
©  1999 International Press 
Adv. Theor. Math. Phys. 5 (1999) 1227-1287 

Angular Quantization of the 

Sine-Gordon Model 

at the Free Fermion Point 

S. Khoroshkin*, A. LeClair*, and S. Pakuliak* 

^Institute of Theoretical & Experimental Physics 
117259 Moscow, Russia 

* Newman Laboratory, Cornell University 
Ithaca, NY 14853-5001, USA 

•Bogoliubov Laboratory of Theoretical Physics, JINR 
141980 Dubna, Moscow region, Russia 

0Bogoliubov Institute for Theoretical Physics 
252143 Kiev, Ukraine 

khoroshkin@heron.itep.ru 

leclair@mail.lns.cornell.edu 

pakuliak@thsunl.jinr.ru 

e-print archive:   http://xxx.lanl.gov/hep-th/9904082 



1228 S. KHOROSHKIN, A. LECLAIR, AND S. PAKULIAK 

Abstract 

The goal of this paper is to analyse the method of angu- 
lar quantization for the Sine-Gordon model at the free fermion 
point, which is one of the most investigated models of the two- 
dimensional integrable field theories. The angular quantiza- 
tion method (see hep-th/9707091) is a continuous analog of 
the Baxter's corner transfer matrix method. Investigating the 
canonical quantization of the free massive Dirac fermions in one 
Rindler wedge we identify this quantization with a representa- 
tion of the infinite-dimensional algebra introduced in the paper 
q-alg/9702002 and specialized to the free fermion point. We con- 
struct further the main ingredients of the SG theory in terms of 
the representation theory of this algebra following the approach 
by M. Jimbo, T. Miwa et al. 

1    Introduction 

The Sine-Gordon (SG) model in two-dimensional Minkowski space-time 
is described by the action1 

;>SG — T- i dtdx l -hS{ 
dt2 2     dx2 

+ ^ (cos(/?$M)) - 1)) •   (1-1) 

The quantum SG theory is perhaps the most fundamental of the in- 
tegrable quantum field theories in two dimensions, and thus plays an 
important role in the development of new methods. The 5-matrix of 
soliton-antisoliton scattering was obtained in [34]. This 5-matrix (see 
(3.4)) depends on so called renormalized coupling constant f and the 
relation of this parameter to the SG coupling constant /? is 

B2 

* = 2^ ' (1-2) 

1We have rescaled (3 ->• V^TT/? in comparison with the usual convention, so that 
the free fermion (FF) point occurs at /?2 = 1. 



ANGULAR QUANTIZATION 1229 

The quantum SG model is a superrenormalizable theory for the real 
values of the coupling constant 0 < (32 < 2 which corresponds to the 
restriction to the real positive values of £, 0 < f < oo. The regime 1 < 
£ < oo is the breatherless one, where solitons and antisolitons do not 
form bound states. One can see that modulo the overall scalar factor 
and for appropriate choice of the multiplicative spectral parameter z = 
e~6^, where 6 is a rapidity of the particles, the soliton-antisoliton S- 
matrix can be written in the form 

S(0,O = P(0,O 

( zq — z~lq~l 0 
0 z — z-1    q 
0 q — q~l    z 

\          0 0 

which signifies in particular a quantum group symmetry of the Hilbert 
space of states of the model with respect to the finite dimensional quan- 
tum group ^(5/2) [32, 22]. 

The SG model was also one of the first continuous integrable models 
where the quantum inverse scattering method (QISM) was tested. It 
was shown in the paper [12] that the quantum monodromy matrices 
T(u) satisfy the commutation relation 

R(ui -u2,OTiMT2M =T2{u2)T1{u1)R(u1 -u2,f) , (1.4) 

where the i?-matrix has the same structure as in (1.3) (see (3.6) for 
the exact formula) in terms of additive an spectral parameter 
u [z = e-^/^4"1)), but with deformation parameter replaced by 

g'^exp f Tri—-yj . (1.5) 

The equation (1.4) implies that 

[trr(ui),tr7>2)]=0 (1.6) 

and signifies that after proper expansion of the quantity tr T{u) with 
respect to the spectral parameter u it generates the local integrals of 
motion and (1.6) shows that they are in involution. Note that even at 



1230        S. KHOROSHKIN, A. LECLAIR, AND S. PAKULIAK 

the FF point where /?2 = 1 the i?-matrix in the commutation relation 
of monodromy matrices (1.4) is nontrivial since g' = z; this can be 
traced to the fact that the monodromy matrix is constructed from the 
fields exp(z$/2), which are non-local in terms of the fermions since the 
fermion bilinear is exp(z$). 

As we see, the SG model naturally contains two quantum group 
symmetries, with different deformation parameters related by the du- 
ality transformation (3.7). An attempt to explain this phenomena was 
made in [26] in the framework of the bosonization technique in massive 
integrable field theories. This approach was generalized then for the 
lattice integrable models [14]. Following the ideas presented in these 
papers a screening current algebra was proposed in [20]. The specific 
coalgebraic properties of this infinite-dimensional algebra allowed to re- 
construct the bosonization approach of [26] from algebraical analysis of 
the representation theory of the screening current algebra. 

Essential progress toward understanding quantum integrable mod- 
els in the infinite volume limit was made in the framework of Baxter's 
corner transfer matrix (CTM) method [2]. It was observed that the 
CTM of some lattice integrable models in the infinite volume limit has 
equidistant spectrum bounded from below and so can be described by 
the infinite set of oscillators. This fact allows one to develop a new ap- 
proach to quantum integrable models on the lattice. This was done by 
the Kyoto group for the XXZ model in the anti-ferroelectric regime [18]. 
The model was completely solved, namely, the correlation functions of 
local operators and form-factors of local operators were calculated ex- 
plicitly, using infinite-dimensional representations of quantum affine al- 
gebra Uq(sl2) with real parameter of deformation satisfying — 1 < q < 0. 
One of the main ideas of the construction is to divide the total Hilbert 
space of the model, which is identified in the infinite volume limit with 
an infinite product of two-dimensional spaces where local operators act, 

-Hxxz ~ • • • C2 (8) C2 ® C2 <g> C2 (8) C2 ® C2 - • • (1.7) 

into two semi-infinite products of these spaces 

^xxz ~(• • • C2 ® C2 (2) C2)® (C2 ® C2 ® C2 - - •) 

~ WCTM ® ^CTM = End (HCTM) (1.8) 

which are denoted by TICTM and where the corner transfer matrix acts 
naturally. Each of these semi-infinite products is identified with level 
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1 and level —1 integrable modules of Uq(sl2), where operators of the 
algebra act naturally. The decomposition (1.8) led in particular to 
the identification of the states in the Hilbert space 1-Lxxz with the 
operators acting in HQTM- The space End (T^CTM) is equipped with a 
natural scalar product {A, B) — Tx^iCTMAB and the vacuum vector in 
'Hxxz is defined as (—q)Hc™, where i?cTM is a corner transfer matrix 
hamiltonian. 

The representation theory of the quantum affine algebra Uq(sl2) pro- 
vides certain operators which intertwine its action in T-LQTM (type I and 
type II intertwining operators). Type II intertwining operators are used 
for the construction of the basis of asymptotic states in End (^CTM)J 

and type I operators are used for the construction of the transfer matrix 
and the local hamiltonian in this picture. Moreover, the adjoint action 
of the elements of the quantum affine algebra in End (T/CTM) describe 
a level 0 6^(5/2) symmetry of the model. As a consequence, the form- 
factors of the local operators and correlation functions of their product 
are presented in a form of certain multiple integrals, which come as a 
trace over T^CTM of certain products of the intertwining operators. 

In the continuous integrable models an approach to implement Bax- 
ter's CTM method was developed in the papers [26, 5] and was based on 
the method of the angular quantization. The total Hilbert space of the 
continuous quantum integrable model in infinite volume was supposed 
to be embedded into a tensor product 

n^nL®nR, (1.9) 

where Ti^ ('HR) are the Hilbert spaces of the quantization in the left 
(right) wedge. The right Rindler wedge (RRW) in two-dimensional 
Minkowski space-time is 

(rr0)2 - Or1)2 < 0,    x1 > 0 , (1.10) 

where x0 is a time and x1 is coordinate, while the left Rindler wedge 
(LRW) 

(x0)2 - (x1)2 < 0,    x1 < 0 . (1.11) 

Let us fix the parametrization of space-time coordinates in RRW 

x0 = rsha,    x1 = rcha,    r ^ 0,    aeR. (1.12) 
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With this parametrization, the coordinates x0, x1 cover the RRW, since 
x1 > 0. The LRW is formally obtained by the rotation a -» a — m 
or by applying the operator e71^ where K is Lorentz boost generator 
K = —ida. The space HL can be identified with the dual to HR and 
so the states in the total Hilbert space can be realized as the operators 
in UR. 

It was suggested in [26] to realize HR for the SG model as a Fock 
space with a natural action of the operators satisfying the commuta- 
tion relations of Zamolodchikov-Faddeev (ZF) algebra. Further, in [20] 
these operators were identified with intertwining operators of the scaled 
elliptic algebra ^4(5/2) which can be observed in the bosonization pic- 
ture [26] by the presentation using screening currents. One of the main 
arguments in favor of these mathematical constructions was the coinci- 
dence of form factors of certain local operators in SG theory with trace 
calculations in HR. 

In this paper, we try to develop the method of the angular quanti- 
zation in two directions. First, we analyze the SG model in RRW at 
the free fermion point, where the canonical quantization can be done 
explicitly. We see here that the usual conserved charges [23] diverge 
and the only chance to get a rich algebra of symmetries is to use a cer- 
tain analytical continuation of the conserved charges, or equivalently, 
the scattering data. In this case the bosonization [26] naturally ap- 
pears. We see further that in order to close the algebra, we are forced 
to use the currents with dual monodromy properties and the algebra 
of (nonlocal) conserved currents which we find here coincide with spe- 
cialization of the scaling elliptic algebra .4(5/2) proposed in [20] and 
specialized to the free fermion point (£ = 1). 

Second, we go into further details of the description of the con- 
tinuous SG model analogous to the group-theoretical description of the 
space of states in the XXZ model [18]. We show that starting from level 
one representation of the scaling elliptic algebra Aish) we can correctly 
define the vacuum, the asymptotic states and operators which act on 
the space of the asymptotic states, namely, the transfer matrix, the 
hamiltonian, the local integrals of motion. Contrary to the lattice case 
they are given now via coefficients of the asymptotic expansion of the 
family of commuting operators. We define the adjoint action of the al- 
gebra .4(5/2) on the space of states and show that known symmetries of 
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this space related to the conserved nonlocal currents [28, 3] and formu- 
lated in terms of quantum affine algebras at level zero, can be obtained 
from this adjoint action by the asymptotical expansion. Let us roughly 
explain this description. 

The total Hilbert space % is supposed to be divided as in (1.9). 
The spaces 1-LR and HL are level 1 and level —1 highest weight modules 
over the algebra .4(5/2) so the states in % can be identified with some 
operators in %#. In particular, the physical vacuum state |vac)ph is 
identified with boost operator 

|vac>ph = e^ = e-i^, (1.13) 

where a is angular time in RRW and the states |0i,... , 0n)£l^^£n are 
identified with the product 

\91,...,9n)£u...>£n=Z*ei(91)...Z;n(9n)e«K , (1.14) 

where Z*(9) are certain 'twisted' intertwining operators of the screening 
currents algebra ^.(5/2), which also act in ?iR. The adjoint action of 
the algebra ^(5/2) is not standard because this algebra is not a Hopf 
algebra. Indeed, the commutation and comultiplication relations of the 
algebra ^(5/2) in terms of L-operators can be written in the form 

Tl(ui -U2,€ + c)Li(ui, 0^2(^2, £) 

= L2(u2, O^iK O^fai - u2,0 (1.15) 
AopL(u, 0 = L(u - z7rc(2)/4, f + c(2)) ® L(u + i7rc(1)/4,0      (1.16) 

where TZ(u,^) means i?-matrix defined by (3.1) and c is a central el- 
ement of the algebra ^4(5/2). Note that jR-matrices in the left and 
right hand sides of (1.15) differ by the central element of the algebra, 
which signifies that the algebra under consideration is not coassociative. 
This algebra is not a usual Hopf algebra. Nevertheless, a coalgebraic 
structure of this algebra was used in [20] to construct the intertwining 
operators for highest weight modules over this algebra at the value of 
the central element c = 1. There are also some indications that this 
screening current algebra is a quasi-Hopf algebra [11] (see papers [17] 
on the lattice variants of this algebra). 

