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Abstract 

Within the AdS/CFT correspondence we use multicentre 
D3-brane metrics to investigate Wilson loops and compute the 
associated heavy quark-antiquark potentials for the strongly 
coupled SU(N) super-Yang-Mills gauge theory, when the gauge 
symmetry is broken by the expectation values of the scalar fields. 
For the case of a uniform distribution of D3-branes over a disc, 
we find that there exists a maximum separation beyond which 
there is no force between the quark and the antiquark, i.e., 
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the screening is complete. We associate this phenomenon with 
the possible existence of a mass gap in the strongly coupled 
gauge theory. In the finite-temperature case, when the corre- 
sponding supergravity solution is a rotating D3-brane solution, 
there is a class of potentials interpolating between a Coulom- 
bic and a confining behaviour. However, above a certain crit- 
ical value of the mass parameter, the potentials exhibit a be- 
haviour characteristic of statistical systems undergoing phase 
transitions. The physical path preserves the concavity prop- 
erty of the potential and minimizes the energy. Using the same 
rotating-brane solutions, we also compute spatial Wilson loops, 
associated with the quark-antiquark potential in models of three- 
dimensional gauge theories at zero temperature, with similar 
results. 

1    Introduction 

The study of M = 4 SU(N) Yang-Mills (SYM) gauge theory, at large 
N and for large 't Hooft coupling constant i24 = 47r^YM^5 is based, 
in the supergravity approach, on the type-IIB supergravity solution 
representing N coincident D3-branes. The metric is 

ds2 = H-^i-dt2 + dy2 + dy2 + dy2) + ff^(dz? + ... + dx2) ,    (1) 

where the harmonic function parametrizing the solution is given by 

R^a!2 

H = l + —f- ,    r2 = x2 + x2 + • - - + x2 . (2) 

The constant string coupling is e^ = gs = #YM and we have omitted 
the self-dual five-form. The field theory correspondence [20, 16, 31] is 
obtained by going to the near-horizon limit 

U = L,'        Ui = ^9    i = l,2,...,6,        G/->0, (3) 
or a' 

where the metric factorizes as AdS^ x 55 with both factors having equal 
radii R^fa1. When the SU(N) gauge symmetry is broken by non-zero 
expectation values (vev's) for the scalar fields, then the appropriate 
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supergravity solution has a metric given by (1), but with the single- 
centre harmonic function (2) replaced by the multicentre one 

N N 
Ci 

i=i ix   Xii        fei 
(4) 

while the dilaton remains constant. 

In the AdS/CFT correspondence, isometries of the background are 
identified with global symmetries of the gauge theory. A generic choice 
of vectors x* completely breaks the SU(4) ^ SO (6) 7^-symmetry of the 
theory. However, in this paper we consider cases where the 71 symme- 
try group is only partially broken to 50(4) times a discrete subgroup. 
This is achieved by placing the D3-branes in a plane lying in the six- 
dimensional space transverse to the D3-branes. It is worth mentioning 
that in the field theory limit (3) there is no supersymmetry enhance- 
ment since the (super)conformal invariance is broken by any non-zero 
vev's and only jV = 4 super-Poincare invariance remains. An impor- 
tant question is whether there exist supergravity descriptions of the 
same theories with broken gauge group at finite temperature. The cor- 
responding solutions must be non-extremal versions of the backgrounds 
corresponding to multicentre metrics. The construction of such solu- 
tions is in general not possible since, at non-extremality, the gravita- 
tional attraction of the non-BPS branes is no longer balanced by their 
RR-repulsion. However, this is possible when we are dealing with ro- 
tating D3-brane solutions [11, 26, 19, 27], when the attractive forces are 
balanced by centrifugal forces. In this paper we will use a class of such 
solutions, which has one rotation parameter [26] that breaks the H- 
symmetry 50(6) of (1) with (2), to an 50(4) x U(l) subgroup. In this 
case the extremal limit of the solution describes a uniform distribution 
of D3-branes over a disc [19, 28]. 

