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Abstract 

We give an indirect argument for the matching G2 = —n*')2 

of four-flux and discrete twist in the duality between N = 1 
heterotic string and F-theory. This treats in detail the Euler 
number computation for the physically relevant case of a Calabi- 
Yau fourfold with singularities. 

1    Introduction and Summary 

Compactification on an elliptic Calabi-Yau three-fold Z with vector 
bundle V embedded in Es x Es gives a four-dimensional heterotic string 
model of TV = 1 supersymmetry. Originally the case of V the tangent 
bundle was considered which lead to an unbroken gauge group EQ times 
a hidden Es. The generalisation to an SU(n) bundle Vi gives unbroken 
GUT groups like SO(10) and SU(5) (we will in the following focus on 
the visible sector and therefore assume an Es bundle V2 embedded in 
the second Es). 

Especially interesting is the case where Z admits an elliptic fibration 
TT : Z —>• B2 which has a section a. This makes possible an explicit 
description of the bundle by using the spectral cover1 C of B2. In 
this description the SU(n) bundle is encoded in two data: a class2 

rji = 6ci — t in H1>1(B2) and a class 7 in Hl'l(C) (the latter is connected 
to the possible existence of chiral matter in these models [14], [18]). In 
this case it is also possible to give a dual description by F-theory on 
a Calabi-Yau four-fold X4 which is K?> fibered over B2 and elliptically 
fibered over S3 which in turn is a P1 fibration described by the class 
t over B2. Having an unbroken gauge group G on the heterotic side 
corresponds then to having a section of G singularities along B2 in X4. 

It was shown [26] that an anomaly mismatch in the heterotic model 
causes the occurence of a number 71$ of five-branes wrapping the elliptic 

1The details of the spectral cover method and the corresponding F-theory de- 
scription are reviewed in the appendix. 

2unspecified cohomology classes refer to B2] below B2 will often simply denoted 
hyB 
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fiber3 F 

C2(Z)=c2{Vl) + c2(V2) + n*>F (1.1) 

where the Chern classes were given by (we assume B2 to be rational) 

Cfc(Z) - 12(jci + 12 + lOc? 
/T^\ na - n 2     n 1      2 

= 02(^1^=0) - -7r*72 

c2(T/2) = 7/2^ - 40c? - 45ci* - 15i2 (1.2) 

Consistent F-theory compactification on X4 requires a number of 
space-time filling threebranes which are localized at points in the base 
B of the elliptic four-fold. The number of such threebranes was de- 
termined in [49] for the case of a smooth Weierstrass model for the 
fourfold by observing that the SUGRA equations have a solution only 
for a precise number of such threebranes, proportional to the Euler 
characteristic of the four-fold. 

In the case of an E% x E% vector bundle V, leaving no unbroken 
gauge group and corresponding to a smooth Weierstrass model for the 
fourfold it was also shown that the number of five-branes matches the 
number 77,3 of three-branes on the F-theory side whose number is given 
by 

epn_„ , 1 
24    =n^2G (L3) 

where G e #2'2(X4) is the four-flux [16] (cf. appendix). 

For various reasons one can expect G to be associated with 7; a very 
condensed version of this argument can be found in the introduction to 
section C of the appendix. Part of this association is the following 
relation 

G2 = -7r*72 (1.4) 

3 We will stick in the following to the ansatz 7]i+r)2 = 12aci which leads only to 
five-branes wrapping the elliptic fiber. In general other curves would be wrapped 
as well [22], [19]. Note that in the cases of A5 and DQ we take for Vi a product 

bundle SUfaP) x SU(n{2)) with ry^ = 2ci and rj[2) = 4ci -1. 
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which in view of the assumed equality 715 = n^ and 

n5   =   c2(Z)-c2(V1.n=o) + ^7T*'y2-c2(V2) (1.5) 

amounts to 

e(X4) - 24(c2(Z) - c2(y1;7=o) - c2(V2)) 

= 288 + (1200 + 107n - 18n2 + n3)^ 

+ (1080 - 36n + 3n2)cii + (360 + 3n)t2 

One would like now to see this equation directly on the F-theory side 
thereby proving (1.4)- 

This matching was extended [3] to the general case of heterotic 
string compactification on an elliptic Calabi-Yau threefolds together 
with a SU(ni) x SUfa) vector bundle leading to an unbroken heterotic 
gauge group which corresponds to a certain locus of degenerated elliptic 
fibers in the fourfold. This concerned the case of a pure gauge group, 
corresponding to having singularities of only codimension 1 for X4. For 
this the Euler number of the fourfold was expressed directly in their 
Hodge numbers, which were matched via a direct spectrum comparison 
with the data of the dual heterotic model; there essential use was made 
of an index-formula, computing the number of even minus odd vector 
bundle moduli. 

Here we will adopt a different approach. We will express ^4 in 

pour Calabi-Yau fourfold data without making any use of dual heterotic 
data. Now in general one will have also singularities of codimension 2 
and even 3. The former arise on the F-theory side from intersection 
curves of the surface components of the discriminant 4 (the compact 
parts of the seven-branes in the type IIB interpretation of F-theory) : 
the Ii surface and the G surface B2. They are interpreted as matter 
[11], [37]. The idea is that for example the collision EQ + h leads to an 
E7 which by the adjoint decomposition should correspond to a matter 
hypermultiplet in the 27 of F6. On the heterotic side they arise from a 
similar condition on the cohomology of the bundle which should lead to 

4as in the end we want to make a comparison with a dual perturbative (up to the 
five-branes) heterotic model we consider no more general discriminant configurations 
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matter and is non-trivial along certain curves where the spectral cover 
intersects the base (for one class of matter curves). In certain cases 
(given in the main part of the paper below) of G one can tune the class 
t resp. the bundle so that such an intersection does not occur, i.e., so 
that one has only singularities in codimension one and only the case of 
a pure gauge group. In connection with the appropriate conditions one 
is also lead to a certain lower bound for the "instanton number" of the 
vector bundle conjectured in [48]. This is described in section 2. 

In general one will have the matter curve in B = B2 and for the 
A and D groups G even two of them, called h and P below, which 
intersect each other in a codimension three locus, a number of points in 
B. The corresponding stratification of the discriminant will allow us to 
compute the Euler number of the fourfold by adding up the parts with 
singular fibres. The corresponding computation in 6D, i.e., for Calabi- 
Yau threefolds is described in section 3. Essential is the consideration of 
the cusp locus C — (/1 = 0 = gi) inside the h surface component Di (of 
the discriminant surface D = (4/3 + 27g2 = 0)) which is approximately 
given by 4/f + 27gf = 0 where in /i,#i are split off the parts of /, g 
causing the G singularity. This is exact for the Ek series; for the D4+n = 
I* and In series further n powers of z, the coordinate transversal to Bi 
in the Hirzebruch surface JB2, can be extracted out of iff+27g2 and one 
has actually the equation of divisors Di+nr = (4/f + 27gl = 0) where 
r is the class of Bi in B2. In those cases one finds that the naive cusp 
set C0id = (/1 = 0 = gi) (zero dimensional in the 6D case) contains 
actually a number x of points of the Bi line (lying on one of the matter 
loci given by a divisor h) which are not cusp points5 and have to be 
taken out of the cusp set so that the true cusp set is6 C = C0id — xhr. 
This x is evaluated as the intersection multiplicity of /1 and gi along 
h and computed via their resultant. Moreover not only elliptic fibers 
with cusp singularities y2 = x3 lie in the fibers over C but C is also a 
locus of 'intrinsic5 cusp singularities for the Di locus. So in 6D one has 
then to apply the usual Pliicker formulas to Di. 

Our general approach in 4D is described in section 4- Here we also 

5In some cases (As^A^^A^) other singularities arise at these points (tacnodes 
and even higher double points). 

6note that throughout the paper cohomology classes like h G iJ1'1(^2) are 
identified with their pullbacks under TT SO that here for example is meant C — 
Coid-x^h-r) 
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give the heterotic expectation for 24nd (in the cases of G = Ai and 
A2 we give the formula for C2(V) for V = E7 or EQ bundle in the 
appendix). In section 5 we develop new "Pliicker formulas" for the 
now relevant case of a surface Di having a curve of cusp (or higher) 
point singularities. These formulas are not just adiabatic extensions of 
the usual formulas for singular points on a curve. Actually the story is 
somewhat more complicated as one also has to treat the case of curves 
of tacnode point singularities (where a second blow up is needed) which 
occur in some cases at the collision of the Di surface with the G surface 
B2 along the h curve. Then we go on to the codimension three loci in 
section 6. There are two types of codimension three loci: the ones 
related to enhancements of the fiber at the intersection of the matter 
(=enhancement) curves and the intersection of the cusp curve C with 
B2, (because of the precise evaluation of x it turns out that these are 
actually proportional as cohomology classes) and the ones related to 
point singularities of Di. In the final section 7 we use the techniques 
accumulated so far to actually compute the Euler number of X4 and to 
show that (with suitable assumptions) it equals 24^5 from the heterotic 
side where 7 = 0 is assumed, thereby proving 1.4. 

The appendix contains the explanation why one is led to expect equ. 
(1.4) in a general framework and reference material pertaining to the 
relevant facts about heterotic and F-theory N = 1 models. 
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2    The lower bound on 77 

This is a necessary bound on "how much instanton number has to be 
turned on to generate/fill out a certain SU(n) bundle", or speaking in 
terms of the unbroken gauge group G (the commutator of SU(n) in 
Es) "to have no greater unbroken gauge group than a certain G". It 
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is treated here as a warm up because it is related to the consideration 
of singularities along just B2 and so in codimension one only7 (the 
case that Di and B2 are disjoint) versus singularities in even higher 
codimension (like the matter curves from the intersection of Di and 
B2). We will assume that G is an ADE group.8 

2.1    F-theory arguments 

Let us recall the situation in six dimensions. There the easiest duality 
set-up is given by the duality of the heterotic string on K3 with in- 
stanton numbers (12 — ra, 12 + m) (and no five-branes) with F-theory 
on the Hirzebruch surface Fm [47]. The gauge group there is described 
by the singularities of the fibration and a perturbative heterotic gauge 
group corresponds to a certain degeneration over the zero-section Co (of 
self-intersection — ra): for example to get an SU(3) one needs a certain 
A2 degeneration over Co available first for ra = 3; in general this means 
that the discriminant divisor A = 12ci(i?m) has a component S(G)CQ 

where 6(G) is the vanishing order of the discriminant (equivalently the 
Euler number of the affine resolution tree of the singularity), giving 
also the relation ra < ^tc) ^or ^ realization over a Fm to have no 
singularity worse than G. The last relation follows (cf. [48]): from the 
fact that after taking the Co component with its full multiplicity 5(G) 
out of A the resulting A' = A — 5(G) Co has transversal intersection 
with Co and so A' • Co > 0, leading with ci(Fm) = 2Co + (2 + ra)/ to 
the mentioned result. 

So the instanton number 12 — ra to give a G gauge group has to 
be 12 — ra > 12 — 12^tG) = (6 — i2zJW)ci(£i) with -Bi the common 
P1 base of the heterotic K3 resp. the Fm. From this it was conjec- 
tured in [48] that a similar bound could in four dimensions look like 
the generalizations of both sides of the six-dimensional bound, i.e., in 
view of the fact that the (12 — ra, 12 + ra) structure generalizes in four 
dimensions to TJI — 6ci —t^r]2 = 6ci +1 (for this cf. the anomaly can- 
cellation condition C2(Vi) + 02^2) + ajF — C2(Z) and its component 
WiO' + ?720" — 12ci(j concerning the classes not pull-backed from HA(B) 

7up to the cusp curve in Ci 
8The 77 bound is treated in a toric framework in [10]. 
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for the case of an A model with WB = 0) 

"^-i^W* <2-7) 

Let us now first prove this in the A model with WB = 0 and then 
include a non-zero WB- For this recall that the association in six dimen- 
sions of the heterotic (12—m, 12+ra) with Fm on the F-theory side gen- 
eralizes [26] to the association of the heterotic rji = 6ci —tJr)2 = 6ci +1 
with the following structure of the F-theory base B3 as a P1 bundle 
over the common (with the heterotic side) base B = B2. Look at the 
P1 bundle as projectivization of a vector bundle O © T with T a line 
bundle over B of Ci(T) = t (this generalizes the twisting condition 
in the Hirzebruch surface). To make actual computations let us in- 
troduce homogeneous coordinates a, b which are sections of (9(1) and 
0(1) ® T respectively, where (9(1) is the 0{l) bundle on the P1 fibers 
of ci((9(l)) = r, say, and r(r +1) = 0 as a, b have no common zeroes 
(the disjointness of the zero-section and the section at infinity in the 
Hirzebruch surface case). Adjunction gives then 

Cl(B3) = cl + 2r + t (2.8) 

and the condition 

(12c1(B3)-5(G)B2)B2>0 (2.9) 

gives with B2 — r that 

120! + (8(G) - 12)* > 0 (2.10) 

resp. formulated in 771 = 6ci — t the bound to be proved. 

Now let us include the effect of a non-zero WB- From six dimensions 
one knows that a heterotic five-brane corresponds to a blow-up in the F- 
theory base. So here we have to consider the impact of the ruled surface 
S (in the thereby modified B^) over WB in B = B2. Its contribution is 

ci(B3) = c1(B3)-5 (2.11) 

leading after intersection with B in the inequality above to a term —WB 

on the left hand side or +WB on the right hand side. On the other hand 
one has now that 7/1 + WB = 6ci — t (we think already of the case 772 = 0) 
so that the final bound is unchanged 

Vi + WB > (6 - 12^
2

6{G))ci + WB (2.12) 
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2.2    Heterotic arguments 

As the AD bound was guessed from a 6D expression, let us point out 
that it is also possible to see the bound from an adiabatic argument. 
Namely, assume that B2 is the adiabatic extension of a 6D base J5i, 
i.e., that B2 is a Hirzebruch surface Fn. Now as remarked in [48] one 
has from the investigation of [27] that one of the inequalities 77 > i • Ci 
holds for some i in 2,... n. Restricting to a fibre / = P1 of Fn, i.e., 
restricting to a K3 fibre of Z, one gets from / • Ci(Fn) = 2 and the 6D 
bound that the relevant i is the same as occurring in 6D if one writes 
there the bound as proportionality to ci(-Bi) = 2. 

Yet another argument starts from the observation that the class 
ncr + T? of the spectral cover should be effective, so its image —nci+rj in 
the base should be effective too. Now n itself is equal to the 6 — 12_

1^G^, 
where 5(G) = 11 — n, for n = 2,3 , respectively equals the next bigger 
integer for n = 4 and is even greater (and so implying the lower bound 
from the stronger spectral cover effectiveness argument 77 > nci) for 
higher n. 

3    The three-dimensional case 

Before coming to the actual computation of e(X) let us briefly review 
the three-dimensional situation, i.e having a Calabi-Yau three-fold Z 
which is elliptically fibered over a two-dimensional base B2. For that 
we reconsider first the case of having a smooth Z, i.e the elliptic fiber 
does not degenerate worse than Ji (resp. 77 at the cusp points) over 
the discriminant!). Then we proceed and consider the case where the 
elliptic fiber has a G-singularity (G will be always one of the ADE 
groups and we will always be in the split case of [11]) localised over a 
codimension one locus in £2. In our set-up B2 will be a Hirzebruch 
surface Fn, i.e., a Pl fibration over Bi — P1. Note that apart from 
G = E$ where n = 12 (so we are in the first column of table A.l 
of [13]) we restrict ourselves to n = 0,1,2 ( the first three rows of 
the table mentioned). (Because of our interchange (compared to the 
usual convention) of the bundles one has strictly speaking to put n = 
0, —1, —2 in the formulae below.) 
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The fiber enhancement is given as follows: the matter loci are spec- 
ified in [11] and [37] relates matter and fiber enhancement (intuitively 
one may think for example of the 27 matter locus of EQ as located at 
the E7 fiber enhancement points given by the collision of the J56 line B 
and the Ii curve Di). 

For background and notation of the elliptically fibered geometry cf. 
appendix. 

3.1    Smooth case 

In case that B is two-dimensional, D is a curve in B2 of class D = 
12ci(I?2)- The three-dimensional Calabi-Yau Z over B2 is described by 
a smooth Weierstrass model, so one has only type Ii (and //) singular 
fibers over D which contribute to x(Z)' The idea of an Euler num- 
ber computation from the elliptic fibration data is of course e(Z) = 
e(sing. fiber)e(Z)). Since D is a curve we have —D{D — ci(i?2)) = 
—132^ (where Q = Ci(B2))- But D itself will be singular at those 
points where the divisors associated to the classes F = 4CI(JB2) 

and 
G — 6CI(JB2) collide, i.e., at F • G — 24cl points. At these points D de- 
velops a cusp and the elliptic fiber will be of type II. Using the standard 
Pliicker formula, which takes the double points and cusps into account 
(cf. [30]), one gets e(D) = -132c? + 2(24cf), and so we get 

e(Z) = e(/i)(-84c5 - 24c?) + e(//)(24c?) = -60c?. (3.1) 

3.2    Singular case 

Now assume that Z has a section of G-singularities localised over the 
base curve in the Hirzebruch surface Fn = B2. Consider in Fn the 
two rational curves given of self-intersection — n resp. +n given by the 
zero section S^ and the section at infinity S^ = So + nf of the P1 

bundle. Let us localize the G fibers along 5o, where we have an eye 
on a dual perturbative heterotic9 description. Now, we can decompose 

9we will have 12 — n resp. 12 -f n instantons on the heterotic side corresponding 
to So resp. Soo; we put the greater number into the second bundle where we want 
to span an E$ bundle 
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the discriminant D into two components: D — Di + D2, where Di 
denotes the component with generic Ii fibers and D2 has G fibers. 
Each component is characterized by the order of vanishing of some 
polynomials as D itself. Denote the class of D2 by D2 = CSQ, resp. 
F2 = aS'o and G2 — bSo. With the canonical bundle of the Hirzebruch 
surface KFn = -250 - (2 + n)f we get Dl = (24 - c)5o + (24 + 12n)/, 
resp. Fl = (8 - a)5o + (8 + 4n)/ and d = (12 - 6)5o + (12 + 6n)/, so 
describing the locus of Ii singularities. 

Since only singular fibers contribute to x(Z), we get e(Z) = 
e(Di)e(Ii) + e(So)e(G). Now Di is a curve in the base, which has 
cusp singularities at F1G1 = 192 + (6n — 12) a + (4n — 8)6 — abn 
points, so applying the standard Pliicker formula, we find e(Di) = 
-D1(D1 + KFn) + 2F1G1 = -1056 + (46 - 23n)c + c2n + 2F1Gl. The 
cusps contribute with e(II)FiGi to e(Z); also we have to take into 
account that the Di branch will intersect the branch of G-singularities 
^o in a number of points (which will modify the cusp set F1G1 for 
G = In,In)' 

e(Z) = e(Ii) I e(A) " e(D1 n So) - F^) 

+ e(II)FiGi 

+ e(G)((e(So)-e{D1nSo) 

+ Y,e(GrhWi) 
ieM 

= -480 + (18n - 36)a + (12n - 24)6 + (48 - 23n)c 

+ (c2 - 3a6)n + ^ e(i) ( e(G"n/l) " e(Gf) " ^        (3-2) 

where M is the set of components of the intersection of Di and SQ. For 
example, for A* = I5 one has Z?i5o = 4/iCl_t + Psci-st, so A^ consists 
of h and P; further e(h) = 2 - n, e(P) = 16 - 3n and e(G) = 5, 
e(G^n/l) = 6 and e(Geph) = 7 corresponding to the generic 1$ fibre, the 
/6 enhancement fibre and the D5 enhancement fiber. 

