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Abstract 

A detailed review of recent developments in the topological 
classification of D-branes in superstring theory is presented. Be- 
ginning with a thorough, self-contained introduction to the tech- 
niques and applications of topological K-theory, the relation- 
ships   between   the   classic   constructions   of  K-theory   and 
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the recent realizations of D-branes as tachyonic solitons, com- 
ing from bound states of higher dimensional systems of unstable 
branes, are described. It is shown how the K-theory formalism 
naturally reproduces the known spectra of BPS and non-BPS 
D-branes, and how it can be systematically used to predict the 
existence of new states. The emphasis is placed on the new 
interpretations of D-branes as conventional topological solitons 
in other brane worldvolumes, how the mathematical formalism 
can be used to deduce the gauge field content on both supersym- 
metric and non-BPS branes, and also how K-theory predicts new 
relationships between the various superstring theories and their 
D-brane spectra. The implementations of duality symmetries as 
natural isomorphisms of K-groups are discussed. The relation- 
ship with the standard cohomological classification is presented 
and used to derive an explicit formula for D-brane charges. Some 
string theoretical constructions of the K-theory predictions are 
also briefly described. 

1    Introduction and Overview 

The second superstring revolution (see [1] for reviews) came with the 
realization that all five consistent superstring theories in ten dimen- 
sions (Type I, Type IIA/B, Heterotic SO{32)/Es x E8) along with 
11-dimensional supergravity are merely different perturbation expan- 
sions of a single 11-dimensional quantum theory called M-Theory [2], 
The evidence for this is provided by the various non-perturbative du- 
ality relations that connect the different corners of the moduli space 
of M-Theory corresponding to the various string theories. The classic 
examples are the self-duality of the Type IIB superstring [3] and the 
duality between the Type I and 50(32) heterotic strings [2, 4]. 

A new impetus into the duality conjectures came with the realiza- 
tion that certain nonperturbative degrees of freedom, known as Dirich- 
let p-branes (or Dp-branes for short), are charged with respect to the 
p+ 1-form gauge potentials of the closed string Ramond-Ramond (RR) 
sector of Type II superstring theory [5]. Dp-branes are supersymmetric 
extended objects which form p + 1-dimensional hypersurfaces in space- 
time on which the endpoints of open strings can attach (with Dirichlet 
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boundary conditions). They can be thought of as topological defects 
in spacetime which give explicit realizations of string solitons [6]. The 
crucial observation [5] was that D-branes have precisely the correct 
properties to fill out duality multiplets whose other elements are fun- 
damental string states and ordinary field theoretic solitons. D-branes 
have thereby provided a more complete and detailed dynamical picture 
of string duality. They have also provided surprising new insights into 
the quantum mechanics of black holes and into the nature of spacetime 
at very short distance scales. 

The important property of D-branes is that they are examples of 
BPS states, which may be characterized by the property that their mass 
is completely determined by their charge with respect to some gauge 
field. They form ultra-short multiplets of the supersymmetry algebra of 
the string theory, and are thereby stable and protected from quantum 
radiative corrections. Their properties can therefore be analysed per- 
turbatively at weak coupling in a given theory and then extrapolated 
to strong coupling where they can be reinterpreted as non-perturbative 
configurations of the dual theory. For some time it was thought that this 
supersymmetry property, which protects the D-brane configurations via 
non-renormalization theorems, was crucial to ensure their stability and 
provide the appropriate non-perturbative tests of the duality conjec- 
tures. 

However, this picture of D-branes has drastically changed in the last 
year and a half. It may be observed [7] that the spectrum of a super- 
string theory can contain states which do not have the BPS property, 
but which are nevertheless stable because they are the lightest states 
of the theory which carry a given set of conserved quantum numbers 
which prevent them from decaying. Such stable non-BPS states can 
be studied using standard string perturbation theory and their proper- 
ties determined at weak coupling. It has been realized recently [8]-[12] 
that when these states are extrapolated to strong coupling, the resulting 
non-perturbative configuration behaves in all respects like an ordinary 
D-brane (see [13] for recent reviews). This provides a highly non-trivial 
check of the non-perturbative duality conjectures beyond the level of 
BPS configurations. For instance, this idea can be applied to heterotic- 
Type I duality at a non-BPS level [9, 10]. The 50(32) heterotic string 
contains states which are not supersymmetric, but are stable because 
they are the lightest states that carry the quantum numbers of the 
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spinor representation of the 50(32) gauge group. It turns out that the 
corresponding non-perturbative stable configuration which is a spinor 
of SO(32) is the object that comes from the bound state of a Type I 
D-string and anti-D-string (wrapped on a circle and with a Z2-valued 
Wilson line in the worldvolume). The D-string pair becomes tightly 
bound, forming a solitonic kink which behaves exactly as a D-particle 
but which carries a non-additive charge taking values in Z2 that pre- 
vents one from building stacks of non-BPS D-branes. 

Generally, this new perspective for understanding D-branes and 
their conserved charges treats the branes as topological defects in the 
worldvolumes of higher dimensional unstable systems of branes (such 
as brane-antibrane pairs). Such systems are unstable because their 
spectrum contains a tachyonic state that is not removed by the usual 
GSO projection. However, it is unclear whether these modes are in- 
curable instabilities in the system or if they play a more subtle role in 
the dynamics. A better understanding of the string theory tachyon has 
been recently achieved [7]-[9], [14]-[16], with the new belief that the 
tachyonic mode of an open string stretching between a D-brane and an 
anti-D-brane (or connecting an unstable brane to itself) is a Higgs-type 
excitation which develops a stable vacuum expectation value, and the 
unstable state decays into a stable state. Configurations of unstable 
D-branes can sometimes carry lower dimensional D-brane charges, so 
that when the tachyon field rolls down to the minimum of its potential 
and the state decays, it leaves behind a state which differs from the 
vacuum configuration by a lower-dimensional D-brane charge. The re- 
sulting stable state thereby contains topological defects that correspond 
to stable D-branes. 

In addition to producing new D-brane configurations, the bound 
state construction of branes through the process of tachyon condensa- 
tion can be achieved for the known spectrum of supersymmetric branes. 
This leads to various new connections between different types of D- 
branes which are known as "descent relations" [11], [17]-[19]. These 
relations form a remarkable web of mappings between BPS and non- 
BPS branes that provides various different ways of thinking about the 
origins of D-branes, and they could lead to a better understanding of 
the dynamics of different D-branes and their roles in string theory and 
in M-Theory. The situation in the case of Type II superstring theory 
is depicted in Fig. 1 [11, 13]. If we consider, say, a Dp-brane anti-Dp- 



CONSTRUCTING D-BRANES FROM K-THEORY 893 

brane (or Dp-brane for short) bound state pair of Type IIB string theory 
(p odd), then its open string spectrum contains a tachyonic excitation 
whose ground state corresponds to the supersymmetric vacuum config- 
uration. However, one can consider instead a tachyonic kink solution 
on the brane-antibrane pair which describes a non-BPS D(p— l)-brane 
of the IIB theory. This system also contains a tachyonic excitation in 
its worldvolume field theory, so that one can consider a tachyonic kink 
solution on the D(p — l)-brane which results in a BPS D(p — 2)-brane 
of IIB. 
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Figure 1: The relationships between different D-branes in Type II su- 
perstring theory. The squares represent stable supersymmetric BPS 
branes or a combination of such a brane with its antibrane, while the 
circles depict unstable non-BPS configurations. The horizontal arrows 
represent the result of quotienting the theory by the operator (—1)

FL
, 

the vertical arrows the effect of constructing a tachyonic kink solution 
in the brane worldvolume field theory, and the diagonal arrows the 
usual T-duality transformations. 

Another set of relations comes from modding out the p-p brane 
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pair by the operator (—1)
FL

 which acts as —1 on all the Ramond sector 
states in the left-moving part of the fundamental string worldsheet, and 
leaves all other sectors unchanged. In particular, it exchanges a D-brane 
with its antibrane, so that a brane-antibrane pair is invariant under 
(—1)

FL
 and it makes sense to take the quotient of this configuration. 

A careful study of the open string spectrum reveals that the result is 
a non-supersymmetric Dp-brane of IIA, and that a further quotient by 
(—1)

FL
 yields a supersymmetricp-brane of IIB [11, 20]. When combined 

with the usual T-duality transformations between the Type IIB and 
IIA theories [21], we find that any p-brane configuration in Type II 
superstring theory may be obtained from any higher dimensional brane 
configuration. In particular, all branes of the Type II theories descend 
from a bound state of D9-D9 pairs. Thus all possible stable D-branes 
appear as topological defects in the worldvolume tachyonic Higgs field 
on the spacetime filling D9-branes, so that the spacetime filling brane 
system provides a universal medium in which all stable D-brane charges 
are carried by conventional topological solitons. 

The standard coupling in Type II superstring theory of a BPS Dp- 
brane to a closed string p + 1-form RR potential C^+1^ is described by 
the action [5] 

So,) = m I c(p+1) (i.i) 
Mp 

where //(p) is the p + 1-form charge of the p-brane. In addition, the 
topological charge on the worldvolume manifold Mp of a Dp-brane 
couples to the spacetime RR fields through generalized Wess-Zumino 
type actions [22, 23] (here we work in string units with 27r<y = 1 and 
suppress the dependence on the Neveu-Schwarz two-form field B as well 
as on correction terms due to non-vanishing manifold curvature): 

Sfc^MM /tr(enAX;^,+1) (1.2) 
MP P' 

where JP is the field strength of some gauge field which lives on Mp. The 
nature of the gauge fields depends on the configurations of D-branes. 
When N branes are brought infinitesimally close to one another, their 
generic U(1)N gauge symmetry is enhanced to G = U(N) [24]. This 
introduces the possibility of embedding supersymmetric gauge theories 
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of various dimensions into string theory (see [25] for a review). The 
coupling (1.2) also allows an alternative interpretation of the topological 
charge as the RR charge due to the presence of lower dimensional branes 
in the worldvolume of higher dimensional branes [23, 26]. This enables 
the topological classification of RR charge in terms of worldvolume 
defects [27] in much the same spirit as that described above. 

In fact, the new understanding of the tachyon in an unstable brane 
configuration as a Higgs type excitation in the spectrum of open string 
states leads to a topological classification of the resulting brane charges 
when D-branes are viewed as the tachyonic solitons. Generally, the 
topological charges of these objects are determined by the homotopy 
groups of a homogeneous space G/H, where G is a compact Lie group 
and if is a closed subgroup of G. The fibration 

H^G^ G/H (1.3) 

with i the inclusion and TT the canonical projection, induces a long exact 
sequence of homotopy groups, 

7* IT* 

...   —> irn-i(H)—> 7rn_i(G)—► 

irn-xiG/H) A 7rn_2(tf)  —>....   (1.4) 

In the present case, G is the worldvolume gauge group of a given con- 
figuration of branes and the tachyon scalar field T is a Higgs field for 
the breaking of the gauge symmetry down to the subgroup H. The 
tachyonic soliton must be accompanied by a worldvolume gauge field 
A of corresponding topological charge in the unbroken subgroup of the 
gauge group, in order that the energy per unit worldvolume of the in- 
duced lower dimensional brane be finite. It can be argued [7, 9] that 
the brane worldvolume field theory admits finite energy, static soliton 
solutions which have asymptotic pure gauge configurations at infinity, 

T~TVU,        A-iU-'dU (1.5) 

where Tv is a constant, and U is a G/H valued function corresponding 
to the identity map (of a given winding number) from the asymptotic 
boundary of the worldvolume soliton to the group manifold of the space 
G/H of vacua. This leads to topologically distinct sectors in the space 
of all field configurations, and the charges which distinguish these sec- 
tors take values in the appropriate homotopy group of the vacuum man- 
ifold. Precisely, if the induced brane configuration has codimension n 
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in the higher dimensional world volume, then the corresponding soliton 
carries topological charge taking values in 7rn-i(G/H). This homotopy 
group may be computed using the exact sequence (1.4) [27] (for in- 
stance, if the induced boundary homomorphism d* is a trivial mapping, 
so that ker<9* = 7rn_i(G/ff), then n^G/H) = nn-i{G)i>Kn-i{H)). 

The coupling (1.1) would seem to imply that, since the massless 
RR fields C(p+1) are differential forms, the RR charges of D-branes are 
determined by cohomology classes, i.e., by integrating the C^+1) over 
suitable cycles of the spacetime manifold X. However, the new inter- 
pretation of D-brane charge as a topological charge actually suggests a 
different characterization (at least when all spacetime dimensions are 
much larger than the string scale so that no new stringy phenomena 
occur). Let us consider Type IIB superstring theory, and go back to 
the realization of RR charge in terms of a configuration of TV 9-branes 
and M 9-branes. Type II theories have no gauge group, so in order to 
cancel the tadpole anomaly there must be the same number of 9-branes 
and 9-branes, N = M. The 9-branes and 9-branes fill out the spacetime 
manifold X. The system of N 9-branes carries a U(N) gauge bundle 
E and the system of iV 9-branes carries a U{N) gauge bundle F. The 
system of 9 — 9-branes can therefore be labelled by a pair of U{N) 
vector bundles (E, F) which characterize the gauge field configurations 
corresponding to the soliton. 

We would now like to determine when two such pairs of bundles 
(E, F) and (£", F') should be considered equivalent. They should be re- 
garded the same if they determine the same topological class of the soli- 
ton. It turns out that the basic equivalence relation is brane-antibrane 
creation and annihilation. The 9 — 9 and 9 — 9 open strings have the 
opposite GSO projection, so that the massless vector fields are pro- 
jected out and the tachyonic mode survives [14]. As we have discussed 
above, it is conjectured that the instability associated with the tachyon 
represents a flow toward annihilation of the brane-antibrane pair, i.e., 
by giving the tachyon field a suitable expectation value one can re- 
turn to the vacuum state without this pair [7]-[9]. Thus if we add an 
equal number M of 9-branes and 9-branes with the same U(M) gauge 
bundle H on them, then the tachyon field associated with the open 
strings stretched between the 9-branes and the 9-branes is a section 
of a trivial bundle, and hence it can condense to the minimum of its 
potential everywhere on the 9 - 9 worldvolume. We suppose that any 
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such collection of brane-antibrane pairs can be created and annihilated, 
so that the configuration is equivalent to the vacuum which carries no 
D-brane charges (this is much like the situation in ordinary quantum 
field theory). We conclude that adding such pairs has no effect on the 
topological class of the soliton, i.e., the pair (E,F) can be smoothly 
deformed to the pair (E © if, F © H) for any such bundle H. Thus in 
terms of the conserved D-brane charges, a property of the system that 
is invariant under smooth deformations, we conclude that RR-charge 
is classified topologically by specifying a pair of U(N) vector bundles 
(i?, F) subject to the equivalence relation 

(E,F)~(E®H,F®H) (1.6) 

for any U(M) vector bundle H. In a manner of speaking (that will soon 
be made precise), the D-brane charge is determined by the "difference" 
between the Chan-Paton gauge bundles on the 9-branes and anti-9- 
branes. 

The mathematical conditions described above define the so-called 
K-theory group K(X) of the spacetime X. This proposal that D-brane 
charge takes values in the K-theory of spacetime was made initially 
in [17], and then extended in [18, 19], [28]-[33]. However, the solitonic 
description of D-brane states discussed above was not the first evidence 
that RR-charge should be understood in terms of K-theory rather than 
cohomology. The strongest prior proposal [34] had been the observation 
(extending earlier calculations in [22, 23, 26, 35]) that when a D-brane 
wraps a submanifold Y of spacetime, its RR-charge depends on the 
geometry of Y, of its normal bundle and on the gauge fields on Y in 
a manner which suggests that D-brane charges take values in K(X). 
Other earlier hints at a connection with K-theory may be found in 
[36, 37]. 

The arguments presented above for spacetime filling branes clearly 
show that when a D-brane wraps a submanifold Y of the spacetime 
X, its charges are classified by the group K(Y). One of the profound 
observations of [17] is that there is a standard K-theory construction, 
called the Thorn isomorphism, which embeds K(F) into K(X) and is 
equivalent to the bound state construction of D-branes described above, 
and hence to the representation of all branes in terms of 9-branes and 
antibranes. In this way, one gets a complete classification of D-brane 
charges in terms of the topology of the underlying spacetime mani- 
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fold. The main feature of K-theory which parallels the above soliton 
constructions is its intimate relationship with homotopy theory. More- 
over, another standard K-theory construction, known as the Atiyah- 
Bott-Shapiro construction, can be used to obtain explicit forms for the 
classical gauge field configurations which live on a given D-brane. These 
remarkable facts have been used to reproduce the construction of the 
Type I non-BPS D-particle discovered in [9], and to predict the exis- 
tence of new D-branes in the spectrum of the Type I theory and also 
other superstring theories (the homotopic soliton construction of the 
Type I D-string was first carried out in [38]). Indeed, the K-groups 
of a spacetime can be much more general than the corresponding co- 
homology groups. In many instances the K-groups can have torsion 
while the cohomology groups are torsion free, lending a natural expla- 
nation to the fact that some D-branes (such as the Type I 0-brane) 
carry torsion charges [34]. The recent string theoretical construction of 
these new Type I objects [39] illustrates the strong predictions that can 
follow from the K-theory formalism. In addition, for the spectrum of 
supersymmetric D-branes (where the RR charge is integer valued) there 
is a mapping, known as the Chern homomorphism, onto cohomology, 
thereby making contact with the expectations which follow from the 
coupling (1.1) to the spacetime RR fields. 

1.1    Outline 

In this paper we will review the mathematical formalism of topological 
K-theory and its use as a systematic tool in the topological classifica- 
tion of D-branes in superstring theory. As K-theory now turns out to 
be at the forefront of mathematical physics as far as its applications to 
string theory are concerned and, while cohomology and differential ge- 
ometry are already well-known to most theoretical physicists, K-theory 
may seem rather obscure, we have attempted to merge the mathemat- 
ics with the physics in such a way that the naturality of K-theory as 
a classification tool is evident. The main purpose will be to collect all 
the relevant mathematical material in one place in a way that should 
be accessible to a rather general audience of string theorists and math- 
ematicians. The level of this review is geared at string theorists with 
a relatively good background in algebraic topology and differential ge- 
ometry (at the level of the books [40] and the review article [41]), and 
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at mathematicians with a rudimentary background in string theory (at 
the level of the books [42]). More references and background will be 
given as we proceed. 

Before giving a quick outline of the structure of this paper, let us 
briefly indicate the omissions in our presentation, which can also be 
taken as directions for further research. Throughout this review we 
will consider only superstring compactifications for which the curva- 
ture of the Neveu-Schwarz J5-field is cohomologically trivial. The prob- 
lems with incorporating this two-form field are discussed in [17], and 
at present it is not fully understood what the appropriate K-theory 
should be in these instances. Some steps in this direction have ap- 
peared recently in [33, 43, 44]. Related to this problem is how to cor- 
rectly incorporate 5-duality into K-theoretic terms, and in particular 
the description of the self-duality of Type IIB superstring theory. The 
analysis of [43] is a first step in this direction. Another related aspect 
is making contact with the correct construction for M-Theory. The de- 
scription of M-branes has been discussed in [33, 43] and the appropriate 
relations in Matrix Theory in [45]. Using the approach of [33], which 
is based on algebraic K-theory, there may be an intimate connection 
with the gauge bundles for Matrix Theory compactifications used in 
[46] based on noncommutative geometry. These are all problems that 
do not as of yet have a natural description in terms of K-theory. It is 
hoped that the exposition of this paper, in addition to providing the 
reader with the necessary tools to pursue the subject further, could pro- 
voke some detailed investigations of such matters. Finally, we note that 
the analysis given in the following is meant to serve only as a topologi- 
cal classification of the spectra of branes in the various string theories. 
The second step, which is omitted in this review, is to actually carry 
out string theoretical constructions of the D-branes predicted by the 
K-theory formalism and hence describe their dynamics, especially for 
the new non-BPS states. This is addressed in [7]-[13], [17, 29, 32, 39]. 
Indeed, the K-theory classification of D-branes has revealed many in- 
teresting new effects and constructions in string theory. We shall only 
briefly touch upon such matters here, in order to keep the presentation 
as self-contained as possible. 

The structure of this review is as follows. In section 2 we present 
a thorough, self-contained introduction to the ideas and fundamen- 
tal constructions of topological K-theory. This section deals with the 
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mathematical highlights of the formalism that will follow in subsequent 
sections. Many tools for computing K-groups are described which are 
useful in particular to the various superstring applications that we shall 
discuss. They will in addition turn out to give many unexpected con- 
nections between the various different superstring theories. Here the 
reader is assumed to have a good background in algebraic topology 
and the theory of fiber bundles. In section 3 we begin the classification 
of D-branes using K-theory, starting with the simplest case of Type IIB 
superstring theory. We start by giving a quick description of the rele- 
vant physics of the brane-antibrane pair. For more details, the reader 
is refered to the original papers [7]-[12] and the recent review articles 
[13]. We then describe the bound state construction and how it nat- 
urally implies the pertinent connection to K-theory, following [17] for 
the most part. In section 4 we carry out the analogous constructions 
for Type IIA superstring theory. The relevant K-theory for Type IIA 
D-branes was suggested in [17] and developed in detail in [18]. In sec- 
tion 5 we then move on to Type I superstring theory, in which new 
non-BPS D-branes are predicted, again following [17] for a large part. 
In section 6 we turn our attention to orbifold and orientifold super- 
string theories. Orbifolds were dealt with in [28] while orientifolds were 
described in [29, 19]. The various T-dual orientifolds of the Type I 
theory were discussed in [18, 32, 19]. Finally, we conclude our analysis 
in section 7 with a description of the modifications of the previous con- 
structs when global topology of the spacetime and of the worldvolume 
embeddings is taken into account. Here we present the global version 
of the bound state construction, as described in [17], highlighting the 
extra structures and care that must be taken into account as compared 
to previous cases of flat manifolds. We then move on to describe the 
appropriate K-theory for dealing with general superstring compactifi- 
cations [32], and introduce a useful connection to the index theory of 
Dirac operators which has been at the forefront of many applications 
in theoretical physics (see [41] for a comprehensive review). We then 
apply these ideas to describe how the celebrated T-duality transforma- 
tions of D-branes are represented as natural isomorphisms of K-theory 
groups [30, 32]. We end the review with what can be considered as 
the origin of the material discussed in this paper, the derivation of the 
K-theoretic charge formula of [34]. This formula gives the explicit re- 
lationship between the K-theoretic and cohomological descriptions of 
RR charge, and it thereby allows one to explicitly compute D-brane 
charges in terms of densities integrated over the spacetime manifold. 
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2    Elements of Topological K-Theory 

K-theory was first introduced in the 1950's by Grothendieck in an al- 
ternative formulation of the Riemann-Roch theorem (see [47]). It was 
subsequently developed in the 1960's by Atiyah and Hirzebruch who 
first introduced the general K-theory group K(X) of a topological space 
X [48]. Since then, K-theory has become an indispensable tool in many 
areas of topology, differential geometry and algebra. Generally speak- 
ing, topological K-theory can be regarded as a cohomology theory for 
vector bundles that emphasizes features which become prominent as the 
ranks of the vector bundles become large. Actually, it is an example of 
a generalized cohomology theory, in that K-theory does not satisfy all 
of the Eilenberg-Steenrod axioms [49] of a cohomology theory (it sat- 
isfies all axioms except the dimension axiom which defines in advance 
the cohomology of the topological space consisting of a single point, 
e.g., ifn(pt,Z) = 5n'0Z). This extensive section will review the core 
of the mathematical material that we will need later on in this paper 
and no mention of physics will be made until section 3. We will not 
give a complete review of the material, but rather focus only on those 
aspects that are useful in superstring applications. For more complete 
expositions of the subject, the reader is refered to the books [50]-[53], 
where the proofs of the theorems quoted in the following may also be 
found. 

2.1    The Grothendieck Group 

In this subsection we shall start with an abstract formulation that will 
naturally lead to the definition of the group K(X). Although the for- 
malism is not really required for this definition, it will be of use later 
on, and moreover it is this definition which allows one to generalize the 
K-theory of topological spaces to more exotic groups, such as the K- 
theory of vector spaces, C*-algebras, etc., which could prove important 
in future applications of the general formalism of K-theory to string 
theory and M-theory. Let A be an abelian monoid, i.e., a set with an 
addition which satisfies all the axioms of a group except possibly the 
existence of an inverse. One can naturally associate to A an abelian 
group S(A) by the following construction. Consider the equivalence re- 
lation rsj on the Cartesian product monoid Ax A with (E1, F) ~ (£", F') 
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if there exists an element G G A such that 

E + F' + G = F + EI + G. (2.1) 

The abelian group S(A), called the symmetrization of A, is then defined 
to be the set of equivalence classes of such pairs: 

S(A) = AxA/~ . (2.2) 

The equivalence class of the pair (E, F) is denoted by [(E, F)] and the 
inverse of such an element in S(A) is [(F, E)]. This follows from the fact 
that for any E G A, [(E, E)] is a representative of the zero element in 
S(A). An alternative definition of 5 (.4) is obtained by using in Ax A 
the equivalence relation (E, F) ~ (£", F') if there exist G, H e A such 
that 

(£, F) + (G, G) = (F', F') + (77, #). (2.3) 

As a simple example, for A = Z"1" (the non-negative integers under 
addition), we have S(A) = Z. Also, for 4 = Z — {0} (an abelian 
monoid under multiplication), we have S(A) = Q — {0}. 

The completion S(A) of the monoid A can be characterized by 
the following universal property. For any abelian group Q, and any 
homomorphism / : A —> Q of the underlying monoids, there exists a 
unique homomorphism / : S(A) -> Q such that fos = f, where 5 is the 
natural map A -> S(A) defined by s(E) = [(2?,0)]. This means that 
S(A) is the "smallest" abelian group that can be built from the abelian 
monoid A and it implies, in particular, that if A is itself a group, then 
S(A) = A. In general, this property implies that the map A —>• S(A) is 
a covariant functor from the category of abelian monoids to the category 
of abelian groups, i.e., if 7 : A —>• B is any homomorphism of monoids, 
then there is a unique group homomorphism 5(7) : S(A) —> S(B) such 
that the following diagram is commutative: 

A     -1>     B 

si is (2.4) 

S{A)   s-^\   S{B) 

and such that 5(707') = 5(7)05(7'), ^(Id^) = l<is{A) (here Id^ denotes 
the identity morphism on A). 
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An important example to which this construction applies is the 
case that C is an additive category with $(C) the set of isomorphism 
classes of elements E £ C, which we denote by [E]. <&(C) becomes an 
abelian monoid if we define [E] + [F] = [E © F] (this is well-defined 
since the isomorphism class oiE@F depends only on the isomorphism 
classes of E and F). The Grothendieck group of C is defined as K(C) = 
S($(C)). Note that every element of K(C) can be written as a formal 
difference [E] - [F] and that [E] - [F] = [E1] - [Ff] in K(C) if and 
only if there exists a G G C such that E © F' © G = E' © F © G. 
Notice also that [2?] = [F] if and only if there is a G e C such that 
E®G = F ®G. As a simple example, let F be an algebraic field (e.g., 
F = E or C), and let C be the category of finite dimensional vector 
spaces over F whose morphisms are linear transformations. Then, since 
such finite dimensional vector spaces are characterized uniquely by their 
dimension, $(C) = Z+ implying that K(C) = Z. 

2.2    The Group K(X) 

We will use the construction of the previous subsection for a classifi- 
cation of vector bundles over compact manifolds. Let X be a compact 
manifold and let C = Vect(X) be the additive category of complex vec- 
tor bundles over X with respect to bundle morphisms and Whitney sum 
(later on we shall also consider real and quaternionic vector bundles). 
Define Ik to be the trivial bundle of rank k over X, i.e., Ik = X x C*. 
The space of all vector bundles can be partitioned into equivalence 
classes as follows. Bundle E over X is said to be stably equivalent to 
bundle F, denoted by E ~ F, if there exists positive integers j, k such 
that 

E © P ^ F © Ik . (2.5) 

The corresponding equivalence classes in Vect(X)/ ~ are called stable 
equivalence classes. It is easily seen that if E1, F and G are vector 
bundles over X then 

E^G^F^G      =>E ~F, (2.6) 

i.e., E and F are stably equivalent. In the proof one uses the fact 
that there exists a bundle G' such that G © G' is trivial (according to 
Swan's Theorem this requires X to be a compact Hausdorff manifold). 
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However, one cannot conclude from the left-hand side of (2.6) that 
E and F are isomorphic as vector bundles. For example, consider 
E = TSn, the tangent bundle of the n-sphere Sn, and G = N(Sn, Rn+1), 
the normal bundle of Sn in Rn+1. G has a global section given by an 
outward-pointing unit normal vector, which implies that it is trivial 
with Af(Sn,Rn+1) = J1. Furthermore, we have the usual relations 

jn+l ^ TRn+i ^E®G^E®I\ (2.7) 

However, E = TSn is generally not trivial and therefore not equal to 
In (in fact TSn is only trivial for parallelizable spheres corresponding 
to n = 1,3,7). So generally, TSn is only stably trivial. 

This example demonstrates that the space of vector bundles over X 
is not a group under the Whitney sum of vector bundles, but rather a 
monoid, as there is no subtraction defined for vector bundles. A group 
can, using the previous setup, be constructed as follows. The K-group 
of a compact manifold X is defined to be the Grothendieck group of 
the category Vect(X), K(X) = K(Vect(X)), or 

K(X) = Vect(X) x Vect(X)/ ~, (2.8) 

where we have defined an equivalence relation in Vect(X) x Vect(X) 
according to (E, F) ~ (£", Ff) if there exists a vector bundle G € 
Vect(X) such that 

E e Ff e G ^ E' e F e G. (2.9) 

An equivalent definition of K(X) is that the pair of bundles (£", F) is 
taken to be equivalent to (E © H, F © H) for any bundle H. Often 
the notation K0(X) or KU(X) is also used for this group. An element 
of K(X) is written as [(E,F)]. In K(X) the unit (zero) element is 
[(E,E)] so the inverse of the class [(E,F)] is [(F,E)]. Any element 
[(£, F)] can therefore be identified with [E] - [F] where [E] = [(E, P1)]. 
Furthermore, [E] = [F] in K(X) if and only if E and F are stably 
equivalent. The elements of K(X) are called virtual bundles. The map 
X —> K(X) is a contravariant functor from the category of compact 
topological spaces to the category of abelian groups, i.e., if / : X -> Y 
is continuous, then it induces the usual pullback map on vector bundles 
over V, thus inducing a map /* : Vect(F) -> Vect(X) and hence a 
homomorphism K(Y') -> K(X). 
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The K-groups have the following important homotopy invariance 
property. Consider two homotopic maps /, g : X —>> Y. Then for any 
vector bundle E -> V, there is an isomorphism of vector bundles over 
X: 

f*E^g*E. (2.10) 

From this it follows that the maps induced by / and g on K-groups are 
the same: 

*(/) = s(g) : K(Y) -» K(X). (2.11) 

For example, if X is a compact manifold which is contractible to a point, 
then we may deduce that K(X) = K(pt) = Z. Geometrically, this 
expresses the well-known fact that any vector bundle over a contractible 
space X is necessarily trivial, so that the corresponding K-theory of X 
is also trivial. 