The adjoint action has the different form on the subspaces % G ?/, 
i = 0,1 of even and odd number of particles and includes the involution 
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of the algebra A(sl2) 

i(L(u))=azL(u)°z' (1-17) 

For the state Xi G Hi, i = 0,1 it is defined as follows 

Adi^f) • Xk 

= L (L-l(u + Z7rc/4; 0) ^ ^+1 (£(u - ^ + z7rc/4; 0)  .    (1.18) 

We prove that so defined adjoint action realizes the level zero repre- 
sentation of the algebra A(sl2) onto the space of states H, such that 
n-particle states compose n-fold tensor products of two-dimensional 
representations. The quantum affine symmetry of the Hilbert space 
H found in [3] can be realized via the asymptotical expansion of the 
adjoint action of the currents of the algebra .4.(5/2) • 

The paper is organized as follows. In the second section we con- 
sider the canonical quantization of the SG model at FF point and its 
specialization to right Rindler wedge. Then we construct the nonlocal 
integrals of motion and develop bosonization of all the objects in terms 
of these integrals of motion. The third section is devoted to the descrip- 
tion of the screening currents algebra for general value of SG coupling 
constant satisfying 1 < (5 < y/2. In the last section we develop the 
angular quantization scheme in full aspect; for example, we construct 
the monodromy matrix on the total Hilbert space and investigate some 
of its properties. 

2    Canonical quantization 

2.1    Sine-Gordon model at free fermion point 

It is well known [6] that the SG model model with the action (1.1) is 
equivalent on the quantum level to the massive Thirring model defined 
by the action 

5Th = I dx'dx1   ^ (q(x)i^d^{x) - d^(x)i^(x)) 

- mM(x)V(x) - 9- (^Orh^Oz))2      (2.1) 
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where g =     27   •   The equivalence is established by the following 
bosonization rules 

^-£^d^(x0, x1) = ^(x0, x1)^^0, x1), 
ZTT 

cos(ip<S>(x0, x1)) = W(x0, xl)^(x0, x1) (2.2) 

where s^ is antisymmetric tensor normalized e01 = 1. 

At the FF point (£ = 1) the interaction in the Thirring model 
vanishes and its lagrangian becomes a lagrangian of free massive Dirac 
fermions 

C{x0,xl) = - (V(x)i'yfid^(x) - d^(x)i^$(x)) - m^(x)^(x) 

(2.3) 

where ^(x) = ^(x)^0 is a Dirac conjugated spinor.   We fix the 7- 
matrices to be 

The complete set of solutions to the corresponding linear equation 
of motion can be chosen in the form 

^(x0,*1) = \[j( ^-0/2 ) e-imch^x0+imsh^xl (2.4) 

and satisfies the completeness relation with respect to the scalar prod- 
uct 

/oo 

^^(ArrVM^V1) = 6(0 - 0'). (2.5) 
-OO 

Note that the solutions (2.4) are anti-periodic with respect to the shift 
9 -> 9 + 2m. 

The completeness relation (2.5) allows one to quantize the Dirac 
field ^(x) = ^r+(^) and its hermitian conjugate ^+(2;) = ^l-{x) 

/oo 

de[c(e)-%e{x) + d\e)%(x)\, (2.6) 
-00 
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/OO 

d8[d(6)*o(x) + c*{e)**g(x)], (2.7) 
-oo 

by imposing equal time anticommutation relations 

{^+(rz;0^))^_(x0
5.2;,)} = 27r5(x - x')9 

{$+(x0,x)^_(x0,xf)} = 2ITS(X - x'), (2.8) 

where ^(x0,^1) and 'ip±(x0,x1) are components of spinor ty±(x0,xl). 
One can verify now that (2.8) and the normalization condition (2.5) 
imply the standard anticommutation relations 

{c(0),ct(0')} = 8(6 - 9'),    {d(0)tdt(ff)} = 5(9 - 9') (2.9) 

and all others are trivial. 

The Hilbert space H of this model is defined by application of 
the creation operators d(0) and $(0) to the 'physical' vacuum vec- 
tor |vac)ph annihilated by the operators c(9) and d(9). 

The integrals of motion are constructed from the conserved currents: 

dJy     dJy = 0 

dy       dy 

and are given by the contour integral 

QJ=  [(dyJy + dyJy) . (2.10) 

The charge QJ is conserved along the evolution which is 'orthogonal' 
to the contour in the definition of QJ. In the standard quantization 
picture this contour is chosen to be equal time line x0 = const in the 
space-time. The charges which are conserved along the evolution with 
respect to the time x0 can be obtained from the currents 

J±   =   (I>V±)lfe,    4 = (D$±)$±, (2.11) 
J0

y   =   (DV-)</>+,    4 = (D^_)^+, (2.12) 

or equivalently from 

J±   =   V±W±),    J}=^±(D^±), (2-13) 

J0
y   =   V-W+),     ^=?-W+), (2-14) 
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for the operator D = d™ or c^, n ^ 0. Let us denote the neutral charges 
which correspond to the first operator as In and to the second as In. 
The charged conserved quantities we denote by 1^ and In respectively. 
They have the explicit expressions in terms of the operators acting in 
total Hilbert space: 

In 
/oo 

d6 enB (c\9)c{d) + $(e)d{0)), 
-OO 

/OO 

d6 e-n6 (J(6)c(6) + d){e)d{e)) (2.15) 
■OO 

and similar formulas for J* and In. The Hamiltonian H which de- 
scribes the evolution of the quantum fields (2.6) and (2.7) with respect 
to the time x0 is given by the sum (ii +/i)/2 and has eigenvalue mch0 
on the one-particle states generated by ^(6) and d){9) from physical 
vacuum |vac)ph. 

However there is no a direct way to quantize the SG field $(:r0, xl) 
at the FF point using the quantization of the Dirac fermion fields 
^(x0,^1). In particular, it is difficult to construct the realization of 
the commutation relations (1.4) directly in the infinite volume limit us- 
ing the canonical anticommutation relations (2.8) and without referring 
to the lattice regularization. 

On the other hand the canonical quantization of the free massive 
Dirac fermions in RRW allows one to construct the operators which are 
building blocks of the angular quantization method. This will be done 
in the next subsections with the main goal being to demonstrate the 
nonabelian symmetry algebra which appears in the angular quantiza- 
tion approach to the SG model. 

2.2    Free fermions in Rindler wedge 

Let us solve the equation of motion for free massive Dirac field in RRW 
using the parametrization (1.12). The solution to the Dirac equation 
of motion normalized with respect to the scalar product 

(*,*')=/    dr  (V^' + e"^//)   ,    m=(^\ (2.16) 
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is given in terms of MacDonald functions 

^a)=^+1/2) (e(--v2)*£:;;:Uj j. ^ R , 
(2.17) 

and has exponentially decreasing asymptotics in RRW when r —> oo. 
On the other hand we observe that rotation of angular time a by 27rz 
which corresponds to the path around origin in euclidean plane multi- 
plies the solution (2.17) by the factor —e~27rl/. This signifies the fact 
that the space of functions used in canonical and angular quantization 
are completely different. Nevertheless, the completeness relation 

(*I/,*l/) = (5(i/ + i/) (2.18) 

allows one to quantize the Dirac fields in RRW 

vMr, a) = ( ^ ^ ) = |_" du Mi/)¥,(r,«) (2.19) 

by imposing the equal 'time' (a = const) anticommutation relations 

{^(r, a), if)-(r', a)} = -e~a<5(r - r'), 

{^+(r, a),^_(/,<*)} = -eaS(r - r') (2.20) 

which are equivalent to 

{b±(v),b±(v')} = 0,    {b+(u),b_(u')} = 6(u + u'). (2.21) 

Rindler fermionic Fock space Hf
R is defined by the vacuum state 

|vac)/ which satisfies 

6±(z/)|vac)/ = 05     i/ >0 . (2.22) 

The left vacuum vector /(vac| is correspondingly defined: 

/(vac|6±(i/) - 0,    v < 0 . (2.23) 
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2.3    Scattering transform 

For the quantum fermionic fields (2.19) we introduce the scattering 
transform [27] 

*(r,a) -► A±(9,a) 

= ^L Hdr e-mrche (^±(r, a)e^-^2 + ^±(r, a)eW2) ,    (2.24) 
W7? Jo 

where 0 G C is spectral parameter. Using the free fermion equation 
of motion in RRW we can verify that the dependence of the operators 
A± on the angular time a reduces to a simple shift of the spectral 
parameter 

A±{0,a)=A±(9 + a) , (2.25) 

where A±(0) is the value of the scattering transform at the initial time, 
say a = 0. It is clear that the scattering transform (2.24) is not defined 
for all values of the spectral parameter 6. For example, if the solutions 
'0_fc(r, a) and ip±(r, a) have the constant asymptotics when r —> oo then 
the integral in (2.24) is convergent if |Im 9\ < 7r/2, which follows from 
the inequality Re ch.6 > 0. However, the solutions (2.17) of the Dirac 
equation in RRW have exponentially decreasing asymptotics. Using the 
fact that the leading term of the asymptotic of the MacDonald function 
Kx(z) when z —> oo does not depend on the index x and is proportional 
to 2;~1/2e~z we find that the inequality mentioned above is replaced by 
the more weak inequality 

Re ch.0 > -1 . (2.26) 

The solution of (2.26) defines a larger domain of existence of the scat- 
tering transform than specified above, namely 

|Im 0\ < IT/2 + 6,    where    e = 7r/2- arccos ((ch Re 0)"1)      (2.27) 

so the domain of the possible values of the spectral parameter is a strip 
whose width depends on the value of Re 9. 

An important consequence of this observation is the fact that the 
points Im 9 = ±IT/2 are always in the domain of existence of the scat- 
tering transform. This leads to the fact that the vacuum expectation 
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value of the product A±(6)A1:(6r) is a well defined meromorphic func- 
tion in the domain |Im (9 — 6r)\ ^ TT + e for some positive number e. 
Using the expression of the scattering data operators A±(0) in terms of 
the fermionic operators b±(u) 

A±(0) = ^ f™ du b±(u)r Q - iu^j #* (2.28) 

we can calculate this function explicitly: 

(A±WATOT) = ^(^^), (2.29) 

where the ^-function is {}{x) = dxhi (F (^i)/r (f)). Since the func- 
tion (2.29) has the poles only in the points 9 = 9' — mftk + 1), 
k = 0,1,... the domain of the 'existence' of this function can be ex- 
tended to Im (9 — 9') > —STT with a simple pole at the point 9 = 9' — TTZ. 

The function {K±{9)K1:{9')) is given by the meromorphic function (2.29) 
in this domain. An immediate consequence of this fact is the anticom- 
mutation relation 

{Mg).A-(g')} = ch((0%)/2)»     |Im(0-0')l<37r.        (2.30) 

The scattering transform (2.24) describes an evolution of the initial 
data (the quantum fields \&±(r, 0) at initial value of the angular time 
a = 0) with respect to this angular time. Since this evolution reduces 
to a simple shift in the spectral parameter one can easily restore the 
quantum fields ^!±{r^a) at arbitrary time a by solving inverse scat- 
tering problem, restoring quantum fields \I/±(r, a) from the operators 
A±(0). 

This can be done using the operators Z±{6) related to the operators 
A±(#) by the integral transform 

which can be inverted as follows 

Z±{9) = \{0 + vi) + h.(9 - iri) . (2.32) 
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The inverse scattering problem has a solution in terms of the operators 

*±(r, «) = %-] J9 Z±{e + a)e™*' {  e
e_{e+a)l2 J .      (2.33) 

One can observe that substitution of (2.33) into (2.24) leads to the 
integral transform (2.31). 

Formula (2.32) allows one to calculate the vacuum expectation val- 
ues of the different operators 

(Ai^)^^)) = (ZtMMfc)) 
1        1 Im (0! - 02) > -27r, 

{Z^Z^O,)) = -^ 

27U 0i - 02 ' 

1 + 
0i - 02 - nr     0i - 02 + i7r_ 

Im (0i - 02) > -TT. (2.34) 

These formulas allow to verify that the canonical anticommutation re- 
lations (2.20) follow from the solution of the inverse scattering problem 
(2.33). The formula (2.34) demonstrates also that the operators Z±(9) 
anticommute for real values of the spectral parameter 0. 