In this paper we are interested in computing the quark-antiquark 
potential using rotating D3-branes, since multicentre supersymmetric 
D3-brane solutions, with a continuous distribution for the branes, arise 
when the extremal limit is taken. In order to calculate the quark- 
antiquark potential we use a method introduced by [24, 21]. According 
to this prescription the expectation value of a Wilson loop of the field 
theory living on the boundary is given by the partition function of a fun- 
damental string in the relevant background and fixed on the boundary 
to the contour of the Wilson loop that is to be calculated. In principle 
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this amounts to summing over all possible surfaces of arbitrary genus 
with the given boundary conditions and all quantum fluctuations. In 
the supergravity approximation, which is valid for large 't Hooft cou- 
pling, i?4 = 47riV#yM, the problem reduces to finding the minimal area 
surface that ends on the contour of the Wilson loop on the boundary. 
The Wilson loop calculated using this procedure deviates from the usual 
definition of Wilson loops in that it includes the adjoint scalar fields 
(and the fermions). This can be understood as follows: in string the- 
ory, an external quark (or antiquark) is represented as an open string 
stretched from the horizon (location of the D3-branes) to the boundary 
of the AdS space. Since the string "pulls" the D3-branes, these are de- 
formed, which amounts to turning on scalar fields of the world-volume 
theory on the branes. Along the Wilson loop the scalars can take non- 
trivial paths in all six transverse directions, but in the following we will 
consider Wilson loops for which only the scalar corresponding to the 
radial coordinate U is active and the others are chosen to be constant. 

To be more specific, we have to minimize the Nambu-Goto action of 
a fundamental string in the relevant supergravity background. In order 
to calculate the potential between a quark and an antiquark, we take 
a rectangular loop on the boundary with one side of length L in the 
space direction and one of length T in the (Euclidean) time direction, 
as in field theory. Since the configuration is static, the time integration 
trivially yields a factor of T 

where g(U) = grrQuu and /([/) = R^grrgyy, for supersymmetric theo- 
ries at zero and finite temperature (section 2 and 3). In section 4, where 
we study supergravity duals of non-supersymmetric gauge theories, one 
of the spatial coordinates, say j/i, is taken as the Euclidean time and, 
hence, g(U) = gyyguu and f(U) = i?4^. 

The integrals for the length and energy of the Wilson loop, respec- 
tively, are computed using standard methods developed in [21, 24]. 
They are given by 

L-wmi ^iwmhm'    (6) 
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and 

(7) 

where UQ denotes the lowest value of U that can be reached by a certain 
string geodesic, and Um\n is the minimal UQ allowed by the physics 
and the geometry of the particular application. This could be the 
radius of the disc in the case of the corresponding multicentre metric 
or the horizon in the case of non-zero temperature. Note that we have 
chosen the arbitrary constant that may be added to the energy given 
by (7), in such a way that the energy of a non-interacting pair of quark 
and antiquark is zero. From the form of the multicentre harmonic 
(4) it is clear that our multicentre metrics approach, for large [/, the 
metric corresponding to AdS5 x S'5 and the same would also be true 
for the rotating brane solutions. In the conformal case [24, 21] we have 
f(U) = U\ g(U) = 1, C/min = 0 and we find for the length 

2v^r(3/4)i?2 

L "    r(i/4)c/o    ' (8) 

and for the energy 

_      r(3/4) 
^ " -y/*rm 0 Jqq 

2r(3/4)2# i (9) 

r(i/4)2   L ' 

One of the issues that we will investigate in detail in section 3 and 4 
is whether the concavity condition on the potential of a heavy quark- 
antiquark pair 

^f * •• (»> 
is obeyed. In physical terms, (10) and (11) mean that the force between 
the quark and the antiquark is always attractive and a non-increasing 
function of their separation distance. These conditions were proved in 
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general in [2], building on work in [3]. Hence, they should be satis- 
fied by the potentials computed using the AdS/CFT correspondence 
at any order of approximation and in particular in the supergravity 
approximation. Using (6) and (7) we find that 

rf2^i   _       1     /'TO      1 (13) 
dL2 47ri?2

V7(C^)L'(C/o) ' 

where the prime denotes a derivative with respect to UQ. Hence, the 
force remains always attractive, except at the point where f(Uo) = 0 
and (10) is always satisfied. However, the concavity condition (11) 
might fail since, even though in all of our examples f'(Uo) > 0, there 
can be occasions where Lf(Uo) changes sign.1 We will see that such 
behaviour occurs only on non-physical branches of the potential and 
was already encountered in previous examples [25, 4]. We also note 
that, because of (12), L and Eqq reach their extrema at the same value 
ofUo. 