2.3    Reduced K-Theory 

The fact that a vector bundle over a point is just a vector space, so that 
K(pt) = Z, motivates the introduction of a reduced K-theory in which 
the topological space consistin^of a single point has trivial cohomology, 
K(pt) = 0, and therefore also K(X) = 0 for any contractible space X. 
Let us fix a basepoint of X and consider the collapsing and inclusion 
maps: 

p : X —y pt,      i : pt <-+ X. (2.12) 

These maps induce, respectively, an epimorphism and a monomorphism 
of the corresponding K-groups: 

p* : K(pt) = Z —> K(X),      f : K(X) —> K(pt) = Z. (2.13) 

We then have the exact sequences of groups: 

0 —* Z A K{X) —> K(X) —> 0 

0 —> K(X) —+ K(X) A Z —> 0. (2.14) 

These sequences have a canonical splitting so that the homomorphism 
i* is a left inverse of p*.   The kernel of the map z*, or equivalently 
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the cokernelj)f the map p*, is called the reduced K-theory group and is 
denoted by K(X), 

K(X) = kerf = cokerp* (2.15) 

and therefore we have the fundamental decomposition 

K(X) = Z@K(X). (2.16) 

Given a vector bundle E —> X, let Ex denote the fiber of E over x G 
X. We define the rank function rk : X —> Z+ by rk(x) = dime Ex. Since 
E is locally trivial, the rank function is locally constant, and the space of 
all locally constant Z"1"-valued functions on X forms an abelian monoid 
H0(X, Z+) under pointwise addition. The map rk extends naturally to 
a group homomorphism 

rk:KpO    —>   H\X,Z) 

ik([E) - [F]\     =     rk(£) - rk(F). (2.17) 

The integer (2.17) is called the virtual dimension of [(£", F)] G K(X). 
Let K^X) = ker rk. Then the short exact sequence 

0 —► K'pO —> K(X) A £r0(X, Z) —> 0 (2.18) 

has a canonical split (i.e., rk has a right inverse), so that if X is con- 
nected, then H*{X, Z) = Z and 

KpO = K'(X) = ker rk. (2.19) 

In this case K(X) is the subgroup of K(X) whose elements have vir- 
tual dimension zero (i.e., consisting of equivalence classes of pairs of 
vector bundles [(E1, F)} of equal rank). The fundamental examples are 
K(S2ri) = Z and K(S27l"fl) = 0 for any positive integer n (these groups 
are computed in section 2.7). Note that the rank function (2.17) natu- 
rally gives an assignment cho(-E') in the zeroth Cech cohomology group 
of X which depends only on the stable equivalence class of the vec- 
tor bundle E in K(X). This is the first, basic example of the Chern 
character which will be discussed in section 7.1. 

For the physical applications of K-theory, which are presented in the 
subsequent sections, we shall mostly work in K-theory with compact 
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support. This means that for each class [(E, F)], there is a map T : 
E -> F which is an isomorphism of vector bundles outside an open 
set U C X whose closure U is compact. This condition automatically 
implies that E and F have the^same rank, and hence we shall mostly 
deal with the reduced K-group K(X). The corresponding virtual bundle 
may then be represented as 

(E, F)] = [(kerT, cokerT)] (2.20) 

When X is not compact, we define K(X) = K(X+), where X+ is the 
one-point compactification of X. 

2.4    Higher K-Theory and Bott Periodicity 

Starting with K(-X") there is a natural way to define so-called "higher" 
K-groups. These groups are labelled by a positive integer n = 0,1,2,... 
and are defined according to 

K-n(X)=K(EnX), (2.21) 

where T<nX = Sn A X is the n-th reduced suspension of the topological 
space X. Here X A Y = X x Y/(X V Y) is the smash product of X 
and y, and X V F is their reduced join, i.e., their disjoint union with a 
base point of each space identified, which can be viewed as the subspace 
X x pt 11 pt x Y of the Cartesian product X x Y. For X = Sn, the n- 
sphere, one has ESn = S1 A Sn = Sn+1. Alternatively, higher K-groups 
can be defined through the suspension isomorphism: 

K"n(X) = K(XxRn), (2.22) 

where it is always understood that K-theory with compact support is 
used. In contrast to conventional cohomology theories, one does not in 
this way generate an infinite number of higher K-groups because of the 
fundamental Bott periodicity theorem: 

K-n(X) = K-n-2(X), (2.23) 

which states that the complex K-theory functor K~n is periodic with 
period two.   The same is true for the reduced functor K~n since the 
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analogous definition to (2.21) holds for reduced K-theory. However, 
the higher reduced and unreduced K-groups differ according to 

K-n{X) = K-n(X) 0 K-n(pt). (2.24) 

Since K(pt) = Z, K~1(pt) = 0, using Bott periodicity we see that for n 
even these groups differ by a subgroup Z (as in (2.16)), while for n odd 
they are identical, so that K_1(X) = K"1^). Here the basic examples 
are K'^S271) = 0 and K~1(S2n+1) = Z for any positive integer n. 

Note that for any decomposition X = Xi H X2 H • • • H Xn of X 
into a disjoint union of open subspaces, the inclusions of the Xi into X 
induce a decomposition of K-groups as K~n(X) = K~n(Xi)®K~n(X2)® 
• • • © K"n(Xn) (this follows from the fact that a bundle over X may be 
characterized by its restriction to Xi). However, this is not true for the 
reduced K-functor, since for example K(S0) = Z but K(pt) = 0. More 
generally, given two closed subspaces Xi and X2 of a locally compact 
space X with X = Xi U X2, there is the long exact sequence 

... —► K"11"1^!) 0 K""-1^) -^ K-""1^! n X2) —» 

-U K-n(-x:i U X2) -^ K-n(Xi) © K-n(x2) 

-^>K-n(XinX2)—>..., (2.25) 

where £ is the zig-zag homomorphism, and TZ and v are defined by 

W([E]) = ([EUAEU) and «([£?!], [JE^]) = [^iknxj - [^Ix.nxJ- 
The corresponding long exact sequence for two open subspaces Ui and 
U2 of X with X = Ui U t/2 is 

...—»• K-"-
1
^) e K-"-

1
^) —»• K-"-^^ U C/2) —> 

—>• K-B(t/i n U2) -+ K-^t/i) e K-n{u2) 

^K-n(U1UU2)^... ■ (2.26) 

These latter two sequences are the analogs of the usual Mayer-Vietoris 
long exact sequences in cohomology. 

2.5    Multiplicative Structures 

As in any cohomology theory, K(X) and K(X) are actually rings. In 
this case the multiplication is induced by the tensor product E ® F oi 
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vector bundles over X x X\ 

K(X) ®z K(X) —► K(X), (2.27) 

and is defined by 

{E, F)}®^', F')} ^^\{E®E,@F®F,,E®FI@F®EI) 

(2.28) 

where A : X -> X x X is the diagonal map. This multiplication comes 
from writing [(E, F)} = [i?] —[F] and formally using distributivity of the 
tensor product acting on virtual bundles. Note that it acts on [(£?, F)] 
as if £"s are bosonic and F's are fermionic. It is therefore an example 
of a Z2-graded tensor product. There is another product, called the 
external tensor product or cup product, which is a homomorphism 

K{X) ®z K(Y) —» K(X x Y) (2.29) 

defined as follows. Consider the canonical projections TTX : X x Y -> X 
and Try : X x Y —> F. These projections induce homomorphisms 
between K-groups according to 

7r*x : K(X) -> K(X x y),   TT^ : K(y) -> K(X x y). (2.30) 

Then the cup product of ([£], [F]) e K(X)®zK(y) is the class [F](g)[F] 
in K(X x y), with 

[E}®[F) = 7r*x([E])®7r*Y([F}). (2.31) 

Consider now the canonical injective inclusion and surjective pro- 
jection maps: 

XvY^XxY—*XAY. (2.32) 

The K~n functor is contravariant, and thus, as in any cohomology the- 
ory, this induces a split short exact sequence of K-groups 

o —> K-n(x A y) —> k-n(x x y) —> K-n(x v y) —^ o, (2.33) 

from which it follows that 

K-n(Xxy) = K-n(XAy)eK-n(xvy) 
= K-n(XAy)eK-n(x)©K-n(y).   (2.34) 
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The formula (2.34) is particularly useful for computing the K-groups of 
Cartesian products. As an important example, consider the case that 
Y = S1, for which we find 

K^xS1)   =   K(XAS1)eK(X)eK(S1) 

=   K-l{X)®K(X), (2.35) 

since ^(S1) = 0 and ^(S1 A X) = Kr1^). Precisely, the canonical 
inclusion i : X <->• X x S1 induces a projection i* : K(X x S1) —> 
K(X) such that kerf = K"1^). In otherjvords, K"1^) can be 
identified with the set of K-theory classes in K(X x S1) which vanish 
when restricted to X x pt. Likewise, 

K-^XxS1)   =   K-^XAS^eK-^eK"1^1) 

=   K(X)@K-l(X)@Z, (2.36) 

where we have used Bott periodicity. 

The action of the cup product (2.29) on reduced K-theory can also 
be deduced using (2.16) and (2.34) to get 

(K{X) ®Z K(y)) e n —■> K(X A Y) e n, (2.37) 

where TZ = K(X) ®K(Y) ©Z. Since the group 1Z appears on both sides 
of (2.37), we can eliminate it by an appropriate restriction and thereby 
arrive at the homomorphism 

k(X) ®z K(y) —^ K{X A Y). (2.38) 

When either K(X) or K(yr) is a free abelian group, the mappings in 
(2.29) and (2.38) are isomorphisms. 

One can also calculate K~n(X x Y) in a manner that keeps track 
of the multiplicative structure of the theory. Define K#(X) to be the 
Z2-graded ring K*{X) = K{X) © K"1^). Then, whenever K*{X) or 
K#(y) is freely generated, we get the K-theory analog of the cohomo- 
logical Kiinneth theorem: 

K#{X x Y) = K* (X) (g)Z K*(Y). (2.39) 
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(In the general case there are correction terms on the right-hand side of 
(2.39) which take into account the torsion subgroups of the K-groups 
[54]). Explicitly, (2.39) leads to 

K(x xY) = (K(X) ®Z K(y)) e (K-
1
^) ®Z K-

1
^)) , 

K-l(X xY) = (K(X) ®Z K"1^)) 0 (K-l(X) ®Z K(y)).    (2.40) 

For example, since Y = S1 has freely generated K-groups, using 
K(S1) = K-^S1) = Z, we again arrive at (2.35) and (2.36). Simi- 
larly, taking Y = S2n and Y = S2n+1 in (2.39) gives 

K(XxS2n)   =   K(X)®K(X), (2.41) 

K(XxS2n+1)   =   K^JeK"1^), (2.42) 

as K(X)-modules. 

If we choose Y = S2, then the maps in (2.29) and (2.38) are ac- 
tually isomorphisms which can be identified with the Bott periodicity 
property of the reduced and unreduced K-groups. Replacing X by its 
n-th reduced suspension in (2.38) gives 

K(EnX) <g)Z K(S2) = K(EnX A S2), (2.43) 

which yields the isomorphism 

a : K-n{X) ®z K(S2) ^> k-n'2(X). (2.44) 

The generator [A/c] - [I1] of K(S2) = Z may be described by taking JVC 

to be the canonical line bundle over the complex projective space CP1, 
which is associated with the Hopf fibration S3 -» S2 that classifies the 
Dirac monopole [53, 55]. The isomorphism (2.23) is then given by the 
mapping 

[(£, F)] ^> a [(£ ® A^c, F ® Afc)], (2.45) 

for[(£,F)]eK-n(X). 

2.6    Relative K-Theory 

We will now define a relative K-group K(X, Y) which depends on a 
pair of spaces (X, Y), where Y is a closed submanifold of X, and whose 
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classes can be identified with pairs of bundles over X/Y. If Y ^ 0, 
then the topological coset X/Y is defined to be the space X with Y 
shrunk to a point. If Y is empty we identify X/Y with the one-point 
compactification X+ of X. 

First we explain how to describe vector bundles over the quotient 
space X/Y, given a vector bundle E over X. Let a be a trivialization 
of E over Y C X, i.e., an isomorphism a : E\Y -> Y x V. Define an 
equivalence relation on E\Y by taking e G E\Y equivalent to e' e J^ly 
if and only if 

TT o a(e) = TT o a(e/), (2.46) 

where TT : y x V —> V is the canonical projection. This equivalence 
relation identifies points in the restriction of E to Y which are "on the 
same level" relative to the trivialization a. We then extend this relation 
trivially to the whole of E. The corresponding set of equivalence classes 
Ea can be shown to be a vector bundle over X/Y, whose isomorphism 
class depends only on the homotopy class of the trivialization a of E 
over y C X. In fact, there is a one-to-one correspondence between 
vector bundles over the quotient space X/Y and vector bundles over 
X whose restriction to Y is a trivial bundle. 

The relative K-group is now defined as 

K(X,Y) = K(X/Y). (2.47) 

Then K(X, y) is a contravariant functor of the pair (X, y) and, since 
KpQ = K(X+) (recall K(X) = K{X) 0 K(pt)), we have K(X,0) = 
K(X). The Excision Theorem states that the projection TT : X —> X/Y 
induces an isomorphism 

TT* : K(X/y, pt) ^> K(X, y). (2.48) 

Likewise, one can define higher relative K-groups by 

K-n(X, y) = K(X x Bn, X x S71"1 U y x Bn), (2.49) 

where Bn = {x e Mn : \x\ < 1} is the unit ball in Rn and S71"1 = dBn. 
Alternatively, there are the suspension isomorphisms 

K-n(X,y) = K((X - Y) x En). (2.50) 



CONSTRUCTING D-BRANES FROM K-THEORY 913 

The relative K-groups have the usual Bott periodicity: 

K-n(X, y) = K-n-2(X, y). (2.51) 

Let i : Y -> X and j : (X, 0) —>- (X, Y) be inclusions. Then there is 
an exact sequence 

K(X,y) A K(X) A K(y). (2.52) 

If y is further equipped with a base-point, then the sequence 

K(X, Y) —» K(X) —> K(y) (2.53) 

is exact. More generally, one of the most important properties of the 
K-groups is that they possess the excision property, which means that 
they satisfy the Barratt-Puppe long exact sequence: 

... —> K-^pO —> K-^y) A K-n(X, Y) —> 

K-n(X) —> K-n(y) A ... ,    (2.54) 

where d is the boundary homomorphism. The long exact sequence 
(2.54) connects the K-groups of X and Y C X, and it is in precisely 
this sense that K-theory is similar to a cohomology theory. Using Bott 
periodicity, this sequence can be amazingly truncated to a six-term 
exact sequence. If Y is a retract of X (i.e., if the inclusion map i : Y -> 
X admits a left inverse), then the sequence (2.52) splits giving 

K-n(X) = K-n{X, Y) 0 K-n(y). (2.55) 

The concept of relative K-theory can be reformulated in a way that 
will prove useful later on. Let r(X,Y) be the set of triples (J5,F;a), 
where I?, F E Vect(X) and a : E\Y —> F\Y is an isomorphism of 
vector bundles when restricted to Y. Two such triples (E, F\ a) and 
(£", F'; a') are said to be isomorphic if there exist isomorphims f : E —> 
E' and g : F —> F' such that the diagram 

E\Y    —->   F\Y 

fW i I aW (2.56) 

jE'ly      >    F'\Y 
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commutes. A triple (JK, F\ a) is called elementary if E = F and a is 
homotopic to ldE\Y within automorphisms of l?|y. The sum of (£?, F; a) 
and (£", F'; a') is defined to be 

(£, F; a) 0 (£', F7; a7) = (F 0 F', F 0 F7; a 0 a'), (2.57) 

under which T{X^ Y) becomes an abelian monoid. Now consider the 
following equivalence relation in r(X, Y). We take the triple (F, F; a) 
to be equivalent to (F', F'; a') whenever there exist two elementary 
triples (G,H;P) and (£',#';/?') such that 

(F, F; a) © (G, H; (3) * (F7, F7; Q;,) 0 (Gf, H'\ (5'). (2.58) 

The set of equivalence classes of such triples (which we denote by 
[F, F\a]) under the operation 0 becomes an abelian group which can 
be identified with the relative K-group, K{X,Y) = Y(X,Y)I ~. Note 
that [F, F; a] = 0 in K(X, Y) if and only if there exist vector bun- 
dles G,H e Vect(X) and bundle isomorphisms u : F 0 G ->• H, 
v : F0G -> H such that v\Yo(a®IdG\Y)ou~1\Y is homotopic to IdH\Y 

within automorphisms of H\Y. Moreover, [F, F;a] + [F, FjoT1] = 0. 
Notice also that the group K(X) can in this formalism be described as 
the set of triples [F, F; a], where a : F —> F is a bundle isomorphism 
defined in a neighbourhood of the infinity of the one-point compactifi- 
cation of X. This is precisely the statement that was made in (2.20). 

The basic properties of K(X, Y) are as follows. First, if a, a' are 
isomorphisms F|y ^> F\Y as described above and if a and a' are 
homotopic within isomorphisms from F|y to F|y, then [F, F;a] = 
[E,F;a,l Also, when [F,F;a] and [F,G;/?] are elements of K(X,Y) 
then their sum is given by the relation [F, F; a]+[F? G; /?] = [F, G; poa]. 
Thirdly, two elements of K(X, Y) determine the same equivalence class, 
[F,F;a] = [E',F';</\, in K(X,Y) if and only if there exist triples 
(G,G;IdG|y) and (G',G';IdG/|y), and maps / : F 0 G -► F' 0 G', 
g : F 0 G -» F' 0 G' such that the diagram 

(E®G)\Y    a^Y     (F®G)\y 

flvi ig\Y (2.59) 

(E'®G')\Y 
Q'e^'lr (F'ecoiy 
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commutes. Furthermore, the cup product naturally extends to relative 
K-theory to give the unique bilinear homomorphism 

K(X, Y) ®z K(Xf, Y') —> K(X x X', X x Y' U Y x X').      (2.60) 

This agrees with the cup product introduced earlier when Y = Y1 = 0. 
Explicitly, the product of two K-theory classes [E,F]a] and [£", Ff; a'] 
is obtained using the product (2.28) on the pairs of vector bundles and 
the product isomorphism 

»_ ( a(8)Id    Id® a*   \ ,0A1v 
^" Vld^a'   -at® Idj ^bij 

acting on (2.28) (note that this requires the introduction of fiber metrics 
on the bundles involved). 

As a simple example, consider the case that X = B2 and Y = 
S1 C R2. Define [E,F\a) G K(B2,S1) by E = F = B2 x C, and 
a(x, z) = (x, xz) for x G S1 C B2. It then turns out that [£", F; a] is a 
generator of K(B2, S1) = Z. This is our first instance of the ABS con- 
struction which will be described in section 2.8. As another example, 
consider the complex projective spaces X =_CP2 and Y = CP1. As 
mentioned before, a non-trivial generator of K(S2) = Z is given by the 
canonical line bundle over CP1 which is the restriction of the canonical 
line bundle over CP2. It follows that the map K(X) —>• K(Y') is sur- 
jective. Furthermore, K"1^2) = 0 and K(X,Y) = K(S4) = Z. From 
(2.54) we then obtain the split short exact sequence 

0 —-> K(S4) —» K(CP2) —> KOCP1) —> 0, (2.62) 

giving K(CP2) = K(S4) 0 K(CP1) = Z 0 Z 0 Z. 

2.7    Computing the K-Groups 

In this subsection we will show how the K-groups can be computed as 
homotopy groups of certain classifying spaces, for which there is often 
a finite dimensional approximation. The basic case is the reduced K- 
groups K(-X'), since unreduced K-groups are computed from the decom- 
position (2.16) and since higher K-groups are given by suspensions as in 
(2.21). Let Vectfc(X) be the set of isomorphism classes of complex vec- 
tor bundles Ek -> X of rank k. Then we have the sequence of inclusions, 
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... C Vectk(X) C Vectfc+i(X) c ..., via the mapping Ek \-> Ek 0 J1. 
If [Ek] G Vectfc(X), then [Ek) - [Ik) G ker rk = K'(X). The map 
[Ek) i-> [Ek] - [Ik} is actually an isomorphism Vect(X) -> K^X) of 
abelian monoids, and heiice Vect(X) = U^=o^ectfc(^) ^s an abelian 
group. 

A complex vector bundle Ek of rank k has structure group GL(k, C) 
(the fiber automorphism group), which upon choosing a metric on X, 
and thereby inducing a Hermitian inner product on the fibers of E^ is 
reducible to the unitary subgroup U(k). The classifying space for Ek is 
the complex Grassmannian manifold: 

where n = dimX. According to a standard theorem of differential 
geometry, there exists a so-called universal bundle Q(k,m\C) over 
Gr(A:,m;C) of rank k whose pullbacks generate vector bundles such 
as E^ This means that /*$(&, m;C) = Ek for some continuous map 
/ : X -> Gr(A;,m;C), m > k + n. Moreover, this isomorphism depends 
only on the homotopy class of /. Therefore, bundles Ek are classified 
according to homotopy classes in [X, Gr(fc, m; C)]. 

Again, we have natural inclusions ... C Gr(A;, m; C) C Gr(fc, m + 
1; C) C ..., and thus taking the inductive limit we arrive at the classi- 
fying space for U{k) bundles: 

oo 

BU{k)=     (J     Gr(A;,m;C) (2.64) 
m=/;+n+l 

such that 

Vectk(X)=\x,BU{k)\ (2.65) 

and 

K'(X) = Vect(X) = \x, BU{oo)\, (2.66) 

with BU{po) = U^Li BU{k). Note that if X is compact, then K{X) = 
H0(X,Z) 0 K'(X) (according to (2.18)) with H0(X,1) = [X,Z]. This 
implies that 

K(X) = \X, z] 8 [X, BU{oo)\ = [X, Z x BU{ooj\.       (2.67) 
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It turns out, however, that things simplify somewhat as the rank k is 
increased. This leads to the notion of stable range. Let k^ = [(n + l)/2]. 
Then for all k > ko there exists a bundle F^0 of rank ko such that Ek — 
Fk0 © Ik~ko

m This means that any vector bundle Ek in the stable range 
is stably equivalent to some other bundle Fk0 of lower rank ko. Then Ek 
and Fk0 belong to the same stable equivalence class and correspond to 
exactly the same element of K'pQ, i.e., as far as K-theory is concerned, 
nothing is gained by considering bundles of very high rank, because once 
the stable range is reached no new K-theory elements are obtained by 
increasing the rank k. Notice that, in the stable range, two vector 
bundles of the same rank are stably equivalent if and only if they are 
isomorphic. This implies that for all k > |n, K.'(X) = Vectfc(X), or 
Kf(X) = [X, BU(k)]. Therefore, whenever X is connected, we have 

K(X)= \x, BU(kj\. (2.68) 

Let us consider some simple examples. The case of immediate in- 
terest is where X = Sn, for which K(X) = [Sn,BU(k)} = 7rn(BU(k)) 
for all k > n/2. We may cover Sn with upper and lower hemispheres 
S^. Since the SJ are contractible, all bundles JE^ISJ are trivial and 
hence determined by the single C/(fc)-valued transition function g on 
the overlap S^ n S!\ But S^ n S^ S S71"1, so g determines a map 
from S72"1 to Ufa), i.e., an element of 7cn-i(U(k)). It is this element of 
7rn_i([/(&)) which determines the bundle Ek G Vect(Sn), and hence an 
element of K(Sn), so that 

K(Sn) = TT^X (tf (fc)),     k > n/2. (2.69) 

In particular, we have 

k(Sn)=:7rn^(u(oo)), (2.70) 

where U(oo) = UfcLi U(k). The homotopy groups of classical Lie groups 
such as U(k) have been extensively studied. Although 7rn_i([/(&)) is 
not known for all n, A;, it is precisely in the stable range k > n/2 that 
we have a complete classification. Note that by (2.68), eq. (2.69) is 
actually the assertion that [Sn,BU(k)] ^ [S71"1, U{k)]. This follows 
from the following facts. First of all, 

[Sn , BU(k)] = [SS71"1, BU(kj\ = [s71"1, ttBU(k)\, (2.71) 
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where QnY denotes the n-th iterated loop space of the topological space 
Y. The isomorphism [S""1, U(k)] = [Sn-\QBU(k)] now follows from 
the fact that the space VtBU{k) is of the same homotopy type as U(k). 
This means that the loop space operand O may be thought of as a type 
of homotopic inverse to the classifying space operand B. It is precisely 
this statement which was the original content of the Bott periodicity 
theorem for the classical Lie groups [56]. 

As another example, take X = Bn and Y = S71"1 = dBn in Rn. The 
topological coset Bn/Sn~1 can be identified with Sn, which induces a 
homeomorphism from S^/S71"1 ^ Bn/Sn-1 to Sn. It then follows from 
the excision theorem that 

K(Bn, S71"1) = K(B7Sn-\ pt) = K(Sn) = 7rn_i (tf (oo)). (2.72) 

For example, K(B2, S1) = 7ri(£/(oo)) = 7ri(17(l)) = Z. 

2,8    Clifford Algebras and the Atiyah-Bott-Shapiro 
Construction 

In this subsection we will discuss the relation of Clifford algebras and 
spinor representations to K-theory. The analysis of Clifford algebras 
is very simple and many K-theoretic results become transparent when 
translated into this algebraic language. Let us start by describing the 
Clifford algebra C£riS associated with the vector space V = Er+S and 
the quadratic form q(x) = x* + ... + x* — x^+1 — ... — x^+s on V, 
which is invariant under 0(r, s)-rotations. There is a natural embed- 
ding V «-» Q?r,s, and the abstract unital algebra (74,5 is generated by 
any g-orthonormal basis Fi,... , rr+5 of V subject to the relations 

{—25i<i.       i < r , 

+2*:; ii,      (2-73) 

The minimal representation of the algebra (2.73) consists of Dirac ma- 

trices of dimension 2'Z12J. The reflection map x »-> — x for x G V 
extends to an automorphism rj: C£^s -> C2?r>a. Since rj2 = Id, this leads 
to the decomposition 

ar,s = a+®a- (2.74) 
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where Ct* = {(f) e C£r^ : ri(^) = dz^} are the eigenspaces of 77. It 
follows that 

a°s ■ a^ c a#, (2.75) 

where a, (5 = ±. The associated graded algebra of C£riS is then natu- 
rally isomorphic to the exterior algebra A* V, i.e., Clifford multiplication 
defined by (2.73) is a natural enhancement of exterior multiplication 
which is determined by the quadratic form 5. In fact, there is a canon- 
ical vector space isomorphism A*V —> Cir^ and hence the natural 
embeddings knV C <X,S for all n > 0. 

The spin group Spin (r, s) C CXr>s, of dimension 2r+s, is obtained 
from the group of multiplicative units of the Clifford algebra through 
the embedding Sr+5~1 C V C C£riS. It is a double cover of the group 
5'0(r, 5), as is expressed by the exact sequence: 

1 —-> Z2 —> Spin (r, 5) —-> 50(r, 5) —> 1. (2.76) 

The spin group associated to C£nfl is Spin (n) which is a double cover 
of the isometry group SO(n) of the sphere S71-1. We will use the short- 
hand notation C£n = C£nio and C£* = Ci?o,n- As a simple example, C£i 
is generated by the unit element and an element F obeying F2 = — 1, 
so that CXi = C. Similarly it is easily seen that CX[=R® R 

Under the canonical isomorphism C£n = A*Rn, Clifford multiplica- 
tion has a particularly nice form. For x 6 Rn, we define the interior 
product x 1 : ApRn -> A^R71 by 

x -1 (rri A • • • A Xp) 
p n 

= l^C-1)"14"1 S :ci(rr:'")i si A • • • A xm_i A a;m+1 A • • • A xp.   (2.77) 
m=l z=l 

This defines a skew-derivation of the algebra since x -«(wAy) = (x-i(jj)A 
y + (-l)pa; A (x -i y) for all a; € ApRn and all y € A^R71. Furthermore, 
(x-i)2 = 0 for all x G Rn, so that the interior product extends univer- 
sally to a bilinear map A*Rn ® A*Rri -> A*Rn. It is now elementary to 
show that the Clifford multiplication between x G Rn and (/> e C£n can 
be written as 

x- (f) = x A0-x-i0, (2.78) 
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with respect to the canonical isomorphism C£n = A*Rn. 

For any pair of positive integers (r, s) there is an explicit presen- 
tation of the algebra (74,5 as a matrix algebra over one of the fields 
R, C or HL The first few examples are easy to construct by hand, for 
example 

Ctifl = C, «o,i = ReR 

a2>o - H, ao,2 = R(2) 
CKi,!   =   R(2), (2.79) 

where F(m) denotes the R-algebra ofmxm matrices with entries in the 
algebraic field F. The complete classification of Clifford algebras is then 
obtained by using the periodicity relations (valid for any n, r, s > 0): 

and 

Ctnfl ® CS?o,2 =    C*0,n+2> (2.80) 

C£o,n ® C£2,o =    C^n+2,0, (2.81) 

C£r,s ® C4,i =   Ctr+i)S+i, (2.82) 

CKn.o ® C4,o =   C£n+8fi, (2.83) 

CKo,n 0^0,8 =    Cj?o,n+8) (2.84) 

where 

Ghfi = Clo,* = R(16). (2.85) 

Using these relations and (2.79) it possible to write down the complete 
set of Clifford algebras C£riS which are summarized in Table 1. From 
this table one observes some extra intrinsic symmetries of the Clifford 
algebras, for example 

C4,s   =   C4-4,s+4 ? (2.86) 

Clr,s+l     =    C4,r+1 , (2.87) 

which can also be proven directly from the definition of C£riS. 

We will now describe the complexified Clifford algebras which are 
related to the K-theory of complex vector bundles over spheres. The 
complexification of the real Clifford algebra C£rjS is the C-algebra G^ = 
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s r = 0 r = l r = 2 r-3 r = 4 

0 R C H M©M e(2) 
1 R©R M(2) C(2) H(2) e(2) © 11(2) 

2 R(2) R(2) © R(2) M(4) C(4) M(4) 

3 C(2) M(4) M(4) © R(4) R(8) C(8) 

4 H(2) C(4) R(8) R(8) © R(8) R(16) 

5 H(2) 0 e(2) e(4) C(8) R(16) R(16) © R(16) 

6 H(4) E(4)©H(4) e(8) C(16) R(32) 

7 C(8) EI(8) E(8) © H(8) e(16) C(32) 

8 M(16) C(16) H(16) E(16)©e(16) e(32) 

s r = 5 r = 6 r = 7 r = 8 

0 C(4) M(8) R(8) © M(8) R(16) 

1 H(4) C(8) R(16) R(16)©R(16) 

2 e(4) © e(4) 11(8) C(16) R(32) 

3 H(8) e(8) © e(8) e(i6) C(32) 

4 C(16) e(i6) e(16) © M(16) e(32) 

5 E(32) C(32) e(32) E(32) © M(32) 

6 E(32) © R(32) R(64) C(64) M(64) 

7 R(64) R(64) © R(64) R(128) C(128) 

8 C(64) R(128) R(128) © R(128) R(256) 

Table 1: The real Clifford algebras C4)S for 0 < r, s < 8. 



922 K. OLSEN AND R.J. SZABO 

n 1 2 3 4 5 6 7 8 

Qn CeC C(2) C(2)©C(2) C(4) C(4)eC(4) C(8) C(8)eC(8) C(16) 

Table 2: The complexified Clifford algebras On for 1 < n < 8. 

