 2 3 4 
1 16° 0 0 0 0 
2 -20° 0 0 0 0 
3 48° 0 0 0 0 
4 -192° 5° 0 0 0 
5 960° -96° 0 0 0 
6 -5436 1280° -80° 0 0 
7 33712 -14816 2512° -160° 0 
8 -224000 160784 -51928 8710° -680° 

9 1568160 -1688800 886400 -274240 51040 
10 -11436720 17416488 -13552940 6643472 -2167656 

Table 6: The weighted sum of BPS states nr
d for the local E5 del Pezzo. 

As in P1 x P1, to verify our calculations we need to break up our 
degrees into subclasses. Verification of the En geometries is complicated 
mainly by the fact that there are many possibilities contributing to a 
given degree, and we must consider all the possibilities for any fixed d 
that we want to understand. 

As typical examples, let us verify n\ and n^. We look at the d = 
4, g = 1 data first. We have the class (3; I5) with M = P4 (by Riemann- 
Roch, one expects Ai = Pd+9-i in general). This verifies n\ = 5 by 
5.3. But there is also a S = 1 contribution to 714. We have C —>► M 
with fiber P3, hence 

e(C) = e(P3)e(Es) = 4 • 8 = 32. 

This gives a contribution of —32 to n® by the first equation of 5.4 and 
5.6. 

We next look at the d = 4, g = 0 data. Each of these classes has 
M = P3. Each P3 gives a contribution of —4. So we have to count 
numbers of such families. For (2; I2) we have to choose 2 out of the 
5 points at which to put the two ones; there are Q)  = 10 ways of 
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doing this. For (3; 2,13) we choose 1 point for the two, and 3 of the 
remaining points for the ones, and there are 5(2) = 20 ways of doing 
this. Finally, for (4; 23,12) there are 10 choices. All together, there are 
10+20+10 = 40 distinct d = 4, g = 0 families. The total contribution is 
40(-4) = -160. Combining with the -32, we have -160-32 = -192, 
which agrees with the calculated value of 714. 

Now let's calculate n^. We have for d = 5,# = 1 the families 
(3; I4), (4; 22,13), (5,25) and we want 5 = 1. Including permutations, 
there are 16 such families. In each case, we have reducible curves with 
1 node: 

(3,14)   =   (3,15)U£5 
(4,22,13)   =   (3,15)U(1,12) 

(5,25)   =   (3,15) U (2,15) 

Since the curves of type (3,14) form a P4, and the respective curves 
1?5, (1,12), and (2,15) are all isolated, it follows that the term to be 
subtracted on the right hand side of 5.6 is —5. Since e(C) = 5 • 8 = 40 
in each case, we get for each the contribution —40 — (—5) = —35 by 
the first equation of 5.4 and 5.6. Combining this calculation with the 
more standard calculations for 5 = 0 based on 5.3, we get n5 = 80(5) + 
16(35) = 960, in agreement with Table 6. 

We can similarly verify all the other cases indicated with a diamond 
using just these techniques. We can also check some cases requiring 
curves with 5 > 1 nodes, but these become increasingly tedious. 

The E6 del Pezzo: 

d r = 0 1 2 3 4 
1 27° 0 0 0 0 
2 -54° 0 0 0 0 
3 243* -4° 0 0 0 
4 -1728° 135* 0 0 0 
5 15255 -3132° 189° 0 0 
6 -153576 62976 -10782* 789° -10* 
7 1696086 -1187892 397899 -75114 7641 

8 -20053440 21731112 -12055770 4188726 -948186 
9 249740091 -391298442 326385279 -179998572 69918830 

10 -3240109350 6985791864 -8218296072 6602867631 -3896482536 

Table 7: The weighted sum of BPS states nr
d for the local E6 del Pezzo. 
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Note that the second equation in 5.4 is needed for nl, and we get 
from several different families of curves, 5.3, the first two equations in 
5.4, and 5.6, the result n| = 270(-8) + 108(-72) - 846 = -10782, 
again in agreement with Table 7. 

The E7 del Pezzo: 

d r = 0 1 2 3 
1 56° 0 0 
2 -272° 3 0 
3 3240° -224° 0 
4 -58432 12042 -844° 7° 
5 1303840 -574896 116880 -12112° 
6 -33255216 26127574 -10554800 2654912 
7 930431208 -1163157616 787322120 -358173504 
8 -27855628544 51336812456 -52707074296 37805931096 
9 878169863088 -2258519658288 3292406219040 -3430645737616 

10 -28835628521920 99301270680473 -196037258631040 280764828128124 

Table 8: The weighted sum of BPS states nr
d for the local Ej del Pezzo. 

Again the numbers marked with o have been checked. Here we 
determine the number nij. First let us calculate the contribution of the 
smooth genus 3 curves with d = 5. From Appendix A with simple 
combinatorics follows that there are 1 + 35 + 105 + 7 + 140 + 7 + 140 + 
105 + 35 + 1 = 576 curves all with moduli space P7 by 8.15.3 , hence 
contributing (—1)78-576 = —4608 to nf. Also from the table we read off 
that there are 7 + 21 + 21 + 7 = 56 genus24 4 curves with d = 5. In fact 
we have nl = 56(—I)8 • 9 = 504 from 8.15.3 as there are no g = 5 curves 
in classes with d = 5, which could degenerate to g = 4. The universal 
curve for each of the of the 56 S = 1 curves has by 8.4 e(C) = —8 • 10. 
Application of 4.16 gives hence a contribution of —56 • 80 — (2 • 4 — 2)504 
of the nodal curves to give a total of nl = -4608 - 7504 = -12112. 

For the Es del Pezzo surface we obtained 

24 Note the classical fact that for fixed d these curves are in the representation of 
the Weyl-group of E?. 
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r = 0 
1 252°    -2° 
2 -9252°    762°     -4° 
3 848628 -246788    30464 -1548°     7° 
4 -114265008 76413073 -26631112 5889840 -835236 69587 -2642° 11° 

Table 9: The weighted sum of BPS states nr
d for the local Es del Pezzo. 

The case of the Es del Pezzo is interesting because it can be easily 
can be related to the ^3, which gives an additional check. Extending 
[72] it was observed [5] that there is a modular anomaly in this case 
for higher genus. 

More precisely let F = —KiK3 the fibre (also the anticanonical 
class) and B = eg the base class of the elliptic half if3 surface. Fol- 
lowing [5] we can solve the modular anomaly for this two parameter 
subspace and write the contribution to Fr for a fixed base class n as a 

m 

quasimodular form P2g+2n-2{E2, E4, E§)\^. In particular we can com- 
pare the diagonal class KEs = F + e9 and test the modular anomaly 
against the holomorphic anomaly calculation. We observed complete 
accordance up to genus 8 degree 10. 

8.6    The topological string perspective 

In the local case one has for all genera an explicit virtual fundamental 
class on the moduli spaces of maps and therefore a direct A-model 
localization calculation of the topological string amplitudes at higher 
genera is in principle possible [67] . At genus zero there is a virtual 
fundamental class also for the global case and equivalence of the A- 
model and the S-model calculation was proven [73] . This sort of proof 
was adapted to the local case [74] . Hence as an immediate check we 
can perform in certain cases A-model computations to compare with. 
However using the c = 1 KDV hierarchy and localization on the toric 
ambient space becomes extremely difficult for high g, where the M- 
theory calculation is still very easy, provided that 5 < Srnax(d). 

Furthermore we can consider the J3-model and use the M-theory 
calculation to resolve the holomorphic ambiguity. The S-model, which 
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has some additional simplifications in the local case [67], has the virtue 
that it comes naturally with the analytic techniques on the complex 
moduli space of the mirror manifold, which allows us to relate the 
answers that we get in the infinite volume limit to physical systems 
at other degenerations by analytic continuation. This yields further 
consistency checks. 

To describe the analytic structure we note that the vectors a = 
(0,1,02) 

E5-   $= (-,-),       E6:   0= [-,-) , 2'2/' V3 3 

E7 '■   a = ( T» 7 ) 1        ^8 :   a = 4'4, 

determine the Picard-Fuchs differential equation, which governs the 
complex geometry of the mirror for the local cases 

(e^-zflie-cn + l)]  f Q = 0 . (8.7) 

They are solved by Meier's G-function G(ai,a2,l;:r), compare with 
[97]. In particular their Riemann symbol is 

0   00   1 

0   a2    1 

and shows that z = 0 is the maximally unipotent point, z = 1 is the 
conifold point. We can also read from the Riemann symbol that for 
the P1 x P1 and the £5, z = 00 is not an orbifold point, but has also 
logarithmic solutions25. 