Let us now give a number of cases which illustrate the above for- 
mula. To do so we proceed as follows: first, we read off the necessary 
information about the base geometry from the discriminant, then we 
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compute the the Euler characteristic of Z and compare our results with 
the heterotic string side. 

3.2.1    E^ir) singularity 

From the discriminant of Z 

A = ^lo(5(2i2-„)(^2) + 0(z1
2)) (3-3) 

we learn that the D\ locus has (12 — n) double points which contribute 
to e{p^) and which lying on the intersection points of Di and ^o, so we 
have to apply the Pliicker formula for curves which leads to a 2(12 — n) 
contribution to the Euler number of D\. Further Fi5o = 8 and G^o = 
(12 — n) and the Euler number of Z is given by 

e(Z) = -240 - 60n (3.4) 

Let us compare this result with the heterotic string side. There we find 
dim.M12+n(£8) + dim.Mi2-n(S77(l)) + h^{KZ) = 144 + 29n which 
contribute to the number of hypermultiplets further we have 248 vectors 
and 13 — n = l + 12 — n tensors satisfying the gravitational anomaly 
equation 273 -144 - 29n + 248 = 29nr. This leads to the prediction for 
/i2,1 resp. h1,1 of the corresponding F-theory model h2,1(Z) = 152+28n, 
hl^(Z) =8 + 2 + 1 + 12 - n = 23 -n giving x(Z) = -240 - 60n which 
is in agreement with our computation above. 

3.2.2    Es
7{Iir) singularity 

Here the discriminant is given by 

A = ^(4/8
8_B(^) + C?(«1)) (3.5) 

telling us DISQ = 3(8 — n) so that we should expect an enhancement at 
(8 - n) points, i.e., e(A n So)(e(Gen/l) - e{G) - 1) = (8 - n)(e(//*) - 
e(IIP) - 1) = 0.   But actually10 the fibre over these points is not11 

10as pointed out by Aspinwall [7] 
11 although a generic slice through the singularity might one lead to believe it 

looks like i^; but the resolution of the threefold will not give the full E$ when one 
does the blow-up explicitly (cf. [43]) 
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of Kodaira type //* (whose affine diagram is of Euler number 10) but 
consists of a chain of 8 P^s (which is not a Kodaira fibre) and has Euler 
number 9 giving an —1(8 — n) contribution to the total Euler number 
of Z. Thus we find (note also that FISQ = (8 - n), GISQ = (12 - n)) 

e{Z) = -284 - 56n (3.6) 

Prom the heterotic side we get 

dimMu+niEs) + dimMn-n{SU{2)) + ft1-1 (#3) 

= 153 + 2Sn = nH   (3.7) 

so that TIH = 153 + 28n and rty = 133 satisfying the anomaly equation 
244 +133 = 153 + 28n + f (8 - n) and giving h2>x{Z) = 152 + 28n and 
/i1'1(Z) = 10, thusequ. (3.6). 

3.2.3    El{IV*) singularity 

A = z1
8(27%

4_n(z2) + (!?(z1)) (3.8) 

so we expect e(Di n 5o) = DISQ/A = (6 — n) collisions between the 
IV* and Ii fiber, further we have FISQ = (8 — n) and GiSo = 2(6 — n). 
So Katz/Vafa collision rules give e(Di n So)(e(Genh) — e(G) — 1) = 
(6 - n)(e(Iir) - e(IV*) - 1) = 0 and we find 

e(Z) = -300 - 54n (3.9) 

which can be checked on the heterotic side: dim.Mi2+n(^8) 
+ dimMi2-n{SU(3)) + h1>l(K3) = 160 + 27n = nH and nv = 78, satis- 
fying 244+78 = 160+27n+27(6-n) and leading to /^(Z) = 159+27n 
and/i1'1(^) = 9. 

3.3    A subtlety concerning the cusp set 

Before we will proceed and consider some /* and In examples, we have 
to make a digression concerning the cusp set in these examples. 

The reason for that is that, contrary to the case of the E^ series, 
now the Kodaira values a and b in / = fi + ar, g = gi + br do not 
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lead by themselves to the value c; instead they would always lead to 
IQ and IQ. TO get actually a higher n one has to tune the occurring 
expressions /i, gi so that in the discriminant n more powers of z (the 
local coordinate transversal to Bi) than naively expected (i.e., 6 for the 
D case and 0 for the A case) can be extracted. 

Recall that we have (zi is the base variable of divisor r) 

/ 
/ (21,22)     =     2L^/8_n(4_j)(^2) 

i=a 

J 

g{ZuZ2)     =     ^^0i2-n(6-i)(*2) (3-10) 
j=b 

(Cf.   [11]). 

Let us consider this in the example of D5 where (a, &, c) = (2,3, 7) 
and 

D~z6'(4/i3 + 270?) (3.11) 

But as we have to force a z7 the coefficients of z6 have to cancel which 
leads to the conditions /4Cl_2i ~ ^Li-i and dea-st ~ hla-t'i furthermore 
from the split condition (to get really E6 and not JP4) one gets gec1-2t + 
/4ci-t^2ci-t = tfici-t- Altogether this leads to an equation for D 

D ~ z^hl^-t + 0{z)\ (3.12) 

Similarly for /s, say, one has (a, 6, c) = (0,0, 5) and again the cancel- 
lation of the leading terms (there are now higher cancellation conditions 
as well) leads to /4Cl_4£ ~ h^^ and #6ci-6* ~ h^-v AH the conditions 
including the split condition lead to a description by four further rel- 
evant sections besides hCl-U namely fy^-u Qsa-u ha-u 96ci-t and a 
discriminant 

D ~ z'ht^Ps^-zt (3.13) 

So the fact that we have to enforce a higher power of z to be 
extractable leads to the cancellation conditions which come down to 
fir = 2h2c1-u  9ir = 3/i2ci-t for the /* series (for n > 0) and to 
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fir = 4/iCl_t5 gir = 6/iCl_t for the In series (for n > 0). This fact then, 
that fi and gi have a component h in common, changes the actual cusp 
set from figi to fiQi — x - h where x is the intersection multiplicity of 
fi and gi at h (as computed by the vanishing order of the resultant) 
which counts the number of times h lies in the intersection product. 
So to compute x we have to determine the fi and gi polynomials, i.e., 
express them in local data near the collision point Dir. This can be 
done by using the more general Weierstrass equation 

y2 + aixy + asys x3 + a2X2 + a^x + ae (3.14) 

where the a/s are locally defined polynomial functions on the base as 
/ and g (for details see [11]). Further one can express the / and g 
polynomial in terms of the a^'s 

/ = -^g((a? + 4a2)2 - 24(0103 + 204)) 

1 

864 
(-(a? + 4a2)3 + 36(0,1 + 402)(0103 + 204) - 216(a^ + 4a6)) 

(3.15) 

The local structure (orders in z) of the c^'s is given by [11] (we are 
always in the split case) 

G Oi ^2 ^3 04 Oe 

h 0 0 1 1 2 

hk+i 0 k k + 1 2k+ 1 

hk 0 k k 2k 

I*o 1 2 2 4 

I*i 1 2 3 5 

1*2 1 3 3 5 

The /i-locus, related to the relevant enhancement, is given for the / 
series by ai (with the exception of I2 where not hCl-t but #201-2* is 
relevant and where the corresponding enhancement locus is given by 
62 = ai + 4a2) and for the /* series by 0,2 for n > 0 and by a^ for 
n = 0. This is actually refined with a corresponding z power according 
to t = a2,i = 0,2/z for example for D5 (cf. [11]). 
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Concerning the value of x one finds that for the In series (with two 
exception: x = 3 for n = 2, but this would give x = 6 if H were h2 thus 
fitting the pattern of the / series, and x = 8 for n = 3) with n = 4,5,6 
it is given by x = 3n and for JQ, /*, /^ it is given by x = 0, 2, 3. 

Furthermore we have to note that there is another twist in the 
story which comes from the fact that Di will have a tacnode or an even 
higher double point when colliding with r = So for the cases 1^ is, 1$ 
at the points on Di = r = So of h, that is a singular point of the form 
tm + z2 = 0 with m = 4 (tacnode, for 74) resp. m = 6 for /s, /6 (after 
suitable coordinate change). 

Group fl,gl sing, at t X 

/2 

-m{-tz + imz-imz2) 
— 3 

h -^((t* + Azf - 24(te + 2Z2)) - ^(-(t2 + 4^)3 

+36(i2 + 4«)(te + 2^2) - 216(^2 + 4^3)) 

— 8 

h -i((*2 + 42)2 - 24(^2 + 2z2)) - &{-{? + 4*)3 

+36(i2 + 4^)(^2 + 2z2) - 216(5^4)) 

*4 + u2 12 

h -^((t2 + 4*)2 - 24(^2 + 2^)) - ^(-(t2 + 4^)3 

+36(i2 + \z)(tz2 + 223) - 216(z4 + 4^5)) 

i6 + *;2 15 

h -i((i2 + 4*)2 - 24(^3 + 2,3)) - ^(-(i2 + 4^)3 

+36(i2 + 4z)(te3 + 2^3) - 216(5^6)) 

t6 + z;2 18 

II -i((z2+4z)2-24(z3+2^2))A2-3|i(-(^ + 42)3 

+36(^2 + 4^)(23 + 2iz2) - 1080z4)/^3 

— 0 

11 -^((z2 + Atzf - 72z3)/,2 - gfeH** + 4te)3 

+108(22 + 4te)23 - 216(24 + 425))/z3 

— 2 

1*2 
_i((^ + 4^)2_24(24+2^3))A2__i_(_(22+4i2)3 

+36(02 + 4te)(z4 + 2z3) - 216(z6 + 4z5))/^3 

3 
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3.3.1    Dim) singularity 

A = 4((htn + <lln)(hl-n + ^I-nX^-n + ^In) + 0(z)). (3.16) 

Here we find DISQ/Q = (4 — n) intersection points between the 1% and 
the Ii locus. Further we have FISQ = 2(4 — n) and Gi5o = 3(4 — n). 
Since we have no additional corrections from the cusps (x = 0) and 
assuming the Katz/Vafa collision rules applies in the form e(Gfnh) = 
e(G) + 1 we find 

e(Z) = -336 - 48n. (3.17) 

Now let us see which prediction comes from the heterotic side. There 
we find for the number of hyper-multiplets 3 • 8(4 + n) — 28 = 68 + 24n 
and additional ones coming from dimQ(A^^+n2)) + h1>1(K3) =88 + 20 
giving a total n# = 176+24n and with ny = 28 vectors we find that the 
anomaly equation 244 + 28 = 176 + 24n + 3 • 8(4 - n) is satisfied. Thus 
we find h2>l(Z) = 175 + 24n and /^(Z) = 7 and so e{Z) = -336 -48n 
in agreement with our F-theory computation. 

3.3.2    Ds
5(Il) singularity 

^^zKhl-nti-n + Oiz!)). (3.18) 

We have DXSQ = 3(4-n)+2(6-n) and Frfo = 2(4-n)? G^o = 3(4-n) 
and further we have to take into account the change of the cusp set since 
x = 2, i.e., we find C = FiGi — 2(4 — n). Assuming the Katz/Vafa 
collision rules we get 

e(Z) = -312 - 52n. (3.19) 

Now the heterotic side gives dimQ(A^^+n2)) + h^KS) = 66 + 20 
hypers resp. (4 + n)16 + (6 + n)10 - 45 = 79 + 26n hypers so UH = 
165 + 26n and rty = 45 satisfying the anomaly cancellation 244 + 45 = 
165 + 26n + 16(4 - n) + 10(6 - n) and leading to h2^(Z) = 164 + 26n 
resp. h^iZ) = 8 thus e(Z) = -312 - 52n. 

Let us give for later reference the equation for the Di part of the dis- 
criminant; here we will already use the 4D notation so that for example 
the degree 4 — n becomes the class 2ci — t. 
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Now Di is given by h2Cl_tq^Cl_t-\-0(z) = 0. Let us make the accom- 
panying12 term of the power z explicit in h^_tqlCl_t+Sud-Atz+0(z2). 
Explicitely one finds with (using the notation fc := fici-iu 9% •'= 96ci-it 
and denote our former fi,gi by Fi,Gi if there is change of confusion) 

Fl = Js{'h2 + zfl + z2fo) 

that 

32 • 864 (AFf + 27G?) 

= z(2h3q2 + (-^fih2 + 2glh
z + 3/o/i4 - Zfthq2 + q*\ z 

+ (A3 - 3/i^i/i - 6AM2 + 2M3 + 25i92)^2 

+ (SAVo + P? - 3/^o/i - 3/o2/i2 + 2^o?2)^3 

+ (3/i/o2 + 2<Mo)*4 + (/o3 + SoV) (3-21) 

so that 

?i2c1-4t = h2 (--Af
2 + 2g1h + Sfoh2) - Sfrhq2 + <?4-        (3-22) 

3.3.3    £>2(J|) singularity 

As explained below one finds the following discriminant structure (with 
A = 32 • 864(4/3 + 27^2)) 

A = z8
1(h2_nPln + 0(z1)). (3.23) 

Note that in this case we take for Vi a product bundle SU(2^) x 
SU(2W) with r]^ = 2ci and 7/(2) = 4ci - t (this is the case r = 0 of 

[11]). 

We have D^o = 2(4 - n) + 2(8 - n) and F^o = 2(4 - n), Gi5o = 
3(4 — n) and further we have to take into account the change of the 

12one sees from r2 = — rt that for ascending powers i of z also the t coefficient 
rises and so the degree of the accompanying term changes as 12ci — (12 — i)t, keeping 
always (including the overall z7) 12ci - (12 - i)t - it = 12ci - 12t = Dr 
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cusp set since x = 3, i.e., we find C — Fid — 3(4 — n). Assuming the 
Katz/Vafa collision rules we get 

e(Z) = -276 - 57n. (3.24) 

Now the heterotic side gives dimQ(A^i+n2)) + ft1'1 (#3) = 36 + 20 
hypers resp. (4 + n)16 + (8 + n)12 — 66 = 94 + 28n hypers so UH = 
150 + 28n and riy — 45 satisfying the anomaly cancellation 244 + 28 = 
150 + 28n + 32|(4 - n) + 12(8 - n) and leading to h2±{Z) = 149 + 28n 
resp. /^(Z) = 9 thus predicting e{Z) = -280 - 56n. 

The further necessary contribution —1(4 — n) is explainable as fol- 
lows: the enhanced fibre over these points is not (although a generic 
slice through the singularity might one lead to believe it looks like 
£7; but the resolution of the threefold will not give the full Ej when 
one does the blow-up explicitly a la Miranda) of Kodaira type ///* 
(whose affine diagram is of Euler number 9) but consists of a chain of 
7 P^s (which is not a Kodaira fibre) and has Euler number 8 giving an 
-1(4-n). 

One finds with 

Fi   =   ^(-h'+zh + z'fo) 

Gl   =   s64^h3 + z92 + ^9i + ^9o) (3-25) 

that the condition to have c = 8 leads to 

92 = —hh (3.26) 

and to get the 'split' 50(12) situation (with parameter r = 0) one has 
[11] to introduce q = q^a-t and u = U2c1 and to impose the conditions 

fi   =   q + hu 

Qi   =   pu (3.27) 

(note that [11] have a^ ~ Fi, CLQ^ ~ GI). This gives 

A ~ z8 (-^2 (/f - ^h - 4M2) + O(s)) . (3.28) 

The identification a^ — 4a2,ia6)5 of the second enhancement locus given 
in [11] shows that for fQ = \u2 one has /f — \hgi — 4/o/i2 = (q + hu)2 — 
2hqu - u2h2 = q2 =: P2. 
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3.3.4    Al^Ik) singularity 

We consider now the Ik series for k = 2,3,4,5,6 where the leading term 
of the discriminant is given by z2Hl_2nP16_6n for /2, by 2:3/^_nP18_6n 

for I3 and by zkh2_nPie-(8-k)n for Ik with k = 4,5,6. One has always 
FSo = 4(2 - n), GSo = 6(2 - n) and Drfo = 4(2 - n) + (16 - (8 - k)n) 
and the cusp set is given by C = FiGi-x{2-n) with x the intersection 
multiplicity of /i and gi at /i = 0. Including the additional singularity 
contributions (tacnode, etc.) at the /i-points of Di n r (r = JBI = So) 
for /4, /s, /e considered below one gets 

G x{z) 

h -420 - 24n 

h -384 - 36n 

h -352 - 44n 

h -320 - 50n 

h -288 - 54n 

Note that the Euler numbers (cf. [13]) match with the heterotic expec- 
tations for the spectrum. 

Now let us look at the tacnode (and higher double point) singu- 
larities of Di at h mentioned above (cf. in the following the explicit 
discriminant forms given in the appendix). 

Note that on h the equation of Di is given by (e := /2 + H2) 

-\e2{hA - 2h2Hz + (H2
 - U)z2) + 0(zs) = 0. (3.29) 

So the fact that we do not have a complete square structure in the 
leading terms (because the expression |e) shows that we have a generic 
tacnode structure at /i, in contrast to the cases 1$ and 1$. So the 6D 
Euler number contribution will be +4 — 1 = 3 (taking into account 
that one has to go back to the singular model) at each of the (2 — n) 
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intersection points of the h component of the intersection of Di with 
the Bi line. 

Note that near h the equation of Di is given by (with e := fiH + q2) 

- 3Hq2(hA - 2h2Hz + H2z2) + (-H2{2g1H + 3f2) + ^e2) zs 

+ (fZ + 3g1e)zA+g2z6 = 0. 

So the complete square structure of the leading terms shows that we 
do not have a generic tacnode structure, just as for /6 but in contrast 
to the case I4. If we replace the variable z by w := Hz — h2 the terms 
up to third order become (everything up to coefficients) w2 + zs -> 
h6 + 3hAw + w2 + ws ~ h6 + Sh^w + w2 near (h, w) = (0,0) which goes 
with w := v — |/i4 to the normal form h6 + v2. So the 6D Euler number 
contribution will be +6 — 1 = 5 (taking into account that one has to go 
back to the singular model) at each of the (2 — n) intersection points of 
the h component of Di f] r. One finds that one has to adopt a refined 
analysis to get a missing contribution +1(2 — n). 