The paper is organized as follows: in section 2 we study Wilson 
loops in Af = 4 SYM with broken gauge symmetry, using the back- 
ground for D3-branes uniformly distributed on a disc. We show that 
there is a screening behaviour such that the potential vanishes at a 
finite distance. We argue that this signals the existence of a mass gap 
in the theory at strong coupling. In section 3 we consider Wilson loops 
in Af = 4 SYM at finite temperature, using rotating D3-brane solu- 
tions and work out the phase structure in detail. In section 4 we use 
the same rotating D3-brane backgrounds to study non-supersymmetric 
gauge theories in three dimensions; as expected, we find confinement, 
but also a phase transition, depending on the ratio of the mass to the 
rotation parameter. We present our conclusions and some open prob- 
lems in section 5. We have also written an appendix, where we briefly 
discuss Wilson loops obtained using the background for D3-branes dis- 
tributed uniformly on the circumference of a ring. 

1This, apparently, is in conflict with theorem 1 in [18]. Given the explicit nature 
of our calculations in sections 3 and 4, it seems that the validity of this theorem be 
restricted for Eqq < 0. 
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2    D3-branes distributed on a disc 

As our first example we consider N D3-branes distributed, uniformly 
in the angular direction, inside a disc of radius ro in the X^-XQ plane. 
Their centres are given by [28] 

Xij = (0,0,0,0, roj cos ^, roj sin ^), 

& = -i,    roj = ro (jl^N) l\    h 3 = 0,1, •. • , VN - 1,      (14) 

and uniformity of the distribution means that we take the constants Q 

appearing in (4) equal to 1. Since we are interested in the large-N limit, 
we may take v^ = integer without loss of generality. For a number of 
D3-branes, N ^> 1 and in the field theory limit (3), where in addition we 
keep finite the energy of strings stretched between D3-branes situated 
at the centres by rescaling ro —» aVo, we may replace the sum by an 
integral; the metric then takes the form (1) with harmonic given by [28] 

H__ 2R4/af2  

V/(f/2 + ^)2-4r^2 (f/2 - r2 + v/(C/2 + r0
2)2-4r2u2) 

U2 = Ul + ... + Ul ,        u2 = Ul + Ul. (15) 

It is easy to see that the above harmonic is indeed singular inside a 
disc of radius ro in the 0:5-^6 plane. This distribution of D3-branes is 
what is obtained [19, 28] in the extremal limit of the D3-brane rotating 
solution with one rotation parameter of [26]. 

2.1    Trajectory orthogonal to the disc 

There are two simple trajectories we use to investigate the quark- 
antiquark potential. First consider the trajectory in the hyperplane 
defined by 

£5 = #6 = 0 ,        u = 0 , (16) 

that is along an axis passing through the centre of the disc. In that 
case we have 

/(</) = [/2(t/2 + r0
2),        g(U) = l (17) 
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and the minimum value for Uo is Umin = 0. The expression for the length 
as a function of Uo is given by (we change the integration variable in 
(6) and (7) as p = U2)2 

= 2
1^(n(^k)-K(k)) , (is) 

whereas for the quark-antiquark potential as a function of C/Q, we obtain 

1    f00 p + rl 

{P-U2){P + r2 + U2)     VP TT 

^
2U2Q

 
+ r" (j^KCJfe) - E(jfc)) , (19) 

TT 

with k =     / ^   0 and k1 = y/\ — k2.   For the disc metric we find 

Coulombic behaviour for small L, as expected, but an expansion of 
the integrals for small UQ reveals a quite different behaviour for larger 
values of L. We find that 

*= — (i-*) + om (20) 

and 

En = -^ + 0(11*) . (21) 

Hence, we see that there exists a maximum length 

Lmax — j (22) 

after which there is no force to keep the quark and antiquark together. 
Solving for UQ in terms of L, using (20), we find that 

E« = -| (Ll7^L)2e(^ax -L) + 0(Lm^ - Lf ,       (23) 

2In what follows K(fe), E(A:) and n(n,A;) are complete integrals of the first, 
second and third kind, respectively. In this paper we follow the conventions of 
[14, 6]. 
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where the step function 6(I/max — L) enforces the maximum length 
condition. The potential goes to zero for a finite separation Z/max, which 
corresponds to a trajectory that goes all the way down to U = 0 i.e. 
touches the disc. 