As in the quintic case of [66], it is convenient for the higher genus 
calculation to work in the if; variable as it avoids fractional exponents 

25 Further properties of the solutions have been made explicit in [58], [71], [67]. 
In particular the monodromy is related to ro(n) for Eg-n [67]. 
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in the B-model propagators. In this variables the Yukawa are 26 

(1 ± ^) r0 = ±z,        Yw = ^ffl'3,    with(3 = J2di        (8.9) 
i=l 

The mirror map is normalized so that a(X) = rit=i ^/ Fli^i wi ^s 

just the classical triple intersection number expressed in terms of the 
degrees di of the complete intersections and the weights of the ambient 
space. The En n = 5,... , 8 del Pezzo surfaces can be represented as 
complete intersections of degree (2,2) in P4, a degree 3 hypersurface in 
P3 , a degree 4 hypersurface in weighted projective space P3(l, 1,1,2) 
and a degree 6 hypersurface in P(l, 1, 2,3). 

The 5-model multi-loop contributions to the free energy are deter- 
mined from the holomorphic anomaly equations [66] . In solving these 
differential equations one is left at the end with a holomorphic ambi- 
guity, which is a holomorphic section of C2~2r over the complex moduli 
space27. With the right choice of gauge there is no singularity of the 
holomorphic ambiguity at z = 0, but from the singularity structure is 
clear that we have to generalize the ansatz for the ambiguity [66], [67] to 
allow beside the singularities at the conifold also for residue terms at 
z = oo. Hence we make in general the ansatz 

2r~2    AT r~1     TDT 

where JJL = ci(l ± ^) and p = C2/0/3- 

The finite number of constants Ar
k,Bl can be fixed by the direct 

calculation of the nr
d, but at least part of it is also encoded in the uni- 

versal behavior of Fr at singular loci in the moduli space. In particular 
near a conifold singularity one expects [1] from the duality with the 
c = 1 critical string theory at the selfdual radius an expansion 

F,M = ^ logo.) - i MM) + E t^*/-2'    (s-11* 
26The sign is minus for the local P1 x P1 case and minus for all other cases. For 

the somewhat exceptional P2 and P1 x P1 case we have a(X) = 1/3,/? = 3 and 
a(X) = 1,0 = -2. 

27Here we denote the worldsheet genus of the J5-model r, to distinguish it from 
the arithmetic genus g. 
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where B2r/(2r - 2)2r = -^, ^, -^,... for genus r = 2,3,4,.... 
Relative to the genus expansion of the type II free energy F(t) = 
YlT=Q^2r~2^r{t) 8-11 is a double scaling limit in which the distance 
t to the conifold in the moduli space and the string coupling go to 
zero while their ratio ji is kept fixed. This selects the corresponding 
leading term ti2r~2 form Fr in 8.11. For the local propagators we use 
the same gauge as in [67] . In this gauge the singular behavior at the 
conifold is captured entirely by the ambiguity. The relation between 
t = (1±^) and // can be fixed from the genus zero result by comparing 
the asymptotic of the Yukawa coupling with 8.11. We found the simple 
systematics // = QpLl for the local and fi — ^lp^_J for the global 
cases. 

It has been speculated that the next to leading order might be 
related to correlations functions of the c = 1 string at the selfdual 
radius involving discrete states whose SU(2)L x SU(2)R charges could 
be read off from next to leading order monomial in the perturbations of 
the local equations [98]. It would be very interesting to make this more 
concrete. At any rate we will report this behavior at the conifold and 
other singularities along with our previous results at the large complex 
structure limit. Beside the verification of the claim in [1] we find also 
some regularities for the next to leading order residue. For instance, we 
observed up to r = 4 that the ^r-s 0^ ^he quintic Calabi-Yau threefold 
are exactly (4/5) times smaller as the ^r-a for the local P1 x P1 case, 
which in turn are identical to the analogous quantities on the EQ del 
Pezzo. 

For the P2 case we fixed the constants in the ambiguity 3.4 as follows 

r ^5 Al Al Ar
3 Al Al Are Aj Ag 

2 
3 
4 
5 

3e-iWU 
17280 

9940-3e 
4354560 

-1864975+27 e 
2351462400 

252764050-243 e 
587865600*5 

107 1 
240 

6479 
653184 

-32949197 
2351462400 

164095927 

13 1 
1008 

-143987 
10886400 

88814851411 

15041 -1 
1440 

348989 -5519       1 

181440^ 142*881^ 
2-32064007V? -^ll^lf IMM 

340200 VSofl 8398080s 35952843613V3S,, 1322697600*5 6123600 V38(i 11664S5 378A/3«K    «5 

with // = \/3(l + /03) and Sg as in 8.11 . This is in perfect agreement 
with expected behaviour at the conifold. 

Because of the additional singularity at ip = 0 the holomorphic 
ambiguity is more interesting in the P1 x P1 case. Using the Landau- 
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Ginzburg orbifold description the mirror manifold can be represented 
as a hypersurface [1] 

W = x\ + xl + xl + xl - 2 f fil)xxlX2XZxA + - ) (8.12) 

in a non-compact P4(—2,1,1,1,1) . Note that at x = 1, Xi = 1 for 
ij) = l + e one has the usual conifold singularity, but x = 1, ^ = 0 for 
small ^ does not correspond to a conifold singularity. Because of the 
Z2 {x -* x]Xi -* —Xi) identification symmetry in the P4(—2,1,1,1,1) 
it rather is a 53/Z2 lens space, called L(2,1), which is shrinking. In the 
IIB picture this shrinking lens space creates a logarithmic singularity 
(with a logarithmic shift by 2 at ip = 0 due to the bound state of D-3 
branes wrapping 1/(2,1)). It explains why we need here the poles at 
^ = 0 in the generalized ansatz 3.4 . In fact using the relation p = 24'04, 
fixed from the asymptotic behaviour of the Yukawa coupling, we find 

r Aro A[ ^2 Ar
3 Al ^ Ar

6 sr 55 ^ 

2 e-100 83 1 2* 
5760 5760 240 240 

3 10045-2e 413 5783 193 1 23 25 

2903040 51840 645120 40320 1008 48384 1008 

4 8e-935025 1001683 -16034329 9924889 -2871 10001 1 150671 -3641 27 

696729600 21653*7 21635&a7 21435^7 2764S 2!W7 1440 21634fi27 2liW7 1440 

Thus the leading behavior at if; = 0, captured in the i?[, is exactly as 
expected[98] for two particles with half the mass p leading to ^(2,1) (p) — 
S^d) with ^53 as in 8.11 . 

For the En n = 5,... , 8 cases one expect a complicated singularity 
structure at ip = 0, due to the simultaneous occurence of light electric 
and magnetic states. For the E5 case we got 

r Aro ^ Ar
2 ^S A\ Al Al Bl Bl Bl 

2 
3 

'U-lhh 83 1 38 

2642m -WP 61l¥0 -193 1 411° 158 
„ 46448640 3317760 2580480 80640 1008 30240 1008 

4 211e-9710925 1405589 -19054729 10715449 -2057 10001 -1 -625063 -137563 -638 
22235S27 2215347 2l935527 21735527 212337 21033,^7 1440 2™Wl 21033527 1440 

where we normalized (1 + il)2) = n/2 and tf1 = p/25. Here we observe 
the same next to leading order behavior at the conifold as in the P1 x P1 

examples. However the residue at if; = 0 has yet to be interpreted. 

Let shortly summarize the remaining cases. For the EQ we got 
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r                     Ar
0 Al ^2 Al ^ Al Ar 

^6 Bf  Bl 
o            -1660+27 e 
^                 155520 
o             20300-81 e 
0               117573120 
A 19683e-11499775 
*    1714216089600 

107 i 
240 

35419 
29393280 

43056877 

13 1 
1008 

148787        15041 
97977600 5443200x73 

1 
1440 

1 
i486 

12960 v^ 
10301 

95234227200x73 

4320 \/3 
15901121 

190468454400 ] L1904278400x/3 

with (1 + '03) = ii/y/Z and T/^
3
 = p/39. Here we note that the next to 

leading order at the conifold is |-times the one of the P2 theory. 

The E-j case: 

r Ar 
^0 ^ AS, Al A\  B{ 

2 

3 

8e-635 
46080 

110215-512c 
743178240 

143 1 
240 

68857 
61931520 

131 i       1 
1008        -L 

23040\72 
749 

1658880x72 53760x72 

with (1 + ^) = /i/x/2 and </>4 = p/2 

Finally for the E%\ 

15 

r ^ Al Al Al Ar
4 Ag Are Br 

2 
3 
4 

9e-1100 

127f^t04e 

-15478?§^-^%0e 
507915878400 

251 

25mwo 

9fi74,'iS81fi00 

2256l¥0 

mm0 

fi7722117120 

251 

1221(^%60 

loisssmfffio 
43^0l08 

lfififi2400 
45281 

21772800 
1 

1440 
2525 

38(19835264 

with /x = (1 + tj;6) and p = ^. 