Note that on h the Di equation is given by (e := |/i + FH e' := 
h + FH) 

-3e2(/i4 - 2h2Hz + H2z2) + A i^FHe' + /A z3 + ljfie*z 
2* 

(3.30) 

So the complete square structure of the leading terms shows that we 
do not have a generic tacnode structure, just as for 1$ but in contrast 
to the case 14. With w := Hz — h2 the terms up to third order become 
(everything up to coefficients) w2 + z3 —» /z6 + Sti^w + w2 + wz ~ 
h6 + 3h4w + w2 near (/i, w) = (0,0) which goes with w := v — |/i4 to 
the normal form h6 + v2. So the 6.D Euler number contribution will be 
+6 — 1 = 5 (taking into account that one has to go back to the singular 
model) at each of the (2 — n) intersection points of the h component of 
the intersection of Di with the Bi line. 
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4    The four-dimensional case 

In this section we start after the foregoing introductory sections with 
the Euler number computation in the four-dimensional case. Here we 
give the smooth case and in the general case the relation to the heterotic 
situation. In general we will have to consider two types of contributions: 
singular fibers (corresponding in codimension one to G over B2 and 
Ii over J9i? this is the generic situation in the discriminant surface 
inside S3; this is enhanced at the matter curves in B2 and at the cusp 
curve C of Di in codimension two, and finally further enhanced at the 
intersection of the matter curves and the intersection of the cusp curve 
(i.e., the curve of cuspidal type II fibers above) with B2 in codimension 
three) on the one hand and 'intrinsic' contributions to e{Di) from its 
various singularities (the curve of intrinsic cusp singularities of Di, 
which will always be present, and a curve (actually one of the matter 
curves, the h curve) of tacnode resp. higher double point singularities in 
codimension one inside Di and various complicated point singularities 
at the points mentioned above as well as at further points detected by 
an analysis of the discriminant equation). 

In section 5 we will derive the contributions of the intrinsic singular- 
ity curves. In section 6 we begin the discussion of the codimension loci. 
In section 7 we present in a case by case discussion the various examples 
and further refine investigation of the singularity contributions. 

4-1    Smooth case 

Now if B is three-dimensional, the discriminant D is a surface in S3 
whose class is given by D = 12CI(JB3) resp. G = 4:Ci(Bs) and F = 
6ci(i?3). In analogy to the Calabi-Yau threefold case we will compute 
e(X) from e(sing.fiber)e(D). For a smooth D we can obtain from the 
exact sequence 0 -> TD ->► TB3\D -» ND\B -* 0 the adjunction formulas 
(note that NDlBz = 0(D)\D) 

Ci(Bs)\D   =   0^0) +D\D 

C2(Bs)\D   =   C2(D) + c1(D)D\D (4.1) 

which leads to the Euler characteristic of a non-singular D 

e{D) = C2{Bz)D - c1(B3)D
2 + D\ (4.2) 
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But D will be singular along a curve C = FG and we expect a Pliicker 
correction to e(D). For C = FG we can derive the Euler characteristic 
of C from the above exact sequence by restricting to C and, with the 
normal bundle of C in B3 given by NC\B3 = (0(F) 0 0(G))\c, we get 

e(C) = c1(B3)FG -{F + G)FG 

= -216c?(£3) = -1296c? - 432t2. (4.3) 

Using the generalised Pliicker formulas derived in the next section we 
finally get the corrected Euler characteristic of D 

e(D)   =   c2(B3)D-cl{B3)D
2 + D3 + 2(e(C)-DC) 

=   288 + 576^(53) = 288 + 34560? + 1152t2   (4.4) 

and so 

e(X)   =   eihMD) - e(C)) 

+e{II)e{C) 

=   288 + 360ci(£3)3 = 288 + 2160c? + 720t2.       (4.5) 

4.2    Singular case 

After reproducing the Euler characteristic for smooth X, we will con- 
sider the case of having a section of G-singularities located over a sur- 
face D2 in £3. Let us localize the G fibers along the zero section of 
the P1 bundle B3 over £2, whose class we denoted above by r. Fol- 
lowing the procedure from above, we decompose the discriminant D 
into D = Di + D2 where again D denotes the component with Ii 
fibers and D2 carrys G fibers. With D2 = cr, F2 = ar resp. G2 = br 
and the canonical bundle of the base KB3 = — ci — 2r — t, we get the 
classes Dx = 12ci + (24 - c)r + 12t, Fi = 4ci + (8 - a)r + 4t and 
Gi = 6ci + (12 — b)r + &t which describe our /1 locus. 

As we want to check our results on the Euler number of the F-theory 
four-fold via n3 = n5 with a corresponding heterotic computation let 
us now assume, as we want to use the computations of n^ from the 
the spectral cover method for SU(n) bundles [26], that heterotically an 
SU(n) x E$ bundle (Vi, V2) is given and let us look for the first few non- 
trivial (the case "n = 1" of G = E$ is treated below also; furthermore 
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some other cases of G, mainly in the In series, will be discussed; this 
requires in the case of /2, h the use of £7, EQ bundle V, whose second 
Chern class is computed in appendix (B) from parabolic methods) cases 
where the gauge group G is simple (let now V := Vi). 

V     G a b c matter 
curve (s) 

fibenfi    matter het              het. 
loc. 

SU{2) E7 359 /l;4ci-« "^s"      (|)56 Hl(Z,V)       a2 

SU(3) E6 348 Qsci-t E7          27 Hl{Z,V)       a3 

SU(4) D5 23 7 h2ci-t 

Q3ci-t 

E6          16 

D6          10 

H\Z,V)       a, 

H\Z,K2V)    a3 

SU(5) h 00 5 hi-t 

P8ci-3t 

D5          10 

h           5 

H\Z,V)       as 

H^tfY)    R{ai) 

with R(ai) := aoa§ — 0,20,3(15 + 0304. Here the matter was read off from 
the Tate formalism [11], and then the enhancement pattern from [37]. 
Note that, as remarked already in [26], this matches precisely with the 
heterotic expectations. 

248   = (2,56)0(1,133)0(3,1) 

= (3,27)0(3,27)0(1,78)0(8,1) 

= (4,16) 0 (4,16) 0 (6,10) 0 (1,45) 0 (15,1) 

= (5,10) 0 (5,10) 0 (10, 5) 0 (10,5) 0 (1,24) 0 (24,1). 

There Hl(Z,V) was localized on the curve an = 0 (meaning x = 00, 
the zero point in the group law; cf. sect. (B.l), note that a* is of 
class rj — ici) and Hl(Z, K2V) on the common zeroes of P and Q in the 
representation w = P(x)+yQ(x) = 0 of the spectral equation (meaning 
that y and — y (the inverse bundle) are spectral points in £&). For 
example for G = A4 = 1$ one has P = ao + a2X + a^x2, Q = 03 + a^x. 

So, after we will have computed e(X4) in the following sections, we 
will compare with the heterotic expectation derived in the introduction. 

24n5 = 288 + (1200 + 107n - 18n2 + nz)c\ 

+ (1080 - 36n + 3n2)cit + (360 + 3n)*2 

with n = 0,2,3,4,5 for G - E^ E7, E6, A>, h- 
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5     "Pliicker formulas" for surfaces with 
curves of singularities 

As we will have to compute a number of times the Euler number of 
a surface component of the discriminant surface in B3 we give here 
the general computation. So let D be a surface in B3 with a curve of 
singularities along the curve C. Our applications below will include a 
curve of cusps resp. tacnodes and higher double points. The cusp curve 
will always be present, while the tacnodes and higher double points 
occur for G = As = h resp. G = h,h. In the actual applications the 
singularity will be worse at special points on the curve, a possibility 
which we exclude here. 

In subsection one we derive the contribution to the Euler number in 
the general case of a curve of singularities of multiplicity fc, resolved by 
one blow-up. In subsection two we prove some main formulae used in 
this derivation and give an outlook on a closely related application of 
this technical set-up. In subsection three we specialise to the case of the 
cusp curve] here we find the contribution for the smooth case already 
used in section 4. In subsection four we proceed to the case of a tacnode 
curve which makes two successive blow-up's necessary. Subsection five 
treats the case of an even higher double point with three blow-up's. 

5.1    The general case of a curve of singularities of 
multiplicity fc, resolved by one blow-up 

Let k denote the multiplicity of a surface D (which will be our sur- 
face Di in the applications) along C (being 2 in the two mentioned 
examples). We assume at first that the singularity is resolved after 
one blow-up. So one first blows up C in JBS, producing a three-fold 
TT : Bs —> S3. Then one has for the total transform D 

D = D + kE (5.1) 

with the proper transform D and the exceptional divisor E, a ruled 
surface over C. One has the relations (which are proved below) 

diBs)   =   ir'aiBJ-E 
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c2(B3)   =   TT*(c2(B3) + C)-Tr*c1(B3)-E. (5.2) 

Furthermore the fact that, after blowing up a (itself nonsingular) point 
on a surface, the self-intersection of the exceptional P1 is — 1 generalizes 
essentially to a relation E2 = —7r*C up to a correction term aF where 
F is the fibre of the ruled surface E over C (so E • F = — 1) and a a 
number determined by the exterior geometry of C in B3 (again these 
relations are proved below) 

E2   =   -7T*C-E3F 

E3   =   - f C^NBSC) = -(ci(S3)C - e(C)). (5.3) 
Jc 

With these formulas one gets from the usual formula for a smooth 
surface C2(D) = C2(B3)D - c^B^D2 + Dz that 

c2(D) = c2(B3)D - c^B^D2 + D3 + Ak (5.4) 

with the correction term (of course Ai = 0 and one has a factor (A; —1)) 

Ak   =   (h-l^-iSk + ^CD + kc^B^C-tfE3} 

=   (k - l)[-(3k + 1)CD + k{k + l)c1(B3)C - k2e{C)]. (5.5) 

This is seen as follows 

c2D   =   c2(B3)D - c^B^D2 + D3 

=   C2(B3)D + CD-kci(B3)C 

-diB^D2 + tfdiB^C + 2kCD + k2E3 

+D3 - 3k2DC - k3E3. (5.6) 

In particular for our case of interest k — 2 one has 

A2 = -7DC + 2ci(B3)C - 4E3. (5.7) 

5.2    The Chern classes of Blow-ups 

Let us now prove the relations used above 

(*)     c2(B3)   =   r{c*{Bz) + C)-rci{Bz)E 
(**) E2   =   -ir*C-E3F. 

Consider the following blow-up diagram for X a non-singular variety 
inr 
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X 

X 

Y 

Y 

Further let N be the normal bundle to X in Y with rankiV = d, the 
codimension of X in Y, and identify X with P{N), so N^Y = £>(-!). 
Then from the above diagram one derives [29] the relation 

C2(X) - rc2(Y) = -j,((d- l)0*ClpO 
d(d - 3) + 0(l) + (d-2)g*c1(N)).   (5.8) 

5.2.1    The case d = 2 

For rf = 2 one has 

c2(Y)-rc2(Y)   = -jrfdiX) - [X}[X} 

= -j^c^X) + fX[X} - 3*9*Ci{NxY) 

= fX[X} - j^faiX) + c^NxY)) 
= ri.[X]-j*g*MY)\x) 
= ru[X\-rci(Y)[X] (5.9) 

note in the second line we made use of 

fX[X]   =  JMF) 
=   j^c^NxY)-^]^] (5.10) 

with F = g*N/NxY and in for the last line one has j*g*i*u = f*u[X]. 
So identifying Y = Bs and [X] = E resp. i*[X] = C we arrive at our 
expression (*). 

For the second relation let us consider again 

ru\x\ = J*CI(F) 
= U9*ci(NxY)-[X][X] 

= degiVj^b*] - [X][X] 
=   degiV / - [X][X] (5.11) 
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where I = 0*[p£] denotes the class of a fiber in g : P{N) -*• X. Then 
from [X]2 - [XtfdiN))^ = 0 we get 

m3 = mwcm 
=   [X^degNflpt] 

=   degN I • [XUft 
=   -degN (5.12) 

so that f*u[X] = -[X]31 - [Xf which is what we were looking for in 
(**). 

5.2.2    The case d = 3 

Let us give an outlook on a further application of this technique. In 
connection with our main theme it is also of interest to compute C2(X4). 
First this gives in principle an alternative way to compute the Euler 
number of X by making use of the relation c^X4) = 480 + e(X4)/3 (cf. 
[49]). Secondly C2(X) is of interest because of the congruence relation 
between the four-flux and C2(X)/2 (cf. [53] and appendix (C)). 

Consider now a Calabi-Yau 4fold Z embedded (via its Weierstrass 
representation) into an 5 dimensional ambient space Y, then it follows 
from adjunction (since Z is a smooth divisor in Y) that 

Ci(Y)\z   =   c^ + Zlz 

C2(Y)\z   =   c2(Z) + c1(Z)Z\z (5.13) 

and thus 

c2(Z) = c2(y)U (5.14) 

further recall that c(Y) = c(B)(l + r)(l + r + 2c1)(l + r + 3ci) from 
which we get 

ci(y)   =   6ci+3r 

C2(F)   =   lie? + C2 + 13rd + 3r2 (5.15) 

and setting r2 = —3rci (i.e., restricting to Z) then leads to the expres- 
sion in the smooth case 

c2(Z) = c2{Y)Z = lie2 + C2 + 4rci. (5.16) 
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Now let us consider the simplest more complicated case, that of an 
singularity of codimension one which is Ai. In order to do so let us 
first analyse the change of C2 of the ambient space. This is computed 
as follows 

c2(F)-rc2(F)   =   -jtg*(2c1(X) + c1(NxY)) 

=   -j,9*(c1(X) + c1(Y)\x) 

=   -j.gWX) - j^i'diY) 
= -MdW - fdOrftx}.      (5.17) 

Now we have to compute using Z = Z — 2[X] 

c2(Z) = c2(Y)\z = rc2(Y)Z - fdiYftXtf - 3*9*ci{X)Z 
= rc2(Y)Z - 2rc2(Y)[X} - raiYftXtf 

+ 2rc1(Y)[X]-j,g*c1{X)Z 
= c2(Y)Z-2rc1(Y)[X}2-j*g*c1(X)Z 

= c2(Y)Z - 2c1(y)r - 3.9*cx{X)Z 

= llc\ + c2 + 4rci + 2(6rci - 9rci) - j*g*Ci(X)Z 

= lie? + c2 - 2rci - j^gmc1(X)Z (5.18) 

showing the crucial deviation term -j*g*ci(X)Z relative to the smooth 
case. 

5.3    Cusp curve 

So for example for the cusp curve case (where also c2(D) = C2(D) as, 
in contrast to the double point case, no points are identified in blowing 
down D back to its singular version D) one gets that 

kcusp = -7CD + 6c1(JB3)C - id(C). (5.19) 

Note also that for the cases where the cusp curve is given by the un- 
corrected FiGi (so this includes the smooth case, the pure gauge group 
case of singularities only in codimension 1, where still Di and therefore 
C is separated from B2, and furthermore the E series in general) 

-7CD + 6d(B3)C-4d{C) 
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- -2CD + 2ci(C) + 6ci(B3)C - bCD - 6ci(C) 

= -2CD + 2ci(C) + 6ci(7VC) - bCD 

= -2CD + 2ci(C) + (6(Fi + Gi) - 5A)C 

= -2C£> + 2c1(C) + ((6(F + G) - 5D) - (6(a + b) - 5c)r)C 

= -2CD + 2d {C) + dCr (5.20) 

(note that this D is Di in our application) where the term d := 5c — 
6(a + 6) equals —4,—3,—2 for ES,E7,EQ and of course zero for the 
smooth case. This shows explicitely the deviation —2CD + dCr used 
above in the smooth case to the naive adiabatic extension 2ci (C) of the 
one-dimensional Pliicker formula. 

5.4    Tacnode curve 

Now we come to the more complicated case of the tacnode, where we 
need a second blow-up, as the first blow-up just brings one to the case 
of an ordinary double point (having distinct tangents as opposed to the 
tacnode). This second blow-up is along the well-defined (as the two 
tangent directions of the tacnode points of D along C coincide) proper 
transform C of C under the first blow-up. Note that C = E^D = 
E(i)(D — 2£,(i)). Note also that at the end of the procedure we have to 
go back to the singular model D and to get its Euler number we still 
have to subtract e(C) as in the second resolution step the double points 
became separated, i.e., (with C2(D)ord = c2(B3)D - c1(B3)D

2 + D3) 

c2(b)   =   c2(Dyrd + Atacn 

c2(D)   -   c2(Dyrd + AtacTl-e(C). (5.21) 

In other words the corrections ACU5p, Atacn refer in our conventions to 
the desingularized model (just as in the ordinary Pliicker formulas). 

Here one gets (up to codimension 3 contributions) 

Atacn = -21CD + 26c1(£?3)C - 20e(C). (5.22) 

To prove this let us follow the two steps of the resolution. Clearly 
in the second resolution step we are again back in the case of a curve 
of ordinary double points. 

c2(D)   =   C2&)D - c^h)!? + D* 
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=   c2(B3)D - aiB^D2 + D3 

-7DC + 2cl{Bz)C - ±Ez
m 

=   c2{Bz)D - cl{Bs)D2 + D3 - 7DC + 2c1(£3)C - 4^^ 

-7{D - 2E{1))C + 2(7r*cl(B3) - E(1))C - 4£(
3
2)      (5.23) 

giving this time 

Atacn   =   -7JDC + 2Cl(B3)C-4E(
3
1) 

-7DC + 27r*cl{B3)C + 12EmC - 4E(
3
2).      (5.24) 

Now, concerning the four new terms in the second line, note that one 
has, concerning the first three of them, that 

DC   =   bE{l)(b-2E{l)) = 2DC 

ir'dBsC   =   Tr*c1B3E(b-2E{1)) = 2c1(B3)C 

E{1)C   =   Ef1)(D-2Eil)) = -CD-2Ef1). (5.25) 

On the other hand concerning the last new term E^ one has again 
that Ef2) = -ci(NC\gz), whereas Ef^ = -ci(Nc\Bs)- Now, to express 
the former in terms of the latter, note that the short exact sequence 

0 -+ Nc]Em -> iV^|B-3 -> NEwl§3 -► 0 (5.26) 

gives 

ci(^e|S,) = CI(NCIEW) + Ci(NEwlzs) (5.27) 

where the first term on the right hand side is evaluated as C2 in E^, 
i.e., as 

CI(NC\EJ = D2E{1) = (D- 2E{1))
2E{1) = WC + 42^,.     (5.28) 

Similarly the second term is ci(T) = ^(i)U(1) of the tautological bundle 
T over E^, restricted to C = D\E(IV i.e., 

ci(NEm]Bt) = Dtfy = (D- 2E{l))El) = -DC - 2Efl).     (5.29) 

So that one gets 

£(
3
2)  = -diNqaJ 
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-(4DC + 4^) - DC - 2£(
3
1)) 

-3DC-2Efl). (5.30) 

So finally 

?3 Atacn   =   -lDC + 2cl{Bz)C-AE{1) 

-UDC + 4ci(53)C - 12CD - 2AEZ - 4El 

-33CD + 6ci(53)C - 28^) - 4{-3DC - 2^) 

-21CD + 6c1(JB3)C - 20^) 

-21C£> + 26c1(JB3)C-20e(C). (5.31) 

5.5    Curve of higher double points 

If a third blow-up is necessary like for the case of a curve of singularities 
of type t6 + v2 one gets 

c2(b)   =   c2(B3)D - c^D2 + D3 

-21DC + 6ci(i?3)C7 - 20Ef 

=   c2{Bz)D - cl(B3)D2 + D3- 7DC + 20^)0 - 4^ 

-2l{b - 2E1) + d^diB^C - dEtC - 20E3 

=   c2(B3)D - c1(B3)D
2 + D3 

-25DC + 12c1(B3)C-32E3. (5.32) 

In the concrete application in the / series discriminant one has along 
the h curve an equation for Di of the form (x2 — z)2 + z3 where we have 
written x for h. One finds in the explicit resolution process further 
contributions at codimension three loci inside the h curve which we 
will not need to write down. 

6    On the codimension 3 loci 

Consider the cases D5 = I{ and 1$. There are two new features com- 
pared to the Ek series: first that without further tuning the /* and the 
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In series would remain at n = 0 (cf.   sect.   (3.3)), and secondly the 
existence of two matter curves. 