We would like to remark here that the operators Z±(9) being ex- 
pressed in terms of the fermionic operators b±(v) 

/oo 

•00 

du     M")    J* (2.35) 

should not be understood literally, but rather as a certain normal or- 
dering expression, where the normal ordering is dictated by the pre- 
scription (2.34) on the domains of analyticity of the products of the 
scattering data operators. The naive use of the vacuum expectation 
value 

where ®(y) is the step-function, in order to calculate (2.34) does not al- 
low to find the domain where the vacuum expectation value 
{Z±{9I)Z1L{92)) is defined since this information is encoded in the an- 
alytical properties of the scattering transform. 
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In order to obtain (2.20) from (2.34) it is convenient to introduce the 
operators Z±(6) and Z±(8) as a shift by ±7ri/2 of the operators Z±(0) 
using the freedom to move the contour in the integral representation 
(2.33): 

Z£(0) = Z±(6 - 7ri/2),    Z±(9) = ZT(e + m/2) . (2.36) 

Then the fermion fields (2.33) can be rewritten in the two equivalent 
form: 

= V? L ^ ^ + a)e ( ^e Vw» ) ' 
The operators Z±{6) or Z±(0) acting in angular fermionic or bosonic 
Hilbert spaces can be associated with the states in total Hilbert space 
1-L of the model. In the next subsections we will identify them with 
intertwining and dual intertwining operators for the screening current 
algebra. The fact that the pole at the point #i = 62 + ivr does not pro- 
duce the restriction on the domain of the analyticity can be seen in the 
general situation, because the origin of this pole is the pinching of the 
contour in the integral representation of the function {Z±(6i)Z1:(62)) 
when 0i -^62 + 177. 

2.4    Integrals of motion 

The operator which describes the evolution with respect to the angular 
time a is the Lorentz boost operator K. In terms of the fields: 

7   C00        r        —        — —    — 
K = - j    drr [e-a (</>_ (d^+) - (drrl>_) ^+) 

- ea (^_ (drtl)+) - (dril)-) rl)+) + 2rmjj_il)+ - 2m^+ 

Using canonical anticommutation relations (2.20) one can find the ac- 
tion of this operator on the components of the Dirac spinor: 

[K^±(r,a)}   =   i?M^).-^±(r,a), 
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[ff.lMr.a)]   =   ^±^a)+^±(r,a). (2.37) 

Note that the boost operator acts differently on the different compo- 
nents of spinors ^±(r,a). The formulas (2.37) can be rewritten as 
follows 

e-iriK^±(r,a)eiriK   =   e'^^a + rj), 

e-iriKxJj±(r,a)eir>K   =   e^2^±{r,a + r/) . (2.38) 

After rotation of the fermions around the origin by 77 = 2m both of the 
equations (2.38) become 

e27ri^±(r, a)e-2*K = -tf±(r, a + 2m) . (2.39) 

In terms of Rindler fermions b± (v) the boost operator has a form 
/oo poo 

du v :b-(u)b+(-u): =        dv v :b+(u)b-(-u):       (2.40) 
-oo J—oo 

and yields the value of continuous mode v 

[K, b±(u)} = vb±{v),    V 1/ e R . (2.41) 

A second important operator is the operator of topological charge 
which can be written in terms of the fields as follows 

POO     

Q = -        dr (ea7/;_(r, a)^+(r, a) + e-a^_(r, a)^+(r, a)) .     (2.42) 
Jo 

In terms of the fermionic modes it has the form 
/oo poo 

dv :6_(I/)6+(-I/): = I     du :b+(v)b-(-v): (2.43) 
-oo J —oo 

and is normalized in such a way that the charges of the Rindler fermions 
b± (u) correspond to their indexes 

[Q, b±(v)] = ±b±(v),    Vv e E. (2.44) 

In Rindler's parametrization the contours in the definition of the 
conserved charges (2.10) are the straight rays a = const. So in RRW 
we have 

QJ = ^I    dr (eaJy + e-aJjf) . (2.45) 
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Let us consider the charges given by this formula and compute them for 
the conserved currents J0 (2.12) and J0 (2.14). We obtain the result 

/oo 

dO ene:Z4e)A+(9):. (2.46) 
•OO 

Using formulas (2.28) and (2.35) we can observe that arbitrary non- 
vanishing matrix elements of the integrals In or In in the Fermionic 
Fock space are divergent. To avoid this divergence we consider the 
analytical continuation of discrete index n —> — iX to the imaginary 
axis, where A G R. In this case the charges given by the currents 
(2.13), (2.14) and (2.11), (2.12) will produce well defined quantities. In 
contrast to (2.46) the charges corresponding to the currents J0 and J0 

do not coincide. We denote the ones corresponding to neutral currents 
(2.14) and (2.12) as a*, a\. In terms of the scattering data operators 
or in Rindler fermions they have the form 

/oo 
dd eiX0:Z-(d)A+(6): 

■OO 

—OO 

oo 

■Vff^-,)rMA->M^ (2-47) 
/OO 

dO eiX0:A4e)Z+(e): 
■OO 

du r%(iM- W6-(A - "JM*): , (2.48) 

where normal ordering is defined with respect to fermionic vacuum 
vectors. 

By comparing the formulas (2.48) and (2.47) we conclude that the 
conserved charges a^ and a^ are related to each other by some com- 
plicated integral transform. This integral transform can be described 
algebraically by extending the algebra of the operators a^ and a\. This 
will be demonstrated in the Appendix A. 

Using (2.21) we see that 

K aM] = [aA, aj = A5(A + /A) (2.49) 

and this Heisenberg type commutation relation allows us to use these 
operators for the bosonization. 
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2.5    The bosonization and the screening currents 

Using (2.21) we can obtain the commutation relations: 

[ax, 246)} = e-aeZ-(6),    [ax, A+(0)] = -e-^A+j?) (2.50) 

[aA> A_(0)] = e-iXeA49),    [ax,Z+(e)} = -e-ixeZ+(8) (2.51) 

These formulas together with (2.49) allow to bosonize the operators 
A+(0) and Z-(0) in terms of a free bosonic field constructed from con- 
tinuous bosons ax and the operators A_(0) and Z+(0) from the analo- 
gous free field constructed from the bosons o*. 

This bosonization should conserve all the properties of the Hilbert 
space %f

R and the action of the operators A±(0), Z±{9) on it. It is clear 
that it is impossible to do this using only bosonic modes a\ because 
they carry the charge 0, while the Hilbert space 'Hf

R is naturally graded 
with respect to topological charge operator: 

*£ = © <n,    Kn = { * € Hf
R | Qx = nx} (2.52) 

nGZ 

Because of the formulas (2.28) and (2.35) the operators A±(0) and 
Z±(0) change the topological charge 

A±(0), Z±(d)  : nf
R>n^nin±1. (2.53) 

Note that in our normalization the topological charge operator Q coin- 
cides with the operators — ao = — OQ. 

To conserve these properties of WR in the bosonization picture we 
introduce a pair of zero mode operators Q and V which satisfy the 
commutation relations 

[P, Q] = i (2.54) 

and bosonic vacuum vectors \n)b, n 6 Z which are annihilated by all 
nonnegative bosonic modes and are eigenstates of the operator V 

GAI^)*) = 0,        A ^ 0,        ^|n)6 = n|n)& . (2.55) 

We identify T-L^ n with bosonic space %-^ n generated from bosonic vac- 
uum vector |n)& 

fn{K)cL\nd\n ... /     /i(Ai)aAldAi \n)h , (2.56) 
-oo J — oo 
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where the functions /i(A) are analytical functions in a neighborhood of 
R_ except A = 0, where they can have a simple pole. 

Then due to (2.51) the operators A_(0) and £+(#) can be bosonized 
as follows: 

iQ + j-    ^axe
ixe 

-oo  ^ 

Z_{6) = exp (-iQ " /"y axe**9) . (2.57) 

The integral under the exponent is understood as principal value inte- 
gral to exclude the singularity at zero: 

/OO /    p — 6 POO \ 

f(X)dX=hmlj     mdX + J    f(X)dX). (2.58) 

We define the products of the operators like (2.57) to be ("-function 
regularized [19, 16] 

exp I /     dX g1 (A) aA J   • exp ( /     dp 92(11) a^ j 

• exp (J" dX (g1(X) + ^(A)) ax) . (2.59) 

where c(A) = A and 7 is Euler constant and the contour C is shown in 
Fig. 1. 

()•        +00 

Figure 1. 

Naturally there is an alternative way to bosonize the fermionic Fock 
space WR using modes a\ and introducing the corresponding zero mode 
operators Q, V, the bosonic vacuum vectors and bosonic Fock spaces. 
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It is clear that these vacuum vectors are not a priori the same as for 
bosons a^ because of the complicated commutation relations between 
the bosons a^ and a\ (see Appendix A). This alternative bosonization 
looks as follows 

A_(0)=exp(-zQ- / 

Z+(d) = exp (iQ + I 

'dX 

. A 
axe i\9 

dX 

T axe ixe (2.60) 

We also define the charged currents in the momentum space which 
correspond to the charged conserved currents (2.13) and (2.11) by the 
requirement that they relate the components of the operators Z±(9). 
Let 

E(e) = :A+{8 + 7u/2)A+(0 - 7u/2):, 

F(9) = :A_(0 + 7r;/2)A_(0 - m/2): (2.61) 

be the operator valued currents in the momentum space. Using vacuum 
expectation values and Wick theorem we can prove the formulas 

Z+(6) = -i [ du eu-9Z-(e)E(u)+i [ du eu-eE(u)Z_{d) 
JCl JC2 

A+(9 + iri) + A+(9 - iri), (2.62) 

(9) = -i f du eu-eZ+(9)F{u)+i f du eu-eF(u)Z+(9) 
JCl JC2 

= A_(0 + Trt) + A-(9 - iri), (2.63) 

where the contour Ci goes from —oo to +oo and is above all the poles 
in the operator product expansion Z-(9)E(u) and Z+(9)F(u) and the 
contour C2 is also from —00 to +00 and below all the poles in the OPE 
E(u)Z-(9) and F(u)Z+(9). Let us prove (2.62). It follows from the 
OPE 

Z-(6)E(u)   =   :Z-(0)E{<u): -— 

E(u)Z-(9)   =   :Z-(9)E(u):- 

A+ («- f)     A+fu+a)" 
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Now the formula (2.62) follows from the trivial calculation of the inte- 
grals. The second relation (2.63) is proved analogously. 

Using formulas (2.57) and (2.60) we can write down the bosonized 
expressions for the screening currents 

E(u)   =   exp(2zQ + 2/   y e^Ach (7rA/2) aA J  ,       (2.64) 

F(u)   =   exp(-2iQ-2l™^eiuXch(7r\/2) ax\   ,    (2.65) 

in terms of the bosons ax for the current E(u) and a\ for F(u). Because 
the operators ax and ax do not form a closed algebra the screening 
currents E(u) and F(u) also do not form the closed algebra. In the 
next subsection we will define another pair of the screening currents 
E(u) and F(u) such that the pairs E(u), F(u) or E(u), F(u) do form 
the closed algebra both isomorphic to the screening current algebra 
introduced in [26, 20]. 

2.6    Another pair of screening currents and quan- 
tum Jost functions 

The commutation relations (1.4) have a smooth classical limit when 
£ —¥ 0 and correspondingly q' —> 1. In this limit these commuta- 
tion relations become Poisson brackets for the elements of monodromy 
matrices for classical SG model [13]. The elements Zf

£(a) of the 'mon- 
odromy' matrix associated with the half-line were introduced in [26]. It 
was shown in [25] that they are the quantum analogs of classical Jost 
functions. These classical objects can be written explicitly as path- 
ordered exponents of SG connections in RRW and satisfy the Poisson 
bracket relation 

{Z'£l (aO, Z'£2(a2)} = rggfa - c*2)^, (a2)Z'£, fa) , (2.66) 

£f £t 

where reUl (&) is a classical trigonometric r-matrix 

rgg(a) = lim ^("'O - 1 (2.67) £1£2V   ^       ^0 Trif V ' 
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/ th(a/2) \ 
_ 1 -cth(a/2)     2sh-1(a) 
_ 2 2sh~1(a;)     -cth(a/2) 

V th(a/2) ) 

obtained from the i?-matrices (3.6). Note, that the scalar factor of the 
i?-matrix (3.6) also contribute to the classical r-matrix (2.67). 