9    Computations in compact  Calabi-Yau 
geometries 

9.1    Compact one modulus cases 

Here we analyze the higher genus contribution for compact one modulus 
Calabi-Yau spaces. In this case there is no virtual fundamental class 
for the higher genus topological string calculation known. In absence of 
this approach we combine the topological B model calculation and the 
M-theory description of the invariants to determine the higher genus 
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Fr. We can carry out the M-theory computation of certain ng
d~ for 

small 5. We expect to be able to make much further progress even in 
the compact case once we understand how to systematically correct for 
singularities in the relative Hilbert schemes C^ for k < 5. 

Examples are hypersurfaces or complete intersections in weighted 
projective space which avoid the singularities of the ambient space. De- 
noting a complete intersection of degree (di,... , d^) in Pn(^i,... , wi) 
by Xd^.jkiwi, - - • , w/)28 we have the following complete list of such 
examples (compare the second ref. in [51] for the r = 0, r = 1 results) 

X4,3(l
5,2) :3- (i|i |) ,    ^(1*,^ :»"= g, |, i, f) , 

^(i'.3)=a=(|,i,|,i),   ^(i3,2
2,3):3=(i,5,^), 

Xw(l«,J',8»):S.(i,5.i.5; 

The components of the vector a specify the Picard-Fuchs operator 
for the mirror manifold as follows 

P-zfliO + Oi)} f fi = 0. (9.1) 
V 1=1 /  J* 

28n-times repeating weights will be denoted by wf. 
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From the Riemann Symbol 

P< 

( 0 oo 1 
0 oi 0 
0 a2 1 
0 03 2 

0 04 1 

,z (9.2) 

we conclude that z = 0 is the maximally unipotent point with three 
logarithmic solutions and z — 1 is the conifold point with one log- 
arithmic solution. From the Riemann symbol it also clear that the 
hypersurfaces have a cyclic monodromy of order29 /3 (with /? as in 8.9 ) 
at z = oo, while the complete intersections have degenerate indices and 
therefore logarithmic degeneration of the periods with shift monodromy 
and vanishing cycles at z = oo, which justifies the general ansatz for 
the ambiguity 8.10 . We choose the gauge so that the propagators of 
the B are regular at the conifold and at z = oo. This amounts, in the 
notation of sections 7.2 of [66], to a choice of /(^) = ip for quintic and 
sextic, /(T/J) = ip2 for the bicubic and f(ip) = ip4 for the four conies, 
while v(if)) = 1 for all cases. The normalization of the Yukawa couplings 
is as in 8.9 . 

9.2    Higher genus results on the quintic 

We come now to the simplest compact Calabi-Yau, the zero locus of 
the quintic 

Yfx
5

i-Stl>l[xi = 0- (9.3) 
i=l i=l 

in P4. The unique analytic solution at z = 0 is WQ —Yl^Lo 7^ (^O™ 
the three-point coupling is as in 8.9. The rational and elliptic curves 
have been computed in [29], [65] . 

29For the hypersurfaces this was just an orbifold singularity with non-vanishing 
.B-field. In fact the triple intersection corresponds to canonical normalized kinetic 
terms, precisely to the one calculated in the associated Gepner model [29]. 
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d r = 0 1 
1 2875 0 
2 609250 0 
3 317206375 609250 
4 242467530000 3721431625 
5 229305888887625 12129909700200 
6 248249742118022000 31147299733286500 
7 295091050570845659250 71578406022880761750 
8 375632160937476603550000 154990541752961568418125 

Table 10.a: The weighted sum of BPS states nr
d for the quintic. 

We agree with those results. Note however that the BPS numbers on 
the genus 1 cases differ from the invariants defined in [65], where the 
maps from the torus to itself are subtracted as explained in sec /ref- 
sec:3.3. 

Unlike the non-compact cases, the reduction of the holomorphic 
anomaly involves a global property of the model, the Euler number. 
The general form of F2 has been given in [66]. In appendix B we 
give the complete result of the reduction of F330. In view of the fast 
growing number of terms in Fr with the worldsheet genus r one may 
hope that the ring of modular functions on the moduli space of the 
concrete Calabi-Yau - here the quintic- transforming in £2~2r has a 
much lower dimension, so that there are many relations between the 
terms in Fr. Restricting the expression given in appendix B for F3 
to the one-moduli case one has 50 terms of different functional form. 
Somewhat surprisingly we find only one relation between the terms, 
which is reported in the Appendix B. 

With these formulas we obtain the following genus r = 2,3 results. 

30 The i7^,^ expressions can be made available on request. 
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d r = 2 3 4 
1 0 0 0 
2 0 0 0 
3 0 0 0 
4 534750 8625 0 
5 75478987900 -15663750 15520 
6 871708139638250 3156446162875 -7845381850 
7 5185462556617269625 111468926053022750 243680873841500 
8 22516841063105917766750 1303464598408583455000 25509502355913526750 

Table 10.b: The weighted sum of BPS states nr
d for the quintic. 

Note that for d > 7 the numbers of genus 2 invariants are expected to 
differ from the ones given in [66] , because of the different definition of 
the integer invariants related to F2. 

Using the vanishing of n\ =■ n\ — n\ = 0, as explained below, we 
can fix the genus 2 ambiguity. Comparing 8.9 with 8.11 we learn that 
the distance to the singularity t = (1 — z) = iii/y/a. Written in terms 
of /i it reads 

-      571 83z      _! _ J_  _2 
h " "36000 + 7200v/5/X    ~ sio^ 

Note that the leading singularity confirms 8.11. Further the constant 
map contribution is in accordance with [66], [22]. 

To fix the genus 3 anomaly we used the vanishing of n\ — n\ = n\ = 
0 and the fact that nl = (-l)2-3-2875 = 8625, as explained below. The 
number n\ turns out to be negative, which is plausible as these curves 
come in singular families, but the actual value has not been checked. 
Together with [22] for the constant map piece this determines 

h = 
26857 + 356921i 

126000000  567000000^ 

193i  _a   1 

50400^5 

^ 
-1 5393 

5040000 A* 

"'^iks"" 
i.e. the leading behavior is in perfect agreement with the c = 1 inter- 
pretation at the conifold singularity. We note that the old definition 
of the invariant yielding nj = 22516841063105918836250 seems incom- 
patible with the BPS interpretation as it destroys the integrality of the 
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expansion of F3. The leading behavior of the ambiguity at genus 4 is 

IQOOlz      _5__J_  _6 
h ~ ""■ + 3024000A/5

M
        1440^ 

Most notably in order to get an integer expansion we had also to 
assume that there is also a residue at I/J

5
 = 0 more precisely f^ ~ 

11853023518768  /-5 
8859375        ^     ' 

We turn our attention to the application of 5.6 to verify some of 
the instanton numbers that we have calculated for the quintic. Before 
we can do this, we have to understand the restrictions on the degree 
and arithmetic genus of a curve in projective space. This is part of 
the subject of Castelnuovo theory [99], [100]. Castelnuovo theory gives 
the maximum arithmetic genus of a nondegenerate irreducible curve 
C of degree d in Pr. Here, nondegenerate means that C is not con- 
tained in any hyperplane. This is not a restriction, since any curve is 
nondegenerate inside the linear subspace that it spans. 

We give a somewhat detailed description for P2, P3, and a general 
formula for Pr. 

In P2, Castelnuovo theory is trivial, since a degree d curve neces- 
sarily has arithmetic genus g = (d — l)(d — 2)/2. 

In P3, the result of [101] says that a nondegenerate curve of degree 
d either lies on a quadric surface or else there is a number g(d) (to be 
described presently) such that any curve in P3 has genus g < g(d). 

Note that a quadric surface is just P1 x P1 so all possibilities for 
(d, g) can be computed from the bidegrees (a, b) and d = a + 6, g = 
(a — 1) (b — 1). Some easy algebra shows that a curve with degree and 
genus (d, g) can be found on a quadric precisely when (d — 2)2 — Ag is 
a perfect square. 

For g(d), we get 

g(d)   =^M±6    rf = o(mod3) (9.4) 

= ^M±1    d^0(mod3) 

For Pr, we give a less complete answer, and just note that the 
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maximum genus possible is found by writing 

d — 1 = m(r — 1) + e 

with 0 < 6 < m. The formula is 

9< f™V-l) + me. (9.5) 

If r = 3, it can be checked that the right hand side of 9.5 is the 
genus of a degree d curve on a quadric, compare with Section 8.4. 

Let's apply these formulas to the quintic in low degree. 

For d = 1,2, it is clear that the only genus possible is 0. For d = 3, 
we can get g — 1 in the plane, and g — 0 is possible, even in P3 (e.g. 
bidegree (2,1) in P1 x P1). Thus nf = n9

2 = 0 for g > 0 and ng
2 = 0 for 

g > 1, consistent with Tables 10.a and 10.b. 