What we want to see in the following is that actually the cohomology 
classes of the two codimension 3 loci, i.e., of Cr and the intersection of 
the matter curves h and P, are proportional; more precisely that Cr is 
a multiple of hP. 

Now one has 

(4A3 + 27gl = 0) = Dold = Dl + nr (6.1) 

where n is the subscript in the /* and the In series, i.e., the number of 
powers of z one can extract from the left hand side. 

Furthermore one has the decomposition of Dir into the matter 
(^enhancement) curves (P means here our q in the 1^ case) 

Dxr = 7rh + pP (6.2) 

where Dir is also given by 

Doldr = Dir - nt. (6.3) 

One has a corresponding decomposition 

{f1 = Q = gl) = CM = C + xhr (6.4) 

where x = ordhres(fi,gi), so that one also gets (with a = ordhfi,l3 = 
ordhgx) 

Cr = ah-f3h + xht. (6.5) 

6.1    The In series 

For the cases n — 4,5,6 which show the general / series pattern one 
finds the following. There is fir — 4/i, g^r — 6h and one finds 

x   =   3n (6.6) 

Cr   =   3h(8h + nt) = 3hP8ci-{S-n)t. (6.7) 

Let us now understand why Cr is indeed a multiple of hP, considered as 
cohomology classes, i.e., why the used cohomological relation 8h + nt = 
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P is not accidental. For /Q one has that D0idr = 12ci — 12t = l2hCl-t. 
For I5 one has D0idr = Dir - 5t = 4hCl-.t + Psa-st — 5* and therefore 
I2h = Ah + P - 5t or 8h + bt = P. Similarly for In. 

For the case n = 2 one has fir = 2H, gir = 3H and with x = 3 one 
finds Cr = 2H'3H + SHt = 3#(2# +1) = 377(40! - 3<) - |/fP. For 
n = 3 with /ir = 4/i, ^r = 6/i and x = 8 one finds Cr = 8h(3h +1) = 
&h(3ci-2t) = |/i(9ci-6t). 

6.2    The /* series 

The case D^ = /Q is somewhat exceptional as here one has fir = 
2/i2ci-£jSf]T = 3P2Cl_£ with different polynomials of the same degree 
(whereas for n > 0 one has gir = 3/i and P will represent a different 
cohomology class giving the other matter curve) and a Z3 symmetry 
related to D^ triality. This manifests itself in the discriminant as follows 

D1r = 12c, -6t = 42-2* + ^£-2* + 42cU (6-8) 

where A^^ = (h%Cl_t + ^P^-t = 0) with i = 0,1,2 and a;3 = 1. 
Then one has with x = 0 

Cr = 2h- 3P. (6.9) 

Now note that the locus of simultaneous vanishing of h and P is also 
the locus of intersection of the A®. 

For /* with n > 0 is /ir = 2h2c1-u9ir = 3/i2ci-t- For .D5 = /* one 
has 

ZV = 120! - 5* = S/fcd-t + 2g3ci-t (6.10) 

and with x = 2 one finds 

Cr = 2h-3h + 2ht = 2h{3h + t) = 2h'2q (6.11) 

where 2h occurs in Cr actually on the level of divisors. 

For DQ = II2 one has (for the parameter r = 0,1, 2,3,4 being 0 (cf. 
the discussion of D§ in the six-dimensional case and [11])) that 

£>ir = (12ci + 16r + 12t)r - 120! - 4* = 2h2ci.t + 2PAci_t    (6.12) 
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and with x = 3 one has 

Cr = 2h-3h + Sht = 3h(2h + t)= 3hPAci-t. (6.13) 

So one has that for the /* cases with n = 0,1, 2 

x   =   6-r^— (6.14) 
2 + n v       y 

12 
Cr   =   h(6h + xt) = - h-((2+ 71)0! -t) 

2 + n 
12 

=   j^hPp+nfr-t. (6.15) 

Let us again see why Cr arises as a multiple of hP. For JQ one has 
DoidT = 12ci — 6t = 6(2ci — i). For /* one has D0idr = Dir — t = 
3h + 2q — t and therefore 6h = 3h + 2q — t or 3h + t = 2q as we wanted to 
prove. Similarly for /^ one has D0idr = Dir — 2t = 2h2cl-t + 2P4ci-t — 2t 
and so 6h = 2h + 2P- 2t or 4h + 2t = 2P resp. 2h + t = P. 

Let us finally, for example in the case of 1)5, come to the question 
whether actually the two sets C n r and /& n g coincide. From equ. 
(3.20) it follows that 48Fi/i + 864Gi = z(q2 - §M) + 0(z2) so if we 
approach C fl r coming /rom i/ze outside of £2 = r = (z = 0) we find 
0 = </2 — Tjfih + O(z) which goes in the limit z -> 0 to the condition 
0 = q2 — hfih resp. 0 = g2 for Cflr as it will lie in the divisor h anyway. 

7    The explicit computation of e(X4) 

Now, finally, we come to our main computation announced in the in- 
troduction. This Euler number computation for the various cases is 
treated in subsection (7.2). In subsection (7.1) we make contact with 
a formula given in [39] (for the case of singularities in codimension one 
only) which was guessed there from a list of values based on a computer 
analysis in a toric framework. The case of pure codimension one is also 
of interest because in this case the expression 7r*(72) = —X2Nr](r]—Nci) 
for an SU(N) bundle will vanish as 77 - TVci = (6 - 7V)ci - * = 0 for13 

G = ^s, E7j E6, AA and t = (6 - N)ci with TV = 0, 2,3, 5 . Finally in 
13The case G = A4 is only a 'pseudo-separation case' between B2 and Di as only 

one (h) of the two matter curves is turned off cohomologically, but note that over 
the other matter curve P the enhancement is additive, leading from 1$ to /e, so 
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subsection (7.3) we note an observation relating Euler number values 
in neighbouring cases of certain Higgs chains. 

7.1    Euler number formula for codimension one 

A byproduct of our analysis is the proof of an Euler number formula 
for elliptic Calabi-Yau fourfolds for which the elliptic fiber degenerates 
over the generic codimension one locus B2 in the Calabi-Yau base £3. 
This formula was first written down in [39] based on a toric computer 
analysis. The formula suitably rewritten reads 

e{Xi) = 288 + 360 / <*(BS)-r(G)c(G)(c{G) + i) [ c^)  (7.1) 

where r(G) and c(G) are the rank resp. Coxeter number of the gauge 
group G. Now (with £3 = i^,™,™ the generalized Hirzebruch surface of 
base B2 = Fk] below we consider yet another example) using the fact 
that cf (£3) = 6ci + 2t2 and that we can express t in data of Fkim,n so 

that t = m[b] + n[f] with t2 = 2mn — m2k where [6]2 = — k and also 
noting that t2 = 2n2 = \c\ from implementing the codimension one L2 

4 
condition m = n and k = 0, we can rewrite the above formula as 

e(Xi) = 288 + (180(12 + n2) - r(G)c(G){c{G) + l))^^')-     (7-2) 

The case of purely codimension one (fiber) singularity (i.e., especially 
without matter curves; so this is a 'separation case' what concerns the 
relative position of the two discriminant components B2 and Di) is 
realizable for G = Es,E7,E6,D^A2 over B2 = FQ with n = m = 
12,8,6,4,3. In [39] the authors were restricted to reflexive polyhedra 
and thus excluding the E7 case. However, using naively the above 
formula leads to a prediction for E7 which will be vindicated by our 
computation which therefore gives an independent check of this for- 
mula. Moreover, we also find agreement for the cases indicated in the 
following table (always assuming the (pseudo-)separation case) 

that the Euler number computation is not effectively disturbed, cf. section (7.1); 
note that by contrast in the case G = D5 the choice N = 4 and so t = 2ci turns off 
again the h2c1-t matter curve and again one has the additivity of the enhancement 
over the other matter curve q but this time there is an intrinsic codimension three 
locus left over (see below). 
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G e{X4) G e(Xi) 

A, 288 + 2874c? 

A2 288 + 28560? D, 288 + 4872c? 

Az 288 + 28200? E6 288 + 7704c? 

A, 288 + 2760c? E7 288 +11286c? 

A, 288 + 2670c? E8 288 + 20640c? 

Let us make some remarks: 
A series 
The codimension one condition is established by setting t = ci or equiv- 
alently n = 2 (pseudo-separation, cf. the last footnote). Note that in 
[39] the A2 singularity was specified by n = 3, i.e., t = 3/2ci and there- 
fore one has e(X^) = 288 + 3756cf which matches our computation too. 
D series 
In the D series we find only for G = D4 a codimension one condition 
which is t = 2ci resp. n = 4. 
E series 
The codimension one condition is here established by setting t = 3ci, 
4ci, 6ci resp. n = 6,8,12 for E6, E7, E%. 

As a last point we remark that for the choice of B2 = P2 of table 
(6.3) of [39] we find also agreement with our formulae given below. 

7.2    The cases 

7.2.1    Es(II*) singularity 

Now, from our above analysis we see that e(Di)ord = C2(B3)Di — 
Ci(Bs)Di + D\ receives two corrections (in later cases more from codi- 
mension three contributions). The first one is coming from the fact 
that D has a cusp curve C — F1G1 but we have also to take into ac- 
count that D is " double" along T = Di D r (of class 6ci — t related to 
gi(z — 0)) and has to be resolved (note that this is a 'real5 resolution 
in contrast to the case of the cusp curve where the resolution is only an 
intermediate computational step to get the contribution of the singular 
geometry). 
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Let us first compute the contributions from fiber singularities (for 
the general set-up of the computation involving fiber and intrinsic sin- 
gularities cf. the introduction to section 4) 

e(X)   =   l(e(A) - e(C)) 

.    +2e(C) 

+106(52). (7.3) 

Then, the intrinsic singularities of Di are computed as (where C D r is 
a special codimension three locus) 

e(Di) = c2(B3)Dl - c1(B3)Dl + Dl + Adouble + Acusp + ACnr   (7.4) 

which can be derived as follows. One has 

CJJ(A) = C2{h)Di - cxC^s) A2 + A' 

= ^(B^Dt - CiCBajA2 + A3 - 7^0 + 2c1B3C - 4E?2) 

= (n*(c2(B3) + T) - ^c1(B3)Eil))(D1 - 2E{1)) 

-(7r*c1(B3)-E{l))(Dl-2E(l))
2 

+ (A - 2E(1))
3 

- 7(D1 - 2Eil))C + 2(<K*C1(B3) - E{1))C - 4Ef2) 

= c2(B3)Dl - c^B^Dl + Dl - TD.T + 2cl(B3)T - AE^ 

- IDxC + IAE{1)C + 27r*ci(B3)C - 2E(1)C - 4E(
3
2)     (7.5) 

using C = C -#(Cnr) F with F the fiber of E(1) we find 

AC = D1(C- #(C H r) F) = AC = AC 

E{1)C = E{1)(C-#(Cnr)F) = #(Cnr) 

^c^B^C = 7r*Cl(A)(C - #(Cnr)F) = c1(A)C 

Ef2) = -(Cl(A)C - e(C)) = -(c1(A)C - e(C)) + #(C n r) 
(7.6) 

which then leads to 

C2(A) = C2(A)A - 01(53)^?'+ ^1 + Adouble + Acusp + Acnr-   (7-7) 

So altogether 

c2(A) = 168 + 1702^ + ITeOcit + 576i2 + (12 - 4)#(C n r)    (7.8) 
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and using 

C2(B3)Dl - c^B^Dl + D* = 168 + 5434c? + 4670cit + 1588t2 

e(C) = -684c? - 648ci£ - 216i2 

10e(S2) = 120-10c? 

Adoubie = -2(29ci-2t)(6ci-t) 

Acusp = -3384c? - 2992c1t - 1008£2 

Acnr = (12-4)#(Cnr) 

#(Cnr) = Cr = 4ci(6c1-t) (7.9) 

we find 

e(X) = 288 + 1008c? + 1112ci< + 360i2 + (12 - 4)Cr        (7.10) 

which leads to agreement when comparing with the heterotic side where 
one has 

24n5 = 288 + 1200c? + lOSOci* + 360i2. (7.11) 

Finally we remark that this formula also reproduces the computa- 
tion for the case B2 = F0 and t = 0[b] + 12[f] in table (6.4) of [39]. 

7.2.2    E7(Iir) singularity 

Here we have again to take into account the subtlety concerning the 
fibre enhancement along the matter (=enhancement) curve T of class 
4ci — t related to fi(z = 0) mentioned in the six-dimensional analysis. 

e(X) = l((e(A) - e(C) - e(T) + #(C n r)) 

+ 2(e(C) - Cr) 

+ 9(e(B2) - e(T)) 

+ 9(e(T)-#(Cnr)) 

+ A#(C n r) 

= epx) + e(C) + 9e(B2) - e(T) + {A- 10)#(C n r)     (7.12) 

with 

e(D1)   =   cl(B3)Dl-c1(B3)D
2

1+Dl + Acnsp 
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= 180 + 2133c? + 1646ci* + 583i2 

e(C)   = -762c? - 629cit - 217t2 

Qe^)   = +108-9c? 

e(T)   = -(3c1-i)(4c1-t) 

Cnr   = (6ci-t)(4ci-t)   Cr = #(Cnr) (7.13) 

so we find 

e(X) = 288 + 1134c? + lllOcii + 357t2 + A#(C n r).        (7.14) 

Now comparing with the heterotic side where one has 

24% = 288 + 1350c? + 1020c1i + 366i2 (7.15) 

one is lead from Ae = 24^5 — e(X) where 

Ac = (9 - A)(6ci - t^Ac! -t) = (9- A)#{C n r) (7.16) 

to a prediction A = 9 for the Euler number A of the fiber configuration 
over the codimension three locus C D r. 

7.2.3    E6(IV*) singularity 

Now one has with the matter (=enhancement curve) T of class q3Cl-t 
related to gi (z — 0) = q2 

e(X)   =   IdeiDj-eM-eCn + ittCnr)) 

+2(e(C)-#(Cnr)) 

+8(e(B2) - e(T)) 

+9(e(r)-#(Cnr)) 

+A#(C n r) 
=   epO + e(C) + 8e(£2) + (A - 10)#(C n r)    (7.17) 

with 

e(£>i)   = c.iB^Di-diB^Dl + Dl + A^ 

= 192 + 2300c? + 1552cit + 596t2 

e(C)   = -822c? - 602cii - 220t2 

8e(52)   = +96-8c? 
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e(T)   =   -(2ci-*)(3ci-t) 

#(Cnr)   =   (3ci-t)(4ci-t),    Cr = 2#(Cnr)      (7.18) 

(where in the last line one has to take into account that Gir = 2q from 
the split condition gi(z = 0) = q2) so we find 

e(X) = 288 + 1470c? + 950cit + 376i2 + A#(C D r) (7.19) 

if we compare this with 

24n5 = 288 + 1386c? + 999ci* + 369£2 (7.20) 

we find a prediction for A from the vanishing of 

Ae = (7 - A)(3d - mc, - t) = (7 - A)#(C n r). (7.21) 

7.2.4    ^(/Q) singularity- 

Let us start with the relevant cohomology classes resp. divisors 

Fx   =   4ci + 6f + 4t =► Fir = 2h 

d   =   6ci + 9r + 6* =>- Gir = 3P 
£>i   =   12a + I8r + Ut ^ D^ = A(0) + A^ + A^     (7.22) 

where h = 2cl-t&ndP = 2c1-t&nd AfCl_2t = (Ziid-t + ^-P^i-t = 0) 
with z = 0,1,2 and a;3 = 1 and the last decomposition holds not only 
on the level of cohomology classes but actually on the level of divisors 
as seen from the equation Dl = {A^A^A^ + 0{z) = 0). 

Now we have 

FiGi = Coid — Cnew (7.23) 

So 

C   =   2A(c1+t){c1 + 2t) + 6t{3r + 4t) 

Cr   =   6hP = 6(2ci - t)2 (7.24) 

further we have 

e(£>i)   =   c2{B3)D1-c1(B3)Di + Di + A cusp 
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=   216 + 7062c? + 3642ci* + 1764t2 + Acusp.     (7.25) 

One has Acusp = -4512c? - 2292c1i - 1128t2 where we used e(C) = 
(ci -Fi- Gi)FiGi = -960c? - 498c1t - 240i2 and altogether e(D1) = 
216 + 1584c? + 852ci£ + 396£2 and so 

e(XA)   =   e(i?i) + e(C) + 6(12-c?)- 

=   288 + 1584c? + 852c1t + 396t2. (7.26) 

This is in agreement with the computation e(X4) — 39264 of [39] for 
B3 = ^0,4,4 which means B2 = FQ and so Ci = (2,2) and t = (4,4). The 
other choice t = (0,4) and ci = (2, 2) with e(Xi) = 19680 given there 
leads if one includes in the above formula an fiber enhancement k over 
the matter curves e(Xt) = 19776 + 3 • 16(A; — 6) to a prediction k — 4, 
i.e., an effect similar to the cases of E7 and DQ where one did not have 
the naive additivity of the collision rules. 

7.2.5    D5(Ii) singularity 

Now one has 

Fi = 4ci + 6r + 4t => Fir = 2h 

Gx = 6cl + 9r + 6t^Gir = 3h 

Di   =   12ci + 17r + 12t => Dir = 3h + 2q (7.27) 

where h = 2ci — t and q — 3ci — t and the last decomposition holds 
not only on the level of cohomology classes but actually on the level of 
divisors as seen from the equation Di = (h3q2 + 0(z) — 0). 

Now just as 

(4/1
3 + 27<?

2 = 0) = A+r (7.28) 

we will have a decomposition, again actually on the level of divisors, 

FiGt = Cold = Cnew + 2hr (7.29) 

where Cnew (which we denote simply by C in the following) is the true 
cusp curve of Di we are interested in. 

So 

C0ia = 6(4(0! + tf + 3r(4c1 + *)) = 24^ + tf + 18r(4ci + t) 
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C = figi - 2(2ci - t)r = 24:{c1 + tf + (68ci + 2(W)r 

Cr = 2h-3h + 2ht = 2h{3h + t) = 2h-2q = 4(2ci - t)(3ci - t) 

#(Cnr) = #(hnq) = hq (7.30) 

where in the third line both factors occur not only as cohomology classes 
but even as divisors: for the part 2h this follows from the construction 
of C and for the part 2q we saw this in section 6. Note also that not 
only Ch C Cr but that they are actually equal as sets. The precise 
multiplicity is given by C2h = Cr as the part 2h occurs in the Cr not 
only as cohomology class but even as divisor. So Ch = 2pq. 

We proceed now in two steps: first we compute the intrinsic singu- 
larity corrections in e(Di), then we collect the fiber enhancements. 