Clr,s ®R C, which can also be viewed as the Clifford algebra associ- 
ated with the vector space Cr+S and the complexification q (g) C of the 
quadratic form q. Since all non-degenerate quadratic forms over C are 
equivalent, we have the sequence of isomorphisms 

an * C4,o <S>R c ^ C4-i,i <S>M c ^ •.. ^ Oo* ®R C ,      (2.88) 

which makes the classification of the complexified Clifford algebras 
much simpler, since it means that Or)5 only depends on the sum of 
r and s: C£rjS ®R C = Or+s. From this it also follows that the period- 
icity of <CXn is 

QW2 = Oi, (2.89) 

where G^ = C(2). (We shall see that this periodicity is related to Bott 
periodicity of the complex K-theory of spheres.) Using these identities 
one can easily deduce the list of complexified Clifford algebras in Table 
2. 

Most of the important applications of Clifford algebras come 
through a detailed understanding of their representations and, by re- 
striction, of the representation theory of their corresponding spin 
groups. Such properties follow rather easily from the classification just 
presented. For any algebraic field F we define an F-representation of 
the Clifford algebra to be a homomorphism p : C£ —> End^W) into 
the endomorphism algebra of linear transformations of a finite dimen- 
sional vector space W over F (here C£ could be either C£ryS or On). In 
particular p satisfies the property p((f)ip) = /?(</>) o pfy) for all 0, tp e C£. 
In this way W becomes a Clifford-module over F. For (/) e C£ the action 
of p(0) on w 6 W is denoted by 

p((f))(w) = (f> • w 

and is customarily refered to as Clifford multiplication. 

(2.90) 
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As shown above, the tensor products of irreducible representations 
of certain Clifford algebras gives another irreducible Clifford module 
(see e.g., (2.83) and (2.89)). In general, however, C%n ® C£m is not a 
Clifford algebra, and so to find a multiplicative structure in the repre- 
sentations of Clifford algebras it is natural to consider a special class 
of Clifford modules. For this, we define a Z2-graded module W for C£n 

as one with a decomposition W = W+ © W~ such that 

C^ • W13 C Wa0 , (2.91) 

where a, /? = ±. An important grading comes from the chirality grad- 
ing of the corresponding spin groups. Given a positively oriented, q- 
orthonormal basis F^ of the oriented vector space V, we define an ori- 
ented volume element rc of C4,s by the chirality element 

rc = ri-.-rr+,. (2.92) 

Setting n = r + 5, this volume element satisfies 

(rc)
2 = (-1)^+*, 

xrc   =   (-ly^Ferr,   VzeR71, (2.93) 

showing that for n odd, rc lies in the center of C4,s, whereas for n even, 
r^Fc = rcr)(ri). Therefore, when n is even there is a chirality grading 
induced by the ±1 eigenspaces of rc. 

Let us start by classifying the representations of the real Clifford 
algebra C4,s- A real representation of this algebra is constructed in the 
obvious way. A C-representation, on the other hand, is constructed as 
follows. Recall that a complex vector space is just a real vector space W 
together with a real linear map J : W —> W such that J2 = —Id. Then, 
a complex representation of Q?r,s is a real representation p : C^r,s —>- 
EndK(W) that commutes with the complex structure: 

p(<l>) o J = J o p(<l>) . (2.94) 

Similarly one defines quaternionic representations of Ci?r>a. By restric- 
tion the representations of the algebras C£n give rise to important repre- 
sentations of the spin group. The real spinor representation of Spin(n) 
is defined as a homomorphism 

An : Spin(n) —* GLR{W) , (2.95) 
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given by restricting an irreducible real representation C£n —» EndM(W/r) 
to Spin(n) C Cin. It can be shown that when n ^ 0 (mod 4) the 
representation An is either irreducible or a direct sum of two equiva- 
lent irreducible representations, and that the second possibility occurs 
exactly when n = 1 or 2 (mod 8). In the other cases there is a decom- 
position 

Mm = A4
+
m 0 A4-m , (2.96) 

where Ajm = |(1 ± rc)A4m are inequivalent irreducible representa- 
tions of Spin(4m). The reality properties of these spinor modules are 
then easily deduced. The only real spinor modules (or, more precisely, 
the only ones which are complexifications of real representations) are 
AgfciijA^, while the representations A8A:+3, A^.+4, A8fc+5 are the re- 
strictions of quaternionic Clifford modules. The remaining modules 
A8fc+25 

A8fc+6 are complex. 

We can similarly classify the representations of the complexified 
Clifford algebra 0?n. We define the complex representation of Spin(n) 
to be the homomorphism 

A^ : Spin(n) —» GLc(W) , (2.97) 

given by restricting an irreducible complex representation G!n —> 
Endc(W/r) to Spin(n) C <Q?n. Similarly to the real case, it is possi- 
ble to show that when n is odd the representation A^ is irreducible, 
whereas when n is even there is a decomposition 

AL = Ag 0 At , (2.98) 

with A^ = |(1 ± imrc)A2m, into a direct sum of two inequivalent 
irreducible complex representations of Spin(n). 

We finally come to the connection with K-theory, via the classic 
Atiyah-Bott-Shapiro (ABS) construction [57] which relates the Gro- 
thendieck groups of Clifford modules to the K-theory of spheres. For 
this we will use the definition introduced in section 2.6 of the relative 
K-group K(X, Y) as the group of equivalence classes [£7, F; a], where a 
is an isomorphism of the vector bundles E and F when restricted to Y. 
Let R[Spin(n)] be the complex representation ring of Spin(n), i.e., the 
Grothendieck group constructed from the abelian monoid generated by 
the irreducible complex representations, with respect to the direct sum 
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and tensor product of Spin(n)-modules. (We will describe representa- 
tion rings in more generality in section 6.1). Let W = W* 0 W~ be a 
Z2-graded module over the Clifford algebra C£n. We then associate to 
the graded module W the element 

^(W) = [£+, £"; fj] e K(Bn, S71"1) , (2.99) 

where E± = Bn x W± is the trivial product bundle, and //: E+ —> E~ 
is the isomorphism over S71-1 given by Clifford multiplication: 

fjL(x, w) = (x,x-w)   ,   x 6 S71-1 . (2.100) 

Note that, since the ball Bn is contractible, all bundles over it are trivial 
and the topology all lies in the winding of the homotopically non-trivial 
map fi : E+ —> E~ over S71-1. It is now straightforward to show that 
the element cp(W) depends only on the isomorphism class of the graded 
module W, and furthermore that the map W \-> <p(W) is an additive 
homomorphism. Thus the map (2.99) gives a homomorphism 

tp : R[Spin(n)] —> K(Bn, S71"1) . (2.101) 

By restriction, the natural inclusion i : En M- E71"1"1 induces an epi- 
morphism z* : R[Spin(n + 1)] —> R[Spin(n)]. It then follows that the 
homomorphism (2.101) descends to a homomorphism 

<pn : R[Spin(n)]/i* R[Spin(n + 1)] -> K(Bn, S71"1), 

which turns out to be a graded ring isomorphism [57]: 

R Spin(n)  /i*R Spin(n + 1)   -^> K(Sn). (2.102) 

The groups in (2.102) are isomorphic to Z for n even, while they vanish 
when n is odd according to the above classification of Clifford modules. 
The isomorphism (2.102) is generated by the principal Spin(n) bundle 
over Sn: 

Spin(n) ^ Spin(n + 1) —> Sn. (2.103) 

This theorem also gives us explicit generators for K(S2ri) defined via 
representations of Clifford algebras. For example, let S = S+ © S~ be 
the fundamental Z2-graded representation space for C^n- There is an 
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isomorphism R[Spin(2n)] = Z © Z with generators given by S and its 
"flip" <S, the same graded module with the factors interchanged (this 
correponds to a reversal of the orientation in R2ri). The generator of 
i* R[Spin(2n+1)] ^ Zdiag is then [S] + [S]. Thus the group K(S2n) = Z 
is generated by the element 

<p£) = [S+,S-;i4, (2.104) 

where nx : S+ —>- S~ denotes CliflFord multiplication by a; € R2n. 
Denoting the generators of S by F;, the inclusion R2n ^^ Q2n along 
with the definition (2.90) of Clifford multiplication shows that //^ can be 
represented via ordinary matrix multiplication by x = ^ xl Ti G M2n: 

fMx(w)=l^xiri\w  ,   ^GM. (2.105) 

Moreover, from (2.78) it follows that the square of the isomorphism /xx 

is just multiplication by the norm of the vector x G M2n: 

jt/x 0 fJ'xiw) = -\x\2 w. (2.106) 

Note that the Bott periodicity of spheres, K(Sn) = K(Sn+2), can now 
be derived from the periodicity property (2.89) of complexified Clifford 
algebras. Furthermore, using the structure of Clifford modules it is 
straightforward to show using the cup product that 

4n) = (41))n- (2-107) 

3    Type IIB D-Branes and K(X) 

We will now begin describing the systematic applications of K-theory 
to the classification of D-brane charges in superstring theory. We start 
in this section by considering the Type IIB theory, for which the sim- 
plest analysis can be carried out. Type II superstrings are oriented 
and therefore have Chan-Paton bundles with unitary structure groups. 
Except for the new ways of thinking about and constructing D-branes, 
the K-theory formalism merely reproduces the known spectrum of sta- 
ble brane charges.  However, the analysis we present in the following 



CONSTRUCTING D-BRANES FROM K-THEORY 927 

easily generalizes to more complicated situations where we will see that 
K-theory makes genuinely new predictions, and it moreover provides a 
nice consistency check that the mathematical formalism is indeed the 
correct one. 

We will show in this section that the group K(X) classifies D-branes 
in Type IIB superstring theory on the spacetime manifold X [17]. More 
precisely, the RR-charge of a Type IIB D-brane is measured by the 
K-theory class of its transverse space, so that K(Sn) classifies (9 — n)- 
branes in Type IIB string theory on flat E10, for example. The corre- 
sponding K-groups are determined by homotopy theory as described in 
section 2.7: 

K(Sn) = 7rn-1(l/(A;))l      k > n/2. (3.1) 

Taking the inductive limit one has 

K(Sn)=7rfl-1(ir(oo))> (3.2) 

where U(oo) = \Jk U(k) is the infinite unitary group. Bott periodicity 
states that the corresponding homotopy groups 7rn(U(oo)) are periodic 
with period two: 

7rn(c7(oo))=7rn+2(c/(oo)), (3.3) 

or 

K(Sn) = K(Sn+2). (3.4) 

From this and the fact that K(S0) = Z, ^(S1) = 0 follows the complete 
classification of D-branes in Type IIB superstring theory, which is sum- 
marized in table 3. This table just reflects the fact that the Type IIB 
theory has stable Dp-branes only for p odd. In this way one recovers 
the usual spectrum of IIB BPS brane charges. 

3.1    The Brane-Antibrane System 

The physics behind the K-theory description of D-brane charges hinges 
on a new interpretation of branes in terms of higher-dimensional branes 
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D-brane D9D8 D7D6 D5 D4D3 D2 Dl DO D(-l) 

Transverse 

space 
S0 s1 

S2 s3 
S4 S5 s6 

S7 S8 S9 sio 

K(Sn) z 0 z 0 z 0 z 0 z 0 Z 

Table 3: D-brane spectrum in Type IIB superstring theory from K(Sn). 

and antibranes. We shall therefore start by briefly reviewing the prop- 
erties of brane-antibrane pairs in superstring theory. This system is 
unstable due to the presence of a tachyonic mode in the open string 
excitations that start on the brane (respectively antibrane) and end on 
the antibrane (respectively brane) [14]. The simplest way to see this 
property is by appealing to the boundary state formalism (see [58] and 
references therein). A stable supersymmetric Dp-brane can be repre- 
sented and described by a boundary state 

\Dp) = \Dp)Ns ± \Dp)R9 (3.5) 

which is a particular coherent state in the Hilbert space of the dosed 
string theory. It represents a source for the closed string modes emitted 
by a Dp-brane. The boundary state (3.5) consists of a part \Dp)^s 
which is a source for the closed string states of the NS-NS sector of the 
fundamental string worldsheet, and a piece |2?P)R for the RR sector. 
The relative sign in (3.5) distinguishes a brane from its antibrane which 
has opposite RR charges. Taking into account the closed string GSO 
projection gives the decompositions 

\Dp)m   =   ±(|Z)p,+}NsH^->Ns); 

|£>p)R   =   |(|D^+)R+|^5-)R)5 (3.6) 

where the it label the two possible implementations of the boundary 
conditions appropriate for a Dp-brane. The decompositions (3.6) take 
into account the sum over the four spin structures on the string world- 
sheet. 

The boundary state formalism allows one to easily compute the 
spectrum of open strings which begin and end on a Dp-brane. This can 
be found by computing a tree-level two-point function of the boundary 
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state with itself (the cylinder amplitude) and via a modular transfor- 
mation re-expressing the result as a one-loop trace over open string 
states (the annulus amplitude) according to 

oo oo 

J dr (Dp, a | e-^-^) | Dp, f3) = VpJj Tropen (e"2^),    (3.7) 
0 0 

where Vp is the (infinite) worldvolume and a, /3 = ±. The open string 
sectors which appear in (3.7) depend both on the closed string sec- 
tors and on the spin structures a,/3. Of particular importance are 
the open string NS and NS(—1)F even spin structures, which corre- 
spond respectively to the closed string NS-NS and RR sectors with 
a = p. The NS sector is thereby GSO projected in the usual way as 
NS-NS+RR=NS+NS(-1)F. This leads to the well-known fact that the 
sum over the contributions from all even spin structures vanishes, and 
thus the spectrum of open strings which start and end on a Dp-brane 
is supersymmetric and free from tachyons. 

However, if one considers instead a system composed of one Dp- 
brane and one anti-Dp-brane (which we will also call a Dp-brane), then 
the contribution to (3.7) from the RR sector changes sign, and the NS 
open string sector has the "wrong" GSO projection, NS-NS - RR=NS- 
NS(—1)F. The open string spectrum therefore exhibits a tachyon, and 
this fact is responsible for the instability of the brane-antibrane pair. 
This feature is a consequence of the fact that the system sits at the top 
of a potential well, and it is precisely the presence of this tachyon field 
in a p — p system that makes the connection to K-theory. 

We may choose a suitable basis of the open string Chan-Paton gauge 
group U(2) of the brane-antibrane pair in which diagonal matrices rep- 
resent the open string excitations which start and end on the same 
brane or antibrane, while off-diagonal matrices represent the string 
states which stretch between the brane and its antibrane of a given 
orientation. The tachyon vertex operators which create the appropri- 
ate p — p tachyonic open string states are therefore given by 

VT(z)   =   eik«xaM 
0   1 
o o ;' 

Vniz)   =   e^M®!  JO), (3.8) 
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where Xa(z) are worldsheet boson fields and ka is the momentum along 
the Dp-brane world volume. From the structure of the Chan-Paton 
matrices in (3.8), it is straightforward to see that the only non-vanishing 
correlation functions are those involving an equal number of T and T* 
vertex operators. If T(x) and T^(x) denote the complex tachyon fields 
living on the world volume of the Dp-brane anti-Dp-brane system, then 
there is a tachyon potential of the form 

00 

V(TTi) = Y,c»(TTT- (3-9) 
71=2 

This implies that the tachyon potential depends only on the modulus 
ofT, 

V(T) = y(|T|2). (3.10) 

The presence of a non-trivial tachyon potential V^T) implies that a 
stable configuration cannot be reached by simply superimposing a Dp- 
brane and a Dp-brane, since the system is sitting on top of a tachyon 
well. The lowest energy configuration (i.e., the stable configuration) 
of the system is obtained by allowing the tachyon to roll down to the 
minimum To of its potential. From (3.10) it follows that these points 
live on a circle described by the equation 

|T|=To. (3.11) 

Note that in terms of the real tachyon field t = T + T*, the tachyon 
potential is an even function of i, 

V(t) = V(-t), (3.12) 

and the corresponding minima always come in pairs ±£o- 

Furthermore, one may argue that, when the tachyon condenses into 
one of its vacuum expectation values, the negative potential energy den- 
sity of the condensate cancels exactly with the positive energy density 
associated with the tension of the p — p pair: 

2Tp + V(To) = 0, (3.13) 

where Tp is the p-brane tension. This shows that the tachyon ground 
state is indistinguishable from the supersymmetric vacuum configura- 
tion, since it carries neither any charge nor any energy.  Thus, under 
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these circumstances, the stable configuration of a brane-antibrane pair 
which is reached by tachyon condensation is nothing but the vacuum 
state. However, instead of considering the tachyon ground state, one 
can also construct tachyonic soliton solutions on the brane-antibrane 
worldvolume. This will be done in the next subsection, where we will 
see that one of the astonishing features of the K-theory formalism is 
that is provides a very explicit form for the classical tachyonic soliton 
field T(x). 

The reversal of the GSO projection described above may be for- 
malised as follows. The endpoints of the open string excitations of the 
p — p pair carry a charge which takes values in a two-dimensional quan- 
tum Hilbert space. The first component of such a wavefunction may 
be regarded as bosonic and representing, say, the open strings which 
end on the p-brane, while the second component is fermionic and repre- 
sents the open strings which end on the p-brane. The p—p open strings 
have off-diagonal Chan-Paton wavefunctions which are odd under the 
adjoint action of the operator 

(-i)F=*3=(i ^y        (3.14) 

and are thereby removed by the GSO projection operator 

PGSO = |(I + (-1)
F
). (3.15) 

On the other hand, the p — p and p — p open strings have diagonal 
Chan-Paton wavefunctions. They are even under (—1)F and are there- 
fore selected by the GSO projection (3.15). Having one bosonic and one 
fermionic Chan-Paton state leads to a p — p worldvolume gauge sym- 
metry with gauge supergroup U(l\l). However, because of the GSO 
projection, the off-diagonal fermionic gauge fields of C/(l|l) are absent, 
leading to the usual elimination of the massless vector multiplet. The 
remaining bosonic fields on the p—p worldvolume form instead a struc- 
ture whose lowest modes correspond to the superconnection [59] 

•*=(£ J-) (3-16) 
on X, where A± are the gauge fields on the bundles E and F of the 
bosonic and fermionic Chan-Paton states of the p-brane and p-brane, 
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respectively. The p—p tachyon field T is regarded as a map T : E —> F, 
while its adjoint T* is a map T* : F —> E. Alternatively, T may be re- 
garded as a section of E<8)F* and T1" ofE*®F, where E* = Homc(£', C) 
is the dual vector bundle to E. The superconnection (3.16) has been 
used recently in [60] for a generalization, to the brane-antibrane sys- 
tem, of the usual Wess-Zumino couplings of RR fields to worldvolume 
gauge fields (see also [61]). It will play a crucial role in section 7 when 
we discuss index theory. 

3.2    The Bound State Construction 

We will now discuss how to construct tachyonic soliton solutions and 
show that this construction is equivalent to the ABS homomorphism 
which maps classes in K(y) to classes in K(X), where the D-branes 
wrap around a submanifold Y of the spacetime X. Until section 7 
we shall deal only with flat spacetimes and topologically trivial world- 
volume embeddings Y ^ X. We will start by constructing a sta- 
ble p-brane in Type IIB superstring theory as the bound state of a 
(p + 2)-brane and a coincident (p + 2)-brane. For this, we shall con- 
sider an infinite (p + 2) brane-antibrane pair stretching over a subman- 
ifold RP+3 C X. Due to the tachyon, this system tends to annihilate 
itself unless there is some topological obstruction. This obstruction is 
measured by the K-theory group K(X). 

On the (p + 2) - (p + 2) pair, there is a [/(I) x U(l) gauge field 
(A+, A~) and a tachyon field T of corresponding charges (1,-1). This 
means that the kinetic energy term for the tachyon field in the worldvol- 
ume field theory is of the form |(d—iAl+iA^^]2. We consider a vortex 
in which T vanishes on a codimension two submanifold Mp+1 C Mp+3, 
which we interpret as thep-brane worldvolume. We suppose that \T(x)\ 
approaches its vacuum expectation value To at \x\ —> oo (up to a gauge 
transformation). T is a complex scalar field, so it can have a winding 
number around the codimension 2 locus where it vanishes, or equiva- 
lently at \x\ = oo. The basic case is where the winding number is 1, 
and T breaks the U(l) x U(l) gauge symmetry of the brane-antibrane 
pair down to the diagonal U(l) subgroup. To keep the energy per unit 
p-brane worldvolume finite (i.e., to have finite tension), there is a unit 
of magnetic flux in the broken U(l) group, which is achieved by giving 
the gauge field A4" -A~ on the worldvolume of the (p+2) - (p + 2) pair 
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a unit of topological charge at infinity. The non-vanishing asymptotic 
field configuration therefore takes the form 

T ~ To eie,    Aj-Ao~l       for r -* oo, (3.17) 

where (r, 0) are polar coordinates on the two-dimensional transverse 
space Ep"f3 — Mp+1. Then both the kinetic and potential energy terms 
in the world volume field theory vanish sufficiently fast as r —> oo, lead- 
ing to a static finite energy vortex configuration for the tachyon field. 
This system has one unit of p-brane charge, but its (p+2)-brane charge 
is zero between the brane and antibrane. With T approaching its vac- 
uum expectation value everywhere except close to the core W+1 of the 
vortex, the system looks like the vacuum everywhere except very close 
to the locus where T vanishes. This soliton thereby describes a sta- 
ble, finite energy p-brane in Type IIB string theory. By studying the 
boundary conformal field theory describing this solution, one can prove 
that this soliton is indistinguishable from the Dp-brane of Type IIB 
superstring theory and is simply a different representation of the same 
topological defect in the spacetime X. 

One can easily generalize this construction to a (p + 2k) brane- 
antibrane pair for k > 1. First we construct a p-brane from a (p + 2) 
brane-antibrane pair, then we construct the (p+2) brane and antibrane 
each as a bound state of a (p + 4) brane-antibrane pair, and so on. 
After k — 2 more steps, we get a p-brane built from 2k~l pairs of (p + 
2&)-branes and antibranes. However, such a "stepwise" bound state 
construction breaks the manifest spacetime symmetries and limits the 
possible applications of this formalism. A more direct construction 
exhibiting the full symmetries of the system is desired. This is precisely 
where the formalism of K-theory plays a central role. 

To relate these constructions to K-theory, we recall from section 
1 that the D-brane charges of tadpole anomaly cancelling Type IIB 
9 — 9-brane configurations are classified by the reduced K-theory group 
K(-X') of the spacetime X. Each class in K(X) is represented by an equal 
number N of 9-branes and 9-branes wrapping X, with the class in K(X) 
given by the difference [E] — [F] of the Chan-Paton gauge bundles on the 
9-branes and 9-branes. Open strings ending on all possible pairs of these 
branes give rise to a U(N) x U(N) gauge field, and a tachyon field T in 
the bifundamental N ® N representation of the gauge group. Although 
we don't know the precise form of the tachyon potential, we may argue 
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that at the minima |T| = TQ all eigenvalues of To are equal. This follows 
from the possibility of separating the brane-antibrane pairs. It then 
follows that the tachyon condensate TQ breaks the worldvolume gauge 
symmetry from U(N) x U(N) down to the diagonal U(N) subgroup. 

We will now construct a stable D-brane of the Type IIB theory 
as a bound state of a system of N 9-branes and iV 9-branes which 
locally near Y resembles a topologically stable vortex of the tachyon 
field. The number iV will be fixed below by the mathematics of the 
ABS construction. The stable values of To (i.e., the gauge orbits of the 
tachyon field with minimum energy) live in the vacuum manifold 

Therefore, when viewed as a Higgs field in this description, T supports 
stable topological defects in codimension 2k which are classified by the 
non-trivial homotopy groups of the vacuum manifold: 

7r2*-i (VIIB(AO) - Tr-fc-i (U(NJ) = Z,     N > k. (3.19) 

So for a p-brane wrapping a submanifold W+1 C X, we take T(x) to 
vanish in codimension 2k = 9 — p, and let it approach its vacuum orbit 
at |a;| —>• oo, with a non-zero topological twist around the locus Rp+1 

on which it vanishes, and of a given winding number at infinity. These 
configurations are classified topologically by the homotopy classes of 
maps S2*-1 -» U(N)y or by the K-theory classes 

K(S2*) = T^-I (U(N)^ - Z,     ViV > k. (3.20) 

Note that D-brane charges are labelled by reduced K-groups of the 
transverse spaces to the worldvolumes (compactified by adding a point 
at infinity). This result makes manifest the relation between homotopy 
theory (i.e., the classification of topological defects) and K-theory (i.e., 
the classification of configurations of spacetime-filling branes up to pair 
creation and annihilation). As discussed in the previous subsection, the 
negative energy density corresponding to the vacuum condensate of T 
is equal in magnitude to the positive energy density due to the non-zero 
tension of the 9 — 9 brane system wrapping X. This implies that the 
total energy density away from the core of the bound state approaches 
zero rapidly, and the configuration is very close to the supersymmet- 
ric vacuum. Therefore, tachyon condensation leaves behind an object 
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wrapped on Y = W+1 that carries the charge of a supersymmetric 
Dp-brane wrapping Y. 

The embedding K(Y) ^ K(X) is realized mathematically by the 
K-theoretic ABS construction that was described in section 2.8. (This 
is an example of a push-forward map that we will return to in section 7). 
It corresponds to the mapping of a non-trivial class describing a D-brane 
wrapping Y into a class where it corresponds to the bound state of a 9- 
brane 9-brane configuration wrapping the spacetime X. For Y of codi- 
mension 2k in X, this construction selects the prefered value N = 2k~1 

of the number of 9 —9-brane pairs (recall that this was precisely the pre- 
diction of the previous "stepwise" construction), and it moreover gives 
a particularly simple, natural and useful representation of the tachyon 
vortex configuration (i.e., of the generator of 7r2k-i(U(N))) via Clifford 
multiplication. Consider the rotation group SO(2k) of the transverse 
space, which is the group of orientation-preserving automorphisms of 
the normal bundle of Y C X, It has two inequivalent positive and neg- 
ative chirality complex spinor representations A^ of dimension 2k~1. 
They give rise to two spin bundles S± —> F, which can be extended 
to a neighbourhood of Y in X (modulo some global obstructions, as 
we will describe in section 7). They therefore define a K-theory class 
[<S+] — [S~] G K(-X"), where E = <S+ is the Chan-Paton bundle carried 
by the 9-branes and F = S~ by the 9-branes in the above bound state 
construction. 

The gauge symmetry of the 9-brane worldvolume X is U(2k~1) x 
U(2k-1), and the tachyon field is a map T : S+ -> S'. Let Fi,... , ^k 
be the generators of A^k ® ^AT ? which can be regarded as maps 
S+ 0 S- -> S+ 0 5". Let (x\... ,x2k) G S2*"1 C R2*. Then, using 
the construction of section 2.8, we define the tachyon field via Clifford 
multiplication 

2k 

T(x) = f{x) iix = f(x) Y,Fix*, (3.21) 
i=l 

where f(x) is a convergence factor with the asymptotic behaviours 

lim/fc) = const., lim f(x) = ^, (3.22) 
xeY |a;|->-oo \X\ 

which ensures that far away from the core of the vortex, T(x) takes val- 
ues in the IIB vacuum manifold (3.18), whereas the tachyonic soliton is 
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located on the submanifold x1, = 0, i = 1,... , 2k. In the sequel we shall 
usually not write such convergence factors explicitly. The field T(x) 
has winding number 1 [62], and according to the ABS construction, it 
generates 7r2k-i{U(2k'1)) = Z, or equivalently K(B2fc,S2fc-1) = Z. The 
precise mapping K(y) <--» K(X) of K-theory classes is given by the cup 
product (2.60): 

A : K(y) <g)Z K(B2\ S2A;-1)-^K(y x B2A\ Y x S2^1) 

(E, F)] ^ A [(E <g> <S+ 0 F (8) S' , E ® 5" e F ® <S+)]      (3.23) 

where [(i5,F)] G K(y) and we have used the fact that K(Sm) for any 
m is a free abelian group. 

One can verify that this "all at once" construction is equivalent to 
the previous "stepwise" construction. This fact follows from the peri- 
odicity property (2.89) of the complexified Clifford algebras, or equiva- 
lently from Bott periodicity of complex K-theory. Namely, the process 
of tachyon condensation of the bound state of a p-brane p-brane pair 
into a p — 2-brane may be regarded as the Bott periodicity isomorphism 
on the spacetime K-theory group K(X) -» K(-X"), which can in turn be 
described by the ABS map 

[(3fc>^)]  —>  [Wfc®(<52
+e52-),52-fc®(<s2

+es2-))] 

T2k   -♦    fT»®Ia    MM, (3.24) 

where IJV denotes the N x N identity matrix, and [<5^.,5^.;T2fc] is the 
generator of K(X) above. Here 

T2(x) = o1x
l + o2x

2=( xl _
0 .x2   

Xl + ^ ) (3.25) 

is the codimension 2 tachyon field which generates the stable homotopy 
groups of the vacuum manifold 

VlIB(l) =       C/(l)diag       = ^(1)' ^^^ 

and (Ti will always denote the standard SU(2) Pauli spin matrices. Al- 
ternatively, as shown at the end of section 2.5, the p — 2-brane may be 
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identified with a Dirac magnetic monopole vortex [55] in the p-p-brane 
world volume. This identification is consistent with the topological sta- 
bility TTI(£/(!)) = Z of the worldvolume soliton. Moreover, it identifies 
the explicit form of the gauge field configuration in the worldvolume 
field theory as [63] 

A± _ 0 A± _  ,  1=FCQS^ (o 9^ ^-0,        Ae-±    ^^ (3.27) 

where (0,<l>) are angular coordinates on the transverse space S2, and 
the brane-antibrane indices ± now label the corresponding upper and 

2 
it- lower hemispheres S2 

Thus, the p-brane charge of the above configuration equals one, 
while all higher and lower dimensional charges vanish (this can also be 
verified by using formulas for brane charges induced by gauge fields). 
Notice that T : E —> F is trivial at infinity (where the system resembles 
the vacuum), and is an isomorphism E = F in a neighbourhood of 
infinity. This means that the K-theory class [(E, F)] is assumed to 
be equivalent to the vacuum at infinity, i.e., that one can relax to the 
vacuum by tachyon condensation at infinity. Thus the RR charge of 
an excitation of a given supersymmetric vacuum configuration is best 
measured by subtracting from its K-theory class the K-theory class of 
the vacuum. The RR charge of an excitation of the vacuum therefore 
takes values in K-theory with compact support. 

4    Type IIA D-Branes and Kr^X) 

In this section we will show that D-brane charges in Type IIA super- 
string theory are classified by the higher K-group K"1^) [17, 18]. 
Again we shall simply reproduce the well-known spectrum of the Type 
IIA theory, but we shall gain many new insights into the construc- 
tions of D-branes as well as the interrelationships between branes in 
the Type II theories. Furthermore, we shall uncover some remarkable 
applications of the bound state construction. 
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4.1    The Group K"1^) 

There are a number of equivalent definitions of K~1(X), each of which 
are useful in different situations. The 11-dimensional "M-theory" def- 
inition was given in sections 2.4 and 2.5. In this definition, the higher 
K-group K'^X) is the subgroup of K(X x S1) which classifies RR 
charges in Type IIA string theory on the ten-dimensional spacetime X. 
It is therefore tempting to interpret the S1 here as the compactification 
circle used in relating 11-dimensional M-theory and ten-dimensional 
Type IIA superstring theory. However, there are no spacetime-filling 
M-branes, i.e., no known 10-branes, and also no hierarchy of branes 
in M-theory. So at present it is unclear how to interpret the eleven- 
dimensional extension of X required to classify D-brane charges of Type 
IIA string theory. It is for these physical reasons that alternative for- 
mulations of the group K-1^) are desired. 