Now d = 4 is more interesting. This is possible in P2 only for g = 3. 
In P3 it is either on a quadric or g < 1 by Castelnuovo theory. But we 
check immediately that g = 0,1 are the only possibilities on a quadric 
as well. Applying Castelnuovo theory to P4, we again get g < 1. So 
g = 2 is impossible on a quintic, and nf = 0 for g > 4. 

But this discussion does not mean that n2 vanishes. Quite the 
contrary, we can apply 5.4 and 5.6 to the family of g = 3 curves, which 
are plane quartics. The plane intersects the quintic in a quintic plane 
curve containing the quartic, leaving a residual line. So we get the 
moduli space of these d = 4, g = 3 curves by taking a line on the 
quintic, and passing all possible 2-planes through it, leaving a quartic 
over by reversing the above reasoning. So the moduli space is 2875 
copies of M = P2. In passing, we note that n3 = 2875(3) = 8625 by 
5.3. The universal curve C is a bit subtle. The projection C —> X (X 
is the quintic) is 1-1 except over the line (since a point of X not on 
the line determines a unique 2-plane containing the line). But the fiber 
of this projection over the line is a P1, so we must add 2 to the Euler 
characteristic of the CY (—200) to get the Euler characteristic (—198) 
of C. Then the first equation in 5.4 together with 5.6 gives for n2 the 
quantity 2875(-l)(-198 + (4)(3)) = 534750, as there are no reducible 
curves of degree 4 in the plane. This is in agreement with Table 10.b. 
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We can similarly apply Castelnuovo theory to degree 5. Here the 
result is that plane quintics have genus 6, and otherwise the genus is 
at most 2. The moduli space of plane quintic curves is the same as 
the moduli space G = 0(2,4) of P2s in P4. By 5.3, we get n^ = 
(-l)6e(G) = 10. We can also in principle get nf for 3 < g < 5 from 
5.4 and 5.6. Unfortunately, we don't know how to compute the Euler 
characteristic of C^\ so we can only compute nf for g = 4,5 at present. 

We can calculate e(C) as usual by considering the projection C —> X. 
The fiber over a point p G X is identified with the set of 2 planes in 
P4 which contain p. This in turn is identified with the Grassman- 
nian G(l,3) of lines in P3. So e{C) = e(X)e(Gf(l,4)) = -200 - 10 = 
—2000. Then the first equation in 5.4 together with 5.6 gives nl? = 
(-l)5(-2000 + (2 - 3 - 2)10) = 1960. 

The map C^ -> Hilb2X has fiber over Z G Hilb2X the set of all 2 
planes in P4 containing Z. Since Z is either a pair of distinct points 
or a single point of multiplicity 2 with a distinct tangent direction, we 
see that this fiber is isomorphic to P3 in either case. Also, Hilb2X 
is obtained from the symmetric product Sym2X by blowing up the 
diagonal, replacing each point of the diagonal with a P2. Thus 

e(Hilb2) = e(Sym2X) + e(X)(e(P2) - 1) 

-199 
| + (-200) • 2 = 19500 

from which it follows from the second equation in 5.4 together with 5.6 
that n4 = 15520. 

For 0 < g < 2, there are both smooth curves of degree 5 and genus 
g in the quintic as well as a contribution from singular plane quintics. 
In the case of g = 0, there are actually finitely many singular curves, 
which were enumerated in [77]. 

9.3    The sextic, the bicubic and four conies 

A further typical hypersurface example is the sextic in the weighted 
projective space P4(l, 1,1,1,2). We find the following all integer31 nr

d 

31 In [66] it was claimed that this example has a half-integral invariant for n[ \ 
which would be in contradiction with the M-theory interpretation of the R2F29~2 
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invariants for this case 

d r = 0 1 
1 7884 0 
2 6028452 7884 

3 11900417220 145114704 

4 34600752005688 1773044322885 
5 124595034333130080 17144900584158168 
6 513797193321737210316 147664736456952923604 
7 2326721904320912944749252 1197243574587406496495592 

8 11284058913384803271372834984 9381487423491392389034886369 

d r = 2 3 
1 0 0 
2 0 0 
3 17496 576 
4 10801446444 -14966100 
5 571861298748384 1412012838168 
6 13753100019804005556 403369763928730938 
7 233127389355701229349884 552961951281452536352 

8 3246006977306701566424657380 560485610266924061005490676 

Table 11: The weighted sum of BPS states nr
d for the sextic. 

The ambiguity can be fixed from the vanishing of n\ = n^ = 0 plus 
the general form of the constant map contribution. Again we find the 
leading term of /2 in accordance with 8.11 /2 = 473 463 

25920 

240^      * 

51840 75^ 
-1 

For the genus 3 contribution we can fix a combination of n^nf by 
demanding the expected behavior of the //~4 term in 

/s    = 
3917 + 61447z 

26127360      117573120A/3 
M 

107945 
94058496 /* 

25i 

8064^ ''"S + Too8'r4 

amplitude. Luckily we find that the problem relied on a computational error. 
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This yields n| = 36(-865581 + 7Slnl).   The fact the /x"3 term is a 
relatively simple fraction for other cases leads to the conjecture that 
the correct value is TTJ = 576. 

This can be checked by geometry as follows. Note that by projection 
to the first four coordinates, X admits a 3 — 1 cover of P3. Writing the 
equation of the CY in the form 

^5 + MX1,X2, Xs, XA)X5 + fe(XuX2, ^3, ^4) = 0, 

we see that the branch locus 4/3+27/| has degree 12. A curve of degree 
3 must either map isomorphically to a degree 3 curve in P3 or be a triple 
cover of a line. Since degree 3 curves have genus at most 1, and we are 
interested in genus 3, we must have a triple cover of a line branched 
at 4 points, which has genus 4. Thus M, — (7(1,3), the Grassmannian 
of P1s in P3. This has dimension 4 and Euler characteristic 6. So we 
already see that n\ = 6. 

We project the universal curve to X as usual; the fiber over p G 
X is the set of triple covers of lines which contain p, which is in 1-1 
correspondence with the set of lines in P3 which contain the image 
of p in P3. This is isomorphic to P2. We get e(C) = e(P2)e(X) = 
3(—204) = —612. Now an application of the first equation in 5.4 and 
5.6 gives (-1)3(-612 + 6 • 6) = 576. 

We next consider as simplest complete intersection cases two cubics 
in P5, i.e. X3?3(l

6) and four conies in P7, denoted X252,2,2(l8). 

d r = 0 1 2 3 
1 1053 0 0 0 
2 52812 0 0 0 
3 6424326 3402 0 0 
4 1139448384 5520393 0 0 
5 249787892583 4820744484 5520393 0 
6 62660964509532 3163476678678 23395810338 6852978 
7 17256453900822009 1798399482469092 42200615912499 174007524240 
8 5088842568426162960 944929890847710108 50349477671013600 785786604262830 

Table 12: The weighted sum of BPS states nr
d for the compl.  inter- 

section X3^(l6). 
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r Ar 
Al Al Ar 

Al ^3: ^ 

2 
3 

2861 

fi34fif?4S480 

mi 

211631filfffl 

1 
240 

118421 
70543872 

3771 
181440 

i 
1008 

71 

564 240501 
35840 27fi4« 

with /* = 3(1 - 'i/'6)/? p = 36ipe 

d r = 0 1 2 3 
1 512 0 0 0 
2 9728 0 0 0 
3 416256 0 0 0 
4 25703936 14752 0 0 
5 1957983744 8782848 0 0 
6 170535923200 2672004608 1427968 0 
7 16300354777600 615920502784 2440504320 86016 
8 1668063096387072 123699143078400 1628589698304 2403984384 

Table 13: The weighted sum of BPS states nr
d for the compl. inter- 

section X2,2,2,2(l8). 