Now e(Di) is given by (up to contributions from point singularities 
of Di considered below) 

epx)0^ + Ac„sp = 02(^3)A - c^B^Dl + D\ + Acusp 

= 204 + 6655c? + 4004c1i + 1684t2 + Acusp.    (7.31) 

One has ACUSp = —7CDi + Qci(B3)C — 4e(C) where the first two terms 
are -7CJD1 + 6^(83)0 = -7872c? - 4724c1t - 1988t2. Now F1G1 = 
C0id = 2hr + C so 

2Xar(CM) = 2xar{2h) + e{C) - 2xar(2hC) (7.32) 

Now 2xar{Cold) = (c1 + 2r+t)Cold-(Fl + G1)Cold = -(960c2 + 498c1i+ 
240i2) giving with 2xar(2h) = -2h(2h - a) = -(12c? - 14c1t + 4t2) 
that 

e(C)   =   2xar(Cold)-2xar(2h) + 2(C2h) 

=    2Xar(C0ld) - 2Xar(2h) + 8hq 

=   -(900c? + 552c1t + 228i2) (7.33) 

and so 

Acusp = -4272c? - 2516c1i - 1076i2 (7.34) 

and altogether 

e(JD1)
or<i + Acusp = 204 + 2383c? + 1488cit + 608i2. (7.35) 
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Let us now come to the discussion of the codim 3 contributions. Di is 
given by hZCl_tq$Cl_t + S^-uz + 0{z2) where 

812*-* = ^2(-|/i2 + 29ih + Woh2) - Shhq2 + q\ (7.36) 

Let us now investigate what happens if, when we are lying on one of the 
two matter curves h or g, in addition S vanishes, so that the leading 
terms for the equation of Di becomes there tf+Sz+z2 resp. q2+Sz-{-z2 

and we can expect a singularity at hn S resp. qHS. 

Now, on closer inspection, one notices that hDq C S and hDS C q] 
therefore hnS = hDq and hnS C qDS. On the other hand qDS implies 
only h2(-^f2 + 2gih+Sfoh2) = 0, i.e., we do not necessarily come to lie 
on /i, there is still another divisor Rsa^t with qS = q(2h + R) relevant. 
So one has a disjoint decomposition q n S = (q Pi h) U (q D R) and we 
will actually consider the loci h fl q = h n S and qnR= (qnS)\(hr\q) 
where the local forms of the singularities of Di are respectively 

hxnqy-> x3y2 + (x2 + xy2 + y*)z + z2 

qynRx->y2 + z(x + y2 + yA) + z2 ~ y2 + zx + z2 ~ y2 + x2 + z2. 
(7.37) 

Sofit#hnq = hq resp. # ((q n S)\(h n q)) = #q n R = qR = q(S - 
2h) — 4q2 — 2hq points one has an singularity of weighted homogeneous 
standard form x4+ys+z2 (as the defining equation is of weights (2,1,4) 
in (rr, y, z)) resp. an Ai singularity which lead to corrections a resp. 
/? to the Euler number of the singular surface Di or in general to a 
correction — /i where /x is the colength (which is finite as the singularity 
is isolated) of the Jacobian ideal (being also the Euler number of the 
Milnor fibre minus 1). So a = 1 • 3 • 7 = -21 and /? = -1. 

Now let us come to the fiber enhancements. Now one has C fl r = 
hDq and 

#(Cnr)    =   hq 

e(CUhUq)   =   e(C) + e(h) + e(q) - hq (7.38) 

giving (/ and k parametrize the fiber enhancements at the codimension 
three loci) 

e{X)   =   i^DJ - e{C) - e(h) - e(q) + hq) 
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+2(e(C) - hq) 

+7(e(B2) - e(h) - e(q) + hq) 

+8(e(h) -hq + e(q) - hq - Rq) 

+lhq + kRq 

=   e(D1) + e(C) +76(52) 

+(Z - lQ>)hq +(k- 8)Rq 

=   e(Dl) + e{C) + 7e(B2) 

+(l -2k + Q)hq +(k- 8)4q2. (7.39) 

With 

e(I>i)   =   e(D1)
ord + Acu$p - 2hq + ahq + fiRq 

=   e(L>1)
orrf + Ac,, + (a - 2 - 2/?)^ + /?4g2 

=   eiD^ + Acusp - 21hq - 4q2 (7.40) 

one gets 

e(A')   =   e{D1)
ord + Acusp + e(C) + 7e(B2) 

+{l - 31)hq +(k- 9)4q2 

=   288 + 1476c? + 936cit + 380i2 

+{l - 31)hq +(k- 9)4q2 

=   288 + 1476c? + 936c!* + 380i2 - S^2 

+(l - 31)hq +(k-9 + 2)4q2 

(7.41) 

where in the last equation the first line matches with the heterotic 
expectation 

24^ = 288 + 1404c? + 984cii + 372t2 (7.42) 

giving corresponding predictions14 from the vanishing of the other 
terms. 

7.2.6    D6(IZ) singularity 

This time one has 

F1 = 4ci + 6r + At =^ Fir = 2h 
14 Note that the form of deviation of the F-theory result from the heterotic result 

is already a non-trivial check since we have to tune only two coefficients to match 
a quadratic expression in ci and t with three coefficients. 
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d = 6ci + 9r + 6t => dr = 3h 

D1 = 12ci + 16r + 12t =^ D^ = Ud -4t = 2h + 2PAci_t      (7.43) 

where h = 2ci — t and P = 4ci — i and the last decomposition holds 
not only on the level of cohomology classes but actually on the level of 
divisors as seen from the equation Di = (h2P2 + 0(z) = 0). 

CM = 24(c1+t)2 + 18r(4c1 + t) 

C = /15i-3(2ci-i)r = 24(ci + £)2 + (66c1 + 21£)r 

Cr = 3(2ci-t)(4ci-«) = 3/iP 

#(Cnr) = hP. (7.44) 

The cohomology classes of the two codimension 3 terms Cr and hP are 
again proportional. Note also that not only Ch C Cr but that they are 
actually equal as sets. The precise multiplicity is given by C3h = Cr 
as the part 3h occurs in the Cr not only as cohomology class but even 
as divisor. 

Now e(Di) is besides contributions from point singularities (consid- 
ered below) computed as 

eW* + Acusp = c2(Bs)D1 - c1(Bs)Di + Df + A, cusp 

= 192 + 6248c? + 4296ci* + 1632t2 + Acusp.    (7.45) 

Now Fid = CM = Shr + C so 2xar(C0id) = 2xar{3h) + e{C) - 
2{C3h) and 

2Xar(Coid) = -(960c? + 498c1i + 2A0t2) (7.46) 

giving with 2xar(3/i) = -3h(3h - ci) = -30cf + 33cit - 9t2 

e(C) = -882c2 - 567cit - 225t2 (7.47) 

and 

Kusp   =   -7CD1 + 6c1{B3)C-4e(C) 
=   -4020c? - 2718cii - 1038t2 (7.48) 

and altogether 

e(D?d) + Acusp = 192 + 2228c? + 1578ci* + 594t2. (7.49) 
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Let us now come to point singularities of the discriminant of equation 
0 = h2P2 + iSi2ci-3t* + 0(z2) where 

S = h3R - 3/iVP + 3huP2 + 4P3 (7.50) 

where R = —2M
3
 + 8<7o- Now a similar inspection as for D5 shows that 

one has a disjoint decomposition PnS = (Pnh)U(Pr\R) and we will 
actually consider the loci ^nP = /in5'andPnJR=(Pn S)\(h n P) 
where the local forms of the singularities of Di are respectively (we 
neglect here some coefficients) 

3 1 
hxr\qy   ->■   --x2y2+ -(x3R-3u2x2y + 3uxy2+ 4y3)z + z2 

PynRx   ->   y2 + {x + y + y2 + y3)z + z2. (7.51) 

So at # h n P = hP resp. # P n R = PR = P(5 - 3/i) = 3P2 - 3/iP 
points one has singularities which lead to corrections a resp. /? to the 
Euler number of the singular surface Dx. 

So altogether one finds 

e(£>i) = epr* + Ac,,) + ahP + ^(3P2 - 3/iP) 

= 192 + 2228c2 + 1578cit + 594i2 + {a- 3f3)hP + 3/3P2. 
(7.52) 

Now for S'0(12) one has the matter/enhancement scheme: P > 
12 - - > D7 of Euler 9 = 8 + 1 and h--> 32 --> "E7" of Euler 8 
(as in the G = Ej case here occurred a collision which is not effectively 
additive; cf. the six-dimensional discussion). 

So now one has for the contributions from the fiber enhancement 

e(X)   =   l(e(D1)-e(C)-e(h)-e(P) + hP + #(Cnr)) 

+2(c(C)-#(Cnr)) 

+8(e(P2) - e{h) - e(P) + hP) 

+8{e(h) -hP- #(C n r)) + 9(e(P) - hP) 

+l#(C D r) + mhP 

=   e(I>i) + e(C) + 8e(P2) - e(h) 

+(l - 9)#(C n r) + (m - 8)hP 

=   eiDj + e(C) + 8e(P2) - e(h) 
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+(l + m- 17)hP (7.53) 

giving altogether 

e(X) = 288 + 1340c? + lOOSc^ + 370£2 

+ (Z + m-17 + a;- 30) hP + 3/3P2 

= 288 + 1260c? + 1044ci* + 366t2 

+ (-2 + (I + m - 17 + a - 3p))hP + (6 + 3/?)P2.      (7.54) 

Comparing this with the heterotic value 

24n5 = 288 + 1260c? + 1044ci* + 366i2 (7.55) 

gives the prediction15 ft = —2 and I + m = 13 — a. 

7.2.7    Aifa) singularity 

Fi   =   4ci + 8r + At =» Fir = 2H 

Gi   =   6ci + 12r + 6* =» Gir = 3# 

Di   =   12ci + 22r + 12* =» Ar = 2^ + P (7.56) 

where H = 2ci — 2< and P = 8ci — 6i and the last decomposition holds 
not only on the level of cohomology classes but actually on the level of 
divisors as seen from the equation Di = (H2P + 0(z) =0). 

Now Fid = C0id = 3Hr + C (on the level of divisors) so 

CM   =   24{ci +1)2 + 96cir 

C   =   fm - 6(ci - t)r = 24(ci +1)2 + 90cir + 6rt 

Cr   =   -HP 
2 

#(C n r)   =   H-^P= (2ci - 2t)(4c1 - 3t) (7.57) 

where in the last line we used the fact that the term 3if occurs in Cr 
as divisor and not just as a cohomology class. 

With 

Acwsp   -   -5748c? - 588cii - 1728*2 

5For the siginificance of this procedure compare the last footnote. 
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e(C)   =   -1170c? - 234ci< - 324t2 (7.58) 

epx)   =   ca^A-dCBa^ + Dj + A^ (7.59) 
=   264 + 2942c? + 906cit + 756*2 (7.60) 

one finds 

e(X4)   =   l(e(A)-[e(C)-#(Cnr) + e(ff)-ffP + e(P)]) 
+2(c(C)-#(Cnr)) 
+2(e(S2)-[e(ff) + e(P)-firP]) 
+3(e(iy) -HP- #(C fl r) + e(P) - if P) 
+Z#(C n r) + mifP 

=   e(A) + e(C) + 2e(P2) 
+(/ - 4)#(C D r) + (m - 3)HP 

=   288 + 1770c? + 672c1t + 430i2 

+(h + m-5)HP 

=   288 + 1866c? + 504c1i + 504i2 

+(h + m- 17)HP. (7.61) 
Zt 

Comparing this with the heterotic side 

24n5 - 288 + 1866c? + 504ci£ + 504i2 (7.62) 

leads again to a corresponding prediction, 

7.2.8    A^ijz) singularity 

Fi   =   4ci + 8r + 4:t=>F1r = 4:h 
Gi   =   6ci + 12r + 6t =^ dr = 6h 
D1   =   12ci + 21r + 12t => ZV = 4/i + P (7.63) 

where h — c\ — t and P = 8ci — 5t and the last decomposition holds 
not only on the level of cohomology classes but actually on the level of 
divisors as seen from the equation Di = {hAP + 0(z) = 0). 
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Now FiGi = Coid = 8hr + C (on the level of divisors) so 

CM = 24(0! +1)2 + OGcxr 

C = /ipi - 8(0! - t)r = 24(0! +1)2 + SS^r + 8rt 

Cr = 8(ci-«)(3ci-2t) 

#(Cnr) = (c1-*)(3ci-2t) (7.64) 

where in the last line we used the fact that the term 8h occurs in Cr 
as divisor and not just as a cohomology class. 

With (note that the discriminant (D.35) shows an intrinsic singu- 
larity of Di at h fl Q3ci-2t) where 

Acusp   = -5656c? - 776cit - 1632t2 

e(C)   = -1112c? - 328ci£ - 288i2 

e(D1)   = o2(B3)D1-c1{B3)Dl + Dl + ACU8p + ahQ 

= 252 + 2627c? + 1360cii + 600i2 + ahQ (7.65) 

one finds 

e(X4)   =   l(e(Di)-[e(C)-#(Cnr) + e(fr)-W + e(P)]) 
+2(e(C)-#(Cnr)) 

+3(e(B2) - [e(h) + e(P) - hP]) 

+4(e(/i) -hP- #(C n r) + e(P) - hP) 

+l#(Cnr) + mhP 

=   e{D1) + e(C) + Se(B2) 

+(l - 5)/i(3ci - 2t) + (m - 4)/iP 

=   288 + 1512c? + 1032cii + 312t2 

+{l - 5 + a)h(3ci - 2t) + (m- A)hP 

=   288 + 1704c? + 720cit + 432t2 

+{l - 5 + a)h{3ci - 2t) + (m- A)hP - 2AhP 

=   288 + 1704c? + 7200!* + 432i2 

+(/ - 5 + a)h{?>cx - 2t) + (m - 28)hP. (7.66) 

Comparing with the heterotic side 

24n5 = 288 + 1704c? + 720cit + 432i2 (7.67) 

leads to a corresponding prediction. 
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Finally we remark that the heterotic prediction also matches with 
the computation for the case B2 = FQ and t = 0[6] + 3[/] given in table 
(6.4) of [39]. 

7.2.9    A3(I4) singularity 

Fi   =   4c1 + 8r + 4t^F1r = 4h 

Gi   =   6ci + 12r + 6i =» Gir = 6/1 

Di   =   12cl + 20r + l2t=>D1r = 4h + P (7.68) 

where h — ci — t and P = 8ci — 4t and the last decomposition holds 
not only on the level of cohomology classes but actually on the level of 
divisors as seen from the equation Di = (h4P + O(z) — 0). 

12hr + C (on the level of divisors) so 

24(ci + t)2 + QGcxr 

12(0! - t)r = 24(ci +1)2 + 84cir + 12rt 

(7.69) 

where in the last line we used the fact that the term 3h occurs in Cr 
as divisor and not just as a cohomology class. 

Furthermore 

ACUSp   = -5736c? - 624cit - 1704i2 

e(C)   = -972c? - 564ci£ - 192i2 

Atom   = -2268c? + 348cit - 122t2 

e{D1)   = C2{B3)Dl-cl{B3)Dl + D\ + &cusp + ktacn-e(h) 

= 240 + 2140c? + 2084cii + 328£2 + Atac„ - e{h) 

= 240 + 1914c? + 2431c!* + 207i2. (7.70) 

Now for SU{4) one has the matter/enhancement schemes: P > 
4-- >S£/(5)ofEuler5 = 4 + land/i-- >6-- > SO($) of Euler 
6 = 4 + 1 + 1 so that we need to add an e(h) in e(X4). So one gets for 
the fiber enhancements 

e(Xi)   =   l(e(A)-[e(C)-#(C7nr) + e(/i)-/iP + e(P)]) 

Now FxGx -- - C0ld — 

Cold =     24(C; 

c =   fi9i 
Cr =   3hP 

#(Cnr) =   hP 
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+2(e(C)-#(Cnr)) 

+4(e{B2) - [e(h) + e(P) - hP\) 

+6(e(/i) - hP - #(C n r)) + 5(e(P) - hP)) 

+1#{C n r) + mhP 

=   e(D1) + e(C) + 4e(B2) + e(h) 

+(l-7)#{Cnr) + (m-6)hP 

=   288 + 938c? + 1868c!* + Ut2 

+{l + m- 13)hP (7.71) 

which matches with the codimension one expectation from [39] for t = 
ci (cf. section (7.1)) giving e^) = 288 + 2820c?. 

7.2.10    Aitfs) singularity 

Fi   =   4cl + 8r + 4t^F1r = 4h 

d   =   6ci + 12r + 6t => GIT = eh 

Dx   =   12ci + 19r + 12i =► D^r = Ah + P (7.72) 

where h — Ci — t and P = 8ci — 3t and the last decomposition holds 
not only on the level of cohomology classes but actually on the level of 
divisors as seen from the equation Di = (h4P + O(z) = 0). 

Now FiGi = C0id = 15/ir + C (on the level of divisors) so 

Cold = 24(ci +1)2 + 96cir 
C = f1gi-15(c1-t)r^24(c1+t)2 + 8lc1r + l5rt 

Cr = 4h-6h + 15ht = 3h(8h + 5t) = 3hP 

#(Cnr) = hP                                                                   (7.73) 

by the similar arguments as in the earlier cases. Note also that not 
only Ch C Cr but that they are actually equal as sets. The precise 
multiplicity is given by C3h = Cr as the part 3h occurs in the Cr not 
only as cohomology class but even as divisor. 

Now (up to a codimension two correction from the higher double 
point curve along h and codimension three contributions from correc- 
tions from point singularities) 

e(£>i)   =   c2(B3)D1-c1(B3)Dl + Dl + Al cusp 
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=   228 + 7469c? + 3210cit + 1878*2 + Acusp.     (7.74) 

One has -7CD1+6c1(53)C = -9222c?-3495cii-2259i2. Now Fid = 
CM = 15hr + C so 2Xar(CoW) = 2xar(l5h) + e(C) - 2(C15h) and 
2xar(Coid) = -1296cf-432i2 giving with 2xar(15/i) = -Ibhilbh-a) = 
-2104 + 435^^ - 225t2 and IhCh = 5Cr = 15/iP that 

e(C) = -846cf - 765ci* - 117^2 (7.75) 

and 

Acusp = -5838c? - 435c1t - 1791*2 (7.76) 

and altogether (up to the limitations mentioned above, i.e., the codim 
2 and codim 3 contributions from corrections along the higher double 
point curve h and at their intersection Ch) 

e(jDi)   =   228 + 74694 + S210cit + 187St2 + Acusp 

=   228 + 1631c? + 2775ci* + 87i2. (7.77) 

Let us now come to the discussion of the codim 3 contributions. The 
discriminant equation A for D is given by equ. (D.43) so that one has 
inside the r-plane the equation h^P = 0 with P = 2h2gi—Sfiqh—SHq2. 
Now note that near h the equation of Di is given by (with e := fiH+q2) 

- 3Hq2(h4 - 2h2Hz + H2z2) + (-tf^H + S/2) + ^e2) z3 

+ (f* + 3g1e)z' + g2z5 = 0.   (7.78) 

So the complete square structure of the leading terms showed that we 
do not have a generic tacnode structure, just as for /6 but in contrast 
to the case I4. With w := Hz — h2 the terms up to third order became 
(everything up to coefficients) w2 + z3 —> h6 + 3h4w + w2 + w3 near 
(/i5 w) = (0,0) which goes with w := v — |/i4 to the normal form h6 + v2. 

Now let us compare with the heterotic side where one has the spec- 
tral cover equation ao + c^rr + a^y + a±x2 + a§xy = 0 with a* in the class 
^ — id = (6 — i)ci — t, so (up to inessential factors) 

hd-t   =   ^5 

H2ci-t     —     a4: 
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Q3ci-t     =     ^3 

fl = faa-t     =     a2 

9i = gta-t   =   ao- (7.79) 

Further one finds coincidence16 of the heterotic expression P ~ OQCLI — 
^2^3 ^5 + ^1^4 for this matter curve with the F-theoretic P (up to 
inessential factors). 