The "string theory" definition of K-1^), i.e., with no reference to 
an 11-dimensional extension of X, is similar to the definition of relative 
K-theory introduced in section 2.6 and can be given as follows. Let 
E G Vect(X) and let a : E -^> E be an automorphism of the vector 
bundle E. Two pairs (E, a) and (F, /?) are called isomorphic if there 
exists an isomorphism of vector bundles h : E —> F such that the 
following diagram commutes: 

E    A    F 

a I 10 (4.1) 

E    A    F 

i.e., P o h = h o a. Define the sum of two pairs (i?, a) and (F, /?) by 
(E 0 F, a 0 /?). A pair (F, a) is called elementary if a is homotopic to 
Id£ within the automorphisms of F. Two pairs (F, a) and (F, /?) are 
equivalent, (F, a) ~ (F, /?), if there exists two elementary pairs (6^,7) 
and (iJ, S) such that 

(F 0 G, a 0 7) ^ (F 0 #, p © 5). (4.2) 

The set of equivalence classes of pairs [(F, a)] defines an abelian group, 
which is precisely K~l(X). The inverse of a class [(F, a)] is — [(F, a)] = 
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[(E, a"1)]. To prove this, we need to show that (E 0 E, a © a-1) is an 
elementary pair, where we may write 

Using the decomposition 

(4.4) 
/   0     -a\_ 
^ a"1     0   ) - 

we may define a continuous map cr: [0,1] —>■ Aut(^ © E) by 

-w - r i T U J-. ? H i -1
ta ^     (4.5) 

with (7(0) = Id£;e£ and (7(1) coinciding with (4.4). It follows that (4.4) 
is homotopic to Ids^E within automorphisms of E 0 £", and hence so 
is a 0 a"1. More generally, it can be shown that [(£", a)] + [(E, /?)] = 
[(E, aop)] = [(£■, /?OQ/)]. Note that the analogous statement for relative 
K-theory in section 2.6 can be proven in a similar way. 

To show that this abelian group is indeed K~1(X), we need only 
prove that two automorphisms a, /? determine the same class in K~1(X), 
i.e., [(E, a)] = [(F, /?)], if and only if there exists a vector bundle G G 
Vect(X) such that Qf0ldi?0ldG and Id£0/?0ldG? are homotopic within 
the automorphisms of E © F 0 G. For this, we first demonstrate that 
[(JS1, a)] = 0 if and only if there exists a vector bundle G £ Vect(X) 
such that a 0 Id^ is homotopic to Id^G within the automorphisms 
of E 0 G. Indeed, if [(E, a)] = 0 then there exists elementary pairs 
(G, 7) and (G', 7') and an isomorphism h : E 0 G -^> G' such that the 
diagram 

F0G   A    G" 

ae7 4r 4-7' (4.6) 

£0G   A    G' 

is commutative. Thus a © Id^ is homotopic to a 0 7 = /i-1 o y o h. 
This, in turn, is homotopic to h"1 o MG' 

0 h = Id^e^, which proves the 
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assertion. The converse statement is obvious. Going back to the orig- 
inal assertion, we consider two classes with [(S,a)] = [(F,/?)]. Then, 
[(£, a)] - [(F, /?)] = [(E®F, a^P'1)] = 0 and, as just argued, there ex- 
ists a vector bundle G such that a®/3~1 ®IdG is homotopic to IdE®F®G- 
By composing this homotopy equivalence with Id^ © 0 © Id^ one sees 
that a © ldF © Idc and Id^ © (3 © Ida are homotopic. The converse 
statement is again obvious. 

This "string theory" definition of K~1(X), as well as its proper- 
ties described above, generalize to give the higher Grothendieck group 
K-1^) associated to any category C which is an abelian monoid. Our 
third and final definition of K-1^) is one that relates the "M-theory" 
and "string theory" definitions, thereby showing their precise equiva- 
lence. Going back again to the definition of K~1(X) as a subgroup of 
K(X x S1), we identify (E,a) with (Ea,EidE)^ where Ea is the vector 
bundle over S1 x X with total space [0,1] x E modulo the identification 
(0,T;) = (l,(x(v)) for all v G E. 

To relate K~1(X) = K(EX) to homotopy theory, we use the obser- 
vation stated after eq. (2.71) in section 2.7. It follows that there is a 
natural isomorphism 

K-l(X)=[x,U(oo)], (4.7) 

where U(oo) = UibU U(k) is the infinite unitary group. In particular, 
it is possible to show that 

K-^S71) = TT^! (Gr(fc, 2k] C)) ,     k > n, (4.8) 

where 

and where k > n defines the stable range for K"1^). 

4.2    Unstable 9-Branes in Type IIA String Theory 

To describe supersymmetric p-branes of the Type IIA theory as ele- 
ments of a K-theory group of the spacetime X, we have to resort to 
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looking at bound states of unstable 9-branes. If we relax the usual re- 
quirements that D-branes preserve half of the original supersymmetries 
and that they carry one unit of the corresponding RR charge, then 
Type IIA p-branes with p odd are allowed and in particular we have 
spacetime-filling 9-branes. These states are non-supersymmetric unsta- 
ble excitations in the superstring theory, as there is always a tachyon 
in the spectrum of open strings connecting a 9-brane to itself. Thus 
the 9-branes of Type IIA are highly unstable, and we expect that they 
should rapidly decay to the supersymmetric vacuum by tachyon con- 
densation on the spacetime-filling worldvolume (there are no RR fields 
in the corresponding Type IIA supergravity that would couple to any 
such conserved charges). But as before, the unstable D-brane config- 
urations can carry lower-dimensional D-brane charges, so that when 
the tachyon rolls down to the minimum of its potential and the state 
decays, it leaves behind a supersymmetric state that differs from the 
vacuum by a lower-dimensional D-brane charge, i.e., the state decays 
into a supersymmetric D-brane configuration and one can represent a 
supersymmetric D-brane state as the bound state of the original sys- 
tem of unstable branes. Note that a representation in terms of bound 
states of 8-branes and 8-branes is possible using the constructions of 
the previous section. However, such a construction is undesirable, as it 
breaks some of the manifest spacetime symmetries (in the choice of an 
8-brane worldvolume submanifold of X), and it limits the kinematics 
of branes that can be studied in this way. We shall therefore present 
a string theoretical construction that keeps all spacetime symmetries 
manifest. 

The D9-brane boundary state \D9}, as a coherent state in the Type 
IIA closed string Hilbert space, is of the form 

|£>9) = |D9, +>NS - |£>9, -)Ns, (4.10) 

where |J59,±)Ns are the two possible implementations of Neumann 
boundary conditions on all spacetime coordinates of X. Since 

(-l)ir^|I>9>±>R=|I>9,T>R, (4.11) 

no combination of the states |D9, ±)R is invariant under the Type IIA 
GSO projection operator j(l — (—1)

FL
)(1 + (—1)

FR
) and hence there is 

no RR component in the D9-brane boundary state. But this just means 
that there is no RR tadpole, and thus no spacetime anomalies related 
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to RR tadpoles can arise for the IIA 9-branes, i.e., unlike the Type IIB 
case, where the number of 9-branes must equal the number of 9-branes, 
there is no restriction on the number of Type IIA 9-branes. Moreover, 
the 9-branes carry no conserved charge, and there is no distinction 
between 9-branes and 9-branes in IIA. 

There is no GSO projection in the open string channel of the torus 
amplitude (D9|JD9) and therefore, in the NS sector, the open strings 
connecting a 9-brane to itself will contain both the [/(I) gauge field 
A^ that a supersymmetric D-brane would contain, and the tachyon 
field T which would be otherwise eliminated by the GSO projection 
for supersymmetric branes. Furthermore, in the Ramond sector of the 
open string both spacetime chiralities x, x' 0f the ground state spinors 
are retained. We can generalize this construction to the case of iV 
coincident 9-branes. Then the free open string spectrum of massless 
and tachyonic states gives rise to the following low-energy field content 
on the spacetime-filling world volume: a U(N) gauge field A^, a tachyon 
field T in the adjoint representation of U(N), and two chiral fermion 
fields x, xf of opposite spacetime chirality in the adjoint representation 
of U(N). This can be compared with the Type IIB case, where iV 
pairs of 9-branes and 9-branes give rise to a spectrum consisting of 
a U(N) x U(N) gauge field and a tachyon field in the bifundamental 
representation of U(N) x U(N). 

Note that the case N = 1 is "degenerate" and will be dealt with 
separately later on in section 4.4. Notice also that the field content 
on iV 9-branes of Type IIA superstring theory coincides with the ten- 
dimensional decomposition of an 11-dimensional system, with AM = 
(A^T) an 11-dimensional U(N) gauge field, and \I> = (x,x') a 32- 
component spinor field in the adjoint representation of U(N). This 
indicates a hidden 11-dimensional symmetry of the lowest lying open 
string states. It hints at a possible connection to M-theory which is in 
agreement with the properties of the K-group K"1^) described in the 
previous subsection. 

Consider the configurations of N 9-branes in Type IIA superstring 
theory up to possible creation and annihilation of 9-branes to and from 
the vacuum. An elementary 9-brane configuration is one which rapidly 
decays to the supersymmetric vacuum, and therefore does not contain 
any lower-dimensional D-brane charges. Any elementary configuration 
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of N' 9-branes wrapping the spacetime X gives rise to a U(Nf) bundle 
F, together with a [/(A/7) gauge field A on F and a tachyon field T in 
the adjoint representation of U(Nf). The presence or absence of lower 
D-brane charges is thereby measured by the tachyon condensate TQ. 

Thus, as before, we assume that a bundle E with tachyon field T can 
be deformed by processes involving only creation and annihilation of 
9-branes into a bundle isomorphic to E®F where F is the Chan-Paton 
bundle of an elementary 9-brane configuration. 

We therefore consider the set of equivalence classes of 9-branes with 
tachyon condensate, up to creation and annihilation of elementary 9- 
brane configurations to and from the vacuum. A 9-brane configuration 
thereby defines an element [(J5,a)] 6 K"1^) where E is the rank-TV 
Chan-Paton bundle carried by the system of N unstable Type IIA 9- 
branes. We will see in the following that the automorphism a is given 
by 

a = -exp(7riT), (4.12) 

and it acts by the natural adjoint action (conjugation) on E. Here T is 
the adjoint U(N) tachyon field on the 9-brane worldvolume. The possi- 
ble 9-brane configurations up to creation and annihilation of elementary 
9-branes are therefore classified by K"1(X). It is instructive to compare 
this to the situation in Type IIB, where K(X) = Z®K(X) and D-brane 
charges are classified by the reduced K-theory group K(X) with tadpole 
anomaly cancellation requiring that the number of 9-branes equals the 
number of 9-branes (here the integer in Z is in general the difference 
between the number of 9-branes and the number of 9-branes). In the 
Type IIA theory, we have K~1(X) = K"1^), with no tadpole restric- 
tion on the number of IIA 9-branes. Also, as previously computed, we 
have 

K(S2n)   =   Z,   K(S2n+1) = 0 

K-^S21*1)   =   Z,   K-^S2")  = 0. (4.13) 

This represents the fact that Type IIB contains supersymmetric p- 
branes for p odd, while Type IIA has supersymmetric p-branes for p 
even. Note that in this language, Bott periodicity is the statement that 
there are only two Type II superstring theories. 



944 K. OLSEN AND R.J. SZABO 

4.3    The Bound State Construction 

We shall now present an explicit bound state construction of p-branes 
with worldvolume Y of odd codimension in the spacetime X as bound 
states of unstable Type IIA 9-branes. This will show that K~1(X) in- 
deed does classify D-brane charges in Type IIA superstring theory. This 
bound state construction's simply the analog of the ABS construction, 
now mapping classes in K(Y) to classes in K~1(X) in K-theory. This 
shows that whatever can be done with stable lower-dimensional branes 
can be done with unstable 9-branes of the Type IIA theory. 

Consider a system of N unstable 9-branes. The gauge group is 
U(N) and the tachyon field lives in the adjoint representation N ® 
N of U{N) with tachyon potential V^T) = V(-T). If we assume 
that T condenses into one of its vacuum expectation values T = TQ, 

and that the negative energy density associated with the condensate 
cancels the positive energy density associated with the 9-brane tension, 
as in (3.13), then the system of 9-branes completely annihilates into the 
supersymmetric vacuum and is therefore an elementary configuration. 
In general, T has the tendency to roll down to the minimum of its 
potential V^T) and break part of the U(N) gauge symmetry. The 
precise symmetry breaking pattern depends on the structure of the 
eigenvalues of To, i.e., on the precise form of the tachyon potential. For 
example, consider the symmetric tachyon potential 

V(T) = -m2 tr T2 + A2 tr T4 + ... , (4.14) 

which is anticipated from the structure of the disc amplitudes at tree- 
level in open string perturbation theory. In this case, TQ = Tv •diag(±l, 
±1,... ,±1) after diagonalization. Corrections to (4.14) from world- 
sheets with more than one boundary give terms of the form 

5V(T) = \2[trT2]2 + --- . (4.15) 

It can be shown that if A2 > 0 and A2 > 0, then the minimum To of the 
tachyon potential still has only two distinct eigenvalues ±TV. 

We will henceforth assume that the 9-brane system under consider- 
ation has tachyon condensate To with the same number of positive and 
negative eigenvalues. The number of 9-branes is therefore 2JV, and the 
gauge group U(2N) is broken down to U(N) x U(N). The Type IIA 
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vacuum manifold is thus 

and it parametrizes the stable vortex-like configurations of the tachyon 
field. Away from the core of such a stable vortex (at \x\ —> oo), the 
tachyon field approaches its vacuum expectation values. This defines a 
map Sm —> ViiA(2iV), where the sphere Sm asymptotically surrounds 
the core of a stable vortex of codimension m + 1 in the spacetime X. 
Therefore, the stable tachyon vortices are parametrized by classes in 

K-(S»«)=,„(vIIA(2iV))={^ ™:£ + 1_       (4.17) 

From this we see that the Type IIA system exhibits stable bound states 
in odd codimension 2fc + 1. Note that the Type IIA vacuum manifold 
(4.16) of the tachyon field on the 9-branes is a finite-dimensional ap- 
proximation to the classifying space BU(oo) for complex vector bundles 
over X, 

We shall now explicitly construct the bound state tachyon vortices, 
which we will interpret as supersymmetric D(2p)-branes of the Type 
IIA theory. As before, K-theory selects a prefered natural value for the 
number 2Af of 9-branes used to build the bound state (and is the same 
number that would arise in a "stepwise" construction). Namely, bound 
states in codimension 2k+ 1 are most efficiently described by 2iV = 2k 

9-branes. Then the stable tachyon vortices are classified topologically 
by the homotopy groups 

^2k (^IA(2*))=Z. (4.18) 

Again we can explicitly construct the classical tachyon soliton field cor- 
responding to the generator of this homotopy group. The spacetime- 
filling worldvolume of 2k 9-branes supports a U(2k) Chan-Paton bundle, 
which we identify as the spinor bundle S of the group SO (2k + 1) of 
rotations in the transverse space whose spinor representation of dimen- 
sion 2k is irreducible. The tachyon field is then given by 

2k+l 

T(x) = YtTix
i, (4.19) 

i=l 
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where 1^ are the Dirac matrices of SO(2k + 1) and x1 are local coordi- 
nates in the transverse space. The tachyon field is a map T : S —>► S and 
it asymptotically takes values in the Type IIA vacuum manifold (4.16). 
This should be contrasted with the Type IIB case, where the tachyon 
field asymptotically took values in the IIB vacuum manifold (3.18), be- 
cause of the different structure of the Clifford algebra representations 
corresponding to the rotation groups SO (2k) and SO(2k + 1). 

In the present case we can go even further, and construct explicitly 
the non-trivial U(2k) gauge field configuration that lives on the 9-branes 
and must accompany the tachyon vortex above due to the finite energy 
conditions imposed on the system as a whole. There is a natural map 

*»_! (U(2k-1)) —► 7r2fc (H (2*)) , (4.20) 

defined by the transformation of tachyon generators 

2k 

TnB(x) = ^2rix
i   h->   TiIA(ar)=TiiB(a:) + a;2fc+1(73®I2*-i. (4.21) 

Here TIIB(X) is the IIB tachyon field, and it is constructed as the unbro- 
ken part of the non-trivial U(2k) gauge field. Decomposing the sphere as 
before as S2k = S^US^, with S2*"1 = S^nS^, gauge fields on S|* are 
topologically trivial and can be patched together to give a global gauge 
field, with the appropriate magnetic charge on S2k, using the transition 
function on the equator S2*"1. This large gauge transformation is just 
TIIBOE), and the unbroken long-ranged gauge field of U(2k~1) x U(2k~l) 
corresponds to that of a generalized magnetic monopole. 

Using T^ = |^|2, it is possible to show [62, 18] that the bundle 
automorphism (4.12) is actually the generator of the homotopy group 
^2k+i(U(2k))1 and that far away from the core of the vortex, TIIA(X) G 
VIIA(2

A;
). This induces the natural map 

tfa* (VIIA(2*)) —► 7r2k+l (U(2k)) , (4.22) 

defined by 

l IIA -*   a = - exp^TnA). (4.23) 

Thus the tachyon condensate represents the generator of the relative 
K-theory group K"1(B2A;+1,S2A!) = Z, and the above bound state con- 
struction is precisely the analog of the ABS construction, now mapping 
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classes in K(Y) <->• K-1^) for Y of odd codimension in the spacetime 
manifold X wrapped by the unstable 9-branes of the Type IIA theory. 
Again the precise embedding is given by the cup product (2.60) as 

A : K(Y) ®z K-^B2^1, S2*)-^^1^ x B2*+1, Y x S2k) 

[(E, F)] i—^ A [[(E ® S)ldE0a, (F ® c?)idF0a)] (4.24) 

toT[(E,F)]eK(Y). 

In this way we get a hierarchy of bound state constructions in IIA 
and IIB, represented by brane systems of increasing dimensions which 
support worldvolume gauge groups that form a natural hierarchy 

U(l) C [/(I) x £7(1) c U(2) C U{2) x C7(2) 

C U{4) C U(4) x [7(4) C ... .   (4.25) 

This property leads to the usual descent relations among D-branes [11, 
19]. In this hierarchy, the bound state construction in terms of pairs 
of stable branes alternates with the bound state construction in terms 
of unstable branes. It shows that a supersymmetric Dp-brane of Type 
II superstring theory can be constructed as the tachyonic kink in the 
worldvolume of an unstable D(p+l)-brane (see the next subsection), or 
alternatively as a bound state vortex in a (p + 2)-brane (p + 2)-brane 
pair, or yet as a bound state of two unstable (p + 3)-branes, and so 
on. This procedure continues until one reaches the spacetime filling 
dimension, thereby ending up with a construction in terms of 9-branes 
in which all spacetime symmetries are manifest. 

As a simple example, consider the case of codimension 2k + 1 = 3. 
The K-theory gauge group is then C/(2), acting on two unstable 9-branes 
whose Chan-Paton bundle in the 2 representation of U(2) is identified 
with the spinor bundle S of the rotation group 50(3) of the transverse 
space. Using standard Pauli spin matrices 0$ for the Dirac matrices of 
50(3) gives 

The tachyon field (4.26) represents a vortex of vorticity 1. The finite 
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energy condition ties it to the non-trivial U(2) gauge field 

x 
sinh Ix,, Er« xd 

r    = 1 %3     — 2 

6 

ib=l 

Up to the trivial lift from 5f7(2) to C/(2) gauge theory this is nothing but 
the 't Hooft-Polyakov magnetic monopole in 3 + 1 dimensions [64], with 
the convergence factor in (4.27) the usual BPS solution of the 't Hooft- 
Polyakov ansatz. This monopole represents a supersymmetric stable 
D(2p)-brane of Type IIA superstring theory as a bound state of two 
unstable D(2p + 3)-branes. Alternatively, the diagonal block in (4.26) 
represents the construction of one D(2p + 2)-brane and one D(2p + 2)- 
brane from a pair of D(2p + 3)-branes (see the next subsection), while 
the off-diagonal block represents a D(2p)-brane as the bound state of 
a D(2p+ 2)-brane-antibrane pair (c.f. eq. (3.25)). Again, this is an 
example of the descent relations in Type II superstring theory [11, 19]. 

4.4    Domain Walls in Type IIA String Theory 

The case of codimension 1 (i.e., k — 0) is "degenerate", as we shall 
now discuss. According to the general prescription, this represents a 
stable 8-brane (or 8-brane) of the Type IIA theory constructed as the 
tachyonic kink of 2k — 1 9-brane. The gauge group is [/(I) and the 
tachyon field is a real scalar field of charge 0 which is given by 

TW = ^5f (4-28) 

since there is now only one F-matrix which can be taken to be the 1x1 
identity matrix. Here x9 is the coordinate transverse to the core of the 
kink which represents a domain wall in spacetime. The sign in (4.28) 
distinguishes an 8-brane from an 8-brane and it corresponds to the sign 
of the difference T(—oo) — T(+oo) between the asymptotic values of the 
tachyon field on the two sides of the domain wall. Note that only one 
8-brane or 8-brane may be constructed from one 9-brane. In this case 
there is no symmetry breaking of the U{\) gauge group, and we are left 
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with a U(l) gauge theory and a tachyon field that can condense into 
either one of the two vacuum expectation values ±To. The relevant 
homotopy group of the vacuum manifold for one 9-brane is 

TTO (o(l))=7ro({±To})=Z25 (4.29) 

and so there is not enough room for the anticipated conserved 8-brane 
RR charge that should be classified by Z. Therefore, each individual 8- 
brane and 8-brane requires its own 9-brane, and so the smallest 9-brane 
system that would accommodate the full K-theory group K~1(S1) = Z 
of 8-brane charges has an infinite number of spacetime filling branes. 

More generally, if the tachyon potential is arranged so that the 
tachyon field on the worldvolume of iV 9-branes condenses into its vac- 
uum expectation value To with N—n positive eigenvalues and n negative 
eigenvalues, then 

To = Tv [  lY   \n  ) (4.30) 

and the U(N) gauge symmetry is broken to U(N — n) x U{n). As in 
the N = 1 case, for TV > 1 the tachyon field forms kinks of codimension 
1. Suppose that all eigenvalues of T correspond to a kink localized at 
a common domain wall Y of codimension 1 in X. Then locally near Y 
we can write the tachyon field as 

_      v^ ,9^2 
:I N-n 

r(*)=l Vi^o —^-i   I' (431) 

which describes N—n 8-branes and n 8-branes with coinciding worldvol- 
umes wrapping Y. More general configurations of separated 8-branes 
and 8-branes may be constructed by letting each eigenvalue vanish 
along separate submanifolds of codimension 1 in the spacetime X. 
Again one cannot represent more than JV 8-branes and 8-branes as 
a bound state of TV 9-branes, as one would have to do a K-theoretic 
"stabilization" by adding other 9-branes in order to keep the relevant 
homotopy groups in the stable range. 
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4.5    Application to Matrix Theory 

Consider N DO-branes in Type IIA superstring theory on R10 (or some 
compactification thereof). Each DO-brane can be represented as a 
bound state of 16 unstable spacetime-filling 9-branes, whose world- 
volume field theory contains a t/(16) gauge field, a tachyon field T in 
the adjoint representation of C/(16), and two chiral fermion fields XJX' 

of opposite spacetime chirality in the adjoint representation of C/(16). 
The tachyon field near the core of each stable point-like soliton can be 
represented as 

9 

TCaO^lV, (4.32) 

where 1^ are the Dirac matrices of the 50(9) group of rotations of 
the transverse space to the core of the vortex. This field generates the 
homotopy group 

*8(VIIA(16))=Z,     VnA(ie) = v{^l{sy (4.33) 

Moreover, the non-trivial long-ranged gauge field gives rise to a "mag- 
netic charge" of each DO-brane, in addition to the unit vorticity from 
T(x). 

The 16 9-branes live in the 16 representation of the C/(16) gauge 
group, which, in the background of the generalized magnetic monopole- 
vortex configuration representing the DO-brane, is identified with the 
spinor 16 representation of 50(9). (This generalizes the three-dimen- 
sional 't Hooft-Polyakov monopole, where the 3 representation of the 
577(2) gauge group is identified with the spinor representation of the 
space rotation group 50(3)). K-theory implies that the stable string- 
theoretical soliton carries one unit of DO-brane charge, and therefore 
represents a DO-brane as the bound state of 16 unstable 9-branes. K- 
theory also implies that the trivial topology of the DO-brane worldlines 
in M10 does not require "stabilization" of the configuration by adding 
extra 9-branes (this is true even in compactifications of M10). Thus 
in this bound state construction, we never need to assume that the 
worldline Y is connected, and the spinor bundle S in this case is actually 
trivial along y, and is thus extendable over X as the trivial bundle. 
In other words, we do not need to introduce a new set of 16 9-branes 
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for each additional DO-brane and therefore any system of iV DO-branes 
can be represented as bound states in a fixed system of 16 unstable 
spacetime-filling 9-branes. 

Thus given a multi-DO-brane state described in terms of just 16 
Type IIA 9-branes, we can follow this 9-brane configuration as we take 
the usual Sen-Seiberg scaling limit that defines Matrix theory [65]. Ma- 
trix theory can then be formulated as a theory of stable solitons on the 
spacetime-filling world volume of 16 unstable 9-branes. This interpre- 
tation of Matrix theory, in terms of vortices in a gauge theory with 
fixed gauge group, allows one to change the number iV of DO-branes 
in the system without changing the rank of the gauge group. In the 
conventional formulation of Matrix theory, whereby the large-TV limit 
requires relating theories with gauge groups of different ranks, it is very 
difficult to understand how systems with different values of N are re- 
lated (for instance by some renormalization group approach). But the 
K-theoretic construction of DO-branes as magnetic vortices keeps the 
gauge group fixed for arbitrary values of N. In summary, the dynamics 
of Matrix theory appears to be contained in the physics of magnetic 
vortices on the worldvolume of 16 unstable 9-branes, described at low 
energies by a U(16) gauge theory. 

5    Type I D-Branes and KO(X) 

Having used the Type II theories to become well-acquainted with the 
bound state constructions and the use of them to describe D-branes 
in terms of new solitonic objects, we shall now start considering more 
complicated superstring theories in which the K-theory formalism will 
make some unexpected predictions. In this section we shall deal with 
the Type I theory, and thereby make contact with the original construc- 
tions of non-BPS states in string theory. Type I superstrings are unori- 
ented and their supersymmetric vacuum configuration has gauge group 
50(32) which requires there to be always 32 spacetime filling branes 
in the vacuum state. The K-theory of the corresponding Chan-Paton 
gauge bundles therefore requires a refinement of what was described in 
section 2. It is precisely this difference that will lead to a much richer 
spectrum of D-brane charges in the Type I theory. 
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5.1    The Group KO(X) 

Consider a system of N 9-branes and M 9-branes in Type I superstring 
theory. Tadpole anomaly cancellation now requires that N — M = 32, 
and the branes support an SO(N) bundle E and the antibranes an 
SO{M) bundle F. Because of brane-antibrane creation and annihi- 
lation, we identify pairs of bundles (E, F) with {E 0 H, F © H) for 
any SO(K) bundle H. Pairs (E,F) with this equivalence relation de- 
fine the real K-group of the spacetime X, KO(X). By replacing F 
with F © J32, it follows that the configurations of tadpole anomaly 
cancelling 9-braiies and 9-branes are classified by the reduced real K- 
theory group KO(X). Furthermore, it follows from the bound state 
construction that D-brane configurations of Type I superstring theory 
are classified by KO(-X') with compact support [17]. 

Almost everything we said about K(X) carries through for real K- 
theory. The important change, however, is the relation to homotopy 
theory. Namely, for k > n — dimX (the stable range for KO(X)), we 
have 

KOpO= U, BO{k)V (5.1) 

where BO(k) = {Jm>k+n Gr(A;, m; E) is the classifying space for real 
vector bundles with structure group 0(k), and the real Grassmannian 
manifold is 

Gr(<;,m;R) = 0(m_0Wow,     m>k + n. (5.2) 

For X = Sn we now have that 

KO(Sn) = 7Tn (i30(A;)) = Tn-i (O(fc)),     k > n, (5.3) 

and this group classifies (9 — n)-brane charges in Type I string theory 
on flat R10. The stable homotopy of the orthogonal groups is much 
different than that of the unitary groups. For example, 

7ro(o(A;)) =   Z2, k > 1 

7ri(0(fc)) =   Z2, k>3 

(O(fc)) =0, k>4: 

(0(k)\ =    Z, k>5. (5.4) 

7r2 
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Note that the identification of 9-brane configurations with KO(X) does 
not really require brane-antibrane annihilation. This follows from the 
fact that as dimX = 10, 50(32) bundles on X are classified by 
7rn(50(32)) for n < 9. These homotopy groups always lie within the 
stable range, so that all £0(32) bundles on X are automatically clas- 
sified by KO(X). 

The Bott periodicity theorem now states that the homotopy groups 
of 0(oc) are periodic with period eight: 

nn(0(oo))=7rn+s(0(oo)), (5.5) 

and there are accordingly eight higher-degree KO-groups, defined by 
using suspensions as described in section 2.4, with 

KO"n(X) = K0"n~ V), (5.6) 

and as usual KQ-^X) = K0~n(X) 0 K0-n(pt). In particular, for 
X = Sn, we have that 

KO(Sn) = KO(Sn+8). (5.7) 

The periodicity (5.7) can be derived from the ABS construction for 
KO-theory. Let RO[Spin(n)] be the real representation ring of the spin 
group Spin(n), which is generated by the irreducible real representa- 
tions. Then following section 2.8, there is a natural homomorphism 

ip : RO [Spin(n)l —> KO(Bn, S71"1) (5.8) 

which descends to a graded ring isomorphism 

RO [Spin(n)] / i* RO [Spin(n + 1)] -A KO(Sn). (5.9) 

Using the periodicity property (2.83) of real Clifford algebras, eq. (5.7) 
is immediate. 

The isomorphism (5.9) can also be used to show how extra Z2- 
valued charges such as those in (5.4) appear in the D-brane spectrum 
of the Type I theory. For example, consider the case n = 1 in (5.9). 
Since CEi = C, the C^i-modules are just complex vector spaces, and 
the isomorphism RO[Spin(l)] -^ Z is generated by taking the complex 
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dimension. Similarly, since C4 = H, the C^-modules are quaternionic 
vector spaces and RO[Spin(2)] A Z comes from taking the quaternionic 
dimension. The map i* : RO[Spin(2)] -> RO[Spin(l)] is realized by re- 
garding a quaternionic vector space as a complex vector space under 
restriction of scalars. This is just the map Z —> Z given by multi- 
plication by 2, sincejhe complex dimension is twice the quaternionic 
one. This leads to KO(S1) = Z/2Z = Z2. Moreover, the generators of 
the right-hand side of (5.9) can be conveniently represented in terms 
of spinor modules and Clifford multiplication maps. For example, if 
S = S+ © <S" is the fundamental graded module for <Xim, then 

^m) = [S+,S-^} (5.10) 

is a generator of the group KO(S4m) = Z, where again fjbx : S+ —> S~ 
denotes Clifford multiplication by x e M4m. Using the Clifford module 
structure and the cup product we can again easily compute that 

*r=«)". vi?=(#)2.      (5.11) 
The new torsion KO-groups also modify various product relations that 
were described in section 2. For instance, the Kiinneth formula (2.39) 
need not hold in general for spheres, because KO(Sn) is not necessarily 
freely generated. Nevertheless, the analog of (2.35), for example, follows 
using (2.34) to get 

K6(X x S1) = KO"1^) © K6(X) © Z2. (5.12) 

5-2    The Bound State Construction 

We need only know the first eight KO-groups to determine the complete 
spectrum of (BPS and non-BPS) D-branes in Type I superstring theory. 
This spectrum may be found in table 4. The list contains the well- 
known stable BPS D9-branes, D5-branes and D-strings of the Type I 
theory (of integer-valued charges). The DO-brane is the Z2-charged D- 
particle, which is stable but non-BPS, originally discovered in [7]. The 
D8, D7 and D(-l)-branes are new predictions of K-theory [17] which 
imply that the spectrum of the Type I theory should contain new Z2- 
charged stable, but non-BPS, 8-branes, 7-branes and instantons. This 
new spectrum of the Type I theory has been computed in [39] using 
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D-brane D9 D8 D7 D6 D5 D4 D3 D2 Dl DO D(-l) 

Transverse 

space 
S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 sio 

KO(Sn) z z2 Z2 0 z 0 0 0 z Z2 Z2 

Table 4: Type I spectrum of D-branes from KO(Sn). 

the boundary state formalism, thus explicitly confirming the K-theory 
predictions. Since the D9, D5 and Dl branes all carry RR charge, they 
are described by boundary states of the form 

\Dp) = \Dp)m±\Dp)R,     P = l,5,9. (5.13) 

The other non-BPS D-branes do not carry any RR charge, and so have 
boundary states 

\Dp) = \Dp)m,     p =-1,0,7,8, (5.14) 

and they are their own antibranes. Note that the explicit boundary 
state descriptions of the non-BPS D-branes proves that all charges in 
table 4 are carried by spacetime defects onto which open strings can 
attach. 

