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Abstract 

We derive the partition function for the Vafa-Witten twist 
of the J\f = 4 supersymmetric gauge theory with gauge group 
SU(N) (for prime N) and arbitrary values of the 't Hooft fluxes 
v G H2

(X,ZN) on Kahler four-manifolds with b^ > 1. 

1    Introduction 

The study of topological quantum field theories (TQFTs) originated 
from the twist of A/" = 4 supersymmetric Yang-Mills theory has been 
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pursued during the last few years. These studies have led to the full 
solution for some of the models involved, and have provided important 
tests of our ideas on duality for Yang-Mills theories in four dimensions. 
In this paper we generalize previous results obtained by Vafa and Wit- 
ten [23] for one of the twisted theories. 

As in the J\f — 2 case, the 7^-symmetry group of the M = 4 alge- 
bra can be twisted to obtain a topological model. But since the IZ- 
symmetry group of the Af = 4 theory is 577(4), this topological twist 
can be performed in three inequivalent ways, so one ends up with three 
different TQFTs [23], [28], [13]. The twisted theories are topological in 
the sense that the partition function as well as a selected set of corre- 
lation functions are independent of the metric which defines the back- 
ground geometry. In the short distance regime, computations in the 
twisted theory are given exactly by a saddle-point calculation around a 
certain bosonic background or moduli space, and in fact the correlation 
functions can be reinterpreted as describing intersection theory on this 
moduli space. This correspondence can be made more precise through 
the Mathai-Quillen construction [13]. Unfortunately, it is not possi- 
ble to perform explicit computations from this viewpoint: the moduli 
spaces one ends up with are generically non-compact, and no precise 
recipe is known to properly compactify them. 

While for the TQFTs related to asymptotically free J\f = 2 theories 
the interest lies in their ability to define topological invariants for four- 
manifolds, for the twisted J\f = 4 theories the topological character is 
used as a tool for performing explicit computations which might shed 
light on the structure of the physical M = 4 theory. This theory is 
finite and conformally invariant, and is conjectured to have a symme- 
try exchanging strong and weak coupling and exchanging electric and 
magnetic fields, which extends to a full 5L(2,Z) symmetry acting on 
the microscopic complexified coupling r [21]. In addition to this, since 
all the fields in the theory take values in the adjoint representation of 
the gauge group, it is possible to consider non-trivial gauge configu- 
rations in G/Center (G) and compute the partition function for fixed 
values of the 't Hooft flux v € H2(X, ^(G)) which should behave under 
SX(2,Z) duality in a well-defined fashion [8]. This has been checked 
for the physical A/* = 4 theory on T4 in [6]. It is natural to expect 
that this property should be shared by the twisted theories on arbi- 
trary four-manifolds. This was checked by Vafa and Witten for one of 
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the twisted theories and for gauge group SU(2) [23], and it was clearly 
mostly interesting to extend their computation to higher rank groups. 
Similar results have been recently derived for another twisted version 
of the J\f= 4 theory within the iz-plane approach [12]. 

In this paper we will consider the Vafa-Witten theory for gauge 
group SU(N). The twisted theory does not contain spinors, so it 
is well-defined on any compact, oriented four-manifold. The ghost- 
number symmetry of this theory is anomaly-free, and therefore the only 
non-trivial topological observable is the partition function itself. As we 
mentioned above, it is possible to consider non-trivial gauge configura- 
tions in G/Center (G) and compute the partition function for a fixed 
value of the 't Hooft flux v G H2(X,7ri(G)). In this case, however, the 
Seiberg-Witten approach is not available, but, as conjectured by Vafa 
and Witten, one can nevertheless compute in terms of the vacuum de- 
grees of freedom of the J\f — 1 theory which results from giving bare 
masses to all the three chiral multiplets of the N = 4 theory2. The 
partition functions on if 3 for gauge group SU(N) and trivial 't Hooft 
fluxes have been computed by Vafa and collaborators in [20]. We will 
extend their results to arbitrary 't Hooft fluxes and compute the parti- 
tion function on more general Kahler four-manifolds. A brief account 
of these results has already appeared in [14]. 

The paper is organized as follows. In sect. 2 we review the structure 
of the Af = 4 supersymmetric gauge theory in four dimensions and its 
topological twisting. In sect. 3 we review the Vafa-Witten theory, 
which arises as a twisted version of the J\f = 4 theory, and analyze the 
vacuum structure of the Af = 1 theory which arises by giving masses 
to all the three chiral multiplets of the Af = 4 theory. In sect. 4 we 
derive the partition function on KS for G = SU(N) with prime N 
and arbitrary values of the 't Hooft fluxes. In sect. 5 we generalize 
the partition function to more general Kahler manifolds and study the 
properties of the resulting formulas under duality and under blow-ups. 
Finally, in sect. 6 we state our conclusions. An appendix deals with a 
set of useful identities and definitions used in the paper. 