The singularity structure, i.e., the overall higher tacnode structure 
along h, will change if at special loci coefficient functions vanish (say 
R at R D h = (hnq)U(hnH)) so that one gets degenerations of the 
structure equ. (7.78). Now the relevant loci are hnq and hDH and 
one has 

hP   =   h(2q + H) 

hs   =   h(2q + 2H) 

hR   =   h(2q + 3H). (7.80) 

Both, hn R and h D P, lie in (and are actually equal to) h Pi (q U H). 
In the following we will divide h D P and Rnh into hHq and hn H. 

This leads to the consideration of the following loci and singularities 
(up to coefficients): 

hxnqy^ xA(x2 + xy + y2) + x2(x2 + xy + xys + y2)z 

+ (x3y + x2 + x2y2 + xys + xy + y2)z2 + z* (7.81) 

respectively 

hxnHy=> x4(x2 + x + y) + x2{x2 + x2y + xy + x + y2)z 

+ (x3 + x2 + x2y + x2y2 + xy + xy2 + y3)^2 + z3.    (7.82) 

So we expect further corrections (denoted below by a and /?) to e(Di) 
at these /ig resp. hH points. 

There are 'Ss-intrinsic' corrections hidden in 

e(Di) = c2{Bz)Dl - c1(Bs)D
2 + D* + Acusp + Ahightac 

- e(h) + Acnr + ^hq + ^hH 
16The coincidence of weights for the P's and a* was already noticed in [26]; here 

we give the F-theoretic P in ft,if,<?,/i,pi. 
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= e(Dl)
ord + Acusp + Ahightac - e(h) + (7 - 2)#(C n r) 

+ (a-4)#(/ln?) + (/?-4)#(/intf) 

= e(i?i)ord + Acusp + Ahighta<; - e(h) 

+ (27 + a - 8)hq + (7 + /? - 6)/itf 

^^(DO^ + Acusp + A, (7.83) 

where this time Acnr comprises two effects: first, that the points of C 
which lie in r are no longer cusp points, and secondly that, as the cusp 
curve C and the tacnode curve hr intersect, the corrections ACUSpc and 
Atach get a third term ACUSpnhightac = 'Y#(Cnh)= 7#(Cnr) describing 
the influence of the intersection locus. Also at the loci h D q and h n H 
we have the point singularities of Di measured by a and /S, where we 
then have to subtract their pointwise tacnode contribution " + 4", just 
as we did for the points of C n r which were not cusp points where we 
subtracted their pointwise cusp contribution " + 2". 

Now again we now that Cr — 3hP as cohomology classes and Cflr C 
h. One has Cflr £ hnP, i.e., that Cr\r lies neither in hnq nor in hnH. 
Then one has with the disjoint decomposition hnP = (hnq)U(hnH) 
that17 

#(Cnr)   =   hP = 2hq + hH 

#{hnP)   =   #(hnq) + #(hnH) = hq + hH.        (7.84) 

Now for 5/7(5) one has the matter/enhancement schemes: P > 
5 - - > SU{6) of Euler 6 = 5 + 1 and h--> 10 --> 50(10) of 
Euler 7 = 5 + 1 + 1 so that we need to add an e(h) in e(XA). So one 
finds 

e(X)   =   l(e(A)-e(C)-e(ft)-e(P) + #(Cnr) + #(/»nP)) 

+2(e(C)-#(Cnr)) 

+5(e(£2) - e(h) - e(P) + #(/* n P)) 

+7(e(/i) - #(A n P) - #(C n r)) + 6(e(P) - #(/i n P)) 
+l#(C n r) + m#(/i n q) + A;#(/i n //) 

=   e(Di) + e(C) + 5e(P2) + e(/») 

17the left hand side of the first equation is the intersection of h with a divisor 
of class P but not with the divisor P itself by assumption; note that the second 
equation is the intersection of h with the divisor P 
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+(l - 8)#(C n r) + #(m -7)(hf)q) + (k- 7)#(h n H) 

=   e(Di) + e(C) + 5e(S2) + e(/i) 

+(2/ + m - 2S)hq + {I + k - 15)hH 

=   288 + 780c? + 2011cit - Sit2 + Ah 

+(21 + m- 2S)hq + (I + k - 15)hH. (7.85) 

Comparing this with the heterotic value 

24n5 = 288 + 1410c? + 975cii + 375t2 (7.86) 

gives the condition (note that Ah was proportional to h too) 

Ah + (21 + m - 23)hq + (I + k - 15)hH   =   h(630ci - 406i$7.87) 

7.2.11    A5(I6) singularity 

Fi = 4ci + 8r + 4t =► i^r = 4h 

Gi = 6ci + 12r + Gt =► Gir = 6/i 

L>i = 12ci + 18r + 12t =► Ar = 12ci - 6i = 4^ + P^-a      (7.88) 

where h = Ci — t and P = 8ci — 2^ and the last decomposition holds 
not only on the level of cohomology classes but actually on the level of 
divisors as seen from the equation Di = (hAP + 0(z) = 0). 

Now Fid = C0id = 18hr + C (on the level of divisors) so 

CM   =   24(0! +1)2 + gedr 

C   =   f1g1-18(c1-t)r = 24:(c1+t)2 + 78clr + 18rt 

Cr   =   4h-6h + l8ht = 3h(8h + 6t) = 3hP. (7.89) 

Note again that not only Ch C Cr but that they are actually equal 
as sets. The precise multiplicity is given by C3h = Cr as the part 3h 
occurs in the Cr not only as cohomology class but even as divisor. 

Now 

e(D1)   =   02(83)0^ c1(B3)D
2 + D3

1+Acusp + Ah 

=   216 + 7062c? + 3642ci£ + 1764i2 + Acusp + Ah. (7.90) 
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One has -TCA+Gci^C = -8820c?-4068ci*-2088*2. Now F1G1 = 
CM = IShr + C so 2xar(Cold) = 2x«r(18/i) + e(C) - 2(C18h) and 
2xar(Cold) = -1296c?-432i2 giving with 2xar(18/i) = -18h(18h-Ci) = 
-18(ci-t)(17ci-18t) = -18(17^-35^ + 18^) = -306cf+ 6300^- 
324t2 and 18Ch = QCr = l8hP = 18(ci - t)(8ci - 2t) that 

e(C)   =   -702c? - 990ci^ - 36t2 

Acusp   =   -6012c? - 108cit - 1944t2 (7.91) 

and thus 

e(A) = 216 + 1050c? + 3534cii - 180t2 + A/,. (7.92) 

Now for SU(6) one has the matter/enhancement schemes: P > 
6 - - > SU(7) of Euler 7 = 6 + 1 and h--> 15 --> 50(12) of 
Euler 8 = 6 + 1+1 so that, like for SU(5) we need to add an e(h) in 
e(X4). So now one has (let us include in A'h as opposed to A/j also the 
fiber enhancements at the codimension three loci, which are also in h) 

e(X4)—>cod2   =   e(D1) + e(C) + e(h) + 6e(B2) + A'h 

=   288 + 342c? + 2545cit - 217t2 + A^.   (7.93) 

Comparing this with the heterotic value 

24n5 = 288 + 1266c? + 1035cit + 369t2 (7.94) 

gives as prediction A^ = /i(1150ci — 665i). 

7.3    An observation on the 4D Higgs chains 

Let us close with an observation relating the Euler numbers in neigh- 
bouring cases in certain Higgs-chains. 

7.3.1    6D case 

For the chain E7 -> E6 -+ D5 —> I5 with the Euler numbers 

e(E7) = -284 - 56n 
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e(E6) = -300 - 54n 

e(D5) = -312 - 52n 

e(/5) = -320 - 50n (7.95) 

one gets 

e(higher) — 2e(enh.locus) = e(lower) (7.96) 

where the enhancement locus is in this chain always the h locus of 
the higher group, i.e., /i = 4ci — t — 8 — n, gi — 3ci — t = 6 — n, 
h — 2ci — t — 4 — n and /i = Ci — i = 2 — n for E1/, Ee, D5 and /$ 
respectively. 

The reason for these relations is of course easy to see. Take for 
example the case of E7 and EQ. One has h1'1^) — /i1,1^) = 1 and 
from h2'1 = riH-l = dimM12+n(Es)+dimMl2-n{Hk)+h1'l{KS)-l = 
112+30n+A;(12-n)-(A;2-l) + 19 where Hk = Sulk) is the commutant 
with k = 2 and 3 one gets that h2>l(E7) - h2>l(Ee) = [k(12 - n) - (A;2 - 
l)]-p + l)(12-n)-((A; + l)2-l)] = -(12-n) + 2A; + lforA; = 2and 
so 6(^7) -e(E6) = 2(12-n-2k) = 2(2(6-k)-n) where 2(6-k)-n 
is just the degree of the relevant enhancement curve. 

Similarly for the Ik series one gets with 

e(J6) = -288 - 54n 
e(/5) = -320 - 50n 

e(J4) = -352 - 44n 

e{Iz) = -384 - 36n 

e(I2) = -420 - 24n (7.97) 

that again 

e(higher) — 2e(enh.locus) = e(lower) (7.98) 

where the relevant curve is in this chain always the P locus of the higher 
group, i.e., 8ci — (8 — k)t — 16 — (8 — k)n for /^ the higher group (note 
that in our set-up we made the switch n -» —n). 

7.3.2    4D case 

For the chain E7 —¥ E6 —» D5 —> I5 with the euler numbers 

e(E?) = 288 + 1350c^ + 1020ci* + 366t2 
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e(E6) = 288 + 1386c? + 999cii + 369t2 

e(D5) = 288 + 1404c? + 984c1t + 372t2 

e(I5) = 288 + 1410c2 + 975cit + 375t2 (7.99) 

one gets 

e(higher) — 3e(enh.locus) = e(lower) (7.100) 

where the enhancement locus is in this chain always the h locus of the 
higher group, i.e., /i = 4ci — t,gi= 3ci — t,h = 2ci — t and h = Ci — t 
for E7,EG, D5 and 1$ respectively. 

Again let us see from a heterotic point of view how this structure 
emerges. From 

C2(SU(n)) =Va- -^r4 - -nin - ncx) (7.101) 

one sees that 

c2(SU(n + l)) 

= C2(SU(n)) - hn2 + n)^ + v(-nci + v - ci - nci)]   (7.102) 
O 

where the correction term is 

_I[(n2 + n)c2 + (6ci _ £)((5 _ 2n)ci _ t)] = L^.^)    (7.103) 
o o 

with r] — nci = (6 — n)ci — t the class of the h matter curve (an = 0). 
This leads in 24n5 to the searched for 3e(h). 

Furthermore inside the Ik series one has the same relation with 

e(I6)   =   288 + 1266c? + lOSScii + 369t2 

e(h)   =   288 + 1410c? + 975cii + 375t2 (7.104) 

where the relevant curve is in this chain the P locus of the higher group, 
i.e., 8ci — (8 — k)t for Ik the higher group. 

Appendix 

In section A we give some background and notation concerning four- 
dimensional F-theory models, i.e., Calabi-Yau four-folds and recall 
some facts related to the four-flux. 
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In section B the different constructions of the vector bundles of the 
dual heterotic models are described and the computation of the second 
Chern class of E^ bundles in the parabolic framework is derived. 

In section C some known resp. expected connections between the 
moduli spaces of compactifications in the two dual pictures of the het- 
erotic string and F-theory are described, especially the analogy between 
the gamma class of the bundle description and the four-flux on the F- 
theory side is recalled. 

Section D has a somewhat different flavour in that it lists some 
computational details concerning the explicit discriminant equations 
and spectrum computations for the case of Calabi-Yau i/iree-folds. 

A    4d F-theory models 

A.l    The geometry of the four-fold 

We will consider Calabi-Yau fourfolds X which are elliptically fibered 
TT : X -> i?3 over a complex three-dimensional base 3% = B, let a 
be a section. X can be described by a Weierstrass equation y2z = 
xs + g2xz2 + gsz3 which embeds X in a P2 bundle W —» B which is 
the projectivization of a vector bundle P(£2 © £3 0 OB) with £ being 
a line bundle over B. Since the canonical bundle of X has to be trivial 
we get from Kx = ^*(KB + C) the condition C = — KB- Further we 
can think of x, y and z as homogeneous coordinates on the P2 fibers, 
i.e., they are sections of 0(1) ® K^2, 0(1) ® K^s and (9(1), whereas 
#2 and gs are sections of H0(B, K^A) and H0(B, K^6) respectively and 
the Weierstrass equation is a section of (9(I)3 ® Kg6. The section a 
can be thought of as the point at infinity x = z = 0,y = 1. The 
descriminant of the elliptic fibration is given by A = 4^1 — 27^1 which 
is a section of K^12. If A = 0 at a point p e B the type of singular 
fiber is determined by the orders of vanishing ord(g2) = a, ord(g3) = b 
and ord(A) = c, and given by Kodaira's classification of elliptic fiber 
singularities: 
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a b c fiber singularity 

>o >o 0 smooth none 

0 0 n In An-l 

> 1 1 2 II none 

> 1 >2 3 III Ai 

>2 2 4 IV A2 

2 >3 n + 6 I*n Dn+4 

>2 3 n + 6 I*n Dn+A 

>3 4 8 IV* Ee 

3 >5 9 IIP E7 

>4 5 10 II* E8 

Let us denote by F = -^KB, G — -6KB and D = -12KB the classes 
of the divisors associated to the vanishing of #2? 93 and A respectively. 

We will assume B3 to be a P1 bundle a : B3 -» B2 which is the 
projectivization P(Y) of a vector bundle Y = O 0 T, with T a line 
bundle over B2 and C?(l) a line bundle on the total space of P(F) —> £2 
which restricts on each P1 fiber to the corresponding line bundle over 
P1. Further let u, v be homogeneous coordinates of the P1 bundle and 
think of a and b as sections of 0(1) and 0(1) ®T over B2. If we set 
r = ci(0(i)) and t = Ci(T) and Ci((9®T) = r + i then the cohomology 
ring of B3 is generated over the cohomology ring of B2 by the element r 
with the relation r(r + t) =0, i.e., the divisors u = 0 resp. v = 0, which 
are dual to r resp. r + t, do not intersect. From adjunction c(Bs) = 
(1 + ci(S2) + C2(S2))(1 + r)(l + r +1) one finds for the Chern classes18 

Ci(B3) = d + 2r + t, C2(fi3) = c2 + ci* + 2cir. Note that 52 will be 
chosen to be rational. For this recall that the arithmetic genus pa of B3 

has to be equal to one 1 = pa = ^ fB Ci(Bs)c2(B3) = ^ J^ c^ + C2 (for 
more details cf. [2]) in order to satisfy the SU(4) holonomy condition 
for X, otherwise there are non-constant holomorphic differentials on £3 
which would pull back to X. 

18 Unspecified Chern classes refer to £2. 
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A.2    The four-flux 

In order to obtain consistent F-theory compactifications to four-dimen- 
sions on Calabi-Yau fourfold X, it is necessary to turn on a number 
723 of space-time filling three-branes for tadpole cancellation [49]. This 
is related to the fact that compactifications of the type IIA string on 
X are destabilized at one loop by f B A Is, where B is the NS-NS 
two-form which couples to the string and Is a linear combination of 
the Pontryagin classes P2 and pi [51]. So, compactifications of the 
type IIA string to two-dimensions lead to a tadpole term J B which 
is proportional to the Euler characteristic of X. Similar, in M-theory 
compactifications to three-dimensions on X arises a term J C A Is with 
C being the M-theory three-form, and integration over X then leads to 
the tadpole term which is proportional to x(^0> aild couples to the 2- 
brane [24],[9]. Now, as M-theory compactified to three-dimensions on X 
is related to a F-theory compactification on X to four-dimensions [50], 
one is lead to expect a term f A with A now being the R-R four form 
potential, which couples to the three-brane in F-theory [49]. Taking 
into account the proportionality constant [52], one finds ^P = 77,3 
three-branes in F-theory (or membranes in M-theory resp. strings in 
type IIA theory) [49]. 

Furthermore the tadpole in M-theory will be corrected by a classical 
term C A dC A dC, which appears if C gets a background value on X 
and thus leads to a contribution J dC A dC to the tadpole [9]. Also 
one has [53] a quantization law for the four-form field strength G of C 
(the four-flux) the modified integrality condition G = ^ = y + a with 

a e HA(X,Z) where a has to satisfy [15] the bound -120 - ^f1 < 
a1-\-ac2 < —120, in order to keep the wanted amount of supersymmetry 
in a consistent compactification. Altogether19 one finds [16] 

^-+ \JG/\G (A.l) 

for consistent iV = 1 F-theory compactifications on X to four-dimen- 
sions. 

19 the presence of a non-trivial instanton background can also contribute to the 
anomaly [12]; this adds a term J]. /A. C2(Ej) to 713 where /A. C2(Ej) = kj are the 

instanton numbers of possible background gauge bundles Ej inside the 7-brane [12] 
and Aj denotes the discriminant components in B3 
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From the connection of F-theory to M-theory via Sl compactifi- 
cation one expects some lifting of the four-flux of M-theory to play a 
role in F-theory. This is a (2, 2) form in integral cohomology (essen- 
tially; its precise quantization law leading to half-integrality is reviewed 
below) and so according to the Hodge conjecture supported on an al- 
gebraic surface S in X^. From the primitivity condition (again further 
reviewed below) for the self-dual four-flux (gbi the Kaehler metric) [9] 

Fam9bl = 0 (A.2) 

one gets a well-comed constraint fxJAJAF = 0on the moduli. 

B    4JD heterotic models 

B.l    The spectral cover method for SU(n) bundles 

Let us recall the idea of the spectral cover description of an SU(ri) 
bundle V: one considers the bundle first over an elliptic fibre and then 
pastes together these descriptions using global data in the base B. Now 
over an elliptic fibre E an SU(n) bundle V over Z (assumed to be fibre- 
wise semistable) decomposes as a direct sum of line bundles of degree 
zero; this is described as a set of n points which sums to zero. If you now 
let this vary over the base B this will give you a hypersurface C C Z 
which is a ramified n-fold cover of B. If one denotes the cohomology 
class in Z of the base surface B (embedded by the zero-section a) by 
a G H2(Z) one finds that the globalization datum suitable to encode 
the information about V is given by a class 77 G Hl'l(B) with 

C = no + 77 (B.3) 

as C is given as a locus w — a§ + (^x + a^y + ... anx 2 — 0, for n even 
say and x, y the usual elliptic Weierstrass coordinates, with w a section 
of 0{a)n ® M with a line bundle M of class 77. Note that a* is of class 

The idea is then to trade in the SU(n) bundle V over Z, which is in 
a sense essentially a datum over 5, for a line bundle L over the n-fold 
(ramified) cover C of B: one has 

V = p*(P*cL®V) (B.4) 
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with p : Z xB C -> Z and pc ' Z xB C -» C the projections and V the 
global version of the Poincare line bundle over ExE (actually one uses 
a symmetrized version of this), i.e., the universal bundle which realizes 
the second E in the product as the moduli space of degree zero line 
bundles over the first factor. 

A second parameter in the description of V is given by a half-integral 
number A which occurs because one gets From the condition ci(V) = 
TT^CICL) + Cl(c2>-Cl) = 0 that with 7 G kern* : H1'1^) -> Hl>l(B) one 
has 

.   ci(L) = ~(ci(C)-7r#ci)+7 (B.5) 

where 7 is being given by (A 6 |Z)20 

7 = \{na — r) + nci) (B.6) 

as na\c — rj + nci is the only generally given class which projects to 
zero. 