Unfortunately, a way to obtain the quantum analog of the relations 
(2.66) 

Z'eiMZ'e2{a2) = Riiia, - a^Z'^MZ^M (2.68) 

starting from SG Lagrangian is not known. Nevertheless, one can for- 
mulate the properties of these operators which allows to reconstruct 
them uniquely. These properties follow from the interpretation of the 
operators Z±(9) as the operators in /HR which correspond to the states 
in total Hilbert space H of the model. Since the operators Z'±(a) are 
related to the quantum Jost functions and to the integrals of motion it 
is natural to require their commutativity with the operators Z£(9) up 
to the phase 

Ze(e)Zl(a) = ev W - a) Zl(a)Z£(e) (2.69) 

where </)(0) is a yet unknown function (see (3.65) below). Because of 
the relations (2.62) and (2.63) this requirement is equivalent to the 
following 

E(u)ZL(a) = -Z'_(a)E(u),    F(u)Z'+(a) = -Z'+(a)F(u)     (2.70) 

These anticommutation relations can be satisfied by the following bo- 
sonization of the operators Zl(a) 

*»=exp(ie/2 + £f ^e-), (2.71) 

2»=exp(-ia/2-/^^e-). (2.72) 

Using this bosonization and also the rule of the normal ordering (2.59) 
we can observe that the operators Zf

±(a) are related to the scattering 
data operators A±(0) as follows 

A^(a)=r1^(a-|)^(a + f) 
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= :^(«-y m«+?):. (2-73) 

The normalization constant is given in terms of double F-functions (see 
Appendix B for the definition of these functions). Note that formula 
(2.73) allows to identify the scattering data operators A±(0) with the 
generating functions of the local operators introduced in the paper [26]. 
From the formulas (2.71) and (2.57) we can easily find the function 
<M0) = ctg(f + !). 

The formulas in (2.73) are equalities in different bosonic Fock spaces 
generated by the operators aA and a\ respectively. We can translate 
them in equal bosonic spaces introducing another pair of screening cur- 
rents F(u) and E(u) 

F(u) = Z-(u),    E(u) = Z+(u). (2.74) 

These relations are given by the integral transforms 

Z'+{a) = 2e-2V/2 f due^ [e^Z'_(a)F(u)+e-^F(u)Z'_(a) 

e-37/2   r   ,   „/I     u — a\„fl     u — a 

(2.75) 

and 

Z'_{z) = 2e-V2 f due^ \e^Z'+{a)E{u) + e^E{u)Z'+{a) 

e-37 

V2-, 

e^IM\^H\-^)^^ 
(2.76) 

where in both formulas the contour C goes from — oo to oo along the 
real axis such that 

Im a - 7r/2 < Im u < Im a + 7r/2. (2.77) 

The proof of the fact that the relation (2.75) is equivalent to the relation 
(2.73) for e = - or vice versa (2.76) is equivalent to the relation (2.73) 
for e = + can be found in the Appendix B. 

The fact that the second set of the screening currents for the quan- 
tum Jost operators Zf

±(a) coincided with scattering data operators 
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Z±{8) is specific to the FF point. But what is true in general is that 
we have the closed algebra of screening currents either for the pair 
E{u), F(u) or for the pair E(u), F(u). Both of these algebras can be 
obtained from the commutation relations (1.15) using different Gauss 
decompositions of L-operators. 

3    Algebra of screening currents 

As we already said in the Introduction one of the goals of this paper is to 
explain the algebraic structures which allows to describe simultaneously 
two quantum group structures with different parameter of deformations 
developing ideas of the paper [26]. This algebra will be introduced and 
explained in this section. 

This is a non-abelian algebra of screening currents which can be de- 
fined using exact S'-matrix of soliton-antisoliton scattering in SG model 
[34, 20]. We define this algebra for the value of the of the renormalized 
coupling constant 1 < £ < oo in so called breatherless regime. We will 
demonstrate that the representation theory of this algebra has smooth 
limit when f -» 1, which corresponds to the FF point of SG model. 
Using the bosonization we will show that the intertwining operators 
of the level 1 highest weight modules for the screening current algebra 
coincide with the operators Z±(0) and Z±(6) defined in the previous 
section from analysis of massive Dirac fermions in RRW. 

3.1    R and S Matrices 

Consider the following 7^-matrix. 

n+(u,Z) = T+
(U)K(U,0,    n(u,Z) = r(u,{;)K(u,Q , (3.1) 

/I       0 0       0 \ 

W'U-     0   c(u,0   b(u,0   0      ' 
V 0      0 0      1 / 
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r(tt>0 = r (0^ (1 + «) JJ ^^JlZ ^ , (3.2) 
r(i + g)    pil   ^(0,0^(^.0   ' 

Rp(u,rj) = 

r(f + ft)r(i + f + ft) 

sh — sh — 
6(u, f) = -—-Lj. ,    c(w, 0 = —r-r^T »    T+

(U) = icth (-) 

The scalar factor r(w, £) has an integral representation 

- TT < Im U < TT .    (3.3) 

The i?-matrix (3.1) differs from the physical S'-matrix which de- 
scribe the soliton-antisoliton scattering by the transformation 

s{0) = -r(e,os(e),   s(e) = (az ® 1)^,0(1 ® ^) (3.4) 

which change the sign in front of the elements b(9,£). In the classical 
limit f —> oo such that u/^ is fixed the i?-matrix TZ(u^ ^) goes to identity, 
while the 'physical' S'-matrix goes to diag(—1,1,1, —1). On the other 
hand at the FF point f —> 1 S-matrix becomes equal to —1 while 
i?-matrix (3.1) to diag(l, —1, —1,1). 

The matrix S(0) can be written using a multiplicative spectral pa- 
rameter z = e~e/Z and deformation parameter q introduced by (1.3) 

/i 
0 

0 

Vo 

zq—z~1q~l 

0 
(g-g-1) 0 

0 

1/ 

(3.5) 

The physical it!-matrix which describe the commutation relations of 
quantum monodromy matrices in SG model (1.4) and quantum Jost 
functions (2.68) can be similarly written in terms of the matrix TZ{u^) 

R(a) = r(a,€+l)R{a), 
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R(a) = (az <g> l)K(-a, -£ - 1)(1 ® a,) (3.6) 

Note that matrices S'(^) and i?(Q:) are related by the duality transfor- 
mation 

f -► -f - 1,    0->-a. (3.7) 

The fact is that the scalar factors of S and .R-matrices are related by 
the same transformation. To see this one should use simple identity 

shA/2 /sh(g + l)A/2     sh(g-l)A/2\ _ 
shA   V     sheA/2      +     sh^A/2     J 

to rewrite the scalar factor —r(6,£) in the form 

/    ^ f  o- prfAshA^sh^+nA^   .   /AM\\     /0 ON -r(«,0 = exp (-2,/o   Tli7f     ll;A/V   »» (T)) •  (3-8) 

Now one can see that functions r(ie,£+ 1) and — r(u,€) transform to 
each other under (3.7), although one should not think about this trans- 
formation literally. The point is that the quantization of the SG model 
is well defined for 0 < f < oo, so in order to perform the dual trans- 
formation (3.7) we should first go to +oo and then come back to the 
negative axis from — oo. During this path the properties of the model 
itself change drastically. 

3.2    Algebra of screening currents 

Set 1 < f < oo. Let 

be a quantum L-operator whose matrix elements are treated as generat- 
ing functions for the elements of the algebra given by the commutation 
relations: 

#+(ui - ^2, £ + c)Li(ui, 0^2(^2,0 

= L2{u2, v)Li(uu OR+(ui - u2,0, (3.10) 
qdetZ/(^) = L++(w — m)L (u) — L+-(u — m)L-+{u) = 1.     (3.11) 
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Let 

T( (I   f(u)\ ( hiu)      0     \ /    1      0\ (      , 
LM ={0      1    ) {     0      k2(u) ) { e(u)   1 )  ' (3-12) 

be the Gauss decomposition of the L-operator (3.9). This Gauss de- 
composition corresponds to the algebra of screening currents E(u) and 
F(u) described in the previous section at the value £ = 1. To obtain 
the algebra related to the currents E(u) and F(u) we should start from 
another Gauss decomposition 

The relation between the Gauss coordinates of both L-operators is com- 
plicated enough and can be described on the level of the bosonization 
of the L-operators by the relations similar to those described in the 
Appendix A. For the remainder of this paper we will work only with 
the operator (3.12). 

One can deduce from (3.10), (3.11) that 

ki(u) = faiu + in))'1. 

Let 

h(u) = kx (u) k2 {u)-1,    h'iu) = k2 {u)-1 fcx [u) = i^^/llM^), 
s sin v^/s ) 

where by £' we denote the combination £ + c of the parameter £ and 
the central element of the algebra ^(5/2). 

The Gauss coordinates e(u), f(u) and h(u) of the L-operator (3.9) 
satisfy the following commutation relations (u = Ui — U2): 

sh ( ——— j /i(wi)e(M2) - sh ( —-— j e(u2)h(ui) 

= sh(*j\{h(u1),e(u1)}, (3.15) 
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sh HLJlj /i(Wl)/(M2) - sh I ^—^ j ffoMm) 

= -ah(jj{h(u1)J(u1)}, (3.16) 

sh I —-— j e(«i)e(«2) - sh ( —-— J e(u2)e(ui) 

= sh (!) (eK)2 + e(n2)
2), (3.17) 

sh (^) /(uO/M - sh (^±^j fMfM 

= -sh (I) (/K)2 + /K)2), (3.18) 

V ^ J-hiuJh^) = hiuzMm)     )  ^  ( . (3.19) 

I e / shf^j ^      "' " "' ''shfnti*} ' 

In the next subsections we will describe the finite and infinite dimen- 
sional representations of the algbera ,4(5/2)• We will consider also the 
tensor products of the representations where the action of the algebra 
^4(5/2) is defined by the following comultiplication structure compatible 
with the commutation relations (3.10): 

A c = c(1) + c(2) =c®l + l®c, 

AopL(u3 e) = L(u - i7rc(2)/4, f + c(2)) ® L(u + Z7rc(1)/4,0       (3.20) 

A (L(u, O)"1 - (L(u + iircW/A, O)"1 ® (L(u - ZTTC^
1
)^, £ + c^))"1, 

where the symbol ® signifies the matrix tensor product 

(i4®B).i = 5^i4iib®Sibi . 

The comultiplications of the the Gauss coordinates of L-operators 
e(u,€), f(u,€) and h(u,€) are 

00 

Ae(u, 0 = e(u + iirc^/A, £) ® 1 + ^(-l)p (/(« + i7rc(2>/4 - iir, ^Y 
p=0 
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x h(u + Z7rc(2)/4,0 ® (e(u - mc^/A, £ + c(1)))P+1,   (3.21) 

A/(u, 0 = 1 <g> /(« - i7rc(1)/4, £ + c(1)) 
OO 

+E(-i)p(/(w+i7rc(2)/4^)rl (3-22) 
® ^(« - nrc(1)/4, £ + c^1^ (e(« - mc^/A - m, £ + c(1)))P, 

\ '■>/     z^v     /       sm(7r/£) 
p=0 

x (/(« + mc^/A - in, 0)" h(u + inc^/A, £) (3.23) 

® /i(« - i7rc(1)/4, £ + c(1)) (e(« - z7rc(1)/4 - in, £ + c(1)))P. 