The heavy quark-antiquark potential energy as a function of the 
separation is depicted by curve (b) in fig. 1. 

2.2    Trajectory lying on the plane of the disc 

For the trajectory along an axis that lies on the plane of the disc and 
goes through its centre, we have 

#i = #2 = #3 = #4 = 0 , U = u (24) 

and 

f(U) = (U2 - r0
2)2 ,        g(U) = 1 , (25) 

whereas Umin = TQ. The latter condition means that no trajectory can 
penetrate the disc. After we change the integration variable as p = U2 

the integral (6) for the length becomes 

L = B?(Ut - rl) l"  d() .       (26) 

Similarly, that of the quark-antiquark potential in (7) becomes 

2*Jv 
Em = ir- /    dp ul UH\^P{p-UZ){P+Ut-2rl)      y/p) 

(27) 

They can be written in terms of elliptic integrals of the first and the 
third kind as 

L 
i 2-ES$^, (n(rg/^, *i) - Kfa))      if rl < Ul < 2rl 

(28) 
Ivf&iN'^-*^)       if U2Q-2T1 
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and 

Egg- 
'-§(1 + Aa)E(^g) + a if r0

2 < t/0
2 < 2r0

2 

^1 (K(A*) - 2E(A;2)) + ai      if ^ > 2r0
2 

(29) 

where fci = ^^ ^ and ^ = J2u*-2?*' ** can be checked that ^ ail(i 
jBg^, as given by (28) and (29), are smooth functions at UQ = V^ro- 
The behaviour is similar to that in the previous case. We find3 

(30) 

and 

*«=-^K^H) + 0<£/°-r°)4' (3l) 

and hence there is a screening behaviour. The maximal separation of 
the quark-antiquark pair is 

£max = 7:        • (32) 
2ro 

The heavy quark-antiquark potential energy as a function of the 
separation is depicted by curve (a) in fig. 1. 

2.3    The mass gap 

We have seen that in both cases there exists a maximum length at which 
the force between the quark and antiquark becomes zero, i.e. complete 
screening! For a separation of the quark-antiquark pair L > Lmax we 
do not find a geodesic connecting them and the solution is given by two 
straight strings corresponding to zero potential and zero force between 

3The expansion of the complete elliptic integral of the third kind Ii(rl/U$,ki) 
is facilitated if it is first expressed in terms of (incomplete) integrals of the first and 
second kind, using eq. 412.01 of [6]. 
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the quark and the antiquark. The latter state is in fact the physical 
one and prevents a violation of the condition (10). A screening-type 
behaviour is typical of Wilson loops at finite temperature [4] and also in 
theories at zero temperature, with running YM coupling constant [17] 
(because of non-constant dilaton), but it was not expected for a theory 
at zero temperature with constant dilaton. From a physical point of 
view the existence of a maximum length Lmax ~ — means that one 
cannot probe at arbitrarily small energy scales. This is a signal that 
the gauge theory at strong coupling exhibits a mass gap Mgap ~ -^-. In 
order to investigate this we start with the massless wave equation 

-j^d^y/GG^d^ = 0 . (33) 

We make the ansatz \I/ = 0(C/)e2A:'2/ and define the (mass)2 as M2 = —k2 

in the spirit of [32]. In the background (15) we obtain the following 
second order differential equation4 for (/)(U) 

duU^U2 + rDducj) + R^M2U(j) = 0 , (34) 

whose general solution, for q ^ 0, can be written in terms of hypergeo- 
metric functions as 

* = Cl(:i)»V(_!+ii3ziil_,;_(£W.) 

where Ci, C2 are constant coefficients. The solution that is valid for 
q = 0 can also be written down using [14, 1], but it will not be needed 
for our purposes. Depending on the value of M, the parameter q is real 
or purely imaginary. We will show that only in the latter case may we 
obtain a basis that is orthonormalizable in the Dirac sense (with the 
use of a 5-function) with measure dUU. Indeed, the behaviour of (35) 
for small U is 

♦ = 0,(2)^ +ft (a)-,       as   U^0+.        (36) 

4 The coordinate U appearing in this subsection is not the same as the one in 
(15). The two are related by the coordinate transformation (50), relating (51) to 
(40), if we analytically continue TQ -> — TQ. 