The Type I theory can be considered as the orientifold projection 
of Type IIB superstring theory by the worldsheet parity operator Cl 
which reverses the orientation of the fundamental string worldsheet. 
The action of the orientifold group Ct on Chan-Paton bundles is anti- 
linear, i.e., E —>• E, where E = E* is the conjugate bundle defined 
by complex-conjugating the transition functions of E. Thus only real 
bundles survive the orientifold projection, leading to the KO-theory 
of real virtual bundles for Type I systems. For p = 1,5,9, the corre- 
sponding Type IIB RR charge is invariant under the ^-projection, i.e., 
Q\Dp)ji = |Z?P)R. The associated Type I bound state constructions 
are then just the orientifold projections of the Type IIB ones. One 
can describe the non-BPS branes in terms of bound states of a single 
BPS brane-antibrane pair of lowest possible dimension. For p = 0,8, 
there is no IIB RR charge, and the boundary state is automatically 
even under f2. The DO (respectively D8) brane are topologically sta- 
ble kinks in the tachyon field on the worldvolumes of Type I Dl-Dl 
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D-brane DO Dl D5 D7 D8 D9 

Gauge group Z2 Z2 USp(2) U(l) Z2 Z2 

Table 5: Worldvolume gauge groups of Type I D-branes. 

(respectively D9-D9) systems, with Z2-valued Wilson lines (c.f. sec- 
tion 4.4). For p = —1,7, Cl exchanges IIB p-branes with p-branes, 
i.e., fi|Z>p)R = —\Dp)ji, so that the p-brane-antibrane configuration is 
fi-invariant. Thus the Type I D(—1) (respectively D7) brane is the ori- 
entifold projection of the D(-l)-D(—1) (respectively D7-D7) system in 
IIB. In these latter two cases, we may write the corresponding Type I 
boundary states in terms of those of the IIB theory as 

|Z?p>i - \Dp)llB + \Dp)nB = |i?p>NS,     P = -1,7. (5.15) 

One may then show that the Type IIB tachyon present in the unstable 
p — p state is eliminated by the f2 orientifold projection [39], leading 
to a stable solitonic state. From these bound state constructions one 
may also immediately deduce the worldvolume field theories of the non- 
BPS D-branes, and in particular the worldvolume gauge groups listed 
in table 5, as we will demonstrate explicitly in the following. In the 
remainder of this section we shall describe some aspects of the D-brane 
spectrum of Type I superstring theory using its KO-theory structure. 
We will consider each type of soliton separately and discuss the features 
unique to each dimensionality. 

5.3    Type I D-Instantons 

The perturbative symmetry group of the Type I superstring should 
really be considered as 0(32), rather than 50(32), because orthog- 
onal transformations O with detO = — 1 are symmetries of Type I 
perturbation theory, i.e., the central element —1 of 0(32) acts triv- 
ially on the perturbative spectrum, so that the corresponding symme- 
try group is 0(32)/Z2. This fact makes a connection with how the 
perturbative gauge group of the Type I superstring appears, which is 
locally isomorphic to 50(32). However, 5-duality with the 50(32) 
heterotic string implies that transformations O of determinant —1 are 
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actually not symmetries. This then implies that there must exist some 
non-perturbative effect that breaks the group 0(32) to its connected 
subgroup 50(32), and this is precisely the Z2-charged gauge instan- 
ton associated with 7^(50(32)) = Z2. This is proven in [17] using 
index-theoretical arguments, namely the fact that a non-trivial bun- 
dle on the sphere S10 is characterized by having an odd number of 
fermionic zero modes of the corresponding chiral Dirac operator (the 
relationship between index theory and K-theory will be discussed in sec- 
tion 7.4). The Type I D-instanton comes from a bound state of Type 
IIB 9-brane-antibrane pairs with Chan-Paton bundles (<S+,<S~), while 
the anti-D-instanton has gauge bundles (<S~,<S+). Here S± are the 
usual 16-dimensional complex chiral spinor representations of 50(10). 
The orientifold projection acts by complex conjugation, so it reverses 
the chiralities <S+ «-> <S~ (equivalently the 9-branes and 9-branes) and 
thereby identifies the instanton and anti-instanton in the Type I the- 
ory. For Type I superstrings and KO-theory, the gauge bundles must 
be real, and so we take the Type I 9-brane Chan-Paton bundles to 
transform as the spinor module S = S+ © S~ which, by regarding 
complex representation vector spaces as real ones under restriction of 
the scalars, becomes the unique irreducible, real 32-dimensional spinor 
representation of 50(32). The (—l)-brane is therefore described by 32 
9 — 9 brane pairs with Chan-Paton bundles (5, S) and a tachyon field 
T(*) = x\r^\ 

5.4    Type I D-Particles 

An element of KO(E9) (or KO(S9)) is described by a pair of trivial 
SO(N) bundles (E, F) over R9 with a bundle map T : E -> F that is 
an isomorphism near infinity and such that the rotation group 50(9) 
acts on the fibers of E and F in the spinor representation. For KO- 
theory, we must use real spinor representations, and for 50(9) there 
is a unique such irreducible representation S of dimension 16. Thus E 
and F have rank 16 and transform under 50(9) rotations like 5. The 
tachyon field is then given by (4.32). 

We can compare this K-theoretical construction to the original con- 
struction of the Type I D-particle in [9]. For this, we make an 8 + 1 
dimensional split of the coordinates and F-matrices. Pick an 50(8) sub- 
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group of 50(9), and let x = (xa, x9) under this split, with a = 1,... ,8. 
The spinor representation <S of 50(9) breaks up under this split into 
50(8) as S = S+ © 5~, with S± the real eight-dimensional chiral 
spinor representations of 50(8). Write the 50(8) Dirac matrices as 
ra : S' -> S+ and (ra)T : S+ -> 5". It then follows from (4.32) that 
the tachyon field decomposes as (see (4.21)) 

V   

Changing the basis of Chan-Paton factors on the 9-branes by the matrix 

leads to 

T(x)   --►   (a, ® I16) T(x) (a, ® I16) = ( ^Jj^   ^^ xa ) • 

(5.18) 

The diagonal blocks here represent two decoupled systems each con- 
taining eight 9 — 9 pairs. The first set of eight 9 — 9 pairs has tachyon 
field 

8 

Ts(x
a) = J2^aXa, (5.19) 

a=l 

and the second one has (TS)
T. But Ts describes a D-string located at 

xl = ... = xs = 0 (see section 5.6 below), and, since (TS)
T is made 

from Ts by exchanging 9-branes with 9-branes, the tachyon field (TS)
T 

describes an anti-D-string located at x1 = ... = x8 = 0. This is 
just the construction in [7] of the Type I D-particle from a coincident 
D-string and anti-D-string. The off-diagonal blocks correspond to a 
codimension one tachyon field which connects the D-string and anti- 
D-string and is odd under the reflection x9 -» — x9. This is precisely 
the solitonic configuration of the Dl-Dl tachyon field constructed in 
[9]. Thus, the K-theory formalism can also be used to produce string 
theoretical constructions of non-BPS states. 

The spinor quantum numbers carried by the D-particle also appear 
naturally in this framework. As shown in [9], the Type I O-brane trans- 
forms in the spinor representation of 50(32), which agrees with the 
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fact that the non-perturbative gauge group of the Type I superstring is 
really the spin cover Spin(32)/Z2 of SO(32). In the above construction 
this can be seen from the fact that the 9-brane Chan-Paton factors 
produce an SO(32) vector of fermionic zero modes, whose quantization 
gives a spinor representation of 50(32) (again one uses the index the- 
oretical fact that a non-trivial 50(32) bundle on S9 is characterized 
by having an odd number of fermionic zero modes of the corresponding 
Dirac operator) [17]. Furthermore, given N coincident Type I O-branes, 
the tachyon vertex operators have the form (in the zero-picture) 

V^A) = ip eikoX0^ ® A, (5.20) 

where A is an N x JV matrix which acts on the Chan-Paton factors 
and xf; is a worldsheet fermion field. The ft projection maps A —> AT. 
Thus, if AT = —A, then V(A) is odd under Q and the tachyon state 
survives the fi-projection. An antisymmetric matrix A always has an 
even number of non-zero eigenvalues, such that each pair describes the 
flow toward annihilation of a pair of O-branes. This means that the 
D-particlejiumber is conserved only modulo 2, in agreement with the 
fact that KO(S9) = Z2. A similar argument applies to the Type I 
D-instantons. 

5.5    Domain Walls in Type I String Theory 

The Type I D8-brane is described by KCKS1) = 7ro(0(32)) = Z2, which 
is represented via trivial bundles E, F —> E1 and a tachyon field T : 
E -> F that is invertible at infinity. As in section 4.4, the 8-brane is a 
domain wall, located at x9 = 0, and constructed from a single 9 — 9 pair 
with a tachyon field (4.28) that is positive on one side and negative on 
the other side of the wall. In contrast to the situation of section 4.4, 
however, the Z2-valued charges that arise here from the bound state 
construction are very natural. One way to see this is by appealing to 
the Bott periodicity map (5.7) which may be described as follows. Take 
[(EO.FQ)] e KO(Sn) with tachyon map To : EQ -> FQ, and construct 
[(E,F)] G KO(Sn+8) by setting 

E = £0 ® (s+ e <?""),     F = F0 ® (S+ 0 5"), (5.21) 

where S± are the chiral spinor representations of SO (8) with Dirac 
matrices ra : S~ -> <S+.  Let xa denote the last eight coordinates of 
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Rn+8. The tachyon field is then given as before by the cup product: 

T(x)-( T00116 Id®£araa;0\ pjoox 

For example, setting n = 1 we obtain the tachyon field (5.16) with 
the diagonal matrix representing 16 8-branes and 8-branes and the off- 
diagonal ones corresponding to the bound state construction of a D- 
particle in terms of the 8 —8 brane pairs. So the relation (5.16) between 
the 8-brane and the 0-brane is a typical example of the Bott periodicity 
map in Type I superstring theory. 

Alternatively, the Bott periodicity isomorphism (5.6) of KO-groups 

comes from taking the cup product of an element of KO (X) with 
the generator [AfR] - [Is] of KO(S8) = Z, where A/k is the rank 7 
Hopf bundle over the real projective space RP8 associated with the 
real Hopf fibration S15 —> S8. This shows that the construction of a p- 
brane in terms of p+8-p + 8 brane pairs in Type I superstring theory is 
determined by a D-string solitonic configuration which gives an explicit 
physical realization of the Spin(8) instanton. The corresponding eight- 
dimensional non-trivial gauge connections, and the associated spinor 
structures, may be found in [66]. This identifies the explicit form of the 
worldvolume gauge fields living on the p + 8-p + 8 brane pair, required 
to ensure that the tachyon field is covariantly constant near infinity and 
hence to produce the finite energy solitonic p-brane configuration, as 
[66] 

*-(*) = 0,        ^(a;) = -2»^r0-(1+
aj,a;|2)2> (5.23) 

where F^- are the generators of Spin(8). These gauge field configura- 
tions are Spin(9) symmetric (thereby preserving the manifest spacetime 
symmetries) and carry unit topological charge. Similar arguments ap- 
ply to the non-BPS D7-brane. 

5.6    Type I D-Strings 

We will now exhibit the Type I D-string as a bound state of 9-branes 
and 9-branes, located at x1 — ... = rr8 = 0 in M10 with worldvolume 
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coordinates (x0, x9). The group of rotations keeping the D-string world- 
sheet fixed is SO(8), which rotates the vector x = (a;1,... ,x8). The 
two spinor representations <S± of SO(8) are both eight-dimensional, 
with Dirac matrices ra : S+ —> S~. Thus we consider a configuration 
of eight 9-branes and eight 9-branes with trivial gauge bundles, but 
with the rotation group SO (8) acting on the Chan-Paton bundles with 
the rank eight bundle of the 9-branes transforming as S+ and of the 
9-branes as S~. The tachyon field is then given by (5.19) and the map 
x H-* X^a^a^VM is th6 generator of 7r7(SO(8)) = Z. As in section 
4.5, there are no global obstructions that occur in this bound state 
construction, since the Type I spacetime X is a spin-manifold and so is 
the orientable two-dimensional D-string worldsheet (a global version of 
the bound state construction will be presented in section 7.3). There 
is also no need to assume in the above construction that the D-string 
worldvolume is connected. This implies that any collection of (disjoint) 
D-strings can be represented by a configuration of eight 9 — 9 pairs and 
there is no need to introduce eight more pairs for every D-string. This 
is in contrast to the Type IIB case, where the spacetime X need not 
admit a spin structure and in general one would have to carry out a 
K-theoretic stabilization by adding extra 9 — 9 pairs. 

It is interesting to examine some of the gauge solitons we have 
described above in light of the S-duality between the Type I theory 
and Spin(32)/Z2 heterotic string theory. The Type I D-instanton, D- 
particle and D-string are all manifest in heterotic string perturbation 
theory. The D-string is equivalent to the perturbative heterotic string 
[4], so that the second quantized Fock space of perturbative heterotic 
strings can be described completely by configurations of eight 9 — 9 
brane pairs. (Note that similar conclusions as those of section 4.5 can 
also be reached for heterotic Matrix string theory.) The D-particle is 
a gauge soliton in the spinor representation of SO(32), just like some 
of the particles in the elementary heterotic string spectrum. Finally, 
the D-instanton gives a mechanism that breaks the disconnected com- 
ponent of 0(32), and this symmetry breaking is manifest in heterotic 
string perturbation theory. Thus, from the point of view of the het- 
erotic string, these three non-perturbative objects can be continuously 
connected to ordinary perturbative objects. We note also that all of 
the above bound state constructions, like those of the previous sec- 
tions, preserve the manifest symmetries of the transverse spaces to the 
D-branes.   Moreover, the extra 32 9-branes which must be added for 
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anomaly cancellation yields an 50(32) gauge symmetry that plays no 
role in the above constructions. The bound state construction uses ex- 
tra brane-antibrane pairs to enlarge the gauge group, so that 50(32) 
invariance is manifest. 

5.7    Type I D5-Branes and the Group KSp(X) 

The group KSp(X) classifies Type I D-branes which are quantized using 
symplectic gauge bundles. The appearance of symplectic gauge sym- 
metry can be understood from the analysis of [67] (see also [37]) where 
the requirement of closure of the worldsheet operator product expan- 
sion was shown to put stringent restrictions on the actions of discrete 
gauge symmetries on Chan-Paton bundles. In particular, the square of 
the worldsheet parity operator Q acts on Chan-Paton indices as 

tf :  \Dp;ab) >-> £ (^ \Dp;a'b') fef = (i^/2 \Dp;ab) 

(5.24) 

where a, b are the open string endpoint Chan-Paton labels of a Dp-brane 
state of the IIB theory, and 7^ denotes the adjoint representation of 
the orientifold group in the Chan-Paton gauge group. While the 9- 
branes have the standard orthogonal subgroup projection (as required 
by tadpole anomaly cancellation), eq. (5.24) shows that fi2 = — 1 
when acting on, for example, 5-branes (and also on the corresponding 
tachyon vertex operators [17]). The 5-branes must therefore be quan- 
tized using pseudo-real gauge bundles, i.e., Chan-Paton bundles with 
structure group Sp(2N) on the 9-branes and 9-branes. An alternative 
explanation [17] uses the fact that a Type I 5-brane is equivalent to 
an instanton on the spacetime filling 9-branes that occupy the vacuum 
[68]. The tachyon field breaks the 50 (47V) x SO (AN) gauge symmetry 
of the 9-9 brane configuration to the diagonal subgroup 50(4iV)diag, 
which is then further broken down to Sp(2N) by the instanton field. 
(Note that for a configuration of unit 5-brane number one needs at least 
4^ = 4 spacetime filling brane-antibrane pairs). Notice that eq. (5.24) 
also explains the standard spectrum of stable BPS D-branes in the Type 
I theory, as well as the world volume gauge groups listed in table 5. 
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D-brane D9 D8 D7 D6 D5 D4 D3 D2 Dl DO D(-l) 

Transverse 

space 
S0 S1 S2 S3 S4 S5 S6 S7 S8 s9 

sio 

KSp(Sn) z 0 0 0 z Z2 Z2 0 z 0 0 

Table 6:  D-brane spectrum in Type I string theory with symplectic 
gauge bundles. 

For KSp(X) the connection with homotopy theory is given by 

KSi>(Sn) = TTn-i (Sp(fc)),     k > n/4, (5.25) 

where k > n/4 defines the stable range for KSp(X). As previously, 

KSi)(Sri) = 7rn.1(Sp(oo))5 (5.26) 

where Sp (00) = \Jk Sp(k) is the infinite symplectic group. In this case 
Bott periodicity takes the special form 

7rn(Sp(oo)) = 7^+4(0 (00) J, 

so that 

KSp(Sri) = KO(Sri+4) 

(5.27) 

(5.28) 

Thus, any calculation in symplectic K-theory can be reduced to one in 
real K-theory. The complete spectrum of corresponding brane charges 
can be found in table 6, which shows that while the spectrum of super- 
symmetric D-branes remains unchanged, that of the stable non-BPS 
states differs from before. The isomorphism (5.28) comes from tak- 
ing the cup product with the class of the rank 2 instanton bundle Afm 
associated with the pseudo-real Hopf fibration S7 -» S4, i.e., the holo- 
morphic vector bundle of rank 2 over CP3 [55]. Thus the relationships 
between a BPS p-brane and a BPS p + 4-brane is a 5-brane soliton 
which may be identified with an SU(2) Yang-Mills instanton field. For 
example, consider a Type I D-string in the worldvolume of a 5 — 5 brane 
pair [7]. The worldvolume gauge symmetry is 50(4) = 577(2) x SU(2) 
and the tachyon field transforms in its 2 ® 2 representation. The fi- 
projection identifies the vacuum manifold of the 5-brane configuration 
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as 5(7(2) = Sp(l). The topological stability of the D-string is guar- 
anteed by the homotopy group 7^(5(7(2)) = Z. A finite energy, static 
string-like solution in the corresponding 5+1 dimensional world volume 
field theory is possible when one imposes the following asymptotic forms 
on the fields (analogously to (5.23)): 

T~TVU,     A-~0,     A+^idUU-1. (5.29) 

Here U is an SU(2) matrix-valued function corresponding to the iden- 
tity map (of unit winding number) from the asymptotic boundary S3, 
of the string-like configuration in five dimensions, to the SU(2) group 
manifold S3. Then the string soliton carries 1 unit of instanton number 
(living on the 5-brane) which is known to be a source of D-string charge 
in Type I string theory [23, 68]. Further applications of the K-theory 
of symplectic gauge bundles will be discussed in section 6. 

5.8    Relationships between Type I and Type II Su- 
perstring Theory 

The K-theory formalism has given us many different relations between 
D-branes in a given superstring theory. It turns out that it also provides 
new relationships between the Type I and Type II theories, which we 
shall now proceed to briefly describe. Let us first note that the codimen- 
sion 1 cases described in sections 4.4 and 5.5 are actually realizations 
of the elementary Hopf fibration S1 —>• S1 with discrete fiber Z2 [55]. 
An example of the construction of a Type I non-BPS brane as a kink 
of brane-antibrane pairs is of course the original construction [9] of the 
Type I D-particle from a D-string anti-D-string pair. The double cover 
of S1 corresponds to the pair of branes, and the winding number of the 
tachyon field is labelled by the homotopy group (4.29) of the fiber cor- 
responding to the discrete gauge transformation T -> —T (so that the 
D-string carries a Z2-valued Wilson line). The cup product with the 
generator LJ of KO(B1,S0) = Z2 then achieves the desired ABS map- 
ping of Z2-valued KO-theory classes on KO(y) -> KO(F x B1, Y x S0). 

Generally, the Hopf fibration 
gn-l    ^   S2n-1    _^   Sn ^ ^ 

is non-trivial only forn = 1,2,4,8 when its fiber S71"1 is a parallelizable 
sphere [51, 53]. This topological fact is related to the algebraic property 
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that there are only four normed division algebras over the field of real 
numbers, corresponding respectively to the reals, the complex numbers, 
the quaternions and the octonions (or Cayley numbers). In that case, 
the classifying map of the fibration, which determines the corresponding 
topological soliton field, is determined by the principal Spin(n) bundle 
(2.103) and is a generator of 

*„_! (Spin(n)) / TTn-x (Spin(n - 1))   = j ^2'       "^48      (5'31) 

As we have seen, the four Hopf fibrations determine all the fundamen- 
tal bound state constructions of D-branes in Type I and Type II su- 
perstring theory, and hence the complete spectrum of D-brane charges 
in these theories rests on the fact that there are only four such fibra- 
tions. For n 7^ 1, the topological charge of the corresponding soliton 
is given by the Pontryagin number density which is proportional to 
tr(Fn/2), where F is the curvature of the associated topologically non- 
trivial gauge field configuration. For n = 1 the charge is determined 
by a Z2-valued Wilson line, as in [7]. This feature determines string 
solitons in terms of magnetic monopoles in the Type II theories, while 
in the Type I theories we obtain non-BPS branes as kinks, BPS branes 
as SU(2) instantons, and both BPS and non-BPS branes as Spin(8) 
instantons. This topological property realizes all D-branes in terms 
of more conventional solitons, and it moreover determines the explicit 
forms of the non-trivial gauge fields living on the brane worldvolumes. 
Therefore, all fundamental D-brane constructions, and hence the com- 
plete spectrum of D-brane charges in Type I and Type II superstring 
theory, are quite naturally determined by the four non-trivial Hopf fi- 
brations [19] which thereby provide a non-trivial link between the two 
types of string theories. 

Some further connections can be deduced from the relationships 
that exist between the different types of K-theories. Given a complex 
vector bundle E, the correspondence E »->- E induces an involution on 
the group K(X). Furthermore, the realification and complexification 
functors r and c on the categories of real and complex vector bundles 
induce homomorphisms of the corresponding K-groups. The first one 
associates to each complex vector bundle its underlying real vector bun- 
dle, while the second one associates to each real vector bundle E the 
complex vector bundle E ®R C = E 0 E. Then there are the natural 
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homomorphisms between the K-groups of the Type I and Type IIB 
theories 

K(X) A KO(X) A K(X). (5.32) 

Note that the composition r* o c* is multiplication by 2, while (c* o 
r*)([E]) = [E © E]. For example, consider the generator of K(S4) = 
Z, which is the pseudo-real SU(2) instanton bundle described above. 
To realize it as a generator of KO(S4) = Z, which labels Type I 5- 
brane charge, it must be embedded in the orthogonal structure group 
as 50(4) = SU(2) x 577(2) to make it real. The embedding in 50(4) 
doubles the charge, since the natural map in (5.32) from KO(S4) to 
K(S4) is multiplication by 2, and so the RR charge of a Type I 5-brane 
is twice that of a Type IIB 5-brane. These facts may be viewed as 
special instances of the natural periodicity isomorphisms [51] 

KO-n(X, Y) ®z Z [I] = KO-n-*(X, Y) ®z Z [i] , (5.33) 

K-n(X, Y) <g>z Z [I] - (KO-n(X, Y) 0 KO-n-2(X, Y)) ®z Z [1] , 

which can be proven using the cup product with the class of the 517(2) 
instanton bundle. More generally, the Type I and Type II theories are 
related by the exact sequence 

K0-»-i(x,y) A K-^iX.Y) ^1 KO-n+1(X,F) 

-^ KO-n(X, Y) A K-n(X, Y)   (5.34) 

where /? : K"71"1^, Y) -* K-n+1(X, Y) is the Bott periodicity isomor- 
phism. 

6    D-Branes on Orbifolds and Orientifolds 

In this section we will analyze the properties of D-branes in orbifolds 
and orientifolds of the Type II and Type I theories. As we shall see, 
the natural K-theoretic arena for this classification is equivariant K- 
theory which takes into account of a group action on the spacetime. 
Equivariant K-theory is of enormous interest in mathematics because it 
merges cohomology with group representation theory. It is therefore of 
central importance to both topology and group theory. In the following 
we will see that it also leads to some non-trivial aspects of the D-brane 
spectrum in these theories. 
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6.1    Equivariant K-Theory 

Consider Type IIB superstring theory on an orbifold X/G, where G is 
a finite group of symmetries of X. In this subsection we will show that 
D-branes on X/G are classified by the so-called G-equivariant K-theory 
group of X [69]. This group is defined as follows. Let X be a smooth 
manifold and G a group acting on X (in general G is either a finite 
group or a compact Lie group). In this situation we say that X is a 
G-manifold and write the G-action G x X —>• X as (#, x) H-> g • x. A 
G-map f : X —> Y between two G-manifolds is a smooth map which 
commutes with the action of G on X and Y: 

f(9-x)=g-f(x). (6.1) 

In other words, / is G-equivariant. A G-bundle EQ —>• X is a principal 
fiber bundle E —>> X with i? a G-manifold and canonical fiber projection 
TT which is a G-map, i.e., 7r(# • v) = g - 7r(v), for all v G E, g G 
G. A G-isomorphism EQ —> FG between G-bundles over X is a map 
which is both a bundle isomorphism and a G-map. These conditions 
define the category of G-equivariant bundles over the G-space X. The 
corresponding Grothendieck group is called the G-equivariant K-theory 
KG{X), i.e., KG(X) consists of pairs of bundles (E,F) with G-action, 
modulo the equivalence relation (E, F) ~ (E © H, F © H) for any 
G-bundle H over X. 

D-brane configurations on X/G are understood as G-invariant con- 
figurations of D-branes on X [37], i.e., the orbifold spacetime is regarded 
as a G-space. We assume that X is endowed with an orientation and 
a spin structure, both of which are preserved by G. Given a D-brane 
configuration, i.e., a virtual bundle [(£?, F)], we can assume that G acts 
on (F, F), since the gauge bundles can be constructed in a completely 
G-invariant way. In tachyon condensation, we assume that a pair of 
bundles (#, H) can be created and annihilated only if G acts on both 
copies of H in the same way (otherwise the requisite tachyon field would 
not be G-invariant). Thus, we conclude that for Type IIB superstrings 
on an orbifold X/G, D-brane charge takes values in KG(X). For Type 
IIA one similarly has KQ

1
(X) and for Type I we get KOG(X) (here 

K^X) = KG(EX) = KdS1 A X) with G acting trivially on the S1). 

Let Vj denote the irreducible, finite-dimensional complex represen- 
tation vector spaces of the group G. As in section 2.8, the isomorphism 
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classes [Vj] of the additive category of G-modules with respect to the 
direct sum of vector spaces, i.e., with [V/]+[Vj] = [V/©Vj], generates an 
abelian monoid. The corresponding Grothendieck group R(G) is called 
the representation ring of the group G. According to the description 
of section 2.1, each element of R(G) can be expressed as a formal dif- 
ference [Vj] — [Vj], where [V/] and [Vj] are equivalence classes of finite- 
dimensional representations of G. Thus we have [Vj] — [Vj] = [V/] — [Vj] 
if and only if V/ 0 Vj is unitarily equivalent to V/ © Vj. As always, the 
tensor product of vector spaces Vj ® Vj induces a commutative ring 
structure on R(Gf). For example, let G = S1 and let ym denote the 
one-dimensional representation defined by 

(pm(<T)z = eim"z,     zeS\ (6.2) 

with a e R Then it is easy to see that the representation ring of the 
compact group S1 = [/(I) is the ring of formal Laurent polynomials in 
the variable y: 

R(S1) = Z[i/,y-1]. (6.3) 

The representation ring of the cyclic subgroup Zn C S1 is the direct 
sum of n integer groups: 

R(Zn) - Z** (6.4) 

while the representation ring of the torus group Tn = U(l)n is the ring 
of formal Laurent polynomials in n variables yi,... , Vn Jn> 

R(Tn) - Z [yx, y2,... , yn, (jfcjfe • • • y,)"1] • (6-5) 

Generally, for any simply connected Lie group G, R(G) is a polynomial 
ring over Z with rank(G) generators [70]. 

A more familiar description of R(G) is in terms of the space of 
characters of the group G. The isomorphism class of the G-module Vj 
is completely determined by its character map Xvi : G —>- C defined by 
Xvjid) = tivjig)- Since the characters enjoy the properties XVjQVj = 
Xvj + Xvj, Xv^Vj = XVJXVJ, and XvAhgh'1) = XvAg), it follows that 
the map Vj i-> xvj identifies R(G) as a subring of the ring of G-invariant 
complex-valued functions on G. We shall see that the representation 
ring correctly incorporates the structure of the mirror brane charges 
induced by the action of G on X. 
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If G acts trivially on the spacetime X then 

KG(X) = K(X)®R(G), (6.6) 

where K(X) is the ordinary K-group of X. This follows from the fact 
that, for trivial G-actions, a G-bundle E may be decomposed as 

E S (-[-) Hom^, E) ® £?/, (6.7) 

where £/ = X x Vj is the trivial bundle over X with fiber V/. More 
generally, for any compact G-space X, the collapsing map X —» pt 
gives rise to an R(Gf)-module structure on K*(X), such that R(Gf) is 
the coefficient ring in equivariant K-theory (rather than simply Z as in 
the ordinary case). The K^-functor enjoys most of the properties of 
the ordinary K-functor that we described in the previous sections. In 
addition, K^ is functorial with respect to group homomorphisms. In 
this sense, KG(X) is a generalization of the two important classification 
groups K(X) and R(G), so that equivariant K-theory unifies K-theory 
and group representation theory. In fact, the trivial space X — pt gives 
KG(X) = R(G) while the trivial group G = Id gives KG(X) = K(X). 
A useful "excision type" computational feature is that if if is a closed 
subgroup of G, then for any iJ-space X, the inclusion i : H <-> G 
induces an isomorphism i* : KG(G xH X) —> KH(X). 