2A similar approach was introduced by Witten in [24] to obtain the first explicit 
results for the Donaldson-Witten theory just before the far more powerful Seiberg- 
Witten approach was available. 
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2    Twisting M = 4 supersymmetric gauge 
theory on four-manifolds 

In this section we review some aspects of the four-dimensional jV=4 
gauge theory and its topological twisting. 

2.1    The N = 4 supersymmetric gauge theory 

We begin with several well-known remarks concerning the A/" = 4 su- 
persymmetric gauge theory on flat R4. The J\f = 4 supersymmetric 
Yang-Mills theory is unique once the gauge group G and the micro- 
scopic coupling r = ^ + ^^ are fixed. The microscopic theory con- 
tains a gauge or gluon field, four chiral spinors (the gluinos) and six 
real scalars. All the above fields axe massless and take values in the 
adjoint representation of the gauge group G. From the point of view of 
J\f = 1 superspace, the theory contains one J\f = 1 vector multiplet and 
three Af = 1 chiral multiplets. These supermultiplets are represented 
in J\f = 1 superspace by the superfields V and $s (s = 1,2,3), which 
satisfy the constraints V = W and D^s = 0, DQ, being a superspace 
covariant derivative3. The Af = 4 supersymmetry algebra has the au- 
tomorphism group S[/(4)/, under which the gauge bosons are singlets, 
the gauginos transform in the 4 © 4, and the scalars transform as a 
self-conjugate antisymmetric tensor (j)uv in the 6. 

The action takes the following form in Af = 1 superspace: 

■ f dAxd29Tv(W2) + ^-f f d4xd29Ti(WV) 

3 

+ \y [dAxd29d26TT{&sev$se-
v) 

47r 

+ 
e2 

iV2 + bg. I'd'xd'eTv^1^2,^3}}, (2.1) 

3 We follow the same conventions as in [13]. 
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where Wa = —j^D2e~vDaev and Tr denotes the trace in the funda- 
mental representation. 

The theory is invariant under four independent supersymmetries 
which transform under 577(4)/, but only one of these is manifest in 
the J\f = 1 superspace formulation (2.1). The global symmetry group 
of AT = 4 supersymmetric theories in R4 is H = SU(2)L ® SU(2)R ® 
317(4)!, where JC = SU(2)L ® SU{2)R is the rotation group 50(4). 
The fermionic generators of the four supersymmetries are Qu

a and QUa. 
They transform as (2,1,4) © (1,2,4) under H. 

The massless J\f = 4 supersymmetric theory has zero beta func- 
tion, and it is believed to be exactly finite and conformally invariant, 
even non-perturbatively. It is in fact the most promising candidate for 
the explicit realization of the strong-weak coupling duality symmetry 
conjectured some twenty years ago by Montonen and Olive [21]. 

2.2    Twists of the Af = 4 supersymmetric theory 

The twist in the context of four-dimensional supersymmetric gauge 
theories was introduced by Witten in [25], where it was shown that 
a twisted version of the J\f = 2 supersymmetric gauge theory with 
gauge group SU(2) is a relativistic field-theory representation of the 
Donaldson theory of four-manifolds. In four dimensions, the global 
symmetry group of the extended supersymmetric gauge theories is of 
the form SU(2)L ® SU(2)R ® X, where JC = SU(2)L ® SU(2)R is the 
rotation group, and 1 is the chiral 7^-symmetry group. The twist can 
be thought of either as an exotic realization of the global symmetry 
group of the theory, or as the gauging (with the spin connection) of a 
certain subgroup of the global 7^-current of the theory. 

While in J\f = 2 supersymmetric gauge theories the 7^-symmetry 
group is at most 17(2) and thus the twist is essentially unique (up to an 
exchange of left and right), in the 77 — 4 supersymmetric gauge theory 
the 7^-symmetry group is SU(4) and there are three different possibili- 
ties, each corresponding to a different non-equivalent embedding of the 
rotation group into the 7^-symmetry group [23], [28], [13]. Two of these 
possibilities give rise to topological field theories with two independent 
BRST-like topological symmetries.   One of these was considered by 
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Vafa and Witten in [23]. The second possibility was first addressed by 
Marcus [18], and his analysis was extended in [13], [2]. The remaining 
possibility leads to the half-twisted theory, a topological theory with 
only one BRST symmetry [28], [13]. The generating function of topo- 
logical correlation functions of this theory has been recently computed 
for gauge group SU(2) and arbitrary values of the 't Hooft flux in [12] 
within the -u-plane framework [22]. 

3    The Vafa-Witten theory 

The Vafa-Witten theory can be obtained by twisting the A/*=4 super- 
symmetric gauge theory as described in [23], [28], [13]. The twisted 
theory has an anomaly free Abelian ghost-number symmetry which is 
a subgroup of the 577(4)/ 7^-symmetry of the A/'=4 theory. Therefore, 
the partition function is the only non-trivial topological observable of 
the theory [23]. 