B.2    Ek bundles and del Pezzo description 

B.2.1    Fibrewise 

The del Pezzo surface dP^ (k = 0,... 8) is given by blowing up k points 
in P2. So the lattice L = H2(dPk,Z) has the signature (+l,i) in 
the basis given by the line H from P2 and the exceptional divisors Ei 
(i = 0,... 8); all of these classes are (1,1). The anti-canonical class, 
an elliptic curve, is ample and given by — F for F = 3H — J2i^i' For 
k = 9 (and the nine points lying on the intersection of two cubics) 
one gets the (almost del Pezzo) rational elliptic surface dPg, with F 
the elliptic fibre class. "Exceptional" or "(—1)" curves are the curves 
c with c2 = — 1 and c • F = +1. The orthogonal complement of F is 
the Ek lattice. The Ak-i lattice occurs too, with the basis Ei — Ei+i 
(z = 1,... A; — 1); the additional root, which leads to Ek and does not lie 
on the line of the Ak-i Dynkin diagram, is given by H — (Ei +E2 + E3). 
For Dk-i take the representation of dPk as Hirzebruch surface Fi blown 

20 actually A has to be strictly half-integral resp. integral for n odd resp. even 
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up in k — 1 points lying on different fibers, denote the two F1 in each of 
the k — 1 special fibers of type A2 by L±i (i = 1,... k — 1) of classes l±i 
and by / the fibre class (/ = k + l-i); f1- is the sublattice generated by 
the U (±z = 1,... k — 1) and (/ + K)1- is generated by the root system 
R = {(l±i - l±j)}, ±i, ±i = 1, • • • k - 1, i ^ ±j of type A;-i. 

Now, as every point w in the weight lattice L/FZ of G determines a 
representation /)w of the maximal torus and, from taking a flat connec- 
tion A in the representation pw, a line bundle £w on E - thus providing 
a homomorphism to Jac(E) = E, a semistable G = Ek bundle over an 
elliptic curve E corresponds to a homomorphism from L to E mapping 
F to zero. This first dictionary is further translated via the Torelli the- 
orem to essentially21 the space of complex structures of a dP^ surface 
keeping a divisor D of class F fixed: namely, keeping D fixed, y-F = 0 
for y G L-

LF
 means that Cyln is of degree zero, so defines a point in 

Jac(E). One may rephrase (cf. [44]) the association, in the case of E$ 
say, saying that the flat gauge field on the elliptic curve D is mapped 
to the set of eight points on D which represent the intersection of D 
with divisors generating the E$ piece in the lattice of the del Pezzo 
surface. One gets the del Pezzo surface writing a second cubic (besides 
the elliptic curve D) on P2 and forcing nine points to lie on their inter- 
section, where the nine points are got in flat coordinates on D from the 
flat Es gauge field represented as w = (wi,... , w$) in a Cartan basis 
by Wi = Zi — ZQ with ZQ + Z\ H h z8 = 0. 

B.2.2    Globally 

The root system is describing (cf. for example [45],[23],[41], [17]) a 
certain part of the Hl,1(dP^ Z) so that the variation of the fibre of the 
spectral cover over B describes the variation of certain (-1) curves / in 
their variation in a family of surfaces over B (expressing the effective 
replacement of these lines by points, causing the (l,l)-shift). This 
leads also to the necessary relation between Gf and /27r^72 = — TT^

2 

(for i = 1,2). 

Actually we will see the spectral cover as parametrization of ex- 
ceptional lines in a surface fibration over B. This occurs by taking 
into account the description of the 'enlarged' root system in surface 

for a subtlety involving a certain (9 — k)th root of CF\F cf. [26] 
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cohomology. Note that as the same moduli space WG parametrizes G 
bundles over an elliptic curve E and del Pezzo surfaces dPc (with E of 
class —K fixed) one gets by adiabatic extension over the base B that to 
the bundle V over Z corresponds a fibration WQ

6
* —> B of dPo surfaces 

via pulling back the universal object (now the universal surface not the 
universal bundle) along the section s : B -> WQ = MZ/B- 

So for G = E$ both data, the spectral cover and the del Pezzo fi- 
bration are equivalent. The obvious analogue works for type En: the 
character lattice A of En is still isomorphic to the primitive cohomol- 
ogy group Hl(dPn,7j). For type An or Dn we use the fact that the 
corresponding character lattices can be embedded into the En lattice 
as the orthogonal complement of an appropriate fundamental weight 
(corresponding to one of the ends of the Dynkin diagram). So one can 
define a del Pezzo fibration of type An or Dn to be a del Pezzo fibration 
TT : U -> B of type En together with a section of the family of En lat- 
tices i?27r*Z which, in each fiber, is in the W orbit of that fundamental 
weight. For An, for example, this additional data consists, in each fiber, 
of specifying the pullback of a line of the original P2. 

B.2.3    Why spectral covers for SU(n) bundles and del Pezzo 
fibrations for Ek bundles 

When one tries to transfer these results to the (D- and especially to 
the) E-series, one faces the following problem. For the E-series one 
does not describe [26] the bundles via the spectral cover construction 
but instead via the associated del Pezzo fibration, giving not a covering 
of B but22 a fibration over it by surfaces. This is related to the following 
(cf. [36]): consider the type IIA string on an elliptic K3 with ADE sin- 
gularity times T2; the N = 1 content of this 4D iV = 4 theory includes 
three adjoint chiral fields X, Y, Z, whose Cartan vevs, parametrizing 
the Higgs branch, correspond to blowing up respectively deforming the 

22This admits also a representation-theoretic explanation. The Weyl group of An 

admits a small permutation representation n + 1 which decomposes into the sum of 
two irreducible representations: the trivial one and the weights, Z[W/Wo] = 1 0 A. 
But every permutation representation of WEn contains at least three irreducible 
constituents, so the cohomology of an associated spectral cover contains additional 
pieces. To get an object with the right cohomology one must either go up in 
dimension or restrict attention to classes which transform correctly under some 
correspondences. 
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singularity respectively giving Wilson lines to the ADE gauge group 
on T2; the R-symmetry induces an equivalence of the corresponding 
moduli spaces. This gives the main theorem on the structure of the 
moduli space MQ of flat G-bundles on an elliptic curve. 

Concretely let us take as elliptic curve E = ^1,2,3 [6] of equation e := 
z^+x^ + if + nzxy = 0 leading (with w of sect. B.l) to the deformation 
e + vw of the SU(n) singularity showing at the same time Looijenga's 
moduli space (ao, 02? ^3,..., dn) G P71-1 of flat SU(n) bundles over E 
as well as the OD spectral geometry consisting of n points (e = 0) n 
(w = 0) on E. Note that in this case of the An group it is possible to 
effectively replace 23 a 2D geometry of P^s by the zero dimensional 
representatives as v occurs only linear and so in the process of period 
integral evaluation to describe the variation of Hodge structure relevant 
here can be integrated out. 

By contrast the same decoupling phenomenon does not take place24 

for the the Ek case: there one finds instead for the deformation e + 
]CLi Gi^6""* + b2V2x2 + b^y + b^x of zero locus dP% = Pi,1,2,3[6] 
showing the 2D spectral geometry of the del Pezzo surface with 
H1A(dP, Z)±E = Es and moduli space Pi,2,3,4,5,6,2,3,4. 

B.3    The parabolic approach and the characteristic 
classes of Eg^E^^ EQ 

In order to get a heterotic prediction for the Euler characteristic of X 
with a section of h^h singularities, we have to compute the second 
Chern class of the corresponding £V, EQ bundles on the heterotic side. 
Also our 'second' bundle will always be an Es bundle. 

In order to do so we can use the parabolic bundles description which 
leads one to easily compute their Chern classes [26], [1].   In this ap- 

23For the general phenomenon relating even (OD to 2D, of symmetric intersection 
form) resp. odd (ID to 3D, of antisymmetric intersection form) cohomology cf. 
[40]; the same relation underlies the extraction [38] of the ID Seiberg-Witten curve 
from the 3D periods of a Calabi-Yau and the relation between KS singularities and 
ADE gauge groups. 

24Correspondingly there occurs a situation involving E groups, where the 
Coulomb branch of an iV = 2 system does not reduce to a Riemann surface but is 
described in terms of 3-form periods [36]. 
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proach one starts with an unstable bundle on a single elliptic curve 
E. For this one fixes a point p on E with the associated rank 1 line 
bundle 0(p) = Wi. Rank k line bundles Wk are then inductively con- 
structed via the unique non-split extension 0 -> O —>• W^+i -» W^ -> 0. 
If one writes the dual of W*; as W£ then the unique (up to transla- 
tions on £*) minimal unstable bundle with trivial determinant on E is 
given by V = W*; © W^. This can be deformed by an element of 
Hl(E, Wk®W*_k) to a stable bundle V which fits then into the exact 
sequence 0 -> W*_k -> V' -> W^ -» 0. To get a global version of this 
construction on replaces the Wk by their global versions, i.e., replace 
0(p) by 0(ai). The global versions of Wk are inductively constructed 
by an exact sequence 0 —>> Cn~l —>► W^ -> W/b-i -> 0. 

B.3,1    £;8 bundle 

The starting point for building an E$ bundle is G = 5(7(6) x SU(3) x 
SU(2) and let ^6,3,2 denote the three factors. Then locally one has 
a description of the X's given by X6 = (W5 © O) ® 0(p)"1/6 and 
X3 = (W3 (g) CKP)"

1
/

3
) and X2 = W2 ®C. The global versions are given 

by [26] 

x6 = (wb®s-l@sb®c-l)®o{G)-ll*®c-*i2 

x3 = Waoc?^)-1/3®/:-1 

X2   -   W2®0(^)"1/2®^-1/2 (B.7) 

the fundamental class X(V)25 of this bundle is given by 

X(V) =r]a- I5772 + 1357yd - 310c2 (B.8) 

with rj = 4ci + ci(5) and which then leads to the following expression 
for the x(X) 

24n5 = 288 + 1200c? + 1080cii + 360i2. (B.9) 

B.3.2    E7 bundle 

Our starting point for E7 bundle is G = 5J7(4) x 5C/(4) x 5J7(2) and let 
Xi52,3 denote again the three factors. Then locally one has a description 

25which is 02(10/60 for Eg bundle, also note that X(V) = C2(TO/36 and X(V) = 
C2(V)/24 for E7 resp. EQ bundles which we use below 
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of the X's given by X1 =■ (WseO^Oip)-1/4 and X2 = (W^Oip)-1^) 
and X3 = W2 ® ^(p)-1/2. As global versions we choose 

X2   =   W4®0(a)-1/4®C-s/2 

X3   =   W2®0(a)-1/2®£-1/2 (B.10) 

the fundamental class of this bundle is given by 

X(V) =w- 67?2 + 487/d - ^pc2 (B.ll) 

with r] = 7/2ci + Ci(S) and which then leads to the following expression 
for the x(X) 

24n5 = 288 + 1866c2 + 504cit + 504t2. (B.12) 

B.3.3    E6 bundle 

In order to get a EQ bundle one chooses as the unstable bundle whose 
structure group reduces to a group locally G = 811(3) x SU(3) x SU(3) 
following [26]. The fundamental characteristic class of an EQ bundle 
whose structure group reduces to G is 

X(V) = c2(X1) + c2(X2) + c2(X3). (B.13) 

Now, it was shown in [26] that on a single elliptic curve Xi and X2 

are given by Xi^ = W3 ® 0(p)~1/s and for X3 one has X3 = (W2 © 
O) ® 0(p)~1^. All we have to do now is to give a global description 
of these bundles and compute their Chern classes. Therefore we want 
to consider bundles which are isomorphic to the X^s on each fiber and 
have trivial determinant. Thus we can take for Xij2 

Xh2 = WS® Oia)-1'3 ® C-1 (B.14) 

and for X3 the most general possibility to write down a global version 
of it is 

X3 = (W2 ® S'1 ®S2® C-1) ® O(a)-1/3 (B.15) 

where S is an arbitrary line bundle on B which is introduced using the 
fact that one can twist by additional data coming from the base. ^From 
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this we can now compute Chern classes. We find for the fundamental 
characteristic class of the EQ bundle 

X(V) = r](T- 3r)2 + 21^ - 39c? (B.16) 

where rj = Ci(S) + 3ci(£) and with the anomaly formula we derive 
simply the heterotic expectation for the Euler characteristic of X with 
Is singularity which is 

24n5 = 288 + 1704c? + 720cii + 432t2. (B.17) 

C    Comparison of the moduli spaces 

In view of the application indicated in the title of the paper the most 
important insight of an association of data between the heterotic and 
the F-theory side to be expected will be the following: the gamma class 
7 is an element of i71'1(C) where the spectral cover C is an n-fold 
ramified cover of B\ think, in a naive picture, of this as a curve in C 
or as a curve (null-cohomologous) in B each of whose points is cov- 
ered by some preimages in C; now, if one switches from the spectral 
cover representation of the bundle (where over each base point b G B 
sits a finite point set) to the representation by a fibration over B of 
del Pezzo surfaces (of type ADE in general or of type E in the more 
widely known case), the points on the elliptic fibre over b are traded in 
for (1,1) cohomology classes on the del Pezzo surface (sitting now over 
6) which correspond to divisors intersecting the former elliptic curve 
(which re-occurs here as anti-canonical divisor) in the formerly given 
points; then the situation is considered to be embedded in an E% del 
Pezzo surface with the new (formerly missing) classes/divisors shrunken 
to zero; this is embedded in a dPg set-up which re-occurs (with a struc- 
ture representing precisely the corresponding heterotic bundle) in the 
stable degeneration of the Calabi-Yau four-fold on the dual F-theory 
side; as the points were thickened to P^s the (1,1) class becomes a 
(2, 2) class which is the candidate for the four-flux class. 
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C.l    General comparison of moduli space and spec- 
tra 

The moduli in a 4D N=l heterotic compactification on an elliptic CY, 
as well as in the dual F-theoretic compactification, break into "base" 
parameters which are even (under the natural involution of the elliptic 
curves), and "fiber" or twisting parameters; the latter include a con- 
tinuous part which is odd, as well as a discrete part. In [15] all the 
heterotic moduli were interpreted in terms of cohomology groups of 
the spectral covers, and identified with the corresponding F-theoretic 
moduli in a certain stable degeneration. For this one uses the close 
connection of the spectral cover and the ADE del Pezzo fibrations. For 
the continuous part of the twisting moduli, this amounts to an isomor- 
phism between certain abelian varieties: the connected component of 
the heterotic Prym variety (a modified Jacobian) and the F-theoretic 
intermediate Jacobian. The comparison of the discrete part generalizes 
the matching of heterotic S-branes/F-theoretic 3-branes. 

By working with elliptically fibered Z one can adiabatically extend 
the known results about moduli spaces of G-bundles over an elliptic 
curve E — T2, of course taking into account that such a fiberwise 
description of the isomorphism class of a bundle leaves definitely room 
for twisting along the base B. The latter possibility actually involves a 
two-fold complication: there is a continuous as well as a discrete part 
of these data. It is quite easy to see this for G = SU(n): in this case 
V can be constructed via push-forward of the Poincare bundle on the 
spectral cover C xB Z, possibly twisted by a line bundle J\f over the 
spectral surface C (an n-fold cover of B (via TT) lying in Z), whose first 
Chern class (projected to B) is known from the condition ci(V) = 0. So 
Af itself is known up to the following two remaining degrees of freedom: 
first a class in Hl'l{C) which projects to zero in B (the discrete part), 
and second an element of Jac(C) := Pic^C) (the continuous part; the 
moduli odd under the elliptic involution). 

The continuous part is expected [26] to correspond on the F-theory 
side to the odd moduli, related there to the intermediate Jacobian 
J3(X4) of dimension /i2,1, so that the following picture emerges. The 
moduli space M of the bundles is fibered M —>■ y, with fibre Jac{C). 
There is a corresponding picture on the F-theory side: ignoring the 
Kahler classes (on both sides), the moduli space there is again fibered. 
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The base is the moduli space of those complex deformations which fix 
a certain complex structure of Z\ the fibre is the intermediate Jacobian 
J3(X4) - #3(X,R)/#3(X,Z) In total26, h^x{Z) + hx{Z,adV) + 1 = 
/r^ + Zi2'1. 

One expects a general scheme of a duality dictionary beyond the 
previously considered cases of relating /i2'0(C) and /i3,1(X4) respectively 
elements of H^{C) and tf2'1^4) (cf. [12], [26], section 1 and the 
introduction). Together with the proposed identification of the discrete 
moduli one gets a dictionary of elements related by a (1,1) Hodge shift 

c X4 

#2,0 #3,1 

if1'0 #2,1 

#1,1 #2,2 

where in the first line the deformations of X4 preserving the given type 
of singularity (corresponding with the unbroken gauge group; actually 
we will consider the parts in the Wi) are understood, in the second line 
a part of the relative jacobian (see below) is understood, and in the last 
line the subspaces kern* respectively ker (J A •). 

One can also give [15] an interpretation of all the bundle moduli 
Hl(Z, adV), even or odd under the involution, in terms of even re- 
spectively odd cohomology of the spectral surface , including an inter- 
pretation of the Z2 equivariant index of [26] as giving essentially the 
holomorphic Euler characteristic of the spectral surface. 

Now let us recall that the Z2 equivariant index / = ne — n0 of [26], 
counting the bundle moduli which are even respectively odd under the 
r-involution, can be interpreted as giving essentially the holomorphic 
Euler characteristic of the spectral surface [15] which is 

12 
n3 — n n     n 

12 

n+"'      "c? + ^77(77-raci)+?7Ci.     (C.18) 

26 Unspecified Hodge numbers refer to X4 
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Now one identifies the number of local complex deformations h2i0(C) 
of C with ne respectively the dimension hli0(C) of Jac{C) := Pico(C) 
with TV 

In this way one gets from a spectrum comparison the following re- 
lations [3], [4] in a pure gauge case (the case referred to as seperation 
resp. codimension one (what concerns the discriminant) case in the 
main body of the paper) 

h1*1   =   h1^(Z) + l + r 

h2>1   =   n0 

/i3'1   =   h2^(Z)+I + n0 + h (C.19) 

Now one has to realize explicitely the map providing the (1,1) shift 
in Hodge classes. In the end this goes of course back to the additional 
P1 one has in F-theory over the heterotic side, as visible already in 
eight dimensions. More precisely we will reinterpret the spectral cover 
of B which describes the heterotic SU(n) bundle in terms of a fibration 
of del Pezzo surfaces over JB, where what were n points of C lying over 
b G B are then 'exceptional' curves27 in the del Pezzo surface over b. 

Note that the the effective replacing of the P1 classes by points 
accounts for the missing dimensions causing the mentioned (1,1) shift 
in cohomology when comparing the dual results. The description in 
the Ek case is already well adapted to the F-theory picture of having a 
fibration W —t B (for each bundle) of del Pezzo surfaces over B. 

C.2    Brane-impurities 

From the relations (C.19) one finds that ris = 715 as follows [3]. First 
one expresses, from the heterotic identification, the Hodge numbers of 
X4 purely in data of the common base B2 (using Noether 12 = cf + C2 
and x(Z) = -60c?) 