If the group G acts freely on X (i.e., without fixed points), then 
X/G is also a topological space and its G-equivariant K-theory is just 

KG{X) = K(X/G). (6.8) 

However, in general X/G is not a topological space (let alone a smooth 
manifold) and the G-equivariant cohomology is far more intricate. 
Then, a useful theorem for computing equivariant K-theory is the six- 
term exact sequence that was introduced in section 2.6: 

(6.9) 

where Y is a closed G-subspace of a locally compact^ G-space X, and 
the relative K-theory is defined by Kcn{X,Y) = K^iX/Y) (when 

K^(X,Y)   - ->   K^W   - -^   KG on 

a* t ±3* 

KG(Y)      ^ -     KG(X)     4- -   KG(X,Y) 
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the quotient space makes sense). The advantage of using this exact 
sequence is that one may take Y to be the fixed point set of the group 
action on X, such that the quotient space X/Y has a free G-action 
on it and its equivariant cohomology can be computed as the ordinary 
cohomology of its quotient by G, as in (6.8). 

From now on, we will assume that G is a finite discrete group of 
symmetries of the spacetime manifold X. Away from any orbifold sin- 
gularities of X/G, D-brane charge is classified according to (6.6) which 
yields the usual Type II spectrum, taking into account the mirror im- 
ages connected by the G-action. Therefore, we want to understand how 
brane-antibrane pairs behave at the singular points. For this we need 
to know how the orbifold projection is realized on the Chan-Paton fac- 
tors. From the general theory of D-branes in orbifold singularities it is 
known [67, 37] that the action of G on Chan-Paton indices is given by 

p.Af(A) = Af(7pA)J (6.10) 

where A is the Chan-Paton factor of a field X and jg is the represen- 
tation of g e G in the Chan-Paton gauge group. (An example is the 
action of the GSO projection that we described at the end of section 
3.1). In particular, like a vector potential Ai(x), the tachyon field trans- 
forms in the adjoint representation under the G-orbifold projection, i.e., 
it is G-equivariant: 

g:      T(x)    —►   jgTig-^x)^,)-1. (6.11) 

In this way, the tachyon field can be thought of as either a G-bundle 
map T : EG -> FG, or equivalently as a G-section of the G-bundle 
{E®F*)G. 

In considering brane charges in terms of 9 — 9 brane pairs on orb- 
ifold singularities, considerations similar to earlier ones apply, but now 
including the mirror images induced under the action of G, i.e., at an 
orbifold singularity, each brane pair has |G| mirror pairs. The gauge 
fields from the vector multiplet of the worldvolume spectrum in X/G 
define a connection Ai(x) of the corresponding Chan-Paton bundle. 
The GSO projection cancels tachyonic degrees of freedom leaving only 
the quiver structure of vector multiplets and hypermultiplets [37]. How- 
ever, when coincident branes and antibranes wrap a submanifold Y/G 
of the orbifold spacetime, the tachyon field is still preserved by the 
GSO projection and the massless vector multiplet is projected out, i.e., 
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the G-action commutes with the GSO projection. The worldvolume 
field theory of TV branes wrapped on Y C X is described via Chan- 
Paton bundles E over Y with structure groups YlIU(Nni), where n/ 
is the dimension of the I-th regular representation of G. The vacuum 
configuration at infinity is re-expressed now in a G-equivariant way in 
terms of the characters of G. Then the resulting G-invariant vacuum 
may be reached by tachyon condensation, provided that (6.11) holds. 
The bound state construction may now be carried out just as before. 
Some explicit constructions of D-branes on orbifolds using equivariant 
K-theory may be found in [28]. 

However, it turns out that for sufficiently "regular" orbifolds, equiv- 
ariant K-theory does not really provide new information or new states 
that are not already described according to ordinary cohomology theory 
or K-theory [29]. For instance, equivariant Bott periodicity KG(S

P+2
) = 

KG(SP) implies that KG(S2k) = KG(S0) = R(G), yielding typically |G| 
copies of the usual RR charge. In the equivariant cases, the Bott peri- 
odicity theorems related different sets of |G| branes to each other, where 
|G| is the number of mirror images in the orbifold. As an illustration, 
consider the Z3 AdS-orbifold for Type IIB supergravity on AdSs x S5 

which is dual to the Af = 1 superconformal field theory on its boundary 
that is an SU(N)S gauge theory on the worldvolume of N parallel D3- 
branes placed at an orbifold singularity [71]. The supergravity horizon 
is the Lens space 

% = L2(3) = S7Z3. (6.12) 

Extended objects in the boundary theory are understood as Type IIB 
branes which wrap cycles in ?{. The nontrivial homology groups of the 
horizon are 

H1(n) = H3{n) = z3i (6.13) 

which correspond respectively to D3-branes and D5-branes wrapped on 
a one-cycle and a three-cycle of 71. However, there are also wrapped 
NS5-branes on the three-cycles, corresponding to the discrete symmetry 
group (Z3 x Z3) X> Z3 of the boundary superconformal field theory. The 
K-group of the Lens space Ti is [72] 

K(H) = Z3 0 Z3 ^ Heven(H, Z), (6.14) 

where iyeven denotes the subring of elements of even degree in the 
ordinary cohomology ring.   Thus the K-group correctly accounts for 
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the D3-brane and D5-brane torsion charges, but it is missing the non- 
commuting Z3-valued charge of the NS5-brane. This is not at all sur- 
prising, because topological K-theory always has an underlying com- 
mutative ring structure, and it does not take into account the Neveu- 
Schwarz i3-field (equivalently the ^-duality symmetry of Type IIB su- 
perstring theory) [17]. For this particular orbifold example, K-theory 
completely agrees with ordinary cohomology theory and does not sup- 
ply us with new objects. This example lies in a particular class whereby 
the spacetime manifold is birationally equivalent to a smooth toric va- 
riety for which the K-groups are torsion-free and thus the Chern char- 
acter, to be discussed in section 7.1, yields an isomorphism with the 
corresponding cohomology ring [29]. In light of this feature, we will 
now turn our attention to orientifolds, whereby the discrete geometri- 
cal action of G on X is further accompanied by a worldsheet symmetry 
action on the superstring theory. 

6.2    Real K-Theory 

Real KR-theory [73] is a generalized K-theory which merges complex 
K-theory, real KO-theory (as well as quaternionic KSp-theory and self- 
conjugate KSC-theory) with equivariant K-theory. We will specialize 
the orbifold construction above to the case G = Z2, so that the space X 
is equipped with an involution, i.e., a homeomorphism r : X -» X with 
r2 = Idx- In addition to the equivariant cohomology, we shall quotient 
by the action of the worldsheet parity transformation fi. Q reverses the 
orientation of a string, and it induces an anti-linear involution on gauge 
bundles E over X that commutes with r. In making the orientifold 
projection by Q (in Type IIB string theory on X), we need to retain 
K-theory classes that are in effect even under the projection by f2. 
Since Q acts on 9-brane (and 9-brane) Chan-Paton bundles by complex 
conjugation, we consider an induced anti-linear involution r* : Ex —> 
ET(X) acting on the fibers of gauge bundles, with (r*)2 = 1, that maps E 
to its complex conjugate bundle E. Thus r^i?) = E with isomorphism 
^ : T*(E) -» E satisfying (ipr*)2 = Id. Now we define an equivalence 
relation on the category of such vector bundles by (E, F) ~ (E®H, F@ 
H) for any bundle H that is similarly mapped by the involution r* to 
its complex conjugate. The Grothendieck group of all virtual bundles 
with involutions on X is called the Real K-group KR(X). 
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As usual, one defines higher groups KR_m(X) by 

KR~m(X) - KR(X A Sm), (6.15) 

with the involution r on X extended to X A Sm by a trivial action on 
Sm. More generally, one can extend the definition (6.15) to spheres on 
which r acts non-trivially. Let W>q be the p + q dimensional real space 
in which an involution acts as a reflection of the last q coordinates, 
i.e., given (x,y) G W x W we have r : (x,y) H> (x, — y). Let Sp>q be 
the unit sphere of dimension p + q — 1 in W>q with respect to the flat 
Euclidean metric on W xW. With these definitions, we may define a 
two-parameter set of higher degree KR-groups according to 

KRP,q(X) = KR(X A H™), (6.16) 

or by using the suspension isomorphism: 

KRp'q(X) = KR(X x RM). (6.17) 

With these definitions we have 

KR-n(X)=KRn'0(X). (6.18) 

Bott periodicity in KR-theory takes the form 

KRp>q(X)   =   KRp+l>q+1(X) , (6.19) 

KR-m(X)   =   KR-m-8(X). (6.20) 

The relation (6.19) implies that KRM(X) = KRq-p(X) so that 
KRp'q(X) only depends on the difference p — q. The relation (6.20) 
then states that KRPiq(X) depends only on this difference modulo 8. 
This implies that one can define negative-dimensional spheres as those 
with antipodal involutions in KR-theory, with S71'0 being identified as 
S71'1 and S0'71 as S"71"1. Note that if we identify M1'1 = C with the 
involution r acting by complex conjugation, then the (1,1) periodicity 
theorem (6.19) takes the particularly nice form 

KR(X) = KR(XxC), (6.21) 

for any locally compact space X. 
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KR-theory is a generalization of K-theory and KO-theory because 
of the following internal symmetries. If the involution r acts trivially 
on X,then 

KR-^XxS0'1)   =   K-m(X), (6.22) 

KR-m(X)   =   KCrm(X). (6.23) 

The relation (6.22) follows from the fact that the space X x S0,1 can 
be identified with the double cover X = X11X of X, with r acting by 
exchanging the two copies of X in X. In particular, if XT denotes the 
set of fixed points of the map r : X —> X, then 

KR-n(XT) = KO-n(Xr), (6.24) 

because the involution r acts trivially on a fixed point. There are 
many further such internal symmetries in Real K-theory, coming from 
the usage of negative dimensional spheres. Using the multiplication 
maps in the fields R, C and H, and (1,1) periodicity, one may establish 
the isomorphisms [73] 

KR(X x S0'p) - KR-2p(X x S0^), (6.25) 

for p = 1,2 and 4, respectively. This isomorphism for p = 1 gives the 
complex Bott periodicity theorem, while the real periodicity theorem 
can be deduced from the case p = 4. In fact, there is the usual natural 
isomorphism 

KR-n(X x S0^) = KR-n(X) 0 KRp+1-n(X), (6.26) 

for all p > 3. The case p = 2, where there is no splitting into KR-groups 
of X, is special and will be discussed in section 6.5. Again, most of the 
properties discussed in section 2 have obvious counterparts in the Real 
case. In particular, the product formulas derived in section 2 can also 
be extended to KR-theory (as they did for KO-theory). For example, 
by repeating the steps which led to (2.36) we may obtain, for a trivial 
action of r on X, the product formula 

Klf^XxS1'1)   =   I^~1(XAS1'1)eKR"1(X)eKR"1(S1'1) 

= KR1'1(x)eKO"1(x)ez 

=   KO(X)©KO"1(X)©Z, (6.27) 
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where we have used (1,1) periodicity, eq. (6.23), and the fact that 

KRT^S
1
'
1
) = KR-1+1(pt) = KO(pt) = Z. (6.28) 

For X = Sn the periodicity theorem (6.19) can also be deduced 
from the ABS construction for Real K-theory. For this, we define a 
two-parameter set of Clifford algebras C5£(Rn'm) of the Real space IT'™ 
as the usual algebra associated with Rn+m together with an involution 
generated by the action of r on M71'™. A Real module over C^(Rn'm) 
is then a finite-dimensional representation together with a C-antilinear 
involution which preserves the Clifford multiplication. The correspond- 
ing representation ring R[Spin(n, m)] is naturally isomorphic to the 
Grothendieck group generated by the irreducible E-modules An5m of the 
Clifford algebra of the space Rn ©Rm with quadratic form of Lorentzian 
signature (n, m), as in section 2.8. The ABS map is now the graded 
ring isomorphism [52, 73] 

KR(En'm)  9* R[Spin(n,m)]/t*R[Spin(n + l,m)]   - KOn-m(S0), 

(6.29) 

where in the last equality we have used the periodicity relations (6.17), 
(6.19) and (6.20). This isomorphism relates the groups on the left-hand 
side of (6.29) to the Clifford algebras C£n^m, so that the topological (1,1) 
periodicity (6.19) follows from the algebraic (1,1) periodicity (2.82). 

Let us now discuss how Real K-theory can be used to classify D- 
branes in Q-orientifolds. Generally, the fixed point set of a G-action on 
X is a number of p + 1 dimensional planes called orientifold p-planes, 
or Op-planes for short. They determine the singular points of the given 
orbifold. For the present orientifold group action, these objects are 
non-dynamical but they share many of the properties of D-branes them- 
selves. For instance, they carry RR charge and have light open string 
states connecting them and the D-branes, which enhances the gauge 
symmetry of coincident branes over an orientifold plane. Having a 
non-trivial gauge symmetry means that the supersymmetric vacuum 
state of these theories must contain 32 Dp-branes in order to render 
the vacuum neutral (this is again the requirement of tadpole anomaly 
cancellation). We want to determine the charges of stable (but possibly 
non-BPS) states localized over an orientifold plane of X/Q • G. Note 
that far away from the orientifold planes, we can think of the spacetime 
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manifold X as being represented by a double cover X —>• X with the 
orientifold group Q • G mapping the two disconnected components of X 
into each other. Using (6.22), we see that far away from the Op-planes 
the theory looks just like ordinary Type II superstring theory. We are 
therefore interested only in what happens to states which are localized 
on the singular Op-planes. 

From the periodicity relations (6.19) and (6.20), we may show quite 
generally that 

KR(Md-^9-d) = KR(M2d-p-1'0), (6.30) 

where we have identified the spacetime X with the Real space Rd+1 x 
(R9~d/f2-Z9_rf), with Zg-d the reflection r acting on 9 — d coordinates of 
the transverse space. The KR-group (6.30) classifies Dp-brane charges 
localized over an orientifold rf-plane. On the right-hand side of (6.30) 
we have a Real space with the KR-involution acting trivially, so that 

KR(Rd-p'9-d) = KO(S2^-1). (6.31) 

Setting d = 9 in (6.31) gives the usual group KO(S9~p) that classifies 
Dp-brane charge in ordinary Type I superstring theory. Setting d = 8 
leads to 

KR-^E^"1'1) = KCT^S15-*) = KO(S8-^), (6.32) 

giving a shift by one of the Type I charge spectrum. In the next sub- 
section it is shown that the T-dual of the Type I theory on a spacetime 
manifold X is classified by KR~1(X), in agreement with (6.32). In 
general, for a given dimensionality d of orientifold planes, one may 
use (6.31) and table 4 with the appropriate period shift to read off 
the charges of D-branes located over the d-planes. For example, for 
d = 5 we get the classification of stable D-brane charges localized on 
an 05-plane. This spectrum resembles that of Type I string theory in 
that there is a Z-charged D-string, a Z2-charged gauge soliton, and a 
Z2-charged gauge instanton. This spectrum agrees perfectly with the 
bound state construction of an orientifold p-brane in terms of Type 
IIB p-brane-antibrane pairs, and the result (5.24) which shows that the 
tachyonic mode is removed by the Q-projection only for p = — 1, 7. A 
similar analysis can be carried out for Type IIA orientifolds. 

A physical interpretation of the (1,1) periodicity of KR-theory may 
also be given [19]. Consider a p-brane of codimension n + m in a Type 
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II orientifold by Q • Im. The p-brane charge is induced by the tachyon 
field which is given by Clifford multiplication on the transverse space 
En'm5 i.e., T(x) = Y^i^iZ1 where F; are the generators of the spinor 
module Anjm, and which generates KR(En,m). Under the ABS isomor- 
phism (6.29), this KR-theory class is multiplied, via the cup product, 
by the Hopf generator of KR(CP1) = Z (with its natural Real structure 
induced by the antilinear complex conjugation involution), or equiva- 
lently by the spin bundles which carry the spinor representation A^i. 
This gives a class with tachyon field that generates the KR-group of 
the new transverse space Rn+1»m+1. This class represents a p — 2-brane 
of the Type II orientifold by f2 •Xm+1. From this mathematical fact one 
deduces a new descent relation for Type II orientifold theories, whereby 
a p — 2-brane localized at an 0(8 — m)-plane in a Type II fi • Xm+i ori- 
entifold is constructed as the tachyonic soliton of a bound state of a 
p-p pair located on top of an 0(9 — m)-plane in a Type II fi • Im orien- 
tifold. This realizes the branes of a Type II orientifold as equivariant 
magnetic monopoles in the worldvolumes of brane-antibrane pairs of an 
orientifold with fixed point planes of one higher dimension. The former 
orientifold has 2m 0(8 — m)-planes each carrying RR charge — 23~m, 
while the latter one has 2m+1 0(9 — m)-planes of charge — 24-m. In 
the process of tachyon condensation the number of fixed point planes 
is doubled while their charges are lowered by a factor of 2 via a com- 
bined operation of charge transfer (via the equivariant monopole) and 
dimensional reduction through the orientifold planes. An example is 
the non-BPS state consisting of a D5-brane on top of an orientifold 
5-plane in the Type IIB theory [7], which may be constructed via a 
tachyon condensate from a pair of D7-D7 branes on an orientifold 6- 
plane in the Type IIA theory. The 8 06-planes each carrying charge 
—2 are transfered to the 16 05-planes of charge —1. 

6.3    Type I' D-Branes and KRT^X) 

Type I' superstring theory is the T-dual of the Type I theory, which 
may be obtained as the orientifold of Type IIA string theory of the 
form X/Q'Ii. This theory contains unstable spacetime-filling 9-branes, 
whose configurations up to creation and annihilation of elementary 9- 
branes classify all D-brane charges. In terms of K-theory this cor- 
responds to the group KR~1(X), or the group of equivalence classes 
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[(E, a)] where E is a Real bundle with an involution that commutes 
with the orientifold group and a is an automorphism of E that also 
preserves the orientifold group action. In Type I' string theory, E 
is identified with the Chan-Paton bundle on the worldvolume of the 
spacetime-filling 9-branes. At the orientifold planes, the gauge symme- 
try is reduced from U(N) to O(N). Each individual lower-dimensional 
brane is represented as a bound state of a certain number of unstable 
Type I' 9-branes. The tachyon condensate is required to respect the Z2 
orientifold symmetry (as in (6.11)), corresponding to a Z2-equivariant 
monopole. We will discuss this latter property in more detail in the 
next subsection. 

6.4    The Bound State Construction for Type II 
Orientifolds 

A T-duality transformation of the Type I theory on an m-torus Tm 

gives a Type II orientifold on Tm/fi • Jm. In this section we shall 
describe some aspects of these orientifold theories using K-theoretic 
properties, thereby extending the discussion of the last subsection. In 
particular, we will demonstrate how the formalism allows one to nat- 
urally deduce the complete set of vacuum manifolds for tachyon con- 
densation in the T-dual theories of the Type I theory (see table 7), 
and hence the worldvolume field contents of D-branes in these models. 
(Superstring compactifications will be discussed in more generality in 
section 7). The rich structure that now arises, in contrast to the two 
unique vacuum manifolds (3.18) and (4.16) for tachyon condensation 
in the ordinary Type II theories, is a consequence of the 8-fold peri- 
odicity of the KO- and KR-functors. In terms of iterated loop spaces, 
nnBO(k) is of the same homotopy type as Qn+sBO(k), while nmO(k) 
for 0 < m < 7 are of the same homotopy types as the loop spaces of the 
Lie groups given in the fourth column of table 7 [56]. The vacuum man- 
ifolds of the Type II orientifolds are thereby very natural consequences 
of the homotopy properties of KO-theory. Indeed, the identification 
of these worldvolume gauge symmetries is a genuinely new prediction 
made solely by K-theory. Moreover, the periodicity of 8 is in agreement 
with the fact that the cycle of distinguishing properties and dualities 
of Type II orientifolds starts over again on the compactification torus 
T8.   (A concise overview of the properties of Type II orientifolds and 
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m 
Real Spin 
Module 

Dimension 
Vacuum 
Manifold 

Dual 
Theory 

0 — — 0(N) Type I 

1 Ai 1 0(2N) 
0(N)xO(N) Type I' 

2 AJ©AJ 2 U(2N) 
0(2N) IIBonT2/fi-X2 

3 A3 ©A3 4 Sp(2N) 
U(2N) IIAonT3/fi-23 

4 A±©A± 4 Sp(2N) IIA on K3 

5 A5©A5 8 Sp(4N) IIB on K3 x S1 
Sp(2N)xSp(2N) 

6 A+©A6- 8 U(8N) 
Sp(4N) IIBonTV^-Xe 

7 A7 8 0(16N) 
U(8N) IIAonT7fi-I7 

8 A+eA8- 8 0(1QN) IIA on T8/Z2 

Table 7: Type II orientifold theories on spacetimes X = Y x T1,m 

whose D-brane charges are classified by the group KR~m(X). The 
general dual orbifold model in each case is listed (column 5) along with 
the corresponding vacuum manifold for tachyon condensation in the 
worldvolume of 2[m/2'+1iV spacetime filling 9-branes (column 4) whose 
stable homotopy group coincides with KR~m(X). The second column 
lists the appropriate real spinor module which is used to map each KO- 
theory class of the Type I theory into the corresponding KR-theory 
class of the orientifold. Their dimensions (column 3) determine the 
appropriate increase in the number of 9-branes needed for the bound 
state construction as required by K-theoretic stabilization. 
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their moduli spaces may be found in [74].) In the rest of this subsection 
we shall give some physical interpretations to the appearence of these 
stable homotopy properties. More details can be found in [19]. 

After a T-duality transformation on T1 = S1, the superstring the- 
ory is, as mentioned in the last subsection, the Type I' theory. The 
mapping between Type I and Type I' is similar to the mapping in Type 
II superstring theory where T-duality maps Type IIB into Type IIA. 

The induced charge takes values in the higher KO-group KO (Sz+1), 
from which we identify the vacuum manifold in the second line of table 
7. Next, consider the toroidal compactification of the Type I theory 
which is T-dual to Type IIB superstring theory on the T2/Z2 orien- 
tifold. There are N 7-7 brane pairs that are described in terms of 2N 
9-9 brane pairs which were used in the bound state construction of 
D-branes in the original Type I theory. In the dual orientifold model, 
lower-dimensional branes may then be constructed out of the 7-branes 
using the "descent" procedures described earlier. The appearance of 
the unitary group U(2N) in the third line of table 7 is then due to the 
following facts. Recall from section 2.8 that the chiral spinor modules 
A* are complex, so that, in order to preserve the reality properties of 
the Type I theory, the desired map which takes us via the cup product 
between the K-groups of the two Type I theories must be taken with 
respect to the real spinor module A^ © Aj, as in (3.24). The overall 
number of 9-branes required for the bound state construction is given 
by multiplying the original number of 9-branes by the dimension of the 
spinor representation, given in the third column of table 7. The rele- 
vant homotopy is therefore defined with respect to a unitary symmetric 
space. Physically, the appearance of a unitary gauge symmetry can 
again be understood from (5.24), which leads to an inconsistency on 7- 
branes that are therefore quantized using the unprojected unitary gauge 
bundles. Thus, while the naive gauge group on the spacetime filling 9- 
branes is 0{2N) x 0(2N) C 0(4/V), the inconsistent O-projection on 
IIB 7-branes enhances the symmetry to U(2N). The requisite tachyon 
field T(x) is required to be Z2-equivariant with respect to the orien- 
tifold projection (in order that the resulting lower dimensional brane 
configurations be invariant under the Z2-action), i.e., it transforms un- 
der the orientifold group as in (6.11). As shown in [17], the tachyon 
vertex operator for a p-p brane pair acquires the phase (±i)7~p under 
the action of O2. For the 7-branes this operator is even under Q2, and so 
the eigenvalues of the vacuum expectation value To are real. Thus the 
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tachyon field breaks the U(2N) gauge symmetry down to its orthogo- 
nal subgroup 0{2N), and the induced brane charge is labelled by the 
winding numbers around the vacuum manifold U(2N)/0(2N) of the 
IIB orientifold on T2/Z2. Note that, in general, the Type II orientifold 
on X = Y x T1'™ is described by the KR-group KR-m(X). The ex- 
plicit relation between the KO- and KR-groups which implements the 
T-duality between the Type I and orientifold theories will be described 
in section 7.4. 

For m = 3 we obtain the Type I' theory on T3 which is T-dual to 
the T3/Z2 orientifold of Type IIA superstring theory. The appearance 
of a symplectic gauge group in table 7 follows from the mathematical 
fact that the complex spinor module A3 is the restriction of a quater- 
nionic Clifford module, so that the appropriate augmentation of the 
spin bundles on the 9-branes is taken with respect to the rank 4 real 
representation A3 © A3. This means that there are now 4N unstable 
9-branes which have an Sp(2N) worldvolume gauge symmetry. This 
enhanced Sp(2N) symmetry comes from the intermediate representa- 
tion of a given Type I' p — 3-brane in terms of 6-6 brane pairs [19] 
and is easily understood in terms of 5-branes, as we discussed in sec- 
tion 5.7. Again by Z2-equivariance the tachyon field breaks this gauge 
group to its complex subgroup U(2N), so that the vacuum manifold 
is Sp(2N)/U(2N), The rest of table 7 can be deduced from similar 
arguments. Note that the change of structure of the spinor modules 
and of the vacuum manifolds after the m = 4 compactification is in 
agreement with the property that the orientifold planes then begin ac- 
quiring fractional RR charges, leading to very different moduli spaces 
for these string theories [74]. 

In the last column of table 7 we have also indicated the appropriate 
dual superstring compactifications to the given toroidal compactifica- 
tion of the Type I theory (see [74] and references therein). For the cases 
m = 4,5 and 8 we see that the moduli space of the Type I theory (or 
of the corresponding Type II orientifold) is actually non-perturbatively 
dual to a conventional orbifold of Type II superstring theory. The cor- 
responding Z2-eqiiivariant K-groups have been calculated in [19] using 
the product formulas (2.35) and (2.36), and the six-term exact sequence 
(6.9) (see also the computation at the end of section 6.6 to follow). This 
gives a heuristic way to check the given duality. However, the dual- 
ity operations involve an intermediate 5-duality transformation of the 
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Type II theory, whose description within the framework of K-theory is 
not yet known (see again the discussion in section 6.6 to follow). Thus 
one does not obtain isomorphisms of the corresponding K-groups, as 
would naively be expected. T-duality transformations of K-groups will 
be described in section 7.4. 

Having identified the vacuum manifolds of the Type II orientifold 
models, we shall now describe the field content, where one must be care- 
ful about identifying the appropriate homotopy of the relevant vacuum 
manifolds. The classifying spaces for Real vector bundles are described 
in [75]. Consider an orientifold of the Type IIB theory, and a set of 
brane-antibrane pairs with worldvolume gauge symmetry U(N)xU(N). 
The U(N) gauge group is endowed with its Hermitian conjugation in- 
volution, such that the fixed point set is the real subgroup O(N). The 
tachyon field T is equivariant with respect to the orientifold group, so 
that 

T(x,-y)=T(x,yy (6.33) 

where (#, y) G Mn © Mm are coordinates of the transverse space to the 
induced lower dimensional brane configuration. It breaks the worldvol- 
ume gauge symmetry down to {/(AQdiag- The relevant homotopy group 
generated by (6.33) comes from decomposing the one-point compactifi- 
cation of Wl,m into upper and lower hemispheres as described in section 
2.7, such that the tachyon field is the transition function on the overlap. 
The D-brane charges thereby reside in the KR-group of the transverse 
space which is given by 

KR(M^)=7rn,m(c/(iV))R (6.34) 

where the homotopy group is defined by the maps S71'™ —> U(N) which 
obey the Real equivariance condition (6.33). The refined Bott period- 
icity theorem for stable homotopy in KR-theory then reads 

nn,m(u(oo))    = 7rn+i5m+i(u(oo)J   . (6.35) 

In a similar way one may relate the Real K-groups KR (Mn'm) = 
KR(Mn+1'm) to the stable equivariant homotopy of the complex Grass- 
mannian manifold U(2N)/[U(N) x U(N)]. Note that the gauge fields 
living on the brane worldvolumes in these cases must also satisfy an 
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equivariance condition like (6.33). These remarks clarify the meaning 
of the term "equivariant soliton" in the bound state constructions for 
orbifold and orientifold theories. 

6.5    Type I D-Branes and KSC(X) 

Type I' superstring theory has two orientifold 08" planes which each 
carry —8 units of RR charge. There is a natural extension of Type I7, 
which involves replacing one of its 08" planes with an 08+ plane that 
carries RR charge +8 and is quantized using symplectic gauge bundles 
(i.e., with Q? = —1). This theory requires no D8-branes to make the 
supersymmetric vacuum neutral, so it has no gauge group, yet it still 
contains interesting stable non-BPS D-branes in its spectrum. For the 
classification of D-brane charges, it is easier to start with the T-dual of 
this theory, which has been worked out in [76]. The theory is obtained 
by gauging a Z2-symmetry of Type IIB on a circle, which is realized by 
the composition of the worldsheet parity Q with a half-circumference 
shift along the circle. This theory is usually called Type I. The natural 
K-group of Type I D-brane charges is thus KR(X x S0,2) which, with 
a trivial involution action on X, is known to be isomorphic to the K- 
group KSC(X) of self-conjugate bundles on X [73]. This latter group 
can be defined as follows. Let X be a compact Real manifold with 
involution r. A self-conjugate bundle over X is a complex vector bundle 
E together with an isomorphism a : E —> (T*E). Self-conjugate K- 
theory KSC(X) is then defined as the Grothendieck group generated 
by the category of self-conjugate bundles. 

We will first prove that 

KR(X x S0'2) = KSC(X). (6.36) 

Consider the space X x S0,2 and decompose the circle S0,2 into two 
halves S^2 with S^2 n S^.'2 = {±1}. As usual, a Real vector bundle 
E over X x S0,2 is equivalent to the specification of a complex vector 
bundle E+ over X x S^2 (the corresponding restriction of E) together 
with an isomorphism 

il>:E\Xx{+1}-2>i*(E\Xx{-1}). (6.37) 
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D-brane D8 D7 D6 D5 D4 D3 D2 Dl DO D(-l) 

Transverse 

space 
S1 S2 S3 S4 S5 S6 S7 S8 s9 

sio 

KSC(Sn) Z Z2 0 z z Z2 0 z z Z2 

Table 8: D-brane spectrum in Type / superstring theory from KSC(Sn). 

Since Xx{+l}isa deformation retract of X x S^2, we actually have 

an isomorphism E+\xx{-i} —-> E+\xx{+i} which is unique up to ho- 
motopy. This means that the specification of if; is equivalent, up to 
homotopy, to giving an isomorphism a : E —t (T*E). In other words, 
isomorphism classes of Real bundles over X x S0,2 are in one-to-one cor- 
respondence with homotopy classes of self-conjugate bundles over X. 
Taking r to be trivial, we obtain the desired correspondence between 
KR(X x S0,2) and the K-theory of vector bundles E over a compact 
manifold X equipped with an antilinear automorphism a : E -^ E. 

Using this equivalence, the D-brane charge spectrum of Type I su- 
perstring theory can be computed using the results of [77], and is sum- 
marized in table 8. This demonstrates that K-theory predicts an in- 
teresting spectrum of BPS and non-BPS states in the Tjpe I theory. 
Upon analyzing the corresponding groups KO(Sn) and KSp(Sn) [32], 
one correctly accounts for the stable BPS D-branes whose charges are 
spread out over the two types of 08-planes. On the other hand, non- 
BPS Z2-charged D-branes which are locally stable near one kind of 
singular plane can become unstable due to the other singularities in 
the complete spacetime [32]. For example, analyzing KO(Sn) shows 
that there is a non-BPS D6-brane which is locally stable near the 08~- 
plane, because the orientifold projection removes the tachyonic mode 
present in the D6-brane mirror D6-brane system. However, the orien- 
tifold projection is different at the 08+-plane, so that the tachyon is 
no longer removed and the non-BPS D6-brane is no longer stable in 
the global theory. The Z2-valued charges in table 8 are precisely those 
non-BPS states which are globally stable. 