3.3    Finite-dimensional representations and the in- 
tertwining operators 

Let e, f and h be generators of the algebra U^/^sh) with the commu- 
tation relations: 

[h,e} = 2e,        [h,f] = -2f,        [e,f} = 
sin (nh/£) 
sin(7r/£) 

(3.24) 

The following formulas describe the evaluation homomorphism of the 
algebra .4.(5/2) at c = 0 onto the algebra U^/^s^): 

£vz (e(u)) = 

Svz (/(«)) 

sh (ITT/^) sh 
e = —e 

H1) 
Sh (^f + S^i) " " 8h (Sf + ^i1) 

sh(m/0 ,_       , Sh(^^) 

5f2 (/i(M)) = cos 
i7r/i 

_2        t7r(/t+l) \ / = "/ 

2? 

e 
Sh(| cth 

w — 2     info — 1) + 
2£ 

,    'u- z     iir(h + 1) .    , 
cth ( —r- +     V_        )   fe 

e 2e 

ef 

(3.25) 

Let 14 be (n + l)-dimensional Uq(sl2)-inodule with a basis Ufc, A; = 
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0,1,... , n where the operators h, e and / act according to the rules 

i f       ni\ sin(7r&£) sin(7r(n — &)/£) 
hvk = {n-2k)Vk, evk=   .   ,   . . Vk-i, J vk = .  ufc+1. sin(7r/4) sin(7r/^) 

(3.26) 

Combining these formulas with the evaluation homomorphism we can 
construct the level zero evaluation representations of the algebra .4.(5/2) 
in the finite-dimensional space Vn. In particular, in what follows we 
need the evaluation representation of this algebra into two-dimensional 
space Vi. It is given by the formulas 

<!rz(e(u))v+ = 0,        irz(f(u))v-=0, (3.27) 

sh(z7r/£) 
7rz (e{u)) v- = r- u+, 

shfej 

TT, (/(„)) w+ = -*M^w_, (3.28) 
sh(Y) 

7r2 (/i(«)) Ui = cos i - J T sh f — J cth f —— J v± 

sh (f) 
-i;±. (3.29) 

In these formulas we have identified v + = VQ and v_ = vi. Using formu- 
las (3.27)-(3.29) we can define certain intertwining operators between 
level one highest weight modules over the algebra ^4(5/2). 

It was shown in [20] that the algebra ^(5/2) has the highest weight 
representations at the value of the central element c = 1 which can 
be bosonized using one free continuous bosonic field. We denote this 
representation space by the symbol 1-LR and will demonstrate in the 
next subsection that at the FF point it coincides with the bosonized 
version of the Hilbert space of the free massive Dirac field in the RRW 
7^. In analogy with the group-theoretical description of the quantum 
integrable models on the infinite-dimensional lattice [18] we define four 
types of the twisted intertwining operators 

z'{z) : nR-^nR®vl1   z'*(z) : nR®vl-^nR, 
Z*(z)    :   Vl®'UR->'UR,    Z(z)   :  HR^KQHR.     (3.30) 
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The algebra .4(5/2) acts on the two-dimensional evaluation module Vi 
by the formulas (3.27)-(3.29). We require that these operators com- 
mute with the action of the algebra 4(5/2) up to the the involution 
(1.17) 

Z(z)i(x)   =   A(x)Z(z) ,    Z'*(z)A(x)  = t(x)Z'*(z) , 

Z*(6)A(x)   =   c(x)Z*(z) ,    Z(z)i(x) = A(x)Z(z) ,      (3.31) 

where x £ 4(5/2). Due to the dimension of the module Vi the inter- 
twining operators have two components which are defined as follows: 

Z'{z)v = Z'+{z)v ®v+ + Z'_{z)v ® «_,    Z'*{z)(v ® v±) = Z£(z)v, 

Z*(z)(v± ®v) = Z*±{z)v,    Z(z)v = v+ ® Z+(z)v + V-® Z-(z)v, 

where v £ 'HR. 

Using the coalgebraic structure of the algebra A(sl2) we can rewrite 
the defining relations (3.31) for the components of the intertwining 
operators as commutativity with Gauss coordinates of L-operators. For 
x — h(u) in (3.31) we have 

Ku)r_m->(u)   =    J'^Zm, (3-32) 

h(u)Z+m-Hu)   =        )   ,1,,/^W, (3-33) 

' u—0—5i7r/4:\ 

h(u)Z-:(a)h-Hu)   =       "'    JZ';(a), (3-34) 

h(u)ZUa)h-Hu)   =   JJZL A *-(»)■ (3-35) 

For e(u) we have 

+ sli^-S + 5fa/4^.WeW| (336) 
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sh(|)z_W=sh("-',-3^4)eM^W 

+ sh(^l±^Z+muh (3.37) 

{e(u), Z';(0)} = {e(u), Zl(«)} = 0 , (3.38) 

and finally for f(u) 

*(ifT)^(Q)=sh(!iZ|^Zi)/Wz:(Q) 

+ sh^-a-W4^,,(a)/M|      (339) 

sh(rri)z;(a)=sh(""^/4)/M^(Q) 

+*("7;1
<'r/4) g-M/M,   (3.40) 

{/(«), ZI(»)} = {/(«), Z+(#)} = 0 . (3.41) 

Note that in all commutation relations for the operators Z±(0) or Z±(0) 
appear only the trigonometric functions with the periods 2i7r/£ while 
in all those related to the operators Z'^a) or Z±(a) with the period 
2i7r/(^ + 1). This property is encoded into the comultiplication rules 
(3.21)-(3.23). 

We did not write down all the relations following from (3.31) for the 
components of the intertwining operators but only independent ones. 
For example, the relation (3.32) is obtained by applying (3.31) to the 
vector v- ® v G Vi <g> HR. If we apply it to the vector v+ O v we obtain 
the relation 

sh f^) Z*_(e)h(u)e(u - ZTT) = sh (u-V + w/^ h{u)z^e) 

which is a consequence of (3.36) and (3.15). Nevertheless, the defining 
relations (3.32)-(3.41) allow one to calculate some properties of the 
intertwining operators. For example, the commutation relations 
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3,(05,)^(ax)   =   p'(0i - flaXSCai - 02,0^(01)^ W • 

can be proved using only (3.32)-(3.41) and supposing that the operators 
Z* (#1), Z* (02) commute up to some scalar factor and analogously for 
the operators Z,_(ai), Z'_{pt2). 

The defining relations (3.32)-(3.41) allow one to find the bosoniza- 
tion of the intertwining operators from the bosonization of the screening 
current algebra. Being specialized to the FF point f = 1 the inter- 
twining operators will coincide with the operators Z±{0), and £±(0) 
constructed in the previous section modulo shifts in the spectral pa- 
rameters. Also, all the scalar coefficients.mentioned above can be fixed 
using these bosonizations. We will do this in the next subsection. 

3.4    Bosonization of the screening operator algebra 

The description of the infinite dimensional representations of the alge- 
bra ^1(5/2) ^ non-zero value of the central element C is divided into 
two steps. The first step is to rewrite the commutation relations (3.14)- 
(3.19) in terms of the total currents E(u), F(u) and H(u): 

c (u - ^) + c (u - tTtf - Y) = ^in ^IOE{u) , (3.42) 

/ (ti + ^) + / (u - tTtf + ^) = e sin (7r/e)F(u) , (3.43) 

h(u) = 2-K? sinfr/f') H (u + ^ + ^)  . (3.44) 

We write the commutation relations for the total currents in the form 
adequate for the category of the highest weight representations: 

[E(u),F(v)} 
"   / iirc\      (       iir($ + c) 

-Slu-v + ^Htv-^ + c) 
2  7      V 2 

,    (3.45) 

r (l   |   1   |   i(u-v)\ r (l   ,   1        i(u-v)\ 

Y     '        «   IH{U)E(V) = E(V)H(U)    Y     '        *      ,    (3.46) 
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U   f + ^ J H(u)F(v) = F(v)H(u)   v   ? '±1 

(3.47) 

r f i +1 + iiHzid^ r f 1 + - - '("~t')) 
—s—-—^M-J5(«)^(u) = -£?(«)£?(«)—^—-—^v-, 
r(-i + ^) ur(_i_i(^)' 

(3.48) 

r(i-i + ^) r(i-i-^) 

(3.49) 

■p /-,    ,   1   ,   i(u-v) \ r (-,        i    .   t(u-t;) ^ 

, ^ + ? + —       1-F + — J ( 

r (i _ i + fcd) r (i + i + ^) 
p /-i    ,    i _ i(u-v)\ p /^i  _ 1 _ i(Ti-t;) \ 

= mvm«) )   *~ *        '   * {■     (3-50) 
r(i-{-*=i)r(i + *-!fc?i) 

The commutation relations for the total currents (3.46)-(3.50) are 
written in the form of equalities of the meromorphic functions without 
poles and zeros [10, 9]. This means that the product of the currents has 
the structure of poles and zeros defined by the zeros and poles of the 
function which is in front of this product in the commutation relations 
(3.46)-(3.50). For example, the product E(u)E(v) has poles at the 
points u = v-in + iTT^k and zeros at the points u = v + i7r + i7rl;(k + l), 
k^O. 

The Frenkel-Ding [8] formulas (3.42) and (3.43) for the total currents 
can be inverted solving the Riemann-Hilbert problem associated with 
the strips of the widths 7r£ and TT^' = 7r(£ + c) for the currents E(u) 
and F(u) respectively [20] 

e(u)   =   sin Tr/e   f ?-.       E{VJ  /4 , (3.51) V   J IS   Jc2'Ki   sh «-^+»c7r/4   ' V ) 

f(u)   =   sin 7r/e'   / ^       F{V)   lA , (3.52) J v ; Jc> Zni sh u-«-»CT/4 v       ' 



1262 S. KHOROSHKIN, A. LECLAIR, AND S. PAKULIAK 

where the contour C goes from — oo to +00, the points u+icTr/A+ikirg 
(k ^ 0) are above the contour and the points u — icir/A — ikng (k ^ 0) 
are below the contour. The contour C also goes from —00 to +00 but 
the points u — icir/A + ikir^ (k ^ 0) are above the contour and the 
points u + zc7r/4 — iknt; (k ^ 0) are below the contour. 

The second step is the bosonization of the currents E(u), F(u) 
and H(u). To describe the symmetries of the SG model we need the 
bosonization of the algebra ^(5/2) at the value of the central element 
c = 1. To construct this bosonization we define the continuous Heisen- 
berg operators ax which satisfy the commutation relations 

sh ZrA  sh TrAtf+l) 

[aA' a"] = Xsdx    shA   ^A + ^ = c(A^(A + ^ • (3-53) 
The commutation relations of the currents E(u), F(u) and H(u) are 
satisfied by the operators 

ch (7rA/2) aA j , (3.54) 

n    o rdX  ^ch(7rA/2)sh(7rAe/2) 
^ + 1^       7-ooA sh(7rA(e + l)/2)      A 

(3.55) 

To verify this statement we should use the normal ordering rule given 
by (2.59) with the function c(A) specified in (3.53) and formulas given 
in the Appendix B. 

Note that at the FF point the Heisenberg operators aA become 
the same as (2.49) of the nonlocal integrals of motion (2.47) so the 
bosonization of the current E(u) coincides with the bosonization (2.64), 
the bosonization of the current F(u) coincides with the bosonization of 
the scattering operator Z-(u) and H(u) with A+(u) (cf. (2.57)). The 
commutation relations (3.46)-(3.50) become in this case 

[H(u),E(v)} = [E(u),E(v)} = {H(u),F(v)} 

= {F(u),F{v)} = {H(u)9H(v)} = 0 . 

The commutation relation (3.45) being multiplied by eu~v and inte- 
grated over the parameter u becomes the relation (2.62) which relates 
the components of the scattering data operators Z±(0). 
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The formulas (3.32)-(3.41) allow to bosonize the components of the 
intertwining operators. It is given by the following formulas [26, 20] 

Z+(e) = exp (-iQ - £00y e"*^/2) aA) , (3.57) 

Z-{e) =fct
e{U~~m M/2E(v)Z+(0) - (q)-WZ+(9)E(u)] , (3.58) 

Z^(9) = ZT(6 - in), (3.59) 

FV^ + l        J-oo A sh(7rA(e + l)/2)     7' 
(3.60) 

Z+(a) ^L^6^^^ W)1,2K^)F(u) - (qr
1/2F(u)Z'+(a)] , 

(3.61) 

^*(a) = Z^(a + i7r), (3.62) 

where g and g7 are given by (1.3) and (1.5) respectively and the contour 
C goes from — oo to +00 along the real axis leaving the points z+i7r/2+ 
ikn^+l) (k ^ 0) above the contour and the points z — i7r/2 — ik7r({; + l) 
(k ^ 0) below the contour. The contour C also goes from —00 to +00 
but the points z — m/2 + ikitf; (k ^ 0) are above the contour and the 
points z + z7r/2 — ikir^ (k ^ 0) are below the contour. 