The theory has 2 independent BRST charges Q± of opposite ghost 
number. The field content consists of 3 scalar fields {0+2, 0_2,C0}, 2 
one-forms {A0

a&,H°&} and 2 self-dual two-forms {(B+p)
0, (H+p)0} on 

the bosonic (commuting) side; and 2 scalar fields {C4"1?7?-1}? 2 one- 
forms {ipa&xZl} and 2 self-dual two-forms {(^J9)

+1, (xj?)"1} on the 

fermionic (anticommuting) side. The superscript stands for the ghost 
number carried by each of the fields. 

The twisted Af = 4 supersymmetric action breaks up into a Q+- 
exact piece (that is, a piece which can be written as {Q+,T}, where 
T is a functional of the fields of the theory), plus a topological term 
proportional to the instanton number of the gauge configuration, 

S^sted = {Q+
)r}-27rihvT, (3.2) 

with hv the instanton number of a gauge bundle with 't Hooft flux 
v. This is an integer for SU(N) bundles (v = 0), but for non-trivial 
SU(N)/ZN bundles with v ^ 0 one has 

iV- 1 
hv = 2N~V'V    modZ> (3-3) 

where v • v stands for Jxv A v. Therefore, as pointed out in [23], 
one would expect the SU(N) partition function to be invariant under 
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r —> r + 1, while the SU(N)/ZN theory should be invariant under 
r —» r + 2iV on arbitrary four-manifolds, and under r -> r + A^ on spin 
four-manifolds (where v - v is even). In any case, for odd AT, we have 
invariance under r —t r + N on any four-manifold. Notice that, owing 
to (3.2), the partition function depends on the microscopic couplings e 
and 9 only through the combination 27rihvT, and in particular this de- 
pendence is a priori holomorphic (were the orientation of the manifold 
X reversed, the partition function would depend anti-holomorphically 
on r). However there could be situations in which, because of some 
sort of holomorphic anomaly, the partition function would acquire an 
explicit anomalous dependence on f. This seems to be the case, for 
example, for the theory defined on CP2 [23] and, more generally, on 
manifolds with 6^ = 1 [20]. Somewhat related results have been de- 
rived for the Donaldson-Witten theory in the context of the u-plane 
formalism [22]. 

3.1     Mass perturbations and reduction to Af=l 

It is a well-known fact that on complex manifolds the exterior differen- 
tial d splits into the Dolbeaut operators d and 8. In a similar way, as 
pointed out in [24], on a Kahler manifold the number of BRST charges 
of a twisted supersymmetric theory is doubled, in such a way that, for 
example, the Donaldson-Witten theory has an enhanced AT = 2 topo- 
logical symmetry on Kahler manifolds, while the Vafa-Witten theory 
has A/T = 4 topological symmetry. In each case, one of the BRST 
charges comes from the underlying Af = 1 subalgebra which corre- 
sponds to the formulation of the physical theory in Af = 1 superspace. 
By suitably adding mass terms for some of the chiral superfields in the 
theory, one can break the extended (Af = 2 or Af = 4) supersymmetry 
of the physical theory down to Af = 1. For the reason sketched above, 
the corresponding twisted massive theory on Kahler manifolds should 
still retain at least one topological symmetry. One now exploits the 
metric independence of the topological theory. By scaling up the met- 
ric in the topological theory, g^ -» tg^, one can take the limit t —>» oo. 
In this limit, the metric on X becomes nearly flat, and it is reasonable 
that the computations in the topological field theory can be performed 
in terms of the vacuum structure of the Af —1 theory. 

One could wonder as to what the effect of the perturbation may 
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be. The introduction of a mass perturbation may (and in general will) 
distort the original topological field theory. This poses no problem in 
the case of the Donaldson-Witten theory, as Witten was able to prove 
that the perturbation is topologically trivial, in the sense that it affects 
the theory in an important but controllable way [24]. As for the Vafa- 
Witten theory [23], [15], [4], the twisted massive theory is topological 
on Kahler four-manifolds with /i2,0 ^ 0, and the partition function is 
actually invariant under the perturbation. The constraint /z2,0 ^ 0 
comes about as follows. In the twisted theory the chiral superfields of 
the N — 4 theory are no longer scalars, so the mass terms can not be 
invariant under the holonomy group of the manifold unless one of the 
mass parameters be a holomorphic two-form UJ. 

The massive M — 1 theory has the tree level superpotential 

2X/2 
W = 

e2 /^x^Trl^^^alj+m I d20Tr(<l>i$2) 

+ \ d20a;Tr($3)2 + h.c. (3.4) 

Up to a constant rescaling the equations for a critical point of W are 

[<l>3,$i] = -m$3, 

[<S>3, $2] = m$2, 

[$i,$2] = 2a;$3- (3.5) 

As noted in [23], [5], these equations are the commutation relations 
of the Lie algebra of SU(2), and therefore the classical vacua of the 
resulting J\f = 1 theory can be classified by the complex conjugacy 
classes of homomorphisms of the 577(2) Lie algebra to that of G = 
SU{N). 