The indices of the Picard-Fuchs system is 4 fold degenerate at ^ = 
0 and we find the leading behavior from the ambiguity 

r ^0 A Al Al Al B[ Br
2 

2 
3 

133741 

1103»0 

1014686023080 

M$i 

1859» 
1698693120 

3027¥0 

13762560 
1492 

64512 
1 

1008 

5377 

218lJ§5 
221184 

23115884 
2835 

with n = 4(1 — '08)/i and p = '08216. It would be very interesting to 
find the analog of the c = 1 model at the p = 0 singularity. 
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10    Appendix A: Low degree classes on the 
del Pezzo Surfaces 

d g = 0 classes 
1 d  A|(l;l*) *| (2;P) *| (3;2,1°) '| (6;3,2') (5;20,la) (4;2V*) *| 
2 (1;1) *|(2;14) 4|(3;2,1&) *|(5;2M) (4;2M4) '| 

(11;47,3) (10;44,34) (9;42,35,2) (8;4,34,23) (8;37,1) (7;4,3,26) (7;34,23,1) 
(6;32,24,12)(5;3,23,14)(4;3,17)8| 

3 (1;0) u| (2; I3) a|(3;2,l4) *>|(5;20) (4;2M3) »| 
(8;37) (7;34,23) (6;32,24,1) (5;3,23,13) (4; 3,16) 7| 

4 (2;la) ^|(3;2,13) 4|(4;2M*) ft|(6;3x,24) (5;3,2Ma) (4;3,1*>) 0| 
5 (2;1) ^(S;^!2) 3|(4;23,1) 4|(5;3,23,1) (4; 3,14) 5| 

(8;4,35) (7;4,32,23) (7;35,1) (6;33,2}1
2) (6;4,24,1) (5;32,14) 6| 

6 (2;0)u| (3;2,1) * (4;2*) *| (5;3,23) (4;3,1*) 4|(7;3&) (6;3a,2,l) (6;4,24) (5;3M3) &| 
7 (3;2)M(4;3,1-)*|(6;3-,2)(5;3M-)4| 

(8;42,33) (7;4,33,1) (7;42,23) (6;4,3,2,12) (5;4,14) 5| 
8 (4;3,1) 2|(5;32,1) *|(7;4,3*) (6;4,3,2,1) (5;4,13) 4| 

^ = 1 classes 
1 (3; l8)8 

2 (3;iV (9;4,3') (SiS6^2) (7;33,25) (6;3,2b,l) (5;25,13) (4;22,lb) 8| 
3 (3;lti)ti (6;3,2«)(5;2^,l^)(4;2^li')V| 

4 (3;lb)b 

(9;42,35 
(5;20,1)(4;2^,14)0| 

) (8;4,34,22) (7;34,22,1) (7;4,3,25) (^S2^3,!2) (5;3,22,14) 7| 
5 (3;14) 4 (5;20) (4;2^1a) 0| (Tja*^") (6;3^2M) (5;3,2M») 0| 
6 (3; I3) 3 (4;2M^) 4|(6;3a,23) (5;3,2M^) 5| 

(Qj^.S3) (Sj^.S2^2) (7;4,32,22,1) (6;4,23,12) (6;33,13) 6| 
7 (3;1^) :'|(4;2M) S|(5;3,2M) 4|(7;4,3^,2^) (6;4,2M) (6;3M'^) s| 
8 (3;1) M(4;2:') ^(SiS^^) 3|(6;4,28) (6;3M) 4| 

5 = 2 classes 
2 (6;2»)«| 
3 (14;5'',4) (13;54,44) (12;5',^,3) (11;4',2) (lli5,44,33) (10;44,33,2) (10;5,4,Zb) 

(9;42,3\22) (8;4,33,24) (8;36,2,1) (7;4,27) (7;33,24,1) (6;3,25,12) (5;24,14) 
(4;2,17)8| 

4 (8;3B,2) (7;33,24) (6;3,2^,1) (5;24,13) (4;2,1") '| 
5 (6;3,20)(5;24,P)(4;2,l0)o| 
6 (5;24,1) (4;2,14) &| (8;4,34,2) (7;34,2,1) (7;4,3,24) (6;P,2',r') (5;3,2,14) »\ 
7 (5;24) (4;2,13) 4|(7;34,2) (6;3^2M) (5;3,2,13) 0| 

8 (4;2,1') 3\(6;3\2') (5;3,2,1') 4|(8;4^,3^,2) (7;4,3a,2,l) (6;4,2*,1*) a\ 
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d g = 3 classes 
3 (12; 5,4') (11;4*,3*) (10; 4*, 3*) (9; 4,3°, 2) (8; 3*,2*) (7;3*,2») (6;2M) »\ 
4 (6;2')'| 
5 (11; 4-') (10; 44,3*) (9;4^34,2) (8; 3ft,l) (8; 4,3*,2*) (7;4,2C) (7;3^,2a,l) 

(6;3,24,12)(5;2M4)(4;17)7| 
6 (8;3*>) (7;3*,2d) (6;3,24,1) (5;2^,la) (4;lb)b| 
7 
8 

(6;3,24)(5;2Ma)(4;l*)ft| 
(5;23,1) (4;14) 4| (8;4,34) (7;34,1) (7;4,3,23) (6;32,2,12) (5;3,14) 5| 

9 = 4 classes 
3 (9;3»H 
4 (18;7a,6B)(17;7,6»,5:')...«| 
5 (9;4,30)(8;3S,2^)(7;3^2S)(6;2M) '| 
6 (6;2»)«>| 

(13;55,42) (12;6,46) (12;53,43,3) (n;5,4B,2) (11;52,42,33) (10;45,22) (10;5,42,33,2) 
(9;43,3,23) (Qj^.S4,!) (9;5,34,22) (8;4,33,22,1) (8;42,25) (7;4,25,1) (7;33,22,12) 
(6;3,2M3)(5;22,l5)7| 

7 (9;4^,34) (8;4,33,2:') (7;4,20) (7;3
B,2M) (6;3,2M*) (5;2M«) 6| 

8 (7;33,22) (6;3,23,1) (5;2M3)5| 
5 = 5 classes 

4 (17;6',5) (16; 6*, 5*) (15;62,5a,4) (14; 6, S4,^) (14; 5'',3) (13;54,43,3) (13;6,5,4B) 
(12;52,44,32) (11;46,3,2) (11;5,43,34) (10;5,37) (10;43,34,2) (?;4,3S,22) (8;34,24) 
(7;3,27)8| 

5 (18;8,73,54)...8| 
6 (12;5'^,45) (11;5,44,32) (10;44,32,2) (10;5,4,35) (9;42,33,22) (8;35,2,1) (8;4,32,24) 

(7;32,24,1)(6;25,12)7| 
7 (8;3&,2) (7;32,24) (6;25,1) b\ 
8 (6;20)0| 

g = 6 classes 
4 (15;6,5') (14;5°,4*) (13;53,4a) (12;5,4^,3) (11;45,33) (10;42,3B) (9;3V,2) 8| 
5 (18; 8,7,6s, 4)...8| 
6 (llj^.S) (10;48,34) (Oj^S6^) (8;34,23) (7;3,26) '| 
7 (15;63,54)...'| 
8 (10;44,32) (9;^,33,2)  (S^5,!) (S^.S2^3) (7;32,23,1) (6;24,12) e| 

11    Appendix B: B-model expression for 
r9 

The Fg can be determined by recursively solving the B-model anomaly 
equation [66]. As each contribution comes from the boundary of the 
moduli space of Riemann surfaces the result has a graph interpreta- 
tion in which each graph corresponds to a possible degeneration of the 
genus g curve into components with lower genera. In the local case the 
descendent of the dilaton decouples and only one sort of propagator 
Shi occurs. They are in one to one correspondence with the tubes con- 
necting the irreducible components, in this way each contribution of Fg 
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corresponds precisely to one boundary stratum [67] . In the global case 
one has three sorts of propagators shown below 

Propagors: 

-SlJ -Si<p .2SW 

irreducible components 

g=0      g=l g=2 

•    O     00 O— F^Cj-i) 

The following Feynman rules hold for n, m = 0,1,2.. 

F(o) = 0     F(o) = 0     F(o)       0 

The graph contribution is divided by the following symmetry factors: k\ 
for k equal (self)links joining the same vertices, 2 for each selflink 5*'*, 
£v times the order of the graph automorphism obtained by permuting 
the vertices. The generation of graphs proceeds along the line described 
for the the A-model in [67] . 

Twelve graphs contribute to F2, which were derived in [66] . Further 
we find that 193 graphs contribute to the free energy at genus 3. As it 
depends in an universal combinatorial way on the lower genus boundary 
components, which also applies more generally to non-topological string 
3 loop calculations, and we have a powerfull check via integrality of 
the BPS states on the quintic on its expression, we will give it below, 
despite its complicated nature. Let x — 24 w^h X the Euler number of 
the target space, F the genus 0 prepotential, G = Fu H = F2 and Slj, 
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5*, S the propagators of Kodaira-Spencer gravity [66] , then we found 

F3 = 2(1 + 2x)HS + x(l + x - 2x2)S2 + 2GiHSi + 

(2 + flHiS* - 2x(l + 2x)GiSSi-±(2 + Sx)GiGjS
iSj - 

i(2 + 3x - X2)G^ + ix(2 + 3x + X^F^S'S^S" + 

GiHjS" + ^H^ - (1 + 2x)GiGiSSii - (1 + 2x)GijS Sij - 

GiGjCkS'S" - (2 + x)GiGjkS
kSij - (1 + x)^*^^' + 

X(l + 2x)iJ«*5 5W + \(2 + 3x + ffFquS"^ - 

iGiGjuEFS** + \(2 + 3x + j?)FijkGlSiSkSa - 00*8*S* - 

iGiGiGuSFS* + (1 + I^^G^*^^ - IFWH^S* + 

(1 + 2x)FijkGlSSaSik + FijkGlGmSmSilSjk + 

(1 + lx)FijkGlmSmSuS^ + (1 + ^x)^HGm5'5^5^ - 

iGyGwS^S*'' + (1 + ^J^fcGjGn.S'*^*"^7 - ^GmS^Skl + 

(1 + ix)^^tolS
fc5^^ - 1(2 + 3xf x2)FijkFlmnS

kSnSilSim + 

1(1 + 2x)FijklS S^Skl + 1(2 + x)FijkimSmSijSkl + 

\FijklGmSmS^Skl + 1(1 + x)FiikFirmF„rS
rSaStoSkaSm* + 

1(2 + x)^fcFtonFP9r5fe5ip5^5to5^ + lFijWGmn5^5^5w + 

^ Z?     r* r*       cim ojn okl   i        jp     r*        Qtt QJm ckn 
-rijkUiUmnO     O    D     -t -rijk^lmn^   &     & 