862 A. BRANDHUBER AND K. SFETSOS 

Hence, if q is real, the orthonormalizability condition requires that Ci = 
0. On the other hand if q is imaginary, the reality condition requires 
that Ci and C2 be complex conjugate to each other. Similarly the 
behaviour of (35) for large U is 

0 " Cl r(3/2 - g/2)2 + ^ r(3/2 + 9/2)» (37) 

i?8M4 

+ 32c/4 

r(l-g)     /„,   (U\     3     rt 4r2 
r(3/2- g/2)2 V       Vro/     2        '     i?4M2 

7     it!4M2 V   2 

as    U —> 00 , 

where 7 is Euler's constant and ^(z) = ^^^ is the so-called psi func- 
tion.5 It is clear that orthonormalizability requires that the constant 
term in the above expansion vanishes, giving 

r(i-g) r(i + g)    _ 
Gl r(3/2 - q/2Y + ^ r(3/2 + 5/2)2 "0 • (38) 

As we have mentioned, real q requires that Ci = 0 and, because of (38), 
C2 = 0 as well. Hence, the only possibility to have square integrable so- 
lutions is to require an imaginary q. Indeed, (37) then behaves as 1/C/4 

for large values of U. Furthermore, the condition that q is imaginary 
leads to a mass gap 

R2 ^gap = "ST , (39) 

which is of the order expected from the quark-antiquark potential com- 
putations. The mass spectrum above the mass gap is continuous. 

5In finding the asymptotic behaviours in (36) and (37), we have used the fact 
that F(a, 6,c;0) = 1, the relation 15.3.14 of [1], as well as some properties of the 
psi function. 
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Length 

Figure 1: Curve (a) corresponds to the quark-antiquark potential as 
computed using (28) and (29). Curve (b) corresponds to the same 
potential as computed using (18) and (19). Lengths and energies are 
measured in units of ^ and ro, respectively. Both curves demonstrate 
that there is a maximum value I/max> given by (32) and (22), where the 
energy becomes zero and the screening of charges is complete. 

3    Rotating D3-brane solution 

A rotating D3-brane solution of type-IIB supergravity was found in 
[26] (based on [11]). For our purposes we pass to the Euclidean regime, 
where the time variable as well as the angular parameter are analytically 
continued. In the field theory limit, the metric is therefore given by (the 
dilaton is constant and we omit the self-dual five-form): 

ds2 = H-W (fdr2 + dyl + dyl + dyl) (40) 

+ oPHwi dU2 

V /i 
+ (U2 - r2 cos2 d) d92 + {U2 - r2) sin2 9 d(f>2 

+ U2 cos2 9 dtit - ^ sin2 9dTdA , 
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with 

H   = R4/a'2 

[/2([/2-rgcos20) ' 

f   =   1 d  (41) 

,    _      Ut-rtlP-n4 

h   — U2(U2-r%cos20) ' 

where ro is the "Euclidean" angular momentum parameter. The lo- 
cation of the horizon is given by the positive root of the equation 
U4 - r2U2 - //4 = 0: 

Ul = \ (rl + V^o4 + 4^)  , (42) 

whereas the temperature associated with (40) is 

TH = 
UH 

Z-KR
2
^' 

V^o+V • (43) 

By direct inspection of the curvature-invariant R^R^ we see that the 
metric (40) has singularities, at U = 0 and at U2 — TQCOS

2
^, which 

are hidden inside the horizon at U = UH, provided that /^ > 0. The 
explicit form of the curvature-invariant is rather lengthy and will not 
be presented here. 

In this section we are interested in calculating the potential be- 
tween a quark and an antiquark in a four-dimensional gauge theory 
at finite temperature.6 At finite temperature the time coordinate is 
periodically identified and the rectangular Wilson loop at zero temper- 
ature is wrapped on the time direction. Therefore the topology of the 
boundary of the Wilson loop at finite temperature is that of two circles 
separated in the space direction by a distance L. On the supergrav- 
ity side this means that we have to minimize the area of a cylindrical 
string ending on two cycles at the boundary. Since the configuration is 
time-independent, formulae (5)-(7) can be used without modification 
to calculate the quark-antiquark potential. 