Eqs. (3.5) admit a trivial solution $! = $2 = $3 = 0 where the 
gauge group is unbroken and which reduces at low energy to the Af = 1 
pure SU(N) gauge theory (which has N discrete vacua), and a non- 
trivial solution (the irreducible embedding in [23]) where the gauge 
group is completely broken. This corresponds to {<I>i, $2? $3} defining 
the representation N of 517(2). All these vacua have a mass gap: the 
irreducible embedding is a Higgs vacuum, while the presence of a mass 
gap in the trivial vacua is a well-known feature of the J\f = 1 theory. 
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When TV is prime, these are the only relevant vacua of the M = 1 theory. 
There are other, more general, solutions to (3.5) which leave different 
subgroups of G unbroken. However, in all these solutions the unbroken 
gauge group contains [/(I) factors and one expects on general grounds 
that they should not contribute to the partition function [23]. On the 
other hand, when N is not prime, there are additional contributions 
coming from embeddings for which the unbroken gauge group is SU(d), 
where d is a positive divisor of d. The low-energy theory is again an 
J\f = 1 SU(d) gauge theory wihout matter with d massive discrete 
vacua. 

In the long-distance limit, the partition function is given as a finite 
sum over the contributions of the discrete massive vacua of the resulting 
Af = 1 theory. For G = SU(N) the number of such vacua is given by 
the sum of the positive divisors of TV [5]. The contribution of each 
vacuum is universal (because of the mass gap), and can be fixed by 
comparing to known mathematical results [23]. 

4    The partition function on K3 

As a first step towards the derivation of the formula for the partition 
function we will consider the theory on K3, where some explicit results 
are already available. For X a K3 surface the canonical divisor is trivial, 
so there exists a nowhere vanishing section of the bundle of (2,0) forms. 
Therefore, the mass perturbation u does not vanish anywhere and the 
above analysis of the vacuum structure of the Af=l theory carries over 
without change. 

The structure of the partition function for trivial 't Hooft flux was 
conjectured in [23]. This conjecture has been confirmed in [20] by study- 
ing the effective theory on TV coincident M5-branes wrapping around 
K3 x T2. The partition function for zero 't Hooft flux is almost a 
Hecke transformation of order TV [1] of G(T) = ^(r)-24, with 77(r) the 
Dedekind function - see eq. (3.7) in [20]: 

£ = *« = w E «G(^)-        («) 
0<a,6,d€Z \ / 

ad=N,  b<d 

Notice that the number of terms in (4.6) equals the sum of the positive 
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divisors of N as we mentioned above. When N is prime the formula is 
considerably simpler 

Z„-_0 = ±2G(Nr) + f£G(^p). (4.7) 
ra=0 x / 

There are N + 1 terms, the first one corresponding to the irreducible 
embedding, and the other N to the vacua of the ^=1 SU(N) SYM 
theory. 

The SU(N) partition function is defined from (4.6) as ZSU(N) = 
jfZv=0. From it, the SU(N)/ZN partition function ZSU(N)/ZN = ICv zv 
can be obtained via a modular transformation [23] (see the appendix 
for details) 

Zsmm/zM = Nxl2 (T)    ZMW-I/T) 

= jp    E    WG^)- (4.8) 
a,b,d ^ ' 

p=gcd {b,d) 

Notice the first equality in (4.8), which is, up to some correction factors 
which vanish in flat space, the original Montonen-Olive conjecture. 

To generalize (4.7) for gauge configurations with arbitrary 't Hooft 
flux we proceed as in [23]. The Af contributions coming from the M = 1 
pure gauge theory vacua are related by an anomalous chiral symmetry 
which takes r -+ r + 1. The anomaly is 2A^^ - (N2 - 1) (^) = 
—(N — l)v • v + • • •, which is half the anomaly in Donaldson-Witten 
theory. Hence, the contributions from each vacuum pick anomalous 
phases e~27rm/lt; = el7r-jrmv . As for the contribution coming from the 
irreducible embedding, modular invariance requires that it vanishes un- 
less v = 0. Hence, 

Z. = PKNTK, + I E e»^ G (I±2) . (4.9) 

The Zv transform into each other under the modular group as predicted 
in [23] 

Zv(T + l) = e-i^v2Zv(T), 

[5pt)Zv(-l/T) = iV-11 (^""^e2^*^.^). (4-10) 
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To evaluate the sum over u we use formulas (A. 16) and (A. 17) in the 
appendix4. 

By summing over v in (4.9) we can check (4.8) 

Zsu(N)/zN = 2^ Zv (4.11) 
v 

N-l , r + m = J^G(NT) + N21
G{T/N) + Nl0J2G( N 

The above results only hold for prime N. The appropriate generaliza- 
tion for arbitrary N should be also investigated. 