The formulas (3.57), (3.58) and (3.60), (3.61) demonstrate that at 
the FF point the operators Z±(9) coincide with the operators 2T(6 + 
7ri/2) modulo certain normalization constants. The same is true for the 
relation between operators Z±{a) and Z±(a — 7rz/2). 

The second remark concerns the form of the contour C in the rela- 
tion (3.58). The form of this contour is shown on the Fig. 2. 

0i — 27r/2 + ZTT^  o 

—00 V / \ +00 

h + ^/2 — inti  •   •    02 + nr/2 — iirt; 

Figure 2. 
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We can see from this picture that in the limit to the FF point (£ —» 1) 
there is a double pinching of the integral which leads to the relation 
(2.62) where the integrals are calculated as the residues in the points 
u = 6 ± m/2. Moreover, this figure demonstrates that the product 
Z+{Qi)Z-{62) has the pole when 9i —> 62 + TTZ because of the pinching 
of the contour in the integral representation of this quantity. The origin 
of this pole due to pinching does not yield the restriction on the domain 
of the definition of this product and Z+(#i)Z_(#2) is an meromorphic 
function of the variable 61 — 62 in the domain Im (#1 — 62) > —m/2 
with a simple pole in the point 61 -* 62 + TTZ. 

Using standard techniques [26, 20] we can find the properties of the 
intertwining operators: 

zvl{el)zV2{e2) = s%l(61-e2,z)z„l2(62)zl/[(e1),     (3.63) 

ZtMZ'^M   =   ^(ai-c^,0^(01)^(02),      (3.64) 

Z„(0)3(a)   =   uetg(^^--^Z's(a)Zu(e),  (3.65) 

5>f(a)ZM   =   ^(flid, (3.66) 
e=± 

Z'ei(a)ZZ(a)   =   sm^id, (3.67) 

z^iWM = ^y +0^ - *)» (3-68) 
where the 5 and i?-matrices is given by (3.4) and (3.6) respectively 
and the normalization constants #(£), #'(£) can be expressed through 
double F-functions using the formulas given in the Appendix B [20]. 

4    Angular quantization 

Before starting this section we would like to fix the terminology and 
explain what we mean by the angular quantization in the context of 
integrable quantum field theory. By this term we mean the possibility 
to represent the states and operators in the total Hilbert space of the 
model associated with total space-time as some operators acting in the 
Hilbert space associated with RRW. So, considering the free fermion in 
RRW in the second section we did not really consider the angular quan- 
tization but did only some preliminary work. The angular quantization 
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of SG model will be considered in this section. But first we would like 
to recall the angular quantization in lattice integrable models inspired 
by Baxter's corner transfer matrix method. 

4.1    Angular quantization on the lattice 

In a series of papers, see e.g. [7, 18] the precise mathematical de- 
scription of anti-ferroelectric XXZ model in thermodynamic limit was 
developed in terms of representation theory of quantum affine Lie al- 
gebra Uq(sl2) with the real deformation parameter — 1 < q < 0. This 
description, based on Baxter's corner transfer matrix method, looks as 
follows. 

The total Hilbert space of the theory is identified with the space 
of endomorphisms End(Ao 0 Ai) of direct sum of the level one irre- 
ducible Uq(sl2) modules with (complex linear) scalar product given by 
the natural prescription 

(AB)=TrAo(BAlAB . (4.1) 

Two components of degenerated vacuum are identified, up to the con- 
stant, with {—q)D * , where D® is principal gradation operator for quan- 
tum affine algebra, multiplied by the projection to A*. 

The representation theory of £^(5/2) provides two types of operators 

$(C) : A, -> Ai-i (8) Vc,    **(C) : Vc ® A, -► A^,    i = 0,1      (4.2) 

which commute with the action of Uq(sl2). Here V^ is a two-dimensional 
representation of 6^(5/2) with basis v± evaluated at the point (?. 

The transfer matrix T(C) of the theory acts on the state A G 
End(Ao + Ai) as 

T(0-A = 5>*(CM*-*(C) (4.3) 

and the eigenvectors of the transfer matrix are described in terms of 
the second type intertwining operators: 

l£n, • • • ,ei>e.,..^;W = cW^JCn) • • • KMi'^ ' M) 
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The local spin operators a^ acting on the nth cite of the lattice can 
be described in terms of operators $(C)- Due to the definition of scalar 
product it gives the expressions of the correlation functions of finite 
products of operators <J^ and of the form-factors of a local operator 
in terms of traces of products operators $(£) and \I/*(£) in the Fock 
space AQ 0 Ai [18]. Moreover, the adjoint (in a sense of Hopf algebra) 
action of Uq(sl2) equips the space of states with a structure of level 0 
Uq(sl2)-inod\ile, such that n-particle states form n-fold tensor products 
of the two-dimensional representations of Uq{sl2). 

4.2    Angular quantization in the 2d field theory 

A counterpart of the CTM ideology in the integrable models of the 2d 
quantum field theory in the infinite volume looks as follows [5]. 

Let 1-LR be a Hilbert space of canonical quantization of a theory in 
the RRW, where boost operator K — —ida is considered as Hamilto- 
nian. Here da is the differentiation with respect to the angular 'time' or, 
what is the same, with respect of the spectral parameters (see (2.25)). 

The total Hilbert space 7i of the model is supposed to be a properly 
defined subspace of EndTiR with the scalar product (A, B) = Tr^iRA - 
B. The vacuum state in % is identified with the operator e71"^ in 1-LR and 
the definition of the transfer matrix refers to certain quantum version 
of Jost functions [26], Z'±(a) (here a is the spectral parameter) whose 
precise construction on the quantum level is not known. On the classical 
level these objects in SG theory were introduced by S.Lukyanov in 
[25] using zero curvature representation of SG equation in RRW: [dr — 
Ari<ja — Aa\ = 0. 

The asymptotic states |<9i,... , 9n)eu...,sn are presented by the prod- 
ucts of the operators 

1*1,... ,On)eu.^n=Z:i(01)...Z:n(en)e-K
9 (4.5) 

analytically continued to the real line, where Z±(9) are certain oper- 
ators acting in the RRW Hilbert space HR. They can be represented 
by the bosonized expressions (3.57)-(3.59). The conjugated states are 
given by the product of the operators Z±(9) = Z^(9 + iri): 

e1,...,£A0i,---,0n\ = e*Kz£1(el)...zen(en). (4.6) 
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Analogously to the lattice case, one can assume that any local op- 
erator in the theory can be presented in this language in terms of left 
and right multiplications of certain combinations of the operators Z'£(a) 
and thus form-factor of operator O can be given by some trace formula 

ph(vac|0|^,... A>.i,..,. =Tr^ (e^dZ^).. .Z;n(0n)) ,   (4.7) 

where O is some operator acting in HR and corresponding to the orig- 
inal operator O. The problem to find an expression for the operator O 
in terms of the quantum Jost operators Z±(a) is a complicated prob- 
lem and has no general solution for the arbitrary operator O although 
for some simple operators it can be solved by comparing the form fac- 
tors obtained in the framework of the bootstrap program with those 
obtained by means of the formula (4.7) (see [26, 29] for the simplest ex- 
amples in case of the S'C/(2)-invariant Thirring model). We understand 
the trace in (4.7) as properly regularized to produce the known form 
factor formulas in SG theory given in [33] (see the paper [30] for the 
alternative formulation of a continuum analogue of the Baxter corner 
matrix method). 

The possibility to present the matrix element ph(vac|O|0i,... , 
0n)ei,...,e„ as a trace (4.7), the relation (3.59) and the fact that the 
operators Z±(9) commute with the operators O up to numbers related 
to the locality index [26] allows to demonstrate easily the crossing sym- 
metry of these matrix elements. We have 

ei,...,<,(0i>---  j^n'\0\6u... ,9n)eu...9en 

= TrHR (e
2*Kz£[(e[)...z.je^oz;^)...z:n(en)) 

=ph (vac|O|0i,... , 0n, 0i - w", • • • , On* - wr)*!,...,^,-^,...,-*;, •    (4.8) 

Using the trace formulas we can also verify the completeness of the 
space of states (4.5) and (4.6) with respect to the scalar product given 
by the trace over RRW Hilbert space HR. First of all we observe that 
the matrix element (4.7) of the unity operator vanishes identically be- 
cause after substitution of the integral representations of the operators 
Z+(0) (3.58) in (4.7) we obtain the integral with the integrand being 
the total difference which leads to the vanishing of the integral [29]. On 
the other hand the pairing of the states (4.5) and (4.6) does not vanish 
identically but is proportional to some combinations of the ^-functions. 
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In particular, the simplest pairing of the one-particle states is equal to 

The delta-function in this formula appears because the trace 
T£UR (effKZei(0')Z*(9)) has two simple poles in the points 0' = 0 due 
to (3.68) and in the point 0 = 0' + a + 2m due to the trace properties. 
When the parameter a tends to the value — 2m these two poles form 
the 5-function (see [18] for the detailed description of this mechanism 
in a case of lattice integrable models). We would like to note here that 
the same mechanism is responsible for the fact that form factors of the 
local operators satisfy the annihilation axiom [33]. For XXZ model this 
fact was established in [31]. 

These are the general features of the angular quantization approach 
in the 2d integrable field theory. In order for the angular quantization 
approach be the self-consistent, in particular the traces (4.7) satisfy all 
the axioms in the form-factor approach [33], the operators Z±(6) and 
Z±(a) should satisfy the properties (3.63)-(3.68). Since the represen- 
tation theory of the algebra ^(5/2) contains the operators which satisfy 
such properties we claim that this algebra is the dynamical symmetry 
algebra of the SG model in the sense claimed in [7] for the quantum 
XXZ model. 

Using the properties of the operators Zf
±(a) we can find representa- 

tions of the commutation relations (1.4) for the quantum monodromy 
matrices and interpret its trace as the generating function of the lo- 
cal integrals of motion through the asymptotical expansion. This will 
be done in the next subsection. Moreover, we can define appropriate 
adjoint action of the algebra Aisfa) onto the Hilbert space of the SG 
model H which describes the known symmetries of this space of states 
related to the quantum affine algebra Uq{sl2) [3] and interpret these 
symmetries as level zero action of the algebra ^4.(5/2) in the Hilbert 
space of states. In the last subsection we will demonstrate that these 
symmetries being specialized to the FF point become the symmetries 
governed by the classical affine algebra at level zero and associated with 
the strip [21]. 
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4.3    Properties of the monodromy matrix in SG 
model 

In this and next subsections we will understand by the operators Z±(9), 
Z±(0), Z'±(a) and Z±(a) the intertwining operators of the algebra 

Aisfa) which satisfy the properties (3.63)-(3.68). 

A monodromy matrix of the model acting on any state Xk G Hk of 
the total Hilbert space /

H = 
/
HQ@

/
HI) where k = 0,1 corresponds to the 

subspaces of li of the even and odd number of particles respectively, is 
defined as follows 

ZAa) • Xk = (g'iOT1 ekZf
£(a) • Xk • #_,,(<*),    k = 0,1 .      (4.9) 

The commutation relations (3.64) allow to find the commutation rela- 
tion for this matrices: 

R(ai - a^OTIM'EM = HMTiMRion - a2,0        (4.10) 

which coincides with (1.4). 

The trace of the monodromy matrix or the transfer matrix T{a) is 

T{a)-Xk = {g'{0rl 5>^»-Xfe-^» . (4.11) 
e-± 

The inverse transfer matrix is given in terms of the operators Z±(a): 

T-\a) ■ Xk = (g'iOr1 Eefc^(«) • Xk ■ Z?e(a) . (4.12) 
£=± 

The fact that operators (4.11) and (4.12) are inverse to each other is 
a direct consequence of the properties (3.66) and (3.67). The same 
properties allow to prove that the physical vacuum vector |vac)ph G H 
is stable under the action of the operators T(a) and T~1(a): 

T(Q;)|vac)ph = (g'iOV1 EZ>)" ^ ' Z'-^ 
e=± 

e«K Y^ Z'*s(a)Z'_s(<*) (3=' |vac)ph . (4.13) 
(3^62)  ^K 

e=± 

Here and below we will often use the formulas 

Z*±(6)e*K = e*KZT{e),    Z'^a)*** = e*KZ'*(6) (4.14) 
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which are consequences of the definition of the boost operator and 
(3.59),. (3.62). 