The classifying space BSC(k) for self-conjugate vector bundles is 
described in [77], so that KSC-groups are related to homotopy theory 
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by 

KSC(X) = \x, BSC(oo)\. (6.38) 

Alternatively, the connection with homotopy theory may be deduced 
from the KR-theory representation, from which we can identify the 
relevant bound state constructions for D-branes in the Type I theory. 
From (6.25) it follows that Bott periodicity of self-conjugate K-theory 
is 4. Recall that the group KR~4(X x S0,2) associates a symplectic 
projection to Q. The 4-fold periodicity of KSC-theory is thereby the 
indication that the dual of Type I has both 08~ and 08+ planes, since 
it means that orthogonal and symplectic gauge groups appear on equal 
footing in this model. Generally, self-conjugate K-theory is intimately 
tied to complex, real and quaternionic K-theories through the following 
long exact sequences [78]: 

 > K-n-l(X) —> K-^iX) —> KSC-n(X) —+ K-n(X) —> 

—>K-n(X)—»•.• (6.39) 

 > K-^pO —■> KO-n(X) © KSp-n(X) —> K-n(X) —> 

—^KSC-n-2(X)^... (6.40) 

 > KSC^-^X) —> K-n(X) —+ KO-n{X) © KSp-n(X) —^ 

-^KSC-n(X)—>... (6.41) 

which can be established from the KR version of the Barratt-Puppe ex- 
act sequence (2.54) and the excision theorem (2.48) applied to the pairs 
(X x S0'P,X x S0'*) for (p,q) = (2,1), (3,1) and (3,2), respectively. 
These sequences illustrate how the symmetries of D-brane configura- 
tions whose charges are classified by a given KSC-group are related to 
webs of gauge symmetries that appear in the K-theories of Type I and 
Type II strings. These interrelationships could prove useful in extend- 
ing the above analysis to other Type I models without vector structure 
[76]. 

6.6    The Hopkins Groups K±(X) 

In this subsection we will study orientifolds of Type IIB superstring 
theory obtained via the quotient by the involution r • (—1)

FL
, where FL 

is the left-moving spacetime fermion number operator.  The operator 
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(—1)
FL
 changes the sign of all spacetime fields in the RR sector, and 

therefore the RR charge of a BPS D-brane changes sign and it gets 
mapped to its antibrane under (-1)

FL
. In this case, D-brane configu- 

rations on X/T • (-1)
FL

 are related to those on X whose K-theory class 
is odd under the Z2 action. This means that r* maps the pair (£, F) 
to (F,E), i.e., there are isomorphisms ip : (E, F) -^ (T*(F),T*(E)) 

with (^r*)2 = Id. A trivial pair is {H,H) with H = T*(H). The 
corresponding Grothendieck group is called the Hopkins group and is 
denoted by K±(X) [17, 29]. 

It can be shown that the group K±(X) may be computed in terms 
of conventional equivariant K-theory as 

K±{X) = Kjl(XxVP>1), (6.42) 

where the cyclic group G = Z2 acts on X x R0jl as the product of the 
action of r on X and an orientation-reversing symmetry of R0,1. The 
validity of the formula (6.42) may be argued by defining K±(X) as a 
(generalized) cohomology theory that satisfies the exact sequence 

... —> K^(X) —► K-"(X) —> K?(X) —►.... (6.43) 

Comparing (6.43) with the six-term exact sequence (6.9) for the pair 
(M, A) = (X x R0'1, X x (R0'1 - pt)) gives the pair of exact sequences: 

Kz»(XH    K-n(X)    -+       K^(X)        ->K£-1(X)^K-n-1(X) 

II II + II II 

K^(A)-+K^-1(M,A)^K^-1(X x R0'1)-^"1^) ->K^(M, A). 
(6.44) 

Applying the five-lemma to (6.44), i.e., that the four isomorphisms 
between the two exact sequences in (6.44) imply that the remaining 
middle vertical mapping is also an isomorphism [40], we arrive at (6.42). 
An independent, algebraic argument using automorphism groups of the 
corresponding Clifford algebras may also be given [29]. 

For an orientifold of the type X = Rd+1 x (R9-d/(-l)F^ -Xg-rf), 
the corresponding Dp-brane charge over an orientifold d-plane takes 
values in K-t^R^'9"**). Since the right-hand side of (6.42) represents 
an equivariant functor on the category of complex vector bundles, we 
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may use the suspension isomorphism with multiplication by C or C/Z2 
to derive the periodicities 

K±(W«) = K±(RM+2),    K±(R™) = K±(Rp+2>q). (6.45) 

This implies that K±(Rd~p,9~d) depends only on the parity of p and d. 
Suppose first that d is an even integer. Then using (6.42) and (6.45) 
we may compute 

K±(Rd-p>9-d) = K^R*-*10-*) 

= KC(pt)=(n
R^       ".-«" (6.46) 

2 [0, p even, 

where R[Z2] = Z 0 Z is the representation ring of the cyclic group 
Z2. Thus, when d is even, we obtain the standard spectrum of BPS 
Dp-brane charges for p odd localized over orientifold planes of odd 
dimension (the representation ring R[Z2] accounts for the mirror image 
brane charges induced by the given involution). The situation for d odd 
is a bit more involved. For this, we apply the six-term exact sequence 
(6.9) to the pair (B^'9^, S^'9^) to get 

K^(B0'9-d+1,S0'9-d+1) —> K-p(B0'9-d+1) 

A K-p(RP9-d) A ...    (6.47) 

where we have used the suspension isomorphism and RP9~d = 
S0,9"d+1/Z2 is the real projective space. The first K-group in (6.47) is 
isomorphic to the Hopkins group K±(Rd~p>9~d) that we are interested in. 
For the second K-group, we use the fact that the ball B0'9_d+1 is equiv- 
ariantly contractible to get K-^(B0'9-rf+1) = K^(pt) = 5p^enR[Z2]. 
The exact sequence (6.47) thereby relates the K-groups of interest to 
the cohomology of the real projective space [51]: 

K-p(RP9-d) = ^'even Z 0 Z2r, (6.48) 

where r = [%^]. A careful analysis of the ring structure shows that the 
epimorphism i* in (6.47) maps both of the generators of K^(B0'9"d+1) 
into the generator of K~p(RP9~d), i.e., i* is a surjective mapping of the 
free parts of the K-groups. The exactness of the sequence (6.47) then 
implies that 

K-JfB0'9"*-1) = K-p(RP9-d) / K^(B0'9-rf+1, S0'9-d+1) © Zar,   (6.49) 
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from which we arrive finally at 

/ 
0, p odd, 

for d an odd integer. 

As an example, we see that the D-particle over an 05-plane carries 
an integer-valued charge. This configuration is S-dual to the stable non- 
BPS D-particle on the 05-plane of the corresponding Q-Zj orientifold [8, 
10]. The apparent contradiction that arises here owes to the usual fact 
that K-theory only classifies the charges of topologically stable objects 
at weak string coupling, as mentioned in section 6.4. It is an open 
problem as of yet to determine how K-theory correctly incorporates 
the S'-duality symmetry of Type IIB superstring theory. Note that 
the coincidence of the brane charges (6.50) with those of Type IIA 
superstring theory can be traced back to the IIB orientifold boundary 
states in the case at hand, which are of the form [8, 10] 

\Dv) = | (\Up, +>NS - \Up, -)NS) + | (|Tp, +)R + iTp, -)R) , 

(6.51) 

where T and U label the twisted and untwisted sectors of the closed 
string Hilbert space under the (—1)

FL
 orientifold projection. The 

boundary state (6.51) has precisely the same form as that of the ordi- 
nary Type IIA Dp-brane. 

The relationship with the Type IIA theory can also be seen by taking 
d = 0 in the above construction. In this case we are simply quotienting 
the IIB theory by the operator (—1)

FL
, which is known to map it into 

Type IIA superstring theory. In general, the operation of modding out 
the Type II spectrum m times by (—1)

FL
 determines a mapping [19] 

K-n(X) —> K^-l{X x R0'm), (6.52) 

where now the Z2 acts only as a reflection on E0'm. The right-hand side 
of (6.52) may be evaluated using the six-term exact sequence (6.9). For 
example, for m — 1 we consider in (6.9) the pair {X x R0'1,^ x {0}). 
Then the quotient space X x R0,1 /X x {0} is homotopic to two copies 
of X x R which are exchanged by the involution. Since the Z2 action 
on this quotient is free, the equivariant K-groups may be computed 
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by using the homotopy invariance of the K-functor and the suspension 
isomorphism to get 

K^"1 ((X x E) 11 (X x E)) = K'^iX x E) - K-n{X).     (6.53) 

On X x {0} the Z2 action is trivial, so that 

K^"1 (x x {0}) = K-^iX x pt) ® R[Z2]. (6.54) 

Finally, since in this case X x {0} is an equivariant retract of X x E0,1, 
we have ker d* = K^~1(X x {0}) and so the horizontal exact sequences 
in (6.9) split. The general result is then 

K^-l(X x E0'm) = (K-n-l(X) ® R[Z2]) 0 K-n-m-1p0-     (6.55) 

The group K~n~1(X) in (6.55) comes from the trivial part of the Z2 ac- 
tion and as such represents the untwisted brane charges. The other part 
K~n~rn~l(X) comes from the free part of the Z2 action and represents 
the twisted sector. 

The case n = 0, m = 1 represents the result of quotienting the IIB 
theory by (—1)

FL
 [19]. The projection onto the first factor in (6.55) 

thereby represents the condensation of the quotiented IIB brane con- 
figuration onto the corresponding IIA D-brane (along with the mirror 
images under the (—1)

FL
 projection). The second direct summand in 

(6.55) represents the twisted sector of the (—l)FL-quotient which should 
be properly projected out in the mapping onto the Type IIA theory. 
The further quotient by (—1)

FL
 corresponds to taking n = 1, m = 2 

in (6.55), which maps back into the IIB theory with the same set of 
twisted charges projected out. More details about the explicit construc- 
tion of these maps in terms of K-theory classes can be found in [19]. 
This K-theory construction agrees with the boundary state description 
in [20] and also the analysis of the open string spectrum of a Type 
II p — p-brane configuration in [11]. In the former case it was shown 
that the result of quotienting the closed superstring Hilbert space by 
the operator (—1)

FL
 projects onto the NS-NS part of all IIB p-brane 

boundary states, with no contributions from the twisted sector. The 
result is then a boundary state of the form (4.10), which, as discussed in 
section 4, via tachyon condensation can decay into a stable IIA D(p — 1) 
configuration. On the other hand, the superposition of a p-brane with 
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a p-brane can be described by the boundary state (c.f. eqs. (3.5) and 
(3.6)) 

\Dp) + \Dp) = \Dp, +>NS - \Dp, -)NS, (6.56) 

which thereby produces the same configuration as that obtained above. 
In these cases, the K-theory construction shows that the (—1)

FL
 quo- 

tient on the spacetime-filling Type IIB 9-branes leaves an equal number 
of (identical) 9-branes and 9-branes which are used in the bound state 
construction of the p — p brane pair [19]. Again this is in complete 
agreement with the Type IIA p — 1-brane configuration that is even- 
tually reached by tachyon condensation. The naturality of the (—1)

FL 

mapping as a canonical projection on K-theory groups is simply an 
indication of the fact that (—1)

FL
 acts as a genuine non-perturbative 

symmetry of Type II superstring theory, as discussed in [20]. 

7    Global Aspects 

This previous section concludes our general analysis of the ways of 
classifying D-branes using topological K-theory. There are many more 
exotic theories that one would like to study at this stage, for exam- 
ple orientifolds arising from quotients by the operator Q • (—1)

FL
 • 2^ 

However, the corresponding (equivariant) K-groups for such involutions 
are not well understood (see [29, 19] for some discussion), and such an 
analysis must await further developments in the mathematics litera- 
ture. Let us note that these latter orientifolds are also important for a 
more thorough description of the Type II orientifolds of sections 6.2-6.4 
above, in that the Q • Xm orientifold projection should strictly speak- 
ing be accompanied by the action of the operator (—1)2(

9
-P)(

8
-P)

F
L on 

Dp-brane states in order to preserve the Z2-equivariant structures. It is 
possible that there are approaches based on algebraic K-theory which 
could also be used to incorporate AS-duality, and also the construction 
of M-branes, as has been recently discussed in [33]. We shall not pursue 
such matters here, which are still at best at a very preliminary stage. 
Instead, in this final section we shall proceed to analyze the interest- 
ing D-brane configurations that arise when one accounts for the global 
topology of the (possibly non-trivial) spacetime X and the associated 
brane worldvolume embeddings. 
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7.1    The Chern Character 

Before proceeding to describe the global aspects of D-branes and their 
associated bound state constructions, which we will start in section 7.3, 
we shall first need some more mathematical preliminaries. In dealing 
with global properties of a space, we shall be forced to consider the 
cohomology of the manifolds, in addition to the K-theory of the relevant 
Chan-Paton bundles. One of the features of K-theory which makes it so 
useful in a variety of applications is the existence of the Chern character 
homomorphism, which provides a link between K-theory and ordinary 
cohomology theory by relating the ring K#(X) to the usual cohomology 
ring H#(X) (here we shall deal mostly with Cech cohomology). In this 
subsection we will describe the construction of the Chern character in 
topological K-theory. 

Let E be a complex vector bundle of rank k over a compact topo- 
logical space X. We can associate to E certain cohomology classes 
cn(E) G H2n(X, Z) called the Chern characteristic classes of E which 
measure the twisting of the vector bundle and which are defined as 
follows. As in section 2.7, we consider the universal bundle Q(k, oo; C) 
over the classifying space BU(k), whose pullbacks generate vector bun- 
dles such as E, i.e., E = f*Q(k,oo]C) for a certain map / : X —> 
BU(k). The cohomology ring H*{BU{k)^rL) of the classifying space 
has even-degree generators cn(Q(k, oo; C)) whose pullbacks under / are 
precisely the characteristic classes of E: 

cn(E) = /*cn(Q(fc,oo;C)) G H2n(X,Z). (7.1) 

The basic properties of these characteristic classes are as follows: 

(i) co{E) = leH0(X,Z). 

(ii) For all l>Q,cl{E®F)= En+m=i cn{E) A cm(F). 

(iii) (Naturality) If / : Y —> X is a continuous map, then cn(f*E) = 

For a rank k bundle E, the total Chern class is defined as 

c(E) = l + c1{E) + ... + ck{E), (7.2) 
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and from property (ii) above it follows that c(E) is multiplicative, 

c(E®F) = c(E)Ac(F), (7.3) 

under Whitney sums. In particular, we may invoke the splitting prin- 
ciple which states that E is always a Whitney sum of complex line 
bundles Cn (more precisely, E is the pullback of some other vector 
bundle which is a sum of line bundles over another space) [51], and 
take 

E = £1@C2@---@Ck. (7.4) 

We then have 

k k 

c(E) = l[c(Cn) = l[(l + Xn), (7.5) 
71=1 71=1 

where we have defined An = Ci(£n). This yields explicit expressions for 
the Chern classes of E in terms of elementary symmetric functions of 
the two-cocycles Xn: 

Ci(E)    -- 
71 

C2(E)     -- =      ^J An A Am 
n<m 

cm(E)    = £       Ani AAn2 A---AAnm 

ni<n2<---<7im 

ck(E)    =    AiAAaA-.-AAib. (7.6) 

The Chern character of the vector bundle E is now defined by 

k 

ch(E) = Y,eXn£H#(X,®), (7.7) 
71=1 

which can be thought of as a generating function for the characteristic 
classes. Note that it takes values in rational cohomology H*(X,Q) = 
H#(X, Z) ®z Q, so that ch(i£) cannot detect any torsion subgroups of 
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the cohomology. Using (7.6), the degree 2m part chm(E) of the inho- 
mogeneous cocycle (7.7) can be written in terms of the characteristic 
classes of E. For example, 

ch(E) = ^chm(E) = k + c1(E) + ^{cl(E)Acl(E)-2c2(E))+.... 
m>0 

(7.8) 

The definition of the classes cm(E) (and hence also of the Chern char- 
acter) can be generalized to bundles whose rank is not necessarily con- 
stant. For this, one partitions X into open subsets Xi such that the 
rank of i?|x. is constant, and then defines cm(E) as the unique coho- 
mology class with c^i?)!*. = c™^^). 

The Chern character enjoys the following properties: 

(i) ch0(E) = rk(E)eH0(X,Z). 

(ii) ch(E 0 F) = ch{E) + ch(F). 

(iii) ch(E ® F) = ch(E) A ch(F). 

(iv) (Naturality) ch (f*E) = f* ch(E) for any continuous map f :Y -+ 
X. 

These properties imply that the Chern character respects the semi-ring 
structure on the category of vector bundles. Notice that property (i) 
makes an explicit connection with the rank function defined in (2.17), 
i.e., the virtual dimension defines a characteristic class in degree 0. In 
fact, we can use the Chern character to provide a complete map between 
K(X) and the cohomology ring H*(X). Namely, for a virtual bundle 
[(E,F)] G K(X) we define the homomorphism 

ch: K{X)   —>   ##(X,Q) 

ch([E} - [F])     =     ch(F) - ch(F). (7.9) 

This map is well-defined provided that [{E,F)] = [(G,H)] in K(X) 
implies ch(E) - ch(F) = ch(G) - ch(if). That this is indeed true 
is a consequence of the behaviour (ii) of the Chern character under 
Whitney sums. For the particular case where X — S2n, the map ch is 
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an isomorphism onto H#(S2n,Z). More generally, it can be shown [79] 
that the associated map 

ch : K(X) ®z Q —> #even(X, Q) = 0 H2n(X, Q) (7.10) 
n>0 

is an isomorphism, and moreover that this map extends to a ring iso- 
morphism 

ch : K*(X) ®z Q -^ H*(X, Q) (7.11) 

which maps Kr^X) ®z Q onto ifodd(X, Q). 

In the case where X is a smooth manifold, there is a useful explicit 
description of the Chern character. We assume that E is a smooth 
vector bundle equipped with a Hermitian connection V^, whose cur- 
vature is V|. The Chern character ch(E) G H*(X,R) can then be 
represented by the closed inhomogeneous differential form: 

ch(E) - tr exp (V2
E/2m) . (7.12) 

In this case the An's which appear above are the skew-eigenvalues of 
the two-form V|?/27rz. To obtain numerical invariants of X, we con- 
sider a closed deRham current Sy which is a delta-function supported 
representative of the cohomology class of the Poincare dual to an em- 

bedded submanifold Y M- X. Then we can associate to Y a map 
ly : K#(X) —> C defined by the natural bilinear pairing on deRham 
cohomology: 

IY(E) = (Sy, ch(E)\     = f SyAch(E) = fi*ch(E).       (7.13) 

X Y 

7.2    The Thom Isomorphism 

In this subsection we will describe the Thom isomorphism which relates 
the K-theory of a manifold X to the K-theory of the total spaces of 
complex vector bundles over X. In general, this enables one to compute 
the K-groups of some relatively complicated spaces in terms of much 
simpler base spaces. For example, the K-groups (6.48) of real projective 
spaces may be determined by the K-theory of a suitable total space 
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over the base X = pt. In this way the complete set of K-groups for 
projective spaces may be determined (see [51] for the details of such 
calculations). We shall begin with a description of the map at the level 
of cohomology, and then turn to the K-theoretical description. The 
Thorn isomorphism will play an important role in our discussion of 
brane anomalies in section 7.5. 

Let X be an oriented manifold of dimension n, and let H*(X) be 
its cohomology ring (it will suffice to consider the cohomology ring 
with compact support). A well-known result of differential topology is 
Poincare duality, which gives a canonical isomorphism 

Vx : iPpf) -^ Hn-pW, (7.14) 

for all p = 0,1,... , n. Now consider another manifold Y of dimension 
m and let / : Y —>• X be continuous. Then for all p > m — n there is a 
linear map, called the Gysin homomorphism: 

fi : Hp{Y) —+ IP-^-^tX), (7.15) 

which is defined such that the diagram 

HP{Y)        2r>   Hm.p(Y) 

fii if* (7.16) 

is commutative, i.e., such that f\ = V^1 f+Vy. Here /* is the natu- 
ral push-forward map acting on homology. An important example to 
which this construction applies is the case that Y is an oriented vector 
bundle E over X of fiber dimension k. Then we consider the canonical 
projection map TT : E -> X and the inclusion i : X —> E of the zero 
section. They induce maps on homology with n+i* = Id, so that 

TTI : Hp+k(E)   -^   Hp(X) , (7.17) 

t. : Hp(X)   -^   Hp+k(E) , (7.18) 

are isomorphisms for all p. The Gysin map TH can be thought of as 
integration over the fibers of E -> X. It is easy to see that TTIZI = Id, 
so that TTI = (ij)-1. The map (7.18) is called the Thorn isomorphism of 
the oriented vector bundle E. 
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An important special instance of the Thorn isomorphism (7.18) is 
the case p — 0. This defines a map H0(X) —>- Hk(E), and the image of 
1 G H0{X) thereby determines a cohomology class 

$[£] = 2,(1) e Hk{E\ (7.19) 

which is called the Thorn class of E. The Thorn isomorphism (7.18) is 
then generated by taking the cup product with this class: 

2!(a;) = 7r*(cj)A$(E). (7.20) 

This cohomology class will play a central role in section 7.5. It is related 
to the Euler class x(E) 0f the (even dimensional) real vector bundle 
E —> X of rank k = 2m, which is a characteristic class of the bundle 
taking values in H2m(X). It can be defined as the pullback of the Thorn 
class by the zero section: 

x(E)=i*$[E\. (7.21) 

When E is a complex vector bundle of rank k, then the Euler class of 
E is defined as the Euler class of its underlying real bundle Er (of real 
rank 2k): x(E) = x(Er)- Moreover, in this case the Euler class of E 
can be shown to coincide with the top Chern class: 

k 

x(E) = ck(E) = l[\n. (7.22) 
n=l 

If the (real) rank of the vector bundle E coincides with the dimension 
of X, then one can also introduce the Euler number e(E), which is 
defined as the Euler class evaluated on the homology cycle [X]: 

e(X) = x(E)[X} = lx(E). (7.23) 

X 

Furthermore, if X is compact, then for all (j) 6 H*{X) we have the 
identity [52] 

i*i^) = x(E)r,(j), (7.24) 

which follows from the fact that the Euler class is given as x{E) = 
i*i\(l). Another important property of these cohomology classes is 
that if s : X —> E is any section of E, then s*Q[E} is a closed form 
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whose cohomology class coincides with the Euler class. From this fact 

one may also deduce that 5*$[JK] = ^(5), where Z(s) M- X is the zero 
locus of the section s, so that 

f i*u)= f s*$[E]Au). (7.25) 

Z(s) X 

Let us now describe the Thorn isomorphism in K-theory which, 
using the Chern character, can be related to the cohomological Thorn 
isomorphism above. Let E -> X be a complex vector bundle over X. 
Then K*(E) is naturally a K#(X)-module, with an associative and 
distributive module multiplication, 

K*(X) ®z K* (E) —> K#(E), (7.26) 

defined according to the sequence of homomorphisms 

K#(X) ®z K#(E) —^ K*(X x S) —^ K#(£;). (7.27) 

Here the first map is induced by the cup product and the second map 
is the pullback on K-theory of the map TT x Id. An important example 
is the case when E = Im = X x Cm is the trivial complex vector bundle 
over X. Define u € K^i?) to be the class 

u — 7r*Aeven£,7r*A0Clcl£; /x , (7.28) 

where 7^*A£, is the trivial m-plane bundle over E and Aeven,oddJ5 denote 
the even and odd degree exterior product bundles corresponding to E. 
The isomorphism /x is defined by 

V>x,v{<i>) = vt\<l>-vt-i<l>, (7.29) 

for (x, v) e X x Cm and </> G 7r*Aeven£;. Using the identification R2m ^ 
Cm and choosing the canonical orientation, this element can be written 
as 

a; = [S+,S-;M], (7.30) 

where <S = <S+ © S~ is the irreducible complex graded C^m-module 
(extended trivially over X), so that, according to (2.78), ^^(0) — v * 0 
coincides with the usual Clifford multiplication. The fundamental Bott 
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periodicity theorem then implies that K*(E) is a free K#(X)-module 
of rank 1 with generator CJ, so that u gives a K-theory orientation for 
the bundle E. 

Now consider a general (possibly non-trivial) complex vector bundle 
over X. We say that u G K^i?) is a Bott class if a; determines a K-theory 
orientation in any local trivialization of E over a closed subset C C X, 
i.e., K*(E\c) is a free K#(C)-module generated by u) whenever E\c 
is trivial. It can be shown [51, 52] that any Bott class is a K-theory 
orientation for E. In particular, if E -» X is a complex Hermitian 
vector bundle over a compact space X, then the class 

A_i(£) = [7r*Aeven£, 7r*Aodd£; //] 6 K(£), (7.31) 

with /j,v((f)) = v A (/> — v^ -i (/>, defines a K-theory orientation for E. This 
follows from the example above which showed that A.^i?) is a Bott 
class. The K-group element (7.31) is the K-theoretic Thorn class of the 
vector bundle E, which is natural and multiplicative: 

A-i(£ 0 F) = A_i(£) O A-iOF). (7.32) 

By taking cup products with it, it follows that the map i\ : K(X) —> 
K(E) defined by 

ii(a) = 7r*(a) ® A-i(E),   a e K(X), (7.33) 

is an isomorphism. This is the Thorn isomorphism in complex K-theory. 
When X = pt is the space consisting of a single point, and E = C1 

is the trivial bundle over X, then the Thorn isomorphism is just the 
statement of Bott periodicity in the form K(S2n) = Z. This follows 
from the fact that K(X) = K(pt) = Z and K(E) = K(ei) = K(S2n). 
More generally, taking E = Im = X x C™ and using R2m ^ C™, 
the Thorn isomorphism is just the statement of Bott periodicity in the 
form of the suspension isomorphism (2.22). For some more examples 
and applications, as well as the description of the Thorn isomorphism 
in KO-theory and KR-theory, see [51, 52]. 

The relationship between the K-theoretic and cohomological Thorn 
isomorphisms may be described as follows. Let E —>• X be a com- 
plex vector bundle of rank m, and let z^ : K(X) -» K(E) and if : 
H*(X, Q) -> H*(E, Q) be the Thorn isomorphisms in K-theory and co- 
homology, respectively. We introduce the natural, multiplicative Todd 
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class Td(E) e Heven(X,Q) by 

Td(E) = l[- 
n=i-     e"An 

= l + lcl(E) + ± (ci(E) A diE) + c2(£)) + • • • .     (7.34) 

Then for each class u € K(X), we have the formula: 

ch(if(u)) = ifr(ch(a;) A Td^)). (7.35) 

The Thorn isomorphism also enables the construction of a K-theore- 
tic Gysin map which will be a crucial ingredient in the global bound 
state construction that will be presented in the next subsection. Con- 
sider an embedding / : Y c-> X of a submanifold Y of even codimension 
2k in X. (The restriction to embeddings is not necessary but is assumed 
for simplicity.) The normal bundle N(Y, X) of Y in X can be defined 
through the exact sequence of vector bundles: 

0 —> TY A TX —► N(Y, X) —> 0 (7.36) 

which decomposes the tangent bundle TX of X as TX = TY © 
JV(y,-X"). This identifies the normal bundle with a tubular neighbour- 
hood of Y in X (this means that one chooses a suitable metric on X 
and defines N(Y,X) to be the set of all points of distance < e from 
Y in X, for some small c), and also with the bundle f*(TX)/TY over 
Y. The vector bundle N(Y,X) has structure group SO(2k), which we 
assume is extendable globally to Spin(2A;), i.e., iV(Y,X) admits a spin 
structure. (Again this requirement can be relaxed, but we will defer 
this discussion to the next subsection). Given the Thorn isomorphism 
i\ : K(Y) —> K(N(Y,X))1 we then define the Gysin homomorphism by 

U=j*oir. K(y)—>KpO (7.37) 

where j* is induced by the morphism iV(y, X) *-> X oi locally compact 
spaces. The map /* is independent of the choice of tubular neigh- 
bourhood and it depends only on the homotopy class of /. Its basic 
properties are as follows. First of all, if / : Y —> X and g : Z —> Y are 
two embeddings, then (f o g)* = f* o g*. Furthermore, there are the 
identities 

MtJ ® f*a) = f*(u) ® a,    Va; G K(y),a G K(X) (7.38) 
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and, if X is compact, 

/*°/*M = x(;V(y,X))<g>a; (7.39) 

where the K-theoretic Euler class is defined as the restriction of the cor- 
responding K-theoretic Thorn class to the zero section. In the same way, 
one may construct the Gysin homomorphism for KO-theory, with the 
further requirements that dimX - dimF = 0 mod 8 and that N(Y,X) 
admits a spin structure. 

7-3    Global Version of the Bound State Construc- 
tion 

The bound state constructions that we have described thus far only 
apply locally in the spacetime X. In this subsection we will discuss 
the features that arise when global topology is taken into account. We 
shall describe the details only for Type IIB superstring theory, as then 
the generalization to other string theories will be evident. For this, we 
must be careful about the topology of the (non-trivial) normal bundle 
of the D-brane world volume in X, which must thereby be treated more 
carefully using the Thorn isomorphism and the Gysin map discussed in 
the previous subsection. Actually, the mapping (3.23) is a local version 
of the Thorn isomorphism, with the transverse space S2k identified with 
the normal bundle of Y in X and Y x B2A; with a small neighbourhood 
of Y in spacetime. Globally then, the Thorn isomorphism /» : K(F) -¥ 
K(X) applied to the normal bundle N(Y,X) A Y yields the mapping 

[E] h-> /,[£] = TT* ([£]) ® A.! (iV(r, X)). (7.40) 

A representative of the Thorn class of the normal bundle is then given 
by the ABS construction, as described above. However, to achieve the 
map (7.40) one needs to extend the bundle Ti^i? to the whole of X, 
which requires some special care and treatment of the normal bundle 
topology that we shall now discuss. The main idea is that the global 
obstructions which prevent the ABS class [5+, <S~; /i] from producing a 
K-theory class of K(X) can be typically eliminated by nucleating extra 
9-branes and 9-branes. In certain cases (to be described below) one 
has to stabilize (in the K-theory sense) the original configuration of 
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9-branes and 9-branes by pair creating extra 9 - 9-brane configurations 
and thus yield a configuration of 9 - 9-brane pairs with K-theory class 
[<S+0iJ, S~ ©if; /i©Id]. This construction will then demonstrate that, 
globally, brane charges in a spacetime X can always be described by a 
configuration of 9-branes and 9-branes [17] and are therefore classified 
by K(X). 

Let us start with the case of codimension 2. Recall that in the case 
of flat brane world volumes, in order to build a p-brane we need a p + 2- 
brane-antibrane pair wrapping a submanifold Mp+3 of the spacetime X 
which gives rise to a U(l) x U(l) gauge field and a tachyon field T 
of charges (1,-1). T vanishes on a codimension 2 subspace that is 
identified with the worldvolume of the p-brane and breaks the gauge 
symmetry from U(l) x [/(I) to U(l). For the global construction, let 
Y C Z be the worldvolume manifold of the p-brane embedded in the 
p + 3 dimensional submanifold Z of spacetime. To build such a p-brane 
we consider a p + 2-brane-antibrane pair on Z. Let C be a complex line 
bundle over Z and /i a section of £ that vanishes on Y. By placing a 
U(l) gauge field on the p + 2-brane, with the same p-brane charge as 
that of a p-brane on Y, and a trivial U(l) gauge field on the p + 2-brane, 
the system can be interpreted as a p-brane wrapping Y. 