5    More general Kahler manifolds 

On more general Kahler manifolds the spatially dependent mass term 
vanishes where cu does, and we will assume as in [23], [24] that u van- 
ishes with multiplicity one on a union of disjoint, smooth complex 
curves Cj, j = l,...n of genus gj which represent the canonical di- 
visor K of X. The vanishing of LJ introduces corrections involving K 
and additional modular functions whose precise form is not known a 
priori. In the G = SU(2) case, each of the A/* = 1 vacua bifurcates along 
each of the components Cj of the canonical divisor into two strongly 
coupled massive vacua. This vacuum degeneracy is believed to stem 
[23], [24] from the spontaneous breaking of a Z2 chiral symmetry which 
is unbroken in bulk. This is exactly the same pattern that arises in all 
known examples of twisted Af = 2 theories with gauge group SU(2) 
as the Donaldson-Witten theory and its generalizations [24], [22], [16]. 
This in turn seems to be related to the possibility of rewritting the 
corrections near the canonical divisor in terms of the Seiberg-Witten 
invariants [26]. In fact, it is known that the Vafa-Witten partition func- 
tion for G = SU(2) can be rewritten in terms of the Seiberg-Witten 
invariants [4]. 

The form of the corrections for G = SU(N) is more involved. 
From related results on Donaldson-Witten theory [19] we know that 
the higher-rank case presents some new features.   We have not been 

4Note that K3 has x = 24, a = -16, h = 0 and 62 = 22. 
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able to disentangle the structure of the vacua near the canonical divi- 
sor from first principles. Instead, we will exploit the expected behaviour 
of the partition function under blow-ups of X. This, together with the 
modular invariance of the partition function will suffice to completely 
determine the unknown functions. 

5.1    Behaviour under blow-ups 

Blowing up a point on a Kahler manifold X replaces it with a new 
Kahler manifold X whose second cohomology lattice is H2(X,Z) = 
H2(X,Z) 0 /", where I~ is the one-dimensional lattice spanned by 
the Poincare dual of the exceptional divisor B created by the blow- 
up. Any allowed ZN flux v on X is of the form v = v 0 r, where 
v is a flux in X and r = \B, A = 0,1,... N — 1. The main result 
concerning the SU(2) partition function in [23] is that under blowing 
up a point on a Kahler four-manifold with canonical divisor as above, 
the partition functions for fixed 't Hooft fluxes Zg - factorize as Zx,v 
times a level 1 character of the 577(2) WZW model. It would be natural 
to expect that the same factorization holds for G = SU(N), but now 
with the level 1 SU(N) characters. In fact, the same behaviour under 
blow-ups has been proved by Yoshioka [29] for the generating function 
of Euler characteristics of SU(N) instanton moduli space on Kahler 
manifolds. This should not come out as a surprise since it is known 
that, on certain four-manifolds, the partition function of Vafa-Witten 
theory computes Euler characteristics of instanton moduli spaces [23], 
[20]. This can be confirmed by realizing the Vafa-Witten theory as 
the low-energy theory of MS-branes wrapped on X x T2 [3]. It seems 
therefore natural to assume that the same factorization holds for the 
partition function with G = SU(N). Explicitly, given a 't Hooft flux 
v = v 0 AS, A = 0,1,... iV — 1, on X, we assume the factorization [29] 

Zs,9{r) = ZXtV(T) ^ (5.12) 

where Xx(T) 'IS the appropriate level 1 character of SU(N) - see Ap- 
pendix A.3 for details. This assumption fixes almost completely the 
form of the partition functions. Some loose ends can be tied up by 
demanding modular invariance of the resulting expression. 
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5.2    The formula for the partition function 

Given the assumptions above, and taking into account the structure of 
the partition function on K3, we are in a position to write down the 
formula for Kahler four-folds X with h^ ^ 0. We will first assume 
that the canonical divisor K is connected and with genus g — 1 = 
2x + 3(j. The formula is then 

Z'=[ti(f)'3^mhj(^G(Nr))l' 
N-l   /N-l   , v   1-0 

^—n   \ \—n   \     '/    / m=0   \A=0 
i//2 

-"-""'(X^jj     ■ (5.13) 

where v—^-^ G(r)=r/(r)~24 (with ?/ the Dedekind function) and \K\^ 
is the reduction modulo N of the Poincare dual of K. In (5.13) x\ 
are the SU(N) characters at level 1 (see Appendix A.3) and Xm,x are 
certain linear combinations thereof 

Xm,x(r) = 1 xie-^^'e^^^'^xvW,    0 < m, A < N - 1. 
A'=0 

(5.14) 