The commutation relations (4.10) imply the commutativity 

[r(Q!l)>r(a!2)] = 0 (4.15) 

which signifies that the operator T(a) can be considered as the gen- 
erating function of the local integrals of motion. Using the property 
(3.65) we can calculate the action of the generating function T(a) onto 
n-particle state \6U... ,9n)eu...,£n: 

T(a) ■\91,..., 0n>£l,...,£n = H^ ctg (j + ^i\ \elt..., en)eu...,Sn. 
j=zl ^ ' 

(4.16) 

Using this equality we can see that the quantity 

5 

has an eigenvalue on the states 1^,... , ^i)^,...,^ 

N 2 
I(a)\0N,... , 0i)ejv,...jei = 2^ chfa- 0')^N' " * ' Gl)£N>~'>1 

£l 

and is a generating function of the local integrals of motion (2.15) In 

and In for odd indeces n: 

I(a)\0N,... ,9i)eN,...9ei 

E^o(-l)^-(25+1)>+il^5---^i)^^ a-^+oo 

where 
AT 

l2s+l\0Ni- - •  j^l)^,...,^ " Z^6   S+     J
\QNT- -  ,0l)eNi...,ei, 

J=l 
N 

(4.19) 
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It follows from (4.13) that 

/2S+i|vac)ph = 725+i|vac)ph = 0 . (4.20) 

It is clear that the form factors of the quantum integrals /2S+i and 
128+i vanish identically, but using these quantities we can partially 
solve the problem of the reconstructing the map O -> O of the local 
operators into the operators acting in the Hilbert space of the angular 
quantization. Suppose we know this identification for some particular 
local operator O -> O. Then we can immediately find this identification 
for arbitrary descendant of the operator O with respect to all integrals 
of motion hs+i and 723+1- 0(a) = [0,I(a)] [26]. The answer is 

0(a) ^ 6(a) = 61(a) - I(a + 27ri) O , (4.21) 

where 

^ = ^s E z^a+™)d«z'^a) 2^(0 £=± 

= 5Z4(2m)eT(2s+1)Q when a -> ±00. (4.22) 
s>0 

The prove of this statement is based on the cyclic property of the trace 
(4.7) and looks as follows: 

ph(vac|O(a)|0i,... A)ei,...,e„ 

=ph<vac|[C?,J(a)]|(9i,...^n>eil...)eB 

(^V<vac|O/(a)|0i,... Ak,..,^ 

= Tr^ (tFKdKaWW ... Zl{On)) - ^p Y, MnTr^ 

The last line in the previous calculation can be transformed as follows: 

^(^)"Tr^(e^0^(a)^(a)^1^1)...Z£*n(^)e^^(a)aan(a)) 

(*=)Y,Tl'H* [fKOZtx{dx)...ZtS0n)Z,:{a)^KZ%{a)Z^{a)daZ'lM) 

<3^6) g'(0 E ^wi. (zfiaWda^iaWdz;^)... ^(^)) 
e=± 
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(3=2) g'iOTr^ (fKi(a + 2m)6z:i (6,)... Z*n(^)) (4.23) 

so (4.21) is proved. 

The generating function (4.22) has also another meaning. Namely, 
it was proved in [29] that after substitution to the trace (4.7) the coef- 
ficients Ii and /_i of the asymptotical expansion (4.22) one obtains the 
known form factors [33] of the stress energy tensor in S'[/(2)-invariant 
Thirring model (this model can be obtained from SG model in the 
limit £ —» +oo). This allows to conjecture that for the finite £ the cor- 
responding coefficients of the quantity I (a) will also generate the form 
factors of stress-energy tensor in the SG model. 

4.4    Symmetries of the model 

In this subsection we will prove the following three statements. 

(L) The adjoint action of the algebra A(sl2) (1.18) on the total 
Hilbert space is given by the level zero action of this algebra 

ftfal - W2,0AdLi(tii;0AdL2(t«2;0 = AdL2(W2;$)AdLl(Wi;f)^(^i - ^2,£)  . 
(4.24) 

(u) The subspace of the n-particle states carries the finite-dimen- 
sional representation of the algebra .4(5/2) given by the formulas 

(id ® 1® id ® L ® ... tn-1) A^ixWu ... ,01)^...^, 

x = e{u), f(u), h(u) ,    (4.25) 

where A^(x) is nth power of the comultiplication maps (3.21)-(3.23) 
defined inductively 

A(1) = A5    A^(x) = (A ® id) A^"1) , 

where the action of the Gauss coordinates e(u), f(u) and h(u) on the 
one-particle states is defined by the formulas (4.30) and (4.31). 

(UL) The commutation relations of the algebra 4(5/2) in the form 
(3.14)-(3.19) allow to define certain asymptotical operators e*, f^ and 
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h such that their commutation and comultiplication relations corre- 
spond to those of the Chevalley generators of the quantum affine al- 
gebra 6^(5/2) at level zero with the parameter of deformation q = 

exp (T™^). 

The first statement is a simple consequence of the commutation 
relation (1.15) and the fact of commutativity [7^(^, £), az ® az] = 0. 

The second statement is a direct consequence of the defining rela- 
tions (3.32), (3.36) and (3.41) for the operators Z^(e). We start from 
one particle states \Q + 7ri/2}± and prove that they realize the spin 1/2 
representation (3.27)-(3.29). From the definition of the adjoint action 
(1.18) we have 

Adfc^)-! • Z±(0) 

= hiuy'Z^hiu) + hiuy^ZKO), /(fi)}fc2(fi)e(fi),        (4.26) 

Adfc2(u)-i • Z±(0) + Ade^)^)-!/^) • Z±(0) 

= k2(u)-lZl(e)k2{u) + eCfiJfcxCfi)-^^^), /(fi)}fc2(fi),        (4.27) 

- Ad,lW-i/w - Zi(ff) = k^iFJfi), f{u)}k2{u), (4.28) 

- Ade^A-!^)-! • Z±(Q) 

= e^k^u^Z^k^u) + k2(u)'1Z^(e)k2(u)e(u) 

+ eWhW^iZliO), f(u)}k2(u)e(u), (4.29) 

where we denote u — u + 7ri/4 and 6 = 6 + m/2. 

The calculation of the adjoint action of the Gauss coordinates of 
L-operator onto the state \Q)- is an easy part. Indeed, using formulas 
(3.41) we observe first that the anticommutator {Z*_(0), f(u)} vanishes 
in (4.26)-(4.27) and using then (3.32), (3.36) we obtain 

Ad/(U)|0~)_=O, 

Ade(u)|0V = -^^|6>>+, 
sh(^) 

sh h=e±i^ _ 
AAm\0)- =      \    ^W- (4-30) 

sh hf\ 
which obviously coincide with the analogous formulas from (3.27)- 
(3.29).   Let us demonstrate how the second formula in (4.30) is ob- 
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tained. Combining (4.26) and (4.29) and taking into account (3.38) we 
obtain 

Ade(u) • Z*_{9)    =    -e{u)Z*_(e) - h(u)Z*_(e)h(u)-le{u) 

sh u—B+m 
i3=     -e(u)Zl(e)--^^Z*_(d)e(u) 

sh^f- 
sh1- 
ihzm 

The calculation of the adjoint action of the Gauss coordinates onto 
the state 1^)+ is more complicated but straightforward. The main trick 
is to use the formula (3.36) to replace the operator Z+(0) by the com- 

bination of the products e(v)Z*_(Q) and Z*_{6)e{v). Using then the 

commutation relations of the algebra .4(5/2) in terms of the Gauss co- 
ordinates (3.14)-(3.19) we will find that the dependence on the spectral 
parameter v is canceled out and we obtain 

AdeW|0)+ = O, 

sh hfj 
sh (ii=£i*) 

sh f^fj 

which coincide with the rest of the formulas (3.27)-(3.29). 

To find the action of the Gauss coordinates e(w), f(u) and h(u) 
on the n-particle states we use the same formulas (4.26)-(4.29) with 
Z±(6) replaced by the n-fold product of these operators. For example, 
the adjoint action of the Gauss coordinate e(u) on the two-particle state 
is given by the formula 

Ade^-I^A)-- 

= 7 7-Yl^l>^2>+,- +  7 -T 7 -y|0i,02)-,+ 

= A(e(«))|tfi,tf2>_f_, (4.32) 
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where we denoted by A = (id ® L) A the composition of the comulti- 
plication of the algebra ,4(5/2) (3.21)-(3.23) and the involution (1.17). 
Repeating these arguments inductively we prove the formula (4.25) 
where the action of the Gauss coordinates e(u), f(u) and h(u) on the 
one-particle states are given by the formulas (4.30) and (4.31). 

*~^ 
The commutation relations of the algebra ^(5/2) (3.14)-(3.19) at 

the zero central element demonstrate that the Gauss coordinates of 
L-operators have following asymptotics when Re u —>• ±00: 

e(u) ~ exp f —— J ,    f(u) - exp I —— j ,    h(u) - h(±oo) = h±. 

(4.33) 

It follows from (3.15) and (3.16) that Cartan asymptotical genera- 
tors h± have the following commutation relations with Gauss coordi- 
nates e(u) and f(u): 

h±e(u)hl1 = exp ( ±-? J e(w),    h±f(u)hl1 - exp f =F-p J f(u) . 

(4.34) 

The comultiplication rule (3.23) yields that the asympotical Cartan 
elements are primitive and group-like: Ah± = h± ® h±. The commu- 
tation relations (4.34) yields that the product h+h- is central and also 
group-like primitive. Due to this we can put this central element to be 
equal to one so the asymptotical Cartan operators are inverse to each 

+ other: h+ = h^ 

Let us define the logarithmic Cartan operator h as follows: 

h± = exp (izTr^j^- h J (4.35) 

where the operator h has standard commutation relation with the 
Gauss coordinates [h, e(u)] = 2e(u) and [h,/(u)] = —2f(u). Define 
also the asymptotical operators 

e±   =   - sh ( ZTT^—— J lim     e±u^e(u) , 
2 y q     J Re u-+±oo 

f±   =   i sh (iir^^) lim     e±u^f(u) . (4.36) 
2      V       ^   /       Re «-*-±00 
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Prom the commutation relations (3.14)-(3.16) we can obtain the com- 
mutation relations of these operators: 

[h,e±] = ±2e±,        [h,f±]=T2f±, 
sin(7rh(g + l)/g)_    g

h-g-h 

[e±'t=Fj-±sm(7r(e + l)/e)   ~%-?-1   ' 
ge+e_ = ?"1e_e+,    g'^+f- = qf-f+ , 

^3e3
±f± - ^£^ (q^eli±e± - ^^44) " ?±3f±e^ = 0 , 

9±3f3e± _ £z£!_ (9±if2e±f± _ ^if^ifl) - ^3e±fi = 0 , (4.37) 

where q = exp (^^r1). These commutation relations allows to identify 

the asymptotical operators with the Chevalley generators of the affine 
quantum algebra Uq(sl2) at level zero. 

Using formulas (4.30), (4.31) and the rule of the Gauss coordinates 
actions onto multi-particle states (4.25) we can obtain the action of 
the asymptotical operators e±, f± and h onto multiparticle stajtes and 
prove that it is given by the comultiplication of the algebra Uq(sl2). To 
do this we first slightly modify the action of these generators following 
[32] when they act on the one-particle states |0)±: 

e± i-^ exp f =F- j e±,    f± \-> exp f ±- ) f±,    h i-> h. (4.38) 

By the straightforward calculation using the definition of the adjoint 
action on the multiple-particle states (1.18) and the formulas (3.32)- 
(3.41) we obtain that this action can be formulated through the comul- 
tiplication 

Aoe± = e± <g> 1 + qTh ® e±, 

Aof± = 1 ® f± + f± ® q±h, 
Aoh = h®l + l®h, (4.39) 

which can be formally obtained from the comultiplication formulas for 
the Gauss coordinates (3.21)-(3.23) using (4.33). The action of the 
asymptotical operators on the one particle states are defined as follows 

e±|0>+ = f±|0>_ = O,  e±|0)_ = |0)+,  t±\e)+ = \0)-,  h\9)± = ±\e)±. 
(4.40) 
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For example, let us demonstrate the origin of this comultiplication on 
the two-particle state. From (4.32) we have 

Ade+ • |01,02>-,- 
(u^A sh f^+in^ exp (u^\ 

lim    I  )_L4|01 02) v     s     / )-LJ\0   g)_ 
Re«-»+ool o0v, ^«=«l^ '        /+' sh ^M=a^   2sh (2=^) 

= |ff1,^>+,_-exp^jJ|fli,^>_,+ 

:4=0) (e+ ® 1 + q-h ® e+) |^^2)-,- = Ao(e+) 1^,^2)_)_ . 