However, a p-brane wrapping Y also has in general lower-dimensio- 
nal brane charges p — 2,p — 4,... which depend on the choice of a line 
bundle /C on Y. If the line bundle /C extends over Z then a p-brane 
wrapping Y is described by taking the bundle C (g) /C on the p + 2 brane 
and the bundle /C on the p + 2 brane. If /C does not extend over Z, then 
one uses the following classic K-theory construction [57]. Let Yf be a 
tubular neighborhood of Y in Z, whose closure we denote by Y and 
whose boundary is dY. If E and F are bundles over Y of the same rank 
then they determine an element of K(Y). The inclusion i : Y M- Y 
then induces a map on K-theory such that (E, F) also defines a unique 
element of K(Y). The tachyon field is a map T : E —> F, which is 
an isomorphism of vector bundles outside an open set U C X whose 
closure U is compact.  Now suppose that T is also a tachyon field on 
Y which is an isomorphism on dY. In that case one can construct a 
natural map K(Y) c-^ K(Z), showing that D-branes wrapping Y are 
classified by K(Z), as desired. This map can be described as follows. 
Let Z' = Z - Y'. If we can extend the bundle F from dY to all of Z' 
then F would be defined over all of Z. Since E and F are isomorphic 
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(under the map T) on dY, in that case E can also be extended over Z', 
so that (E, F) would define an element of K(Z). If F does not extend 
over Z, then we may use Swan's theorem to construct a bundle H over 
Y such that F© H is trivial (assuming Y is compact) and therefore also 
trivial on F. Now we replace E -> E®H, F -> F®H and T -> T©Id. 
Then we can extend F © H over Z and also extend E © H by setting 
it equal to F © if over Z', so that (F © if, F © if) defines an element 
of K(Z). In summary, if /C does not extend over Z, then one instead 
finds a bundle if over Y such that /C © if is trivial. Then the bundle 
£ (g) /C © if can be extended over Z. If we now consider a collection of 
p + 2-branes on Z with gauge bundle C ® /C © if and a collection of 
p + 2-branes on Z with bundle /C©if, along with a tachyon field which 
equals T © Id near F and is in the gauge orbit of the vacuum outside 
y, then this system describes a p-brane on Y with gauge bundle /C. 

In the case that Y is of codimension greater than 2 in X, one pro- 
ceeds as follows. Let Y be of codimension 2k in X. Its normal bundle 
N(Y,X) in X then has structure group SO(2k). Suppose first that 
N(Y,X) is a spin manifold, so that its second Stiefel-Whitney class 
vanishes in HP(N(Y,X),Z2), W2(N(Y,X)) = 0. Then associated with 
the 2k~l 9 - 9-brane pairs we get a pair of spinor bundles S± which 
are identified with the gauge bundles on the 9-branes. As usual, the 
tachyon field is a map T : S~ -> S+ with 

2k 

T{x) = ^2rix\   xeYf (7.41) 
1=1 

and the system describes a p-brane wrapped on Y. This configuration 
can be extended over X if S~ extends. Otherwise one can find a bundle 
if such that S~ ©if extends and then replace (<S+, <S~) -> (<S+©if, <S~© 
if) and also T —► T © Id. Similarly, for a p-brane with line bundle /C, 
we start from the pair of bundles /C®<S± and use the same construction 
just presented. 

Let us now relax the requirement that N(Y,X) be a spin mani- 
fold. According to the analysis of [80], for Type II compactifications 
with vanishing cosmological constant, the normal bundle to a D-brane 
wrapping a supersymmetric cycle always admits a spinc structure. This 
means that instead of being extendable to a principal Spin(2A;) bundle 
over y, the structure group of the normal bundle extends to Spinc(2A:), 
where Spinc(n) = Spin(n) xz2U(l) is the quotient of the product group 
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Spm(n) x U(l) by the equivalence relation (p, z) ~ (—p, —z) and it cov- 
ers the rotation group SO(n) according to the split exact sequence 

1 —► U(l) —> Spinc(n) —■* 50(n) —> 1. (7.42) 

The criteria for the existence of a spinc structure can be formulated as 
follows. Consider the split exact sequence 

0—>Z^Z-^Z2—>0, (7.43) 

where the third map is reduction modulo 2. This sequence gives rise to 
a long exact sequence in cohomology 

• Hn(X, Z) -^ Hn(X, Z) —»iyn(x, Z2) 

//^(^Z)—^...    (7.44) 

where the map fi is called the Bockstein homomorphism. The kernel 
of p is the set of classes in H#(X, Z2) which are modulo 2 reductions 
of integral cohomology classes. If wn G Hn{X, Z2) denotes the n-th 
Stiefel-Whitney class of X, then Wn = (3(wn-.i) measures whether or 
not the (n — l)-th Stiefel-Whitney class is the modulo 2 reduction of 
an integral class. The normal bundle N(Y,X) admits a spinc struc- 
ture if and only if Ws(N(Y, X)) = 0 (so that in particular any spin 
manifold is canonically a spinc manifold). Since X is a spin manifold, 
wi(X) = W2(X) = 0, and Y is orientable, Wi(Y) = 0, one can easily 
show using multiplicativity of the total Stiefel-Whitney class [17] that 
W2(N(Y,X)) = W2{Y) and therefore also that W3(N(Y,X)) = W3(Y). 
Thus iV(y, X) admits a spinc structure only if the p-brane worldvolume 
manifold Y does. 

The existence of a spinc structure on N(Y, X) implies the following 
features for the bound state construction. Let Ui be an open covering 
of X. The transition functions 5^ of S+ on Ui n Uj are then maps 
Qij ' UiDUj -> Spin(2A;). The existence of a spin structure is equivalent 
to the vanishing of the two-cocycle 

<Pijk = 9ij93k9ki : Ui n Uj nUk —► Z2, (7.45) 

in H2(X, Z2). This defines a cohomology class [cp] e H2(X, Z2), which 
vanishes precisely when N(Y, X) is a spin manifold and A^(Y, X) admits 
a spinc structure if [<p] is the modulo 2 reduction of an integral class 
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in H2(X,Z). Let C be the complex line bundle corresponding to this 
integral class (i.e., Ci(C) is equal to this element in H2(X, Z)), and let 
jij : Ui n Uj —> S1 be the transition functions for £. Suppose we want 
to find a square root of £, i.e., a line bundle C1/2 with C1/2 ® C1/2 = £. 
Then since Ui fl Uj is contractible we can define a square root 7^ = 
±^/yij : C/f fl Uj -> S1. The obstruction to the existence of a consistent 
set of transition functions 7^ is the two-cocycle 

<p'ijk = jijjjkjki : C/i n Uj nUk —y Z2 = kero- (7.46) 
where cr is the map a(z) = z2 corresponding to the split exact sequence 

0 —► Z2 —^ S1 -^ S1 —>► 0. (7.47) 

The class [cp'] e H2(X, Z2) is the coboundary of [7] € H^X, S1) under 
the associated long exact sequence in cohomology. In fact, consider the 
following commutative diagram: 

H^X.S1)   -^   H^X.S1)   -A    #2(X,Z2) 

^ ^ II (7.48) 

#2(X,Z)    ^>    i72(X,Z)    -A   H2(X,Z2). 

It follows that [y/] = p(ci(C)) = [^] and therefore [^J + [y?] = 0, or 
equivalently 

c1(C) = W2(N(Y,XJ\   mod 2. (7.49) 

This means that while we cannot construct the spinor bundles and 
we cannot construct the complex line bundle C1/2 globally, we can 
construct their tensor product. Thus, the existence of a spinc struc- 
ture means that C1/2 ® S± exist as vector bundles even though C1/2 

and S± do not. This in turn means that if N(Y, X) is a spinc bun- 
dle then we can proceed as in the case of spin bundles with the pair 
(>C1/2<g)c>+, Clt2®S~) determining an element of K(X) and representing 
a D-brane wrapped on Y. 

7.4    Compactifications and T-Duality 

A T-duality transformation maps Type IIA superstring theory to Type 
IIB superstring theory, under which a Dp-brane is mapped to a D(p+1)- 
brane if the transformation is done in a direction transverse to the brane 
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worldvolume. Since Type IIB branes are classified by K(X) and Type 
IIA branes by K~1(X), it is natural to study the action of T-duality 
at the level of K-groups [32, 30, 19]. For this, we shall need to under- 
stand how to measure D-brane charge on spacetime compactifications 
in terms of K-theory and how to achieve natural isomorphisms of the 
corresponding K-groups. 

We first need to explain an intimate connection between the index 
theory of Fredholm operators and topological K-theory, which will also 
be used in the next subsection. A Fredholm operator T, acting on a 
separable Hilbert space 7/, is a bounded linear operator whose kernel 
and cokernel are finite dimensional subspaces of %. Such operators 
therefore have a well-defined index: 

index T = dim ker T — dim coker T , (7.50) 

which is invariant under perturbations by any compact operator A, 

index(T + A) = index T. (7.51) 

Moreover, if S is a bounded operator that is sufficiently close in the 
operator norm to T, then S is also a Fredholm operator and index T = 
index S. 

The importance of these properties stems from the fact that one 
can also describe the group K(X) in terms of Fredholm operators. For 
this, let J7 be the space of Fredholm operators on H with the operator 
norm topology. Then (7.50) defines a continuous map 

index : F —> Z, (7.52) 

which can be shown to induce a bijection 

TTOGF) —>Z (7.53) 

between the set of connected components of T and the integers. More 
generally, let X be a compact topological space and consider the set 
[X, T\ of homotopy classes of maps from X to T. Since the product 
of two Fredholm operators is again a Fredholm operator, [X, T\ is a 
monoid. It can be shown that there is an isomorphism: 

[X,^]^KpO, (7.54) 
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which may be described as follows. Let Tx be a continuous family 
of Fredholm operators labelled by the parameter x 6 X. Then the 
family of vector spaces ker Tx forms a vector bundle ker T over X. This 
statement is also true for the cokernel of T, so that we can define the 
index of a family of operators Tx as the class 

Index T = [(ker T, coker T)] € K{X). (7.55) 

Note that this is similar to the correspondence that was made in (2.20). 
With this correspondence, the composition of operators in F corre- 
sponds to the addition in K(X), while adjoints correspond to inversion. 
In particular, in the case where X is a point (so that K(X) = Z) the 
isomorphism (7.54) is just the index map (7.53). In other words, the 
virtual dimension of the K-theory class (7.55) coincides with the index 
defined in (7.50): 

cho (Index T) = index T (7.56) 

Moreover, the set of homotopy classes of Fredholm operators defines 
the K-homology group KQ(X). The duality with K-theory is provided 
by the natural bilinear pairing 

([E] , m) -> index J^ GZ (7.57) 

where [E] G K(X) and TE = FE^E denotes the action of the Fredholm 
operator F on the Hilbert space ti = L2(r(X, E)) of square-integrable 
sections of the vector bundle E -> X as J7 : r(X, E) -» r(X, E). 

For the present purposes we shall be interested in applying these 
ideas to a special class of operators, namely the Dirac operators asso- 
ciated to vector bundles over a spin manifold X. Dirac operators are 
examples of pseudo-differential elliptic operators, which are Fredholm 
operators when viewed as operators on a Hilbert space. To this end, 
we consider the case F = ip : r(X, S%) -> T(X, <S^), where E -» X is 
a real spin bundle (of even rank) and Sg are the corresponding twisted 
chiral spinor bundles lifted from E. The Chern character (7.9) (along 
with a version of the Gysin map introduced at the end of section 7.2) 
then allows one to map the analytical index of ip defined in terms of K- 
theory classes into a topological index which can be expressed in terms 
of cohomological characteristic classes.   The result is the celebrated 
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Atiyah-Singer index theorem [81]: 

index ip = - f ch(E) A A(TX) (7.58) 

x 

where the Dirac genus of the vector bundle E is defined by 

= 1 - ^Pi(E) + J^ (7p1(E)Ap1(E) - in(E)) + ... 

and Pn{E) — (-l)nC2n(E ®^ C) is the n-th Pontryagin class of E, 
An important special instance of this index formula is obtained by 
taking E = TX to be the tangent bundle of the manifold X. Then the 
Euler number (7.23) can be expressed in terms of the Euler-Poincare 
characteristic of X: 

e(X) = dimK(X) ®z Q - dimK"1^) ®z Q. (7.60) 

We can apply these ideas to give an index-theoretical interpretation 
of T-duality acting on K-theory classes in various superstring theories 
[30]. The basic motivation for this analysis is the expression for the 
transformation of RR tensor fields under T-duality [82]. It can be 
shown that the RR fields^on spacetimes of the form Tn x M and those 
of the T-dual theory on Tn x M (where Tn is the dual torus of Tn) are 
related according to (in the absence of a Neveu-Schwarz 5-field) 

=  [di(V)AH, (7.61) H 

where H = J2pH^p+2>) is the gauge-invariant, total RR form field 
strength. Here 

chOP) = exp IJ2 dyi A dy1 J (7.62) 

is the Chern character of the Poincare (complex line) bundle V over 
T71 x Tn, with yl and % dual coordinates on Tn and Tn. The Poincare 
bundle is defined as the quotient of the trivial bundle Tn x (E71)* x C by 
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the action of the rank n lattice 27rA* (where Tn = En/27rA) defined by 
(x, x^jz) h-> (x, x* + m*1 e

tmix%z). The relationship (7.61) is reminescent 
of a formula that arises in the family index theory [81] for a family 
of Dirac operators on Tn parametrized by Tn which is carried by the 
bundle V over Tn x Tn. This motivates the search for a relatively simple 
explanation of the transformation property (7.61) in terms of K-theory 
which provides the analogous transformation rule for D-branes (which 
are sources for the RR fields). 

For illustration, let us consider the case of D-branes in Type IIB 
superstring theory compactified on a circle S1. Spacetime is then S1 x 
M, where M is a nine-dimensional manifold, and the dual geometry 
is S1 x M. As usual, a Type IIB D-brane is constructed as a bound 
state of 9 — 9-branes with Chan-Paton bundles S±

J gauge connections 
A± and a tachyon field T : 5+ —> S~. We probe this system with a 
Dl-brane wrapped on S1, so that the dual system is a DO-brane moving 
in S1 x M. The mass matrix of the fermionic modes coming from the 
1 — 9 and 1 — 9 strings is given by the Dirac operator 

T    -D- J      \      0        -dy + ia / 

Here D± — dy + A^ — ia is the Dirac operator on S1 coupled to the 
connection Ay—ia on the bundle S±®V, where V is the Poincare bun- 

dle over S1 x S1 with curvature —idaAdy. The operator (7.63) can be 
interpreted as the usual Dirac operator twisted by the superconnection 
(3.16) on the 9 — 9-branes coupled to the probe D-strings. It can also 
be interpreted as the tachyon field of the unstable Type IIA 9-branes 
of the T-dualized system [30], whereby the Wilson line on a Dp-brane 
is mapped onto the position of a D(p — l)-brane (c.f. eq. (4.21)). 

Since ip is a skew-adjoint operator its index vanishes identically as 
an element of K(S1 x M). Rather, it can be shown [81] that the index 
takes values in the higher K-group K~1(S1 x M) of the parameter space 
for the family through the following construction. Given the^family 
ip(x) of skew-adjoint Fredholm operators labelled by x e W = S1 x M, 
one can define a family over [-§, f ] x W by 

ip(t, x) = - sin t + ip(x) cos t . (7.64) 

This is no longer a skew-adjoint operator and therefore it canhave dis- 
tinct kernel and cokernel. Furthermore, since ip(-^,x) = -ip(^,x) = 
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1, its kernel and cokernel are isomorphic at t = ±| and therefore 

Index ip e K([-|, f] x W,d[-^, f] x W) = K"1^). It follows then 
that T-duality determines a map: 

K(S1 x M) —> K-^S1 x M) (7.65) 

which can be identified as the sequence of homomorphisms: 

K(S1 x M) 25 K(S1 x S1 x M)In^ K'^S1 x M),        (7.66) 

where the last map is defined by [(E, F)} ^ Index ipE.F- In an analo- 
gous way one may construct the inverse map, so that the transformation 
(7.66) is actually an isomorphism of K-groups. To compare the trans- 
formation (7.66) with (7.61), we compute the index using the family 
index theorem to get 

ch(Index ipE®v) = f ch(£ ® V) A ^(TS1) (7.67) 

s1 

with ^(TS1) = 1 and ch(E ® V) = di(E) A ch(P). Since the K- 
groups of S1 are torsion free, the Chern character (7.9) is an isomor- 
phism onto the subring ifeven(S1,Z) of ifeven(S1,Q), which makes the 
connection with the formula (7.61). This construction can be gen- 
eralized to compactifications on the n-torus Tn, thus defining maps 
K-m(Tn x M) —> K-m-1(Tn x M). Similar arguments can be ap- 
plied to Real vector bundles [81], yielding the corresponding maps on 
KR-groups appropriate for the Type I and Type II orientifold theories. 

There is another way to see the T-duality isomorphism in terms of 
relative K-theory [32]. Consider a general compactification manifold 
Z of dimension d. We want to determine all D-brane charges of codi- 
mension m in the non-compact space R9~d. These charges arise from 
D-branes which wrap non-trivial cycles of Z and from D-branes lo- 
cated at particular points in Z. As usual, one considers configurations 
of finite energy and therefore only those which are equivalent to the 
vacuum asymptotically in the transverse space Rm. So Rm is replaced 
by its one-point compactification Sm by the addition of a copy of the 
compactification manifold Z at infinity. This corresponds precisely to 
considering charges which take values in the relative K-group (2.47) 
(with Y = Z and X = Sm x Z). Thus, for example, for compactifi- 
cations of Type IIB superstring theory on a submanifold Z, D-brane 
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charges are classified by K(Sm x Z, Z\ and by K"1^™ x Z, Z) for Type 
IIA compactifications. For instance, consider the compactification of 
Type II on an n-torus Tn. By iterating the relations (2.35), (2.36) and 
(2.55), one may easily derive the natural isomorphisms 

n 

K(MxTn,Tn)   =   0K-*(M)<)  = ^(Mf^'eK-^M)0271"1 

fc=0 
r^f K-^M xTn,Tn). (7.68) 

From this point of view, Type II T-duality is then a consequence of 
the periodicity of 2 of complex K-theory. Furthermore, from (2.40) 
we see that under the isomorphism (7.68) of K-groups for n = 1, 
K(M) (g>z K(S1) maps to K(M) ®z K"1^1) with the summands K(S1) 
and K~1(S1) interchanged. From this it follows that T-duality ex- 
changes wrapped and unwrapped D-brane configurations. For n > 1, 
the decomposition (7.68) gives the anticipated degeneracies 2n"1 of 
brane charges arising from the higher supersymmetric branes wrapped 
on various cycles of the torus Tn. This may be attributed to the fact 
that the T-duality mapping generates the spinor representation of the 
target space duality group 0(n, n, Z), in agreement with the fact that 
0(n, n, Z) acts on the IIA and IIB RR potentials in the positive and 
negative chirality spinor representations, respectively. The complete 
agreement with the predictions of cohomology theory is once again a 
consequence of the Chern isomorphism of the integer K-groups of Tn 

with the corresponding integer cohomology ring. 

This analysis generalizes to other string theories as well. For in- 
stance, we can write down the explicit T-duality isomorphism between 
D-brane charges of Type I compactified on a torus and those of the 
corresponding Type II orientifold compactification. Using the analog 
of the decomposition (2.55) for KO-theory and (5.12), we may itera- 
tively compute the relevant group for the compactification of the Type 
I theory, 

KO(M x Tn, Tn) = 0 KO    (M)e(*) (7.69) 
A;=0 

whereas for the corresponding T-dual orientifold theory we may use 



CONSTRUCTING D-BRANES FROM K-THEORY        1011 

(6.27) to get 

KR-^MxT^.T1*)   =   0KRn'fc(M)®(^) =   0KOfc~n(M)eOO 

^   KO(MxTn
?T

n). (7.70) 

where we have used the fact that the KR-involution acts trivially on 
M. The corresponding spectrum of BPS and Z2 non-BPS D-branes 
agrees again with the degeneracies of the various wrapped branes. The 
complexity of the decomposition (7.70) as compared to the Type II case 
owes to the periodicity of 8 of the KO and KR-groups, as discussed in 
section 6.4. In these cases, the precise bookkeeping of D-brane charges 
requires the concept of "D-brane transfer", whereby a D-brane which is 
located over an orientifold plane is "transfered" via a wrapped D-brane 
of one higher dimension to another orientifold plane. This is required 
to compensate for the apparently absent Z2 charges in the K-theory 
spectrum (7.69) (see [32] for more details). 

Other K-theoretic interpretations of the T-duality isomorphism may 
also be given. In [31] it was discussed how to describe Type II D- 
branes wrapped on complex submanifolds of complex varieties using 
a holomorphic version of K-theory (more precisely, the Grothendieck 
groups of coherent and locally free sheaves), which further encodes a 
choice of connection on the brane world volume, and how the action of 
T-duality can be understood in terms of Fourier-Mukai transformations 
(see also [30]). In [19], T-duality was interpreted as being a consequence 
of the weak Bott periodicity sequence for the stable homotopy groups 
of the finite-dimensional vacuum manifolds for the Type II and Type I 
theories (c.f. section 6.4). 

7.5    D-Brane Anomalies 

In the final part of this review we will derive an explicit formula for 
the charge of a Dp-brane when it wraps a submanifold Y of the space- 
time X. Locally, this formula has its origin in ordinary cohomology 
theory, but as we shall demonstrate, when global topology is taken 
into account the expression involves quantities which are most natu- 
rally understood in terms of K-theory [34] in exactly the same spirit as 
our previous discussions of D-brane charge. The basic idea comes from 
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the fact that a Weyl fermion on an even-dimensional manifold always 
yields an anomalous variation of its action given by the well-known 
descent formula [83]. This formula determines the anomaly in terms 
of the representation of the gauge group carried by the fermions, and 
the corresponding Yang-Mills and gravitational connections. The same 
phenomenon occurs whenever a D-brane wraps around a non-trivial 
supersymmetric cycle of a curved manifold, because the twisting of its 
normal bundle can induce chiral asymmetry in its worldvolume field 
theory. The form of these chiral anomalies can be deduced by consider- 
ing the field content on the intersection of two branes, which contains 
chiral fermions. The anomaly term then comes from the tensor product 
of the spinor bundles with the Chan-Paton vector bundles over the two 
D-branes. The anomalous zero modes on the intersection of the branes 
come from the massless excitation spectrum of the worldvolume field 
theory which consists of Weyl fermions in the mixed sector Ni ® N2 
and Nx ® N2 representations of the gauge group U(Ni) x [/(A^) on the 
intersecting brane worldvolume. To render the theory anomaly-free 
thereby requires the addition of Wess-Zumino terms to the D-brane 
action. These induced terms imply that topological defects (such as 
instantons or monopoles) on the D-branes carry their own RR charge 
determined by their topological quantum numbers [27, 68]. 

Let / : Y "-> X be the embedding of a p + 1 dimensional brane 
worldvolume Y into the spacetime manifold X of Type IIB superstring 
theory. The anomalous D-brane coupling takes the form of a Wess- 
Zumino type action, 

SY = JrCAy(V2
E,g), (7.71) 

Y 

where C = J2pCip+1) is the total RR form potential and y(V2
E,g) is 

the D-brane source field which is an invariant polynomial of the Yang- 
Mills field strength and gravitational curvature on Y. Here V^ is the 
Hermitian curvature of a U(N) gauge bundle E on the brane, while g 
is the restriction of the spacetime metric to Y. The anomalies on the 
D-brane result from the chiral asymmetry of their massless fermionic 
modes which are in one-to-one correspondence with the ground states 
of the relevant open string Ramond sectors. Open string quantization 
requires the Ramond ground states to be sections of the spinor bundle 
lifted from the spacetime tangent bundle TX tensored with a vector 
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bundle in the adjoint N <g> N representation of the brane gauge group 
U(N), as dictated by the incorporation of the usual Chan-Paton factors. 
The GSO projection restricts the fermions to have a definite 50(9,1) 
chirality. When the normal bundle of Y in X is trivial, so that TX = 
TY, a standard index-theoretical calculation gives 

y*{V2
E,g) = ME) A f^MTX) . (7.72) 

However, the cohomology class (7.72) needs to be refined in the case 
that the normal bundle is non-trivial and, as we will demonstrate, this 
refinement leads to a formula for the D-brane RR charge which is most 
naturally understood in terms of K-theory classes, rather than coho- 
mology classes. Assuming that N(Y,X) admits a spin structure, one 
can determine the fermion quantum numbers of the spinor bundle as- 
sociated with N(Y,X). When N(Y:X) ^ 0, the fermions have quan- 
tum numbers (+,+) 0 (—,—) under the worldvolume Lorentz group 
Spin(l,p) and the spacetime Lorentz group Spin(9 — p) restricted to 
N(Y,X). If the normal bundle is flat, then left- and right-moving 
fermions in the worldvolume field theory are treated equally and the 
theory is non-chiral. However, when N(Y, X) has a non-vanishing cur- 
vature, chiral asymmetry is induced on the brane worldvolume and a 
distinction arises between the (+, +) and (—, —) quantum numbers. 

It is well-known that the index of the Dirac operator on an even- 
dimensional manifold X gives the perturbative chiral gauge anomaly of 
a Dirac spinor on X. The positive and negative chirality spinor bundles 
S^x corresponding to the tangent bundle of X can be decomposed 
in terms of the positive and negative chirality spin bundles <S^y and 
^N(YX) lifted from the tangent and normal bundles to Y in X: 

0TX STY ® SN(Y,X) STY ® SN(Y,X)\ (7-73) 

The Dirac operator for the charged and reduced fermions acts on sec- 
tions of the bundles (7.73) via the two-term complex 

ip: r(y, E+) —> r(y, E-), (7.74) 

where 

Ed 
0TY ® SN(Y,X) e «S^®«Stf(y)X)])®#. (7-75) 
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The standard index theorem applied to the two-term complex (7.74, 
7.75) yields 

indexip   =   (-l^-1*1^ [ch{E)A[dL{S+Y)-ch{STY)] 

Y 

ch(S+N{YtX)) - ch(S-(y)X))] A ^^-      (7.76) A 

with V/Td(rr <8)R C) = A(TY) and ch(5|) = nne±An/2-  Using the 

identity 

^      ^a-^X(E) 
ch(St) - ch(5^) = ^ (7.77) 

which holds for any orientable, real spin bundle E, we see that the 
appropriate modification of (7.72) due to the normal bundle topology 
is 

y(VE,9) = 3VVI, <?) A [^(iV^X))]"1. (7.78) 

In arriving at (7.78) we have re-written (7.71) as an integral over X 
using the appropriate deRham current Sy, and used the discussion of 
section 7.2 (c.f. eq. (7.25)) to write 

SYAx(N(Y,XJ)=6YA6Y. (7.79) 

Finally, as with the total Chern class, the Dirac genus is a multiplicative 
characteristic class, so that A(TX) = A(TY) A A(N(Y9X)) and eq. 
(7.78) can be written as 

y(V2
E,g) = ch(E)A 

\ 

A^ (7.80) 
:(N(Y,X)y 

Now we will describe how the anomalous coupling affects brane 
charges in the language of K-theory. To obtain the D-brane charge, we 
study the RR equations of motion and Bianchi identity coming from 
the complete action for the RR tensor fields: 

S = -\J H(C) A *H(C) -MjsyArCA y(V2
E, g),     (7.81) 

x x 
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where H(C) is the curvature of C. Then the equations of motion and 
Bianchi identity for a given (p + 1 — m)-form potential are 

d*H(C)   =   ^SyAy^g) 
dH(C)   =   -/^)5yA;y(V|,</), (7.82) 

where 3^ is obtained from y by complex conjugation of the Chan-Paton 
gauge group representation (note that cn(E) = (—l)ncn(E)J so that the 
Chern classes are torsion cohomology classes in the case that E = E 
and n is odd). From eq. (7.80) it follows that the formula for the charge 
vector Q G H*(X) defined on the right-hand side of (7.82) is 

Q = /, ( ch{E) A A{TY) A  * 1 , (7.83) 
V f*^A(TX)J 

where /» : Hn(Y,Z) -> Hn+9-p(X,Z) is the (push-forward) Gysin map 
acting on cohomology as defined in (7.15). From the point of view of 
the world volume field theory on the D-brane, the characteristic class 
y(V2

E,g) on the right-hand side of (7.83) measures the topological 
charge of a gravitational/Yang-Mills "instanton". From eq. (7.82) we 
see that Sy A J^ can be thought of as the brane current for a "fat" 
D(p — m)-brane bound to and spread out over the Dp-brane. When the 
instanton shrinks to zero size, y acquires a delta-function singularity, 
so that the quantity Sy /\y behaves just like a brane current. For some 
specific examples wherein the twisting of the normal bundle iV(Y, X) 
modifies the induced charge, see [35]. 

To write the class (7.83) in a more suggestive form, we make use of 
the Thorn isomorphism for cohomology in the form of eq. (7.24) and 
the identity 

flr(f) = VoA(f), (7.84) 

where 0 G H#(X,li) and VQ is the Poincare dual of the zero section. 
Then we have 

Q = /. (ch(JS) A A(TY)) A        1 (7.85) 
y/A(TX) 

Now we apply the Atiyah-Hirzebruch version of the Riemann-Roch the- 
orem [51] which gives (see eq. (7.35)) 

fi (ch{E) A A(TYJ\ = ch(fiE) A A{TX), (7.86) 



1016 K. OLSEN AND R.J. SZABO 

where f\[E] E K(X) is defined using the Thorn isomorphism (7.40). 
From (7.86) it follows that, as an element of H#(X), the RR charge 
associated to a D-brane wrapping a supersymmetric cycle in spacetime 
f :Y <-* X with Chan-Paton bundle E —> Y is given by 

Q = ch(fiE) A y/A(TX). (7.87) 

The result (7.87) has a very natural K-theory interpretation using the 
Chern isomorphism (7.10). The cohomology rings K(X) ®z Q ^nd 
Heven(X,Q) both have natural inner products defined on them. On 
Heven(X, Q), the bilinear form is given as in eq. (7.13), while the pairing 
on K(X) is given by the index of the Dirac operator (c.f. eq. (7.57)): 

([^],[F])K-index^0F (7.88) 

which using the Atiyah-Singer index theorem (7.58) may be written in 
terms of the deRham inner product as 

[E},[F})   = (ch(E) A ^A(TX), ch(F) A y/A(TX) )     .   (7.89) 
/ K \ / DR 

This implies that the modified Chern isomorphism 

[E] i—> ch(^) A \]A{TX) (7.90) 

is an isometry with respect to the natural inner products on K(X) and 
H*{X), Thus, the result (7.87) is in complete agreement with the fact 
that D-brane charge is given by f}\E} € K(X), and it moreover gives an 
explicit formula for the brane charges in terms of the Chern character 
homomorphism on K-theory. Integrating (7.87) over suitable cycles of 
the spacetime manifold X, as in (7.13), one thereby obtains the various 
p'-brane charges of the Dp-brane. 
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