The structure of the corrections near the canonical divisor in (5.13) 
suggests that the mechanism at work in this case is not chiral symmetry 
breaking. Indeed, near K there is an TV-fold bifurcation of the vacuum, 
and the functions XA? Xm,A (with m fixed) are not related by a shift in 
r as it would be the case were chiral symmetry breaking responsible 
for the bifurcation. A plausible explanation for this bifurcation could 
be found in the spontaneous breaking of the center of the gauge group 
(which for G = SU(N) is precisely Z^y.) This could come about as 
follows. Let us focus on the irreducible embedding. For trivial canon- 
ical divisor the gauge group is almost but not completely Higgsed in 
this vacuum. In fact, since the scalar fields transform in the adjoint 
representation of SU(N), the center ZN C SU(N) remains unbroken. 
The SU(N) gauge threory has ZN string-like solitons [8] which carry 
non-trivial Z^rvalued electric and magnetic quantum numbers. If these 
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solitons condense, the center Z^v is completely broken giving rise to an 
TV-fold degeneracy of the vacuum. Each vacuum is singled out by a 
different value of the ZN-valued flux. Now for non-trivial canonical di- 
visor K as above, the irreducible vacuum separates into N vacua with 
magnetic fluxes A [!£]#! One could be tempted to speculate further and 
identify the surface K (or the Cj below) with the world-sheet of the 
condensed string soliton. 

As in [23] we can generalize the above formula for the case that 
the canonical divisor consists of n disjoint smooth components Cj, j = 
1,... ,n of genus gj on which u vanishes with multiplicity one. The 
resulting expression is: 

/ n   N-l    ,       v   {l-#)*e   A     /   1 x  I//2 

Z»=    E^cr, 1111(7) )\WG(NT)) 
j=l x=o 

N-l 

+^-^^2 
m=0 

X™>X )      ^ -HF-lv-lCj]* 
V 

where [CJ]N is the reduction modulo iV of the Poincare dual of Cj, and 

WN{e) = Y^ej[Cj]N, (5.16) 
i 

where Sj = 0,1,... TV — 1 are chosen independently. Notice that (5.15) 
reduces to (5.13) when n = 1. 

The formulas for the partition function do not apply directly to 
the N = 2 case. For iV = 2 there are some extra relative phases U - 
see equations (5.45) and (5.46) in [23] - which are absent for N > 2 
and prime. Modulo these extra phases, (5.13) and (5.15) are a direct 
generalization of Vafa and Witten's results. They reduce on K3 to 
the formula of Minahan, Nemeschansky, Vafa and Warner [20] and 
generalize their results to non-zero 't Hooft flux. 

5.2.1    Blow-ups 

Given (5.15), we can see explicitly how the factorization property (5.12) 
works. Let X be a Kahler four-fold with Euler characteristic % = 2(1 — 
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h) + hi signature a = fcj" — 62 and canonical divisor K = U^Q, and 

let X be its one blow-up at a smooth point. Then bi = 61, 62 — h +1, 
X — X+l?^ — C7 — 1 and .ftT = iiT U 5, where B is the exceptional 
divisor, which satisfies B • Cj = 0 and J32 = — 1 = 5^ — 1. Consider 
a 't Hooft flux v = v 0 XB in X, where v is a flux in X and A is an 
integer defined modulo N. Now v = v, v2 = v2 — \2, v - Cj = v - Cj, 

v-B = XB2 — —A and ^(e) = X^=i ej[Cj]iv+^^- Thus, the partition 
function (5.15) takes the form 

n   N-l   ,Xx\(
1-9j)^j,x   /x\(l-9B)Se,x' 

zx,v=I z) ^.^(?)^,?n n (-r)     (-f 
£,£ J = l   A=0     V     '    / X     ' 

N-l 

+ iv1-61 Y. 
m=0 

n     /N-l 

n(E 

j//2 

Xm.A ^      Sj e^At»-[C7,]w 

»7 

vA=0 »7 

.JTr^imw^   -m^imA2  ^    i p*"'     jv P AT 

iV2 

I//2 

GipTq1'")        ,  (5.17) 

where g = exp(27riT), a = exp(27ri/iV), and therefore, 

%=(?)(EW)nn(t)(1"s'^)f4^) i//2 

TV2 

Af-l   /AT-l 

+^-"E E, „ 
m=0  \A=0   V     ' 

n E 

Xm,A ^ e_2»LAXe_^iv^imX2 

j=l   \A=0 »7 

.^V""2 /'i-G(aV/iV))     • (5.18) 
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Now, from (5.14) it follows that 

A=0   ^    ^ 

Summing over A and using (A.12) we get 

A' 

^-A _ XN-X _ X\ (5.20) 
V V V 

Hence, 

n N~1 /v \(1-^)S'A /I N^2 
"I   f "1   T   /   X A   i if-*-     ^-^ /    AT \   \ ^,-(?)(i:w,nn(f)—)(i«)' 

+ AT1"6!Y](^)  TT   Yl^^)     e^^-^"^ 
m=0 V ^ /    Lj=l   \A--=0   V    ^    / y 

• e^^^2 (^G(«m91//vr))I/    = (^) ^, (5-21) 

as expected. 