We would like to note here that the set of the asymptotical generators 
e+, f_ and h or e_, f+ and h cannot be identified with the set e, / and 
h used in the construction of the evaluation homomorphism from the 
algebra ^(5/2) onto f/^y^s^), because the first ones are the subalgebras 
while the second one is factor subalgebra. In particular, the action 
(4.40) cannot be obtained from the adjoint action onto one-particle 
states (4.30) and (4.31). 

The consideration presented above prove that the adjoint action of 
the finite-dimensional subalgebra of Afah) onto the total Hilbert space 
of the SG model describe the symmetries of this space investigated in 
[32, 22, 3]. 

4.5    Symmetries of the model at the FF point 

Now we would like to demonstrate how the quantum symmetries of 
the Hilbert space % of the SG model become the classical ones (i.e. 
correspond to undeformed current algebra) at the FF point. 

It is clear that the finite-dimensional representations of the algebra 
.4.(5/2) at the value £ = 1 degenerate. Moreover, the operator h+ be- 
comes the central element of the algebra (cf. (4.34)) and takes the value 
(—I)*4"1, k = 0,1 on the subspace Tik of the even and odd number of 
particles of the total Hilbert space %. In order to obtain the nontrivial 
action of the algebra A(sl2) at the FF point on the Hilbert space of 
states we introduce the rescaled operators 

e(u) 
sh(z7r/£) e=i 
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/(«) = -h+ 

h(u) = 
^(u)^;1 - 1 

sh(f7r/£) 
(4.41) 

The nontrivial commutation relations of the algebra A(sl2) reads as 
follows: 

[h(u), e(v)]   =   2cth (u - v)e(v) - 2 , f ^   . , (4.42) 
sh (w — u) 

[%),/»]   =   -2cth^-^)/» + 2gh^
(^))       (4.43) 

[e(u)'/(u)]   =     sHu-v)   ■ (4-44) 

The algebra (4.42)-(4.44) coincides with the classical current algebra 
5/2 on the line [21]. 

Formulas (4.30) and (4.31) of the adjoint action of the operators 
(4.41) becomes 

Ad/W|«>_ = Ad^)!^ = 0,    AdiM|9>± = ±cth(« - m± , 

(4.45) 

and on the multi-particle states are 

A(x) =x®l + l®x,    x = e(u), f(u), h(u) , (4.46) 

where in order to obtain (4.45) and (4.46) we used the fact that operator 
h+ equal to —1 on the one-particle state. 

The phenomena that quantum symmetries of the Hilbert space of 
state for the SG model becomes the classical ones at the FF point is a 
consequence of the fact that S'-matrix in this limit yields the classical 
r-matrix (2.67): 

r(u) = hm    ys;        . (4.47) 
£->i   7n{l - §) 

This phenomena was observed in reflectionless SG theory [24] and was 
used to investigate the space of the local operators in SG model at FF 
point [23]. 
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5    Discussion 

In this paper we further developed the method of angular quantization 
for the Sine-Gordon model. Technically the application of this method 
splits into two parts. First, one should explicitly describe canonical 
quantization %R of the model in right Rindler wedge, where the boost 
plays the role of hamiltonian. Then the space of states and local opera- 
tors of the theory on the line are described in terms of certain operators 
acting in 1-LR. 

We studied the SG theory at the free fermion point where the canon- 
ical quantization in RRW can be done explicitly. We investigated the 
integrals of motion and found that the usual local integrals of motion 
diverge. This forced us to consider nonlocal integrals of motion which 
are a certain analytical continuation (in the space of eigenvalues of 
Lorentz boost) of the usual charges and the only possibility to close 
them into a quadratic current algebra is to use charges with different 
monodromy properties. They form the specialization of the scaling el- 
liptic algebra ^(5/2) [20] into free fermion point. The bosonization [26] 
naturally appears in terms of scattering data. 

This indicates that angular quantization of SG model can be done in 
terms of the representation theory of the algebra ^4(5/2). Starting from 
level one representations of this algebra in the bosonic Fock space we 
managed to construct the space of asymptotical states of SG model and 
some local operators acting into this space of states, in particular, the 
transfer matrix and the commuting set of the integrals of motion, and 
demonstrate the mechanism of trace calculations of the form factors of 
local operators. This approach is an extension of the ideas presented 
in [18] for XXZ model. The algebra A(sl2) is not a Hopf algebra, 
but we were able to define the adjoint action of this algebra on the 
space of states, such that n-particle states with given rapidities form 
n-fold tensor product of two-dimensional representations of the algebra 
A(22). 

Contrary to the integrable models on the lattice local integrals and 
local operators of the SG theory appear as coefficients of the asymp- 
totical expansions of certain currents which are constructed explicitly. 
In particular, the asymptotical expansion of the level zero adjoint ac- 
tion of the algebra A(sl2) on the space of states produce the action 
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of Chevelley generators of quantum affine algebra, which was known 
before. At the free fermion point we get in this way the action of the 
classical affine algebra 5/2 which was constructed in the framework of 
the radial quantization in the paper [23]. 

Nevertheless, the understanding of the angular quantization method 
of SG model for generic value of the renormalized coupling constant f is 
far from being complete. In particular, there is no rigorous construction 
of the quantum analogs of the Jost functions introduced in [26, 25] 
without referring to bosonization. SG model admits also natural analog 
of 'new level zero action' (see [15] and references therein) which is given 
in terms of L-operators as follows 

Ad'L{u) ■ X = L(u) X Liu)'1 (5.1) 

and depends on the dual deformation parameter q' = exp (^7^]. It 

will be interesting to extend the results on the spinon bases in conformal 
field theories investigated in [4] to the massive integrable models. As 
we mentioned already that the algebra ^(5/2) is quasi-Hopf algebra, 
but belonging to a family of dynamical elliptic algebra. The definition 
of adjoint action, used in this paper, did not refer to the axiomatics of 
this family. It would be interesting to fill this gap. 

Finally, it would also be interesting to further explore the role of 
the duality transformation (3.7). In terms of the SG coupling /?, this 
is an electric/magnetic duality (3 -+ 2//3 familiar from the conformal 
field theory of a compactified free boson. As described in the paper 
this duality relates the g'-deformation parameter of the algebra of the 
monodromy matrix with the g-deformation parameter of the physical 
S-matrix. Though we did not present this here, one can define a dual 
monodromy matrix by the formal replacement ft —t 2/(3 in the usual 
monondromy matrix, and show that formally this dual monodromy 
matrix commutes with the original monodromy matrix. This would 
imply that the dual monodromy matrix generates additional integrals of 
motion, presumably related to the quantum affine symmetry described 
in [3]. 
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Appendix A.  The algebra of bosons ax and 

The normal ordering with respect to the vacuum vectors (2.22) and 
(2.23) 

b±(v)bT(vf) = :b±(v)bT(v'): + (b±(v)bT(vf)), 

(6±(i/)6T(i/)> = *(i/ + i/)e(-i/), (A.l) 

where 0(^) is a 'continuous' step function 

eM = { 
1,    for    v > 0 

1/2,    for   v = 0  ,        e(v) + e(-i/) = 1 (A.2) 
0,    for   v < 0 

allows to observe that the commutation relations between operators a,\ 
and a\ is not closed in a sense that the commutator [a\, a^] cannot 
be presented as a linear combinations of the same operators with C- 
number coefficients and C-valued functions. The idea is to consider this 
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commutator as a new bosonic operator and try to close the extended 
by this operator algebra. Fortunately this extended algebra is closed. 
To describe its commutation relations we introduce new operators: 

/oo       Y (- — ifX + v)) 

/oo       Y (- - i(u- u)) 
dp r)i^-n-L       th7rz/ :6-^ " ^^^ + v)'' '    (A-4) 

The bosonic operators ax and a\ are related to the new operators t\^ 
and ix,M by the linear transformation: 

ax     =    CthTTA <Aio - -r—- to,A, 

aA   =   -—- tAjo - cth TTA to,A- (A.5) 

Using simple trigonometric algebra we conclude that the set of the 
operators tx^ and ix^ is not independent. For example, the following 
relation is valid: 

sllTTA (tA|A1 - tx+^o) = shTT// (£o5A+/z - tA,^) (A-6) 

therefore we can conclude that complete algebra of the bosonic opera- 
tors reads as follows: 

[ax,afl\ = X6(X + fx) (A.7) 

K, Wl = W+A - V+-A,P + S{X + ii + p)       du th7r(z/ + p)    (A.8) 
JO 

[t\^ t\\!JL'] = cth7r(A + //)(tA+A'+/z',/x - iA'^+^'+A*) 

+ cth7^(A, + //)(£A,A'+/X'+M ~ ^A'+A+^y) 
/»A+/i 

+ <y(A + A' + /x + /x') /       dz/ th7r(z/ - A) th7r(i/ + //). 
io 

(A.9) 

This algebra can be understood as an algebraic realization of the com- 
plicated integral transform which relate the operators ax and G^. In- 
deed, using these commutation relations we can verify that the combi- 
nation 

dx = CIITTA aA — SIITTA to,A (A.10) 
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also has the commutation relations of the Heisenberg algebra as a^ do 
(cf. (A.7)). 

Appendix B.    Quantum Jost functions at 
the FF point 

We will prove the equivalence of (2.75) to (2.73). The second case 
can be treated analogously. 

First, we write down explicitly all the normal ordering rules which 
follows from (2.59) 

™»> = (It ^fH-^w 

F(u)F(v) - -^{u - v):F(u)F(v): 

*+(a,-£)*(<* 4) 
= gia, - a2):Z'+ ^ - yj Z'+ \a2 + yj : 

where in the last formula the function g(ot) is given in terms of double 
F-functions 

e57/4 Tl(ZK + ia) 
g^a' ~ ~2^~ r2(27r + ZQ;)r2(47r + ia)' 

For the double and usual F-functions we use the integral representations 
[1, 19] 

f dX ln(-A)      e-xX ,   „,    .     / 1\ .      ,    .     1,   n 

h -2SA   T^r* =ln r ^ + (" - 2) ^ "ln '>" iln ^ • 
dA ln(-A) e"1* 

/, c     2iriX      (1-e-Aa;i)(l-e-Aw2) 

= InFato; | Ui,^) - ^B2y2(x \ Wijwa) , 
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where £2,2(# | ^i!^) is the double Bernulli polynomial of the second 
order 

£2,2 (z |^i; CJ2) = 
CO1W2 

X2 - X{ui + U)2) + 
u)\ + 3a;ia;2 + uol 

6 

The constant g in the relation (2.73) is the value of the function g(a) 
at the point a = 0. 

We have 

g-'Z^ [a-^)ZL 
ITT 

~2 + 
ITT 

= T^IC IdaidU2 :Z'~ (a~'~^z'-(a+'~^) F^F^y- ' Ci J C2 

r'5 + S£!!'r 

2 

Mi — a 

2'!ri 2        27rz i   )     V   27ri   , 

(«i - M2) 
F (k _L  "2-"^ F /^i  —   "l-"^ L   \2 'r    27ri  / ■l   V2 27ri   / 

(B.l) r(i + ^f)r(i-^f)- 
The contours Ci and C2 in (B.l) go from —00 to +00 and 

Im a — TT < Im ^1 < Im a,    Im a < Im 1/2 < Im a + TT        (B.2) 

Using the elementary properties of the F-functions we can rewrite the 
integrand in (B.l) in the form 

STT
2
 L /c duidu2 

d JC2 U2 — a     ui — a_ 

:Z'_ (a - f) Z'_ (a + f) F^Ffa): 
ch (^) ch (^) 

where contours Ci and C2 are specified in (B.2). 

(B.3) 

Using the fact that integrand in (B.3) is antisymmetric function 
with respect to variables ui and U2 we conclude: 

^-!M-!K/>^--<a ) 
(B.4) 

since the current F(u) coincide with the scattering data operator Z-(u). 
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