/i1'1(X4) = 12-c? + r 

27i.e., rational curves / of self-intersection —1 which have intersection +1 with 
the ample anti-canonical class; for the (almost del Pezzo) case of cLPg these are just 
sections of the elliptic fibration 
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/j3'1 (X4) = 12 + 29c? + / + n0 (C.20) 

and one next inserts the expression for the index / resulting from (C.18) 

I = n - 1 + —— c\ + -r/(7/ - nci) + T/CL (C.21) 

Then one re-expresses / with C2(Vi) 

/ = rh - 4 I ^(Vi) - r]^ + ^*lf) + ViCi (C.22) 

which gives with rki + rk2 = rk — 16 — r and T/I + 7/2 = 12ci for the 
total index 

/   =   rk + 48ci<7 + 12c? - 4(02(^1) + c2(F2))- 4 Q^ + l^j 

=   rA;-48-28c? + 47i5-4(i7r,7? + ^7r,72J (C.23) 

giving finally 

n3 + lG2   =   ^l = 2 + hh1'1(X")-h2'\X4) + h3'1(X4)) 

=   ^5- QTT.T? + ^7r*72
2J . (C.24) 

C.3    Stable degeneration and the map from the 
heterotic theory to F-theory 

We consider the stable degeneration [26], [8], [6] X4 -► Xjeg = Wi Uz 

1^2 where the Wj are fibered by del Pezzo surfaces over B. The 8D 
picture involves a ICi degenerating into the union of two rational elliptic 
surfaces (dPg, almost del Pezzo). The base of the fibration is the union 
of two projective lines intersecting in a point Q over which a common 
elliptic curve E is fibered; roughly speaking the two E% contributions in 
the K?> are separated. Recall that the chosen if 3 had Picard number 
two with section and fiber as the two algebraic cycles (still allowing 18 
deformations which match the heterotic side) and the transcendental 
lattice E% © E% © H, with H the 2-dimensional hyperbolic plane, which 
leads to the 18-dimensional space 5 := 50(2,18)/50(2) x 50(18) 
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divided by the appropriate discrete group; one specializes then to two 
E$ singularities at positions z = 0, oo in the P1 base, which after the 
'separation' in two surfaces are again re-smoothed; imagine to take (for 
the dPg's to arise) the two f^ge parts at z = 0, oo of the original 
Weierstrass data fs.gu of the K3. 

This corresponds on the heterotic side to the large area degeneration 
of a T2 of the same complex structure parameter as E [26], [8]. Imagine 
that the H and its counterpart in S above correspond to the degrees 
of freedom represented by the complex structure modulus r and the 
area (+ J5-field) modulus p of E; then in the p —> zoo limit one finds 
in the corresponding boundary component of the quotient (discrete\5) 
the two spaces (WjE?8\(^ (g> Ac)), 'glued' together by T(E1) = r^), 
describing the moduli of the two dPgS (Ac the coroot lattice of Es). 
The heterotic invariant n5 = C2Z — C2V1 — C2V2 is then mirrored on the 
F-theory side by n3 = -**§> + ^ + **g2l. 

Note that the (even) deformations of Vi correspond to those de- 
formations of Wi which preserve fiberwise the elliptic curve E com- 
mon with the heterotic side, so preserving in total the Calabi-Yau 
Z common to the Wf. their number is given by the dimension of 
H^W^Tw. (8) 0(-Z)) = Hs>l(Wi). These are the deformations in 
the stable degeneration of X4 which are relevant to the respective 
bundle. Further under the stable degeneration JS(X) splits off the 
abelian varieties J3(Wj), which contain the pieces relevant for the com- 
parison. So essentially this construction interprets those elements of 
Hp^im(X4, Z) that are 'captured by' the corresponding parts in the Wi 
cohomology28. concerning complex structure deformations note that 
the distribution into deformations of Z respectively those deformations 
H^Wi.Tw. ® 0(-Z)) ^ H^iWi) of Wi, which preserve Z, reflects 
the well known distribution of the deforming monomials of the defining 
F-theory equation for X4 into "middle-polynomials" and the rest. 

In the representation of the bundle via the del Pezzo construction 
respectively in the stable degeneration on the F-theory side the data 
are already in a form appropriate for comparison. For example in the 
case of Es bundles one has just to blow down the section of the dPg fibre 
on the F-theory side to get the dP$ fibre of the heterotic side showing 

28for the relation of the primitiveness condition to the W, Z geometry cf.   the 
discussion in the section on the four-flux 
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the relation of the cohomologies and the intermediate jacobians (cf. 
[15]). For a bundle of group H ^ Es the section 9 : B -> X4 of 
G-singularities in the F-theory setup corresponds (assuming G to be 
simply-laced) to having a bundle of unbroken gauge group G, i.e., an 
H bundle where H is the commutant of G in E$, over the heterotic 
Calabi-Yau Z respectively having29 a section s : B —>• >V# = MZ/B 

or, as the fibre of >V# over b 6 B parametrizes the corresponding del 
Pezzo surfaces, a bundle W^6* —>• B of del Pezzo surfaces dPn fibered 
over B. So, if30 one considers heterotically actually a dP$ fibration 
with G singularity instead of the dPn fibration, then locally at 6, i.e., 
at the singularity along B (local in the dP fibre and global along B), 
the picture in the K3 fibre of X4 -> B respectively the dP fibre on the 
heterotic side is the same. 

C.4    Comparison of the discrete data 

Of course the ultimate goal will be to make the complex two-cycle sup- 
porting the four-flux explicit and check the choice with a dual heterotic 
situation. Note that, comparing the heterotic contribution of 72 in eq. 
(1.5) 

^5,7 = ^5,7=0 + X7^^2) (C.25) 

with the formula [16] 

"»= HST -102 • (C'26) 

we are led to expect an association letting ji correspond with Gi giving 

<(7*) = -Gl (C.27) 
29at least locally over the dense open subset of B where fibres correspond to 

semistable bundles 
30this can be done as we have an ADE system of rational (-2) curves lying in 

H^iKS.Z) as well as in H1
'
1
(C/P8,Z)-

LF
 (in the case of the E-series, say; F the 

elliptic curve representing the ample anticanonical divisor); note that the complex 
structures for dPn are given by homomorphisms Hl'l{dPH, Z)-^ ->■ F and the 
complex structures for dP% keeping the G singularity are similarly given by the 
corresponding homomorphisms for dP% mapping the G system of rational (-2) curves 
to zero (i.e., they essentially describe a mapping for the iiT-part) 
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Note that two other facts fit with this association of 7 and G. First 
the shifted integrality (to half-integrality): the analogy in the data 
concerned with the discrete part of the twisting degrees of freedom (cf. 
below) is represented in the following juxtaposition: on the heterotic 
side one has (cf. sect. (B.l)) 

i=c1(c)-rcm+Ci(c)< (a28) 

where the last term is an element of integral cohomology whereas the 
square root (K^1 <g> KB)* does not necessarily exist as a line bundle. 
Similarly one has on the F-theory side [53] 

G = ^ + a (C.29) 

where a G HA(X, Z), but C2 is not necessarily even. Strictly speaking 
one should consider here the individual Gi (i = 1,2) corresponding to 
the 7t by means of the association provided by the stable degeneration 
(cf. the introduction to this section). 

Secondly the restriction to the subspace ker TT respectively primi- 
tiveness: the G admissible in an N = 1 supersymmetric compactifi- 
cation are in ker(J A •) [9]. The last condition comes down for the 
relevant projected classes in H2>2(W) to the following: on the het- 
erotic side the actual spectral cover construction will in the E$ case 
involve the corresponding fibration of dP$ surfaces over B (the section 
of dPg blown down); now, the embeddings of the 8D heterotic elliptic 
curves in the 8D del Pezzos patch together to an embedding of Z in 
the Wi, giving a map HP«(W) -► H™(Z)] but for the cLP8 the anti- 
canonical class given by the elliptic curve E is ample, so actually the 
ker (J A •) condition leads to a ker • |z : (H2>2(W) -► H2'2(Z)) condi- 
tion, respectively, if one combines with the integration over the fibre, 
in a ker(H2'2{W) -> H2'2{Z) -> Hl^{B)) condition; one has then to 
divide out the class dual to £&, the del Pezzo fibre of pr : W —>► 5, 
corresponding to a differential form supported on the base, which is 
mapped to zero in the integration over the TT : Z -> B fibre. So finally 
the space we are concerned with is the {ker : W -> i?)/5&Z part in 
H2'2{W). So the primitiveness condition is the analogue of the condi- 
tion kern : Hl>l(C,Z) -> Hl>l(B,Z) on 7. 

This fits in and actually completes the general scheme of a duality 
dictionary beyond the previously considered cases of relating h2>0(C) 
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and /^(X4) respectively elements of H^iC) and H2^{XA) (cf.  [12], 
[26] and the appendix). 

Now one has to realize explicitely the map providing the (1,1) shift 
in Hodge classes. A naive31 way to obtain the association of 7^ with Gi 
is via the cylinder map [34],[35]. This replaces each point in C lying 
over b G B by a complex projective line L lying above in the del Pezzo 
surface over b. Indeed, L2 = — 1, suggesting the desired relation (C.27). 

D    6D computations 

We list some spectrum and Euler number computations in 6D for the 
In series. 

D.l    Heterotic spectra 

The Euler numbers (cf. [13]) match with the heterotic expectations 
for the spectrum (note that the spectra have to fulfil the gravitational 
anomaly condition 244 + riy = TIH (here occur the fundamental matter 
and the antisymmetric tensors) and that always /i1'1(Z) = 3 + {k — 1), 
h2>l{Z) =nH-l and nv = k2 - 1): 

12 (16 + 6n)(2)-3 = 29 + 12n 

dimQ(Mtsr
2)) + ft1,1 (#3) = 166 + 20 = 186 

n0
H = 215 + 12n 

244 + 3 = 215 + 12n + 2(16 - 6n) 

13 (18 + 6n)(3)-8 = 46 + 18n 

dimQ(A^n2)) + hl^(K3) = 132 + 20 = 152 

n0
H = 198 + 18n 

244 + 8 = 198 + 18n + 3(2 - n) 

31More precisely the right hand side of (C.27) gets contributions also from distinct 
lines which intersect in the del Pezzo surface. iiP(C) breaks into several isotypic 
pieces (five of them, for Es). The values of 7 coming from bundles all live in one of 
these pieces, where the cylinder map changes the intersection numbers by a factor 
of —60 (for Eg)', so the correct association sends 7 to ^ times its cylinder. 
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+ 3(16 - 5n) 

I4    (2 + n) (6) + (16 + 4n) (4) - 15 = 61 + 22n 

dimQ(M£'n2)) + h1'1^) = 102 + 20 = 122 

n0
H = 183 + 22n 

244 + 15 = 183 + 22n + 6(2 - n) 

+ 4(16 - 4n) 

Is   (16 + 3n) (5) + (2 + n) (10) - 24 = 76 + 25n 

dimQ(Mtr2)) + hl'\KZ) = 72 + 20 = 92 
n0

H = 168 + 25n 

244 + 24 = 168 + 25n + 10(2 - n) 

+ 5(16 - 3n) 

I6   (16 + 2n) (6) + (2 + n) (15) - 35 = 91 + 27n 

dimQ(M{St'
n™''n2)) + h^iKS) = 42 + 20 = 62 

n0
H = 153 + 27n 

244 + 35 = 153 + 27n + 15(2 - n) 
+ 6(16 - 2n) 

(note that one gets G = A5 = h from an SU{2) x SUiZ) bundle). 

D.2    Discriminant equations 

We consider now in detail the discriminant equations (using the nota- 
tion fi := fia-it, 9i '■= gea-it and c := 32 • 864). 

The I2 case 

The ansatz with H = H2c1-2t 

f = st-^ + A*) 

9   =   lTrAH3 + 9iz + W2) (D-30) 864 

gives, because of the ^-linear term Hs(2g5 + SfsH) and the thereby 
enforced choice g5 = -\hH, that Dir = 2H + Psci-et with P = 
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-lfi + 2g4Has 

(4/3 + 27/)   =   z^ H2l~fi + 2g4H 

+ 

+ (D.31) 

The I3 case 

The ansatz 

/ 

9 

48 
1 

864 

(-/>4 + hz + /a*2) 

(/i6 + ghz + giz2 + g3z
z) 

gives 

c • (4/3 + 27^) 

= /i6(2<75 + 3/3/i2)2: 

+ (9l - 3/1^ + 2M6 + 3/2/1V 
+ (/I + 20604 - 6/3M4 + 2<73/>V + 0(2;4). 

(D.32) 

(D.33) 

Solving for the /a condition gives at first #5 = —\fzh2 and then /I = 
41,2 h2(2g4 + 3/2/i2) which leads us to introduce Q3ci-2t with 3<53Cl_2t 

2^4+ 3M2. 

Then one gets 

c-(4/3 + 27/) 

05   =   -^hh2 = -ZhzQ 

04 =  ^(Q2-M2) 

/a   =   IhQ 

(h3(-Q3-3f2h
2Q + 2g3h

3)) 

{DM) 

+ h j/2
2/l

2-603^ + y/2Q
2)+^4)^ 



ON DISCRETE TWIST AND FOUR-FLUX ... 1405 

+ (h(-3fig3h + 6/2
2Q) + 3g3Q

2)z2 

+ (f} + 9ty (D.35) 

The I4 case 

The ansatz 

/   = 

9   = 

gives 

l(-/i4 + hz + f2z
2 + hz") 

1 
864 

(/i6 + gsz + gAz
2 + gzz

z + g2z* + g^)        (D.36) 

c-(4/3 + 27/) 

= h\2gb + Zhh2)z 

+ {g2 - Sfih* + 2gAh
6 + Zf2h

8)z2 

+ (f! + 2^54 - 6/3M4 + 2g3h
6 + Sfth^z3 

+ (3/2/1 + gl + 29395 + h4(-3f2 - G/x/s + 2g2h
2))z4 

+ (3/1/3 + Sfifl + 2gzgA + 2g2gb + /i4(-6/i/2 + 25l/i2))^ 

+ (/I + 6/1/2/3 + tf! + 2<M4 + 2CM5 - 3/2/1V 

+ (3/i/2
2 + 3/2/3 + 2^53 + 2^i^4)^7 

+ (3/i2/2 + ^ + 2^3)28 

+ Ul + 2<7l<72)z
9 

+ ^i2^10. (D.37) 

Solving for the 1^ condition leads to introduction of H2ci-t with 

(?5   =   -Sh*H 

gA   =   \h2{H2-f2) 

g3   =   lH(H2 + 3f2)-hh2 

h   =   2h2H (D.38) 

thus giving 

c • (4/3 + 27g2) 
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h4(h2(2g2-Sf1H) 
3 
r H4 - ^tf2 - T/I 

3 
4* 

+ h2 ^h* + h^- l/x/a - 6g2H + Yfi**2) 

+ ^/2
2tf + 3/2tf3 + ^5^ 

+ (-h4 Ug.H + Iffj + h2 (3g2H
2 - Sf2g2 + ^ftftH - ^H3 

+ f? + -4fiH2 + 3-f2H*+1-H«)z2 

+ (fc2(3/i<fe - 3/2^1 + 6fiH + SgxH2) + Zfxf
2 + 2,f2g2H + g2H

z)zz 

+ ( - Zhtoh2 + 3/?/2 + $£ + 3/2^^ + gxH
zy 

(D.39) + ^^ 

I5 case 

So starting from the ansatz 

F    =     ^(-/i
4 + /3^ + /2^+/l^3) 

^   =   ^(>i6 + <fe* + 04*2+03^ + ^4 + 0i*5)       (D.40) 

one has made sure that the constant (z-free) term has already cancelled: 

c (4F3 + 27G2) 

= h6(3h2f3 + 2g5)z 

+ (g2 + h4(3h4f2 + 2h2g4-Sf2))z2 

+ (/I + 2<fc<fe + />4(3/>4/l + 2/l203 - 6/3/2))/ 

+ (3/1/2 + 9l + 29*93 + h\2h2g2 - 3/f - 6/3/1))/ 

+ (S/s/s2 + 3/32/i + 20403 + 20502 + 2h\h2gx - S/s/x))/ 

+ {fl + 6/3/2/1 + 032 + 20402 + 20501 - 3/i4/iV 
+ (3/22/i + S/a/j2 + 20302 + 2040i)2;7 

+ (3/2/1
2+022 + 2030l)/ 

+ (/l3+ 20201)/ 
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+ ^10. (D.41) 

To get actually I5 the terms up to z4 have to cancel. For this one solves 
for 95,94,93,92,13,12 in terms of hCl-U H^^t, qsa-t, fi = faa-ugi = 
g&a-t with the terms H and q and thereby gets succesively the following 
relations (in the expression in front of z5 all terms finally come with an 
explicit h4 factor) 

gb   =   -3h4H 

g4   =   Zh2{H2-hq) 

g3   =   ^h{2Hq-hh)-Hz 

92   =   \{hH + q2) 

h   =   2h2H 

/2   =   2hq-H2. (D.42) 

So the discriminant equation A presents itself now in the manifest 
I5 form 

A = z5 hi(2h2g1 - 3/19/1 - 3Hq2) 

+ h' I  - 3hz I -ff + Ig.Hj + qh{GhH - ql) + 6iflq2 ) z 

+ ( - Gqh'g, + ^(Hf2 + 5g2/i + 4^^) 

+ SqHh(3q2 - Hfx) - ZtfH*}z2 

+ (- 3fmh2 + 6hq(f2 + gtH) - 2g1H
3 - jf2H' 

+ (f? + Z9i(hH + q
2)y 

2TT2 

+ 9lz5 (DAS) 

giving 

P = 2h2g1 - Sftqh - SHq2 (D.44) 
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The le case 

The ansatz 

/   -   ^(-h4 + hz + hz* + hz*) 

9   =   -^{h6 + g5z + g4z
2 + gzz

z + g2z
A + g^)       (D.45) 

gives 

c-(4/3 + 27/) 

= h\2g5 + Zhh2)z 

+ {gl + ^(-3/1 + 2gAh
2 + 2>hhA))z2 

+ (/! + 2^4 + h4(-6f3f2 + 2g3h
2 + SfihA))z3 

+ (3/2/3 + 9l + 2939s + ^(-3/1 " 6/1/3 + 2g2h
2))z4 

+ (3/1/3 + S/i/l + 2(M4 + 29295 + h\-§hh + 2^1/i2))z5 

+ (/I + 6/1/2/3 + gl + 20204 + 2<71<?5 - 3/^V 
+ (S/l/l + S/f/a + 20203 + 20i04)2;7 

+ (3/^/2+ 522 + 25i^8 

+ (/? + 20102)^ 
+ 0^10. (D.46) 

Solving for the I§ condition leads at first to the identifications (D.42) 
and then with the condition that P = 0 to the introduction of !F = JF2C1 

whose product with h replaces the old qza-u thereby leading to 

giving 

£5 — -dh^H 

04 = 3h2(H2 - h2T) 

93 = ^HT-h)- -H* 

92 = Z-if.H + h2?2) 

91 = l^H^ + h) 
h = 2h2H 

h = (2h2T-H2) 

h4(-F3h' 
!-3Q/1 + ^) 

) 

(D.47) 
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+ 3h2(- \h2T2h + 2H(\fi + FA 

+ 3 (rh2 (-^h2 + l-f2 + WfxH + ZT2H2 

+ (^(^2^2(/i + FH) + /iff (/i + ^ff)) + /i3)^3 

+ ^2(/i + ^ V|. (D.48) 
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