5.2.2    Modular transformations 

We will now study the modular properties of the partition functions 
(5.13) and (5.15). With the formulas in the appendix one can check 
that they have the expected modular behaviour5 

ZV(T + 1) = ei^(2x+3.)e--^X(r)) 

Zv(-l/r) = N-W (^~
X/2
J2^

Z
U(T), (5-22) 

5We assume as in [23] that there is no torsion in H2(X,Z). Were this not case, 
Eqs. (5.24) and (5.15) above should be modified along the lines explained in [27]. 
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and also, with ZSU(N) = Nbl~lZQ and ZSU{N)/IN = J2Zv, 
V 

Zsu(N)(r + 1) = e^toWZsu^ir), 

Zsu(N)/zN(r + N) = e^2(W)zsuiN)/ZN(T), (5.23) 

-7)        ZsuiN)/ZN(r), (5.24) 

and 

-X/2 

-2. 

which is the Montonen-Olive relation. Notice that since TV is odd, the 
SU(N) (or SU(N)/1JN) partition function is modular (up to a phase) 
for FQ(A/"), on any four-manifold. On the other hand, for even TV one 
would expect on general grounds [23] modularity for ro(2iV), or at most 
FQ (N) on spin manifolds. 

5.2.3    The partition function on T4 

We will finish by considering the twisted theory on T4, where an unex- 
pected result emerges. As if 3, T4 is a compact hyper-Kahler manifold 
(hence with trivial canonical divisor). It has &i=4, 62 = 6 and x — 
0 = cr. On T4 the partition function (5.13) reduces to its bare bones 

1   N~l 

Zv = sv,0 + — Ys^mv2' (5-25) 

and does not depend on r! This should be compared with the formulas 
in [6]. The Zv are self-dual in the following sense 

^r J-     ^—^      2i7rU'V   „, ,      ^^\ 

u 

Notice that since T4 is a spin manifold, v2 G 2Z, and therefore the 
sum over m in (5.25) vanishes unless v2 = 0 (modulo iV), so Zv reduces 
to the rather simple form 

which gives the partition function for the physical Af = 4:SU(N) theory 
in the sector of 't Hooft flux v and in the limit f —>• 00 [23]. 
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6    Conclusions 

In this paper we have obtained the partition function of the Vafa- 
Witten theory for gauge group SU(N) (with prime iV) on Kahler four- 
manifolds with 6^ > 1. The resulting formulas (5.13) and (5.15) turn 
out to transform as expected under the modular group, and they can 
be seen as predictions for the Euler numbers of instanton moduli spaces 
on those four-manifolds. 

It could be interesting to investigate whether (5.13) and (5.15) can 
be rewritten in terms of the Seiberg-Witten invariants. We believe that 
this is not the case for the following reason. Let us suppose that it is 
actually possible to do so. Then one would expect, by analogy with 
the result for SU(2) [4], that the Donaldson-Witten partition function 
for SU(N) [19] should be recovered from the Vafa-Witten SU(N) par- 
tition function in the decoupling limit q —> 0, m —>► oo with m^q fixed. 
In particular, one would expect that the structure of the corrections 
involving the canonical divisor should be preserved in this limit. Now 
in the DW partition function in [19], these corrections are written in 
terms of the Seiberg-Witten classes x [26]. For G = SU(N) these basic 
classes appear in the generic form X^i,....XJV-I 

n^i ''' nXN-i (n^ are ^e 
Seiberg-Witten invariants [26]). Therefore, for G = SU(N) there are 
N — 1 independent basic classes contributing to the above sum. On a 
Kahler manifold with canonical divisor K = Ci U C2 U • • • U Cn, with 
the Cj disjoint and with multiplicity one, each of these basic classes 
can be written as 

Xl = 5L PiCJ> 

with each $ — ±1 [26], and the sum over the basic classes can be 
traded for a sum over the pj. This is analogous to the sum over the 
Ej in (5.15), and both sums should contain the same number of terms 
were it possible to rewrite (5.15) in terms of the basic classes. However, 
while in the sum over the pj there are 2n(Ar~1) terms, the sum over the 
Sj contains Nn terms. Notice that these two numbers do coincide when 
N = 2, as it should be, but for TV ^ 2 this is no longer the case. 

It would certainly be mostly interesting to extend these results to 
all N (not necessarily prime), and to investigate what the large iV limit 
of (5.13) and (5.15) correspond to on the gravity side in the light of 
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the AdS/CFT correspondence [17]. Although there are already some 
indications of how this correspondence should work [7], [9], a clear 
understanding is still lacking. We expect to address some of these 
issues in the near future. 
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A    Appendix 

Here we collect some useful formulas which should help the reader follow 
the computations in the paper. 

A.l    Modular forms 

The function G is defined as 

G
(T) - ^p (A.1) 

and is a modular form of weight —12 

G(r) ^ G(T), G(T) 
T^4/Tr-12G(r), (A.2) 

From (A.2) we can determine the modular behaviour of the different 
modular forms in the KS partition function 

G(NT)T^X/TT-12N12G(T/N), 

G ( r + mW^ G,T + k , f (A_3) 
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where 1 < h < N — 1, mh — —1 mod N and N prime. 