TP    r* r*     Qivfi ojn ckl  i 

1(1 + 2x)FijkFlmnS SilS^Skn - 1(1 + x)FijkFlmnpSPSilS^Skn- 

lFijkFlmnGpS
pSuSjmSkn - 1(2 + x)FijkFlmnGpS

nSilSjmSkp + 

1 1 Z?     r* r<     ck oij elm   \ zp      jp        TP        cij Qks Qlm nnp nqr -rijkUlUmD   DJD       + — rijk^lmn^pqrsO J
O     ODD      — 

1(2 + 3x)FijkFlmnS
kSnSijSlm - \FijkFlmnGpS

nSipSjkSlm - 

1(2 + 3x + x2)FijkFlmn^SkSinSlm - 

1(2 + x)FijkFlmnGpS
kSipSjnSlm + ±FijklmGnS

ijSknSlm - 
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T^F^F^F^FsuS^S^S^S^S^S™ + -AFijkGlmnS
ijSknSlm + 

-^FijklmnS^SklSmn -   FijkFlmnGpS^S^SknSlm - 

-\ n      I'jro     inwi- pqr-- SLU^     ^     ^       ^     ^        ^ I       . 

 j? oij nkl nmn        ^ 
/igrijklmnd    O    D        — — 

\(2 + x)FijkFlmnvS
pSijSknSlm + 

^FijkFlmnFpqrsS
ipS"SkrSlsSmn - ^FijkFlrnnGpqS^S^SknSlm - 

^FijklFmnpqS
imS^S^S^ - 1(2 + x)FijkFlmnpS

kSilS^Smn - 

i(l + 2x)FijkFlmnS SijSknSlm - ^FijkFimnpGqS
uSjgSkpSmn - 

iFijkF^GpG^S^S^S1™ - ±FijkFlmnGpGqS
ilS"SknSmp - 

lFijkFlmnGpqS
ilS^SknS^ - ±FiikFlmwSaStmSk'Sn* + 

IF^FI^F^GSS^S^S^S^S^ + 

-F1F1     F      QWQM^fcnQlr^ms 4- Q-
1
 ijk-1-Imn1 pqrs^    O    O     O    O       -f 

\FmGmGnS
imS^Skl + ^dGmnS^S^S^ + 

 TT.., ZT, Qij qkq qlm nnp 
-t n1-ijk1 Imnpq^    o     o     O 

 F   i Fi       F      F,   qipqjsqknnlmqqr ntu 
AO    ijk-1- Lmn-1- pqr-1- stu^    >J    iJ     O      u     D      — 

 F nF        qv q1*171 ^lq^nP 4- 

\{2 + x)FijkFlmnFpqrS
nSaSimSkrSI« - 4 

\FiikFlmnpGqS
aSimSk>Sn« + izFijkFimnFpvS

rSaSimSknSM - lFijkFlmnpGgS
ilS*mSkpSn« + ^ 

\FijkFlmnpGgS
ijSkl£r'Snp + 

— TPTP       TP     C*   QW QJS Qkn elm nqr _, 
Qr ijkrlmnr pqr^1 s^    O    O     u      u      -r 

- F ■ i Fi     F    d ^il W™ ^ 9n5 qPQ 4- 

lFijkFlmnFpqrS
rSijS'mSlmSpil + ^Fi^G^nS^S^S"1 + 

_ Z71      771        771 nil QJP oks nmn nqr   , 
Q-Tijk-rimn-Tpqrsd   ODD       D      -f 

iF^F^F^S^S^S^Sr + \FijkGlmSkSijSlm - 
o z 
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jp      T? ok cij Qlm nnp 
T;1"ijkrImnp0   O    O     O       — 

JP      JP       jp      IP      oip ojs nkn nlq omt nru 
W7rijkrlmnrpqrrstu^    O    O     O    O      O       — 

IP     IP      r*     Qij Qkq olm nnp        jp     u ok oij 
-rijk^lmn^pq^    &     &     D  y — r ijktt &   OJ 

JP      J?       jp      JP      oil njm nkr nns cpq ntu 
T^rijkrlmnrpqrrstu^   O      O     O     O     O      — 

jp     jp       jp      jp     oil ojp oku omq onr ost 
Q
Tijkrlmnrpqrrstu0   O    O     O      O     O 

o 

4780 graphs contribute to F4, which starts with 

This first term comes from the graphs 

3!  .-^v   ^a-o-o-o   jo-o-oj 

i o--a-o   io-cTo    T,o--o--b 

^j a-^o     j o-b;     ] a; a;;; 

i CXJ 
&&;:• 

The contributions of the remaining graphs have been calculated and 
used to evaluate the generating function for the genus 4 curves on the 
quintic see Table 10. 172631 graphs contribute to F5. These data are 
available on request. 
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We finally report a "Ward-identity" between the correlators at genus 
3 on the quintic. 

(5^)4(1345605*F|^ - 7305(S^)2 - 8139^ 

+3364i^^i^,^^ — 3372Fjp^Fjp^7p7pG1p 

+U40F^Gl - 4Wi^(2877i^GV 
—1697i^^^) + 20184F^^(jr^) = 0. 

References 

[1] D. Ghoshal and C. Vafa, c = 1 String as the Topological Theory of 
the Conifold, Nucl. Phys., B453 (1995), 121. 

[2] 1. Ciocan-Fontanine and M.M. Kapranov, Derived Quot Schemes, 
math. AG/9905174. 

[3] E. Witten, D-Branes and K-Theory, hep-th/9810188. 

[4] M. Marino and G. Moore, Counting Higher Genus Curves in 
a Calabi-Yau Manifold, Nucl. Phys., B543 (1999), 592-614, 
hep-th/9808131. 

[5] S. Hosono, M.-H. Saito, and A. Takahashi, Holomorphic Anomaly 
Equation and BPS State Counting of Rational Elliptic Surface, 
hep-th/9901151. 

[6] W. Lerche, Introduction to Seiberg- Witten Theory and its 
Stringy Origin, Nucl. Phys. Proc. Suppl., 55B (1997), 83-117, 
hep-th/9611190; 
A. Klemm, On the Geometry behind N = 2 Supersymmetric Effec- 
tive Actions in Four-Dimensions, Proceedings of the Trieste Sum- 
mer School on High Energy Physics and Cosmology, 96, World 
Scientic, Singapore (1997) 120-242, hep-th/9705131; 
P. Mayr, Geometric Construction of N = 2 Gauge Theories, 
Fortsch. Phys., 47 (1999), 39-63, hep-th/9807096. 

[7] M.M. Kapranov, private communication. 

[8] P.S. Aspinwall and R.Y. Donagi, The Heterotic String, the Tan- 
gent Bundle, and Derived Categories, Adv. Theor. Math. Phys., 2 
(1998), 1041-1074; hep-th/9806094. 



M-THEORY, TOPOLOGICAL STRINGS ... 1529 

[9] P. Aspinwall and D. Morrison, Topological Field Theory and Ra- 
tional Curves, 51 (1993), 245; 
Yu.I. Manin, Generating Functions in Algebraic Geometry and 
Sums over Trees in "The moduli space of curves" (Texel Island, 
1994), Progr. Math. 129, Birkhauser, Boston (1995) 401-417, alg- 
geom/9407005; 
C. Voisin, A Mathematical Proof of a formula of Aspinwall and 
Morrison, Comp. Math., 104, (1996), 135. 

flOl H. Ooguri and C. Vafa, Summing up Dirichlet Instantons, Phys. 
Rev. Lett., 77 (1996), 3296-3298. 

fill P. Candelas, A. Font, S. Katz, and D.R. Morrison, Mirror Sym- 
metry for Two Parameter Models - //, Nucl. Phys., B429 (1994), 
626-674. 

[121 P. Candelas, X. de la Ossa, A. Font, S. Katz, and D.R. Morri- 
son, Mirror Symmetry for Two Parameter Models - /, Nucl.Phys., 
B416 (1994), 481-538. 