For arbitrary JV one has to consider the modular forms G (g^), 
where ad = iV and b < d [20]. These functions transform as follows 

G^y^^G^y     {AA) 
where p = gcd (6, d), d = d/p, b = b/p, b'b = —1 mod d. If b = 0, then 
p = d and &' = 0 = 6. Notice that for prime iV (A.4) reduces to (A.3). 

A.2    Flux sums 

The basic sums we have to consider are of the form 

N-l N-l 

J(m, N) = J2 e'FW-V = Y, ei7r^mA2
3 (A.5) 

A=0 A=0 

for 1 < m < N — 1, and discrete Fourier transformations thereof 

N-l 
^gitfAA'eftr^mtf (A_6) 

from which the sums over fluxes can be easily computed. The basic sum 
(A.5) is related to a standard Gauss sum G(m, N) = J2r mod N e2i7rmr2/iV 

[11]. In fact, /(m, iV) = I(m + TV, JV) and, since N is odd, it suffices to 
consider the case where m is even. But in this case 

/(2a, N): 
N-l 

A=0 

t2aA2 _ 

A 

-2iira\2/N 

, when a = = 1, 

G(l,N) = 
_ VN 

2 
(i + O (l + e-1 

= G(a,N). (A.7) 

-) , (A.8) 

([11, p. 165]). Moreover, for a > 1 and TV an odd prime, 

(?(<», JV) =(£)<?(!, JV), (A.9) 
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where (-^) is the Legendre symbol [11], which is +1 if a is a perfect 
square (mod JV) and —1 otherwise. Hence, taking (A.7)-(A.9) into 
account we have the result 

fV^*2 = e(m)^e-^N-V2, (A.10) 
A=0 

where 

(=£), 
€(m) = { (A.11) 

(M/H),    modd, 

Tfkh = -1 mod N, c(fc) = e(/i) for AT = 5 mod 4, and e(A:) = -e(h) 
for iV = 3 mod 4. This property is essential in proving the second 
relation in (5.22). 

We also have the identity 

Xy^' = iV5A,o, (A.12) 
A=0 

and the fundamental result 

f]WAAy*V™A2 = 6(m)^/iVe-^(iV-1)2e-^/i(A,)2,        (A.13) 
A=0 

with mh = — 1 mod TV and TV an odd prime. 
-iV-l^.,2 

Now, given (A.10), the basic sum over fluxes X^e27r * ^   can be 
computed in terms of (A.5) as follows - see [23], eq. (3.21)-(3.22): 

Y^      e^^W = /(mj Nyt I(m,N)b^ (A.14) 
v6H*(X,ZN) 

so one has (for prime N) 

J-     e-^™2 = (e(m))62iV62/2e-T(^-1)2-, (A.15) 
v€H2(X,ZN) 
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and also, from (A.12) and (A.13) 

E      e^u-v = Nb>Sufi, (A.16) 
veH2(x,zN) 

^2        ^u-vj^mv* = ^^h^^-^N-iraj*^- 

T;G/r2(X,Zjv) 

(A.17) 

with mh = — 1 mod A/" as above. 

A.3    SU(N) characters 

We have seen above that the corrections to the SU(N) partition func- 
tion near the canonical divisor of the four-manifold X are given in terms 
of the level one characters XA of the SU(N) WZW model. These are 
defined as [10] 

Xx(r) = —^ZT £ e*w,        A G Z mod N, (A.18) 

where [A] is the A-th conjugacy class of SU(N), and the identification 
Xx(T) = X\+N(T) is understood. Also, from the symmetry proper- 
ties of the inverse Cartan matrix (A. 19) it follows that xx = XJV-A- 

A = 0 mod N corresponds to w in the root lattice, while for 1 < A < 
N - 1, [A] = {w e Aweight : w = dx + J^n^ez ^'^A'}- ^A are the simple 
roots and ax the fundamental weights of SU(N), normalized in such a 
way that the inverse Cartan matrix Axx' has the standard form 

Axxr = dx • Sx' = Inf {A, A'} - ~,        1 < A, A' < N - 1.     (A.19) 

The characters (A.18) have the following properties under the modular 
group [10] 

XA(r + l)   =   e-^-^V^r), 

XX(-1/T)   =   -j=^-^xx'xy(r). (A.20) 
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From the characters xx we introduce the linear combinations (N > 2 
and prime) 

XmAr) = ^ i>--AAV*V»WXA,(r))    o < rM < JV- 1, 
A'=0 

(A.21) 

which have the ciclicity property Xm+N,x = Xm,x = Xm,x+N since N is 
odd. Under the modular group one has 

Xm,A(r + l) = e-iiMxm+1,A(T), 

XO,A(-1/T) = -y=x\(r), 

XmA-lM = e(m) e-T^-D'e** V*Aa
XmtfcA(r),    m > 0,       (A.22) 

with ra/i = — 1 mod TV. 
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