[131 D.R. Morrison and C. Vafa, Compactifications of F-Theory on 
Calabi-Yau threefolds - //, Nucl. Phys., B476 (1996), 437-469, 
hep-th/9603161. 

[141 W. Fulton, Intersection Theory, Second edition, Springer-Verlag 
(Berlin), 1998. 

[151 C. Faber, Algorithm for Computing Intersection Numbers on Mod- 
uli Spaces of Curves, with an Application to the Class of the Locus 
of the Jacobians, math.AG/9706006. 

[161 P Lu, Special Lagrangian Tori on a Borcea- Voisin Threefold, 
math.DG/9902063. 

[171 R. Gopakumar and C. Vafa, M-theory and Topological Strings-I & 
II, hep-th/9809187,  hep-th/9812127. 

[181 J. Li and G. Tian, Virtual Moduli Cycles and Gromov-Witten In- 
variants of Algebraic Varieties, J. Amer. Math. Soc, 11 (1998), 
no. 1, 119-174. 

[191 R- Pandharipande, Hodge Integrals and Degenerate Contributions, 
math.AG/9811140. 



1530 S. KATZ, A. KLEMM, AND C. VAFA 

[20] K. Behrend and B. Fantechi, The Intrinsic Normal Cone, 
math.AG/9601010. 

[21] T. Graber and R. Pandharipande, Localization of Virtual Classes, 
math.AG/9708001. 

[22] C. Faber and R. Pandharipande, Hodge Integrals and Gromov- 
Witten Theory, math.AG/9810173. 

[23] M. Kontsevich, Enumeration of Rational Curves via Torus Ac- 
tions, in "The Moduli Space of Curves", Dijkgraaf et al eds., 
Progress in Mathematics, 129, Birkhauser (Boston), 1995. 

[24] M. Kontsevich, Intersection theory on the moduli space of curves 
and the matrix Airy function, Comm. Math. Phys., 147 (1992), 
1-23. 

[25] M. Marino and G. Moore, Counting higher genus curves 
in a Calabi-Yau Manifold, Nucl. Phys., B543 (1999), 592, 
hep-th/9808131. 

[26] C. Vafa, Gas of D-Branes and Hagedorn Density of BPS States, 
Nucl. Phys., B463 (1996), 415-419; hep-th/9511088. 

[27] S.-T. Yau and E. Zaslow, BPS States, String Duality, and 
Nodal Curves on K3, Nucl. Phys., B471 (1996), 503-512; 
hep-th/9512121. 

[28] S.-T. Yau and E. Zaslow, BPS States as Symplectic Invariants 
from String Theory, in "Geometry and Physics", Proceedings of 
the Special Session on Geometry and Physics, Aarhus, Denmark, 
1996. 

[29] P. Candelas, X.C. De La Ossa, P. Green, and L Parkes, A Pair 
of C- Y Manifolds as an Exactly Soluble Superconformal Theory, 
Nucl. Phys., B359 (1991), 21-74. 

[30] R. McLean, Deformations of Calibrated Submanifolds, Duke 
preprint 96-01: www.math.duke.edu/preprints/1996.html. 

[31] F.R. Harvey and H.B. Lawson, Calibrated Geometries, Acta Math., 
148 (1982), 47; 
F.R. Harvey, Spinors and Calibrations, Academic Press, New York, 
1990. 



M-THEORY, TOPOLOGICAL STRINGS ... 1531 

[32] K. Becker, M. Becker, D.R. Morrison, H. Ooguri, Y. Oz, and Z. 
Yin, Supersymmetric Cycles in Exceptional Holonomy Manifolds 
and Calabi-Yau Fourfolds, Nucl. Phys., B480 (1996), 225-238. 

[33] C. Vafa, Extending Mirror Conjecture to Calabi-Yau with Bundles, 
hep-th/9804131. 

[34] S. Kachru, A. Klemm, W. Lerche, P. Mayr, C. Vafa, Nonperturba- 
tive Results on the Point Particle Limit of N=2 Heterotic String, 
Nucl. Phys., B459 (1996), 537. 

[35] E. Witten, Two-dimensional Gravity and Intersection Theory on 
Moduli Space, Surveys in Differential Geometry, 1 (1991), 243-310. 

[36] B. Lian, K. Liu, and S.-T. Yau, Mirror Principle I, Asian J. of 
Math. Vol., 1, No. 4 (1997), 729-763; math.AG/9712011. 

[37] B. Lian, K. Liu, and S.-T. Yau, Mirror Principle II, in preparation. 

[38] A. Givental, A Mirror Theorem for Toric Complete Intersections, 
Topological Field Theory, Primitive Forms and Related Topics 
(Kyoto, 1996), Prog. Math., 160, 141-175; math.AG/9701016. 

[39] A. Strominger, S.-T. Yau, and E. Zaslow, Mirror Symmetry is T- 
Duality, Nuclear Physics, B479 (1996), 243-259; hep-th/9606040. 

[40] D. Morrison, The Geometry Underlying Mirror Symmetry, 
math.AG/9608006; 
M. Gross and P. Wilson, Mirror Symmetry via 3-tori for 
a Class of Calabi-Yau Threefolds, to appear in Math. Ann., 
math.AG/9608009; 
B. Acharya, A Mirror Pair of Calabi-Yau Fourfolds in 
Type II String Theory, Nucl. Phys., B524 (1998), 283-294, 
hep-th/9703029; 
N.C. Leung and C. Vafa, Branes and Toric Geometry, Adv. Theor. 
Math. Phys., 2 (1998), 91-118, hep-th/9711013; 
N. Hitchin, The Moduli Space of Special Lagrangian Submanifolds, 
math.DG/9711002. 

[41] M. Kontsevich, Homological Algebra of Mirror Symmetry, Pro- 
ceedings of the 1994 International Congress of Mathematicians, 
I, Birkauser, Zurich, 1995, p. 120; math.AG/9411018. 



1532 S. KATZ, A. KLEMM, AND C. VAFA 

[42] S. Katz, A. Klemm, and C. Vafa, Geometric Engineering of 
Quantum Field Theories, Nucl. Phys., B497 (1997), 173-195, 
hep-th/9609239. 

[43] D. Guzzetti, Stokes Matrices and Monodromy for the Quantum 
Cohomology of Projective Spaces, preprint SISSA 87/98/FM. 

[44] B. Dubrovin, Geometry of 2D Topological Field Theories, Lecture 
Notes in Math, 1620 (1996), 120-348. 

[45] S. Cecotti and C. Vafa, Topological Anti-Topological Fusion, Nucl. 
Phys., B367 (1991), 359-461. 

[46] S. Cecotti and C. Vafa, On Classification ofN = 2 Supersymmetric 
Theories, Commun. Math. Phys., 158 (1993), 569-644. 

[47] Geometry and Analytic Theory of Frobenius Manifolds, 
math.AG/9807034. 

[48] P. Aspinwall and R. Dongagi, The Heterotic String, the Tangent 
Bundle, and Derived Categories, hep-th/9806094. 

[49] V. Batyrev, Dual Polyhedra and Mirror Symmetry for Calabi- Yau 
Hypersurfaces in Toric Varieties, J. Algebraic Geom., 3 (1994), 
493-535. 

[50] V. Batyrev, Variations of the Mixed Hodge Structure of Affine 
Hypersurfaces in Algebraic Tori, Duke Math. Jour., 69, 2 (1993), 
349 

[51] S. Hosono, A. Klemm, S. Theisen and S.-T. Yau, Mirror Symme- 
try, Mirror Map and Applications to Calabi-Yau Hypersurfaces, 
167 (1995), 301-350, hep-th/9308122; and Mirror Symmetry, 
Mirror Map and Applications to Calabi- Yau Hypersurfaces, Nucl. 
Phys., B433 (1995), 501-554, hep-th/9406055. 

[52] D. Cox, The Homogeneous Coordinate Ring of a Toric Variety, J. 
Alg. Geom., 4 (1995), 17, math.AG/9206011. 

[53] V.I. Danilov, The Geometry of Toric Varieties, Russian Math. 
Surveys, 33 (1978), 97. 



M-THEORY, TOPOLOGICAL STRINGS ... 1533 

[54] T. Oda, Convex Bodies and Algebraic Geometry, An Introduction 
to the Theory of Toric Varieties, Ergennisse der Mathematik und 
ihrer Grenzgebiete, 3. Folge, Bd., 15, Springer-Verlag (Berlin), 
1988. 

[55] W. Fulton, Introduction to Toric Varieties, Princeton Univ. Press, 
131 (Princeton), 1993 

[56] V. Batyrev and L. Borisov, On Calabi-Yau Complete Intersections 
in Toric Varieties, in "Higher-dimensional Complex Varieties", 
(Trento, 1994), 39-65, de Gruyter (Berlin), 1996. 

[57] I.M. Gel'fand, M. Kapranov, A. Zelevinsky, Multidimensional De- 
terminants, Discriminants and Resultants, Birkhauser (Boston), 
1994; 
L. Billera, J. Filiman, and B. Sturmfels, Constructions and Com- 
plexity of Secondary Polytopes, Adv. Math. 83 (1990), 155-17. 

[58] A. Klemm, P. Mayr, and C. Vafa, EPS States of Exceptional Non- 
Critical Strings, Nucl. Phys., B58 (Proc. Suppl.), (1997), 177-194; 
hep-th/9607139. 

[59] 0. Ganor, A Test Of The Chiral E8 Current Algebra On 
A 6D Non-Critical String, Nucl.Phys., B479 (1996), 197-217, 
hep-th/607020. 

[60] D. Morrison, Where is the large Radius Limit? Int. Conf. on 
Strings 93, Berkeley; hep-th/9311049. 

[61] P. Griffiths, On the Periods of certain Rational Integrals, Ann. 
Math., 90 (1969), 460. 

[62] E. Witten, Phases of N = 2 Theories in Two Dimensions, Nucl. 
Phys., B403 (1993), 159. 

[63] N.C. Leung and C. Vafa, Branes and Toric Geometry, Adv. Theor. 
Math. Phys., 2 (1998), 91-118, hep-th/9711013. 

[64] A. Lawrence and N. Nekrasov, Instanton sums and five- 
dimensional theories, Nucl. Phys., B513 (1998), 93. 

[65] M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, Holomor- 
phic Anomalies in Topological Field Theories, Nucl. Phys., B405 
(1993), 279. 



1534 S. KATZ, A. KLEMM, AND C. VAFA 

[66] M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, Kodaira- 
Spencer Theory of Gravity and Exact Results for Quantum String 
Amplitudes, Commun. Math. Phys., 165 (1994), 311-428. 

[67] A. Klemm and E. Zaslow, Local Mirror Symmetry at Higher 
Genus, hep-th/9906046. 

[68] D.A. Cox and S. Katz, Mirror Symmetry and Algebraic Geome- 
try, Mathematical Surveys and Monographs vol., 68, Amer. Math. 
Soc, Providence, RI 1999. 

[69] A. Klemm, P. Mayr, and W. Lerche, hep-th/9506122, Phys. Lett., 
357 (1995), 313. 

[70] Ori J. Ganor, David R. Morrison, Nathan Seiberg, Nucl. Phys., 
B487 (1997), 93-127. 

[71] W. Lerche, P. Mayr, N.P. Warner, Nucl.Phys., B499 (1997), 125- 
148. 

[72] J.A. Minahan, D. Nemechansky, and N.P. Warner, Partition func- 
tion for the EPS States of the Non-Critical E$ String, Adv. Theor. 
Math.Phys., 1 (1998), 167-183; hep-th/9707149; 
J.A. Minahan, D. Nemechansky, C. Vafa, and N.P. Warner, E- 
Strings and N = 4 Topological Yang-Mills Theories, Nucl. Phys., 
B527 (1998), 581-623. 

[73] M. Kontsevich, Enumeration of Rational Curves via Torus Ac- 
tions, in "The Moduli Space of Curves", Dijkgraaf et al eds., 
Progress in Mathematics, 129, Birkhauser (Boston), 1995; 
A. Givental, A Mirror Theorem for Toric Complete Intersections, 
Topological Field Theory, Primitive Forms and Related Topics 
(Kyoto,1996), Prog. Math., 160, 141-175; math.AG/9701016; 
B. Lian, K. Liu, and S.-T. Yau, Mirror Principle I& II, Asian 
J. of Math. Vol., 1 (1997), 729-763; math.AG/9712011 & 
math.AG/9905006. 

[74] T.-M. Chiang, A. Klemm, S.-T. Yau, and E. Zaslow, Local Mirror 
Symmetry: Calculations and Interpretations, hep-tli/9903053. 

[75] I. Antoniadis, E. Gava, K.S. Narain, T.R. Taylor, Topological 
amplitudes in String Theory, Nucl. Phys., B413 (1994), 162, 
hep-th/9307158; 



M-THEORY, TOPOLOGICAL STRINGS ... 1535 

I. Antoniadis, E. Gava, K.S. Narain, Moduli Corrections to grav- 
itational Couplings from Sring Loops, Phys. Lett., B238 (1992), 
209, hep-th/9203071 and Moduli Corrections to Gauge and grav- 
itational Couplings in four-dimensional Superstrings, NucL Phys., 
B383 (1992), 93, hep-th/9204030. 

[76] I. Antoniadis, E. Gava, K.S. Narain, and T.R. Taylor, Nucl. Phys., 
B455 (1995), 109, hep-th/9507115. 

[77] I. Vainsencher, Enumeration of n-fold tangent hyperplanes to a 
surface, J. Algebraic Geom., 4 (1995), 503-526, alg-geom/9312012. 

[78] S. Katz, D.R. Morrison, and M.R. Plesser, Nucl. Phys., B477 
(1996), 105, hep-th/9601108. 

[79] A. Lawrence and N. Nekrasov, Instanton sums and five- 
dimensional Gauge Theories, Nucl. Phys., B513 (1998), 239, 
hep-th/9706025. 

[80] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley- 
Interscience, New York, 1978. 

[81] J. Bryan, N.C. Leung, S. Katz, in preparation. 

[82] A. Beauville, Duke Math. J., 97 (1999), 99-108. 

[83] W. Lerche and S. Stieberger, 1/4 BPS States and Non-Perturbative 
Couplings in N = 4 String Theories, hep-th/9907133. 

[84] E. Witten, String Theory Dynamics in Various Dimensions, Nucl. 
Phys., B443 (1995), 85, hep-th/9503124. 

[85] M. Berschadsky, V. Sadov and C. Vafa, D-Branes and Toplological 
Field Theories, Nucl. Phys., B463 (1996), 420, hep-th/9511222 
and j 

C. Vafa, Lectures on Strings and Dualities, hep-th/9702201. 

[86] L. Gottsche, Math. Ann., 286 (1990), 193. 

[87] J. Bryan, N.C. Leung, The enumerative geometry of K3 surfaces 
and modular forms, alg-geom/971103. 

[88] A. Strominger and C. Vafa, Microscopic Origin of the Bekenstein- 
Hawking Entropy, Phys. Lett., B379 (1996), 99, hep-th/9601029. 



1536 S. KATZ, A. KLEMM, AND C. VAFA 

[89] J.C. Breckenridge, R.C. Myers, A.W. Peet, C. Vafa, D-Branes 
and Spinning Black Holes, Phys. Lett., B391 (1997), 93, 
hep-th/9602065. 

[90] R. Dijkgraaf, G. Moore, E. Verlinde, and H. Verlinde, Elliptic 
Genus of Symmetric Products and Second quantized Strings, Com- 
mun. Math. Phys., 185 (1997), 197-209, hep-th/9608096. 

[91] A. Altman and S. Kleiman, Foundations of the theory of Fano 
schemes, Comp. Math., 34 (1977), 3. 

[92] S. Katz and S.A. Str0mme, Schubert, a Maple pack- 
age for intersection theory in algebraic geometry, 
http://www.math.okstate.edu/~katz/schubert.html . 

[93] C. Vafa, Black Holes and Calabi-Yau Threefolds, Adv. Theor. 
Math. Phys., 2 (1998), 207, hep-th/9711067. 

[94] M. Kontsevich and Y. Manin, Gromov-Witten classes, Quantum 
Cohomology and enumerative Geometry, Commun. Math. Phys., 
164 (1994), 525-562, hep-th/9402147; 
P. Di Francesco and C. Itzykson,  Quantum intersections rings, 
hep-th/9412175; 
C. Itzykson, Counting Rational Curves on Rational Surfaces, Int. 
J. Mod. Phys., B8 (1994), 3703-3724. 

[95] N. Nekrasov, In the Woods of M-theory, hep-th/9810168. 

[96] B. Harbourne, Rational surfaces with K2 > 0, Proc. AMS, 124 
(1996), 727-733. 

[97] A. Erdelyi, W. Magnus, F. Oberhettinger, F. Tricomi, The Bate- 
man Project: Higher Transcendental Functions, Vol. 1. 

[98] R. Gopakumar and C. Vafa, Topological Gravity as Large N Topo- 
logical Gauge Theory, Adv. Theor. Math. Phys., 2 (1998), 413-442, 
hep-th/9802016. 

[99] R. Hartshorne, Algebraic Geometry, Springer-Verlag, Berlin, 1977. 

[100] J. Harris, Curves in Projective Space, University of Montreal 
Press, 1982. 



M-THEORY, TOPOLOGICAL STRINGS ... 1537 

[101] L. Gruson and C. Peskine, Genre des courbes de I'espace projectif, 
II Ann. Sci. ENS, 15 (1982), 401-418. 