6For a pedagogical review of gauge theories at finite temperature, see [30]. 
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3,1    Finite temperature and zero rotation 

Before we examine the general case in detail we focus our attention to 
two particular limits, where the metric (40) simplifies considerably and 
we may compute the integrals in (6) and (7) explicitly. In the first, the 
parameter ro <C //. Then we obtain the non-extremal D3-brane metric 
in the field theory limit given by 

ds2 = w (i1 - m) ^+dvl+dvl+dyl) 
+ ^((1-^)"1^2+c/2dfi0 • (44) 

Wilson loops in this background were studied in [25, 4]. Here we show 
that various results can be expressed in terms of hypergeometric func- 
tions. We have 

/([/) = U4 - // ,        g(U) = 1 (45) 

and t/min = fj,. Using (6) and (7), we find for the length: 

dU L   =   2R 
JUn Uo    V(^-^4)(^4-^04) 

=   ^(3/4,1/2) ^y/l- MUj F(i 11 /M4)     (46) 

and for the energy: 

£(-1/4,1/2) 

Eqq 
luA- 

-Uo4 
1 ]      Uo- V 

TT 

An ^H'-fi^H- ^ 
For Uo > ^ we have the usual Coulombic behaviour, and the potential 
is given by (9). As UQ decreases to Uo ^ 1.18// the length and energy 
reach their maximum values Lmax ~ 0.87J?2/M and E™?* ~ 0.03/z. 
However, before that, for Uo ^ 1.52/x the energy turns positive and the 
corresponding value for the length is L ^ 0.75i?2///.   As Uo -> /i we 
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find that both the length and the energy approach zero as7 

» V »      \   v 
and 

(48) 

^.-^K^'-1-'-    (49) 

The plots of the length and potential as functions of UQ and that of 
the potential as a function of the length are given by curve (c) in figs. 
2, 3 and 4. 

3.2    The supersymmetric limit and a multicentre 
metric 

A second interesting limit is the extremal limit corresponding to ro 3> 
/i? where the solution becomes supersymmetric. In this case (strictly 
speaking exactly for // = 0) the part of the singularity surface at U2 = 
TQ COS

2
 6 corresponding to 9 = 0 concides with the location of the would- 

be horizon, which, using (42), is easily seen to be at UH = TQ. The 
nature of this surface, where there will be a distribution of D3-branes, 
becomes transparent after the change of variables (valid for the region 
Uo > ro) 

=   C/cos^sin^f008^  , 

=   Ucosecos^f^t2]  , (50) 

)   =   V^sin^), 
7In the absence of the logarithmic dependence in (48) and (49) the potential 

energy would have gone to zero as L2 for small separations. Owing to the presence 
of logarithm, it is not possible to find the analytic expression of the potential energy 
as a function of the length, even if this is small. Nevertheless we easily deduce that 
it goes to zero faster that L2. The authors of [25] have presented a power-law 
behaviour of the type L3,6 based on numerical fitting. 
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where iji, <f)i and ^2 parametrize the line element d£l\ for S"3, and we 
find 

ds2 = H-1'2 (dr2 + dy2 + dy2 + dy2) + H1!2^2 + • • • + dx2) , 

H- ^>f         (51) 
V(^2-^)2 + 4r0V (C/2 + r2 + ^(y^-riy + Arlv?) 

U2 = x\ + • • - + x\ ,        u2 = xl + xl . 

Notice the symbol U in (50) and (51) refers to two different coordi- 
nates. The above harmonic function can be obtained from (15) if we 
analytically continue ro —>■ — UQ. This continuation changes the sin- 
gularity structure of the harmonic function. It no longer represents 
D3-branes uniformly distributed over a disc of radius ro at the x^—xs 
plane, but rather D3-branes uniformly distributed over a 3-sphere de- 
fined by x\ + xl + xl + x\ = TQ and x§ — x§ = 0. Notice that the 
location of the singularity coincides with that of the would-be horizon 
and therefore it is meaningless to talk about Hawking temperature in 
this case (note that the expression for TH in (43) diverges in the limit 
/i -> 0). 

Before we actually compute the Wilson loops associated with the 
supersymmetric limit, let us show that even in that limit there exists a 
mass gap and, hence, we expect screening. As before we start with the 
massless wave equation (33), with the same ansatz \I/ = (l)(U)eik'y and 
definition of the (mass)2 as M2 = — k2. Then we obtain a second order 
linear differential equation for </>([/), which, after changing variables as 

(f>=(l-z)2Y(z),        z = l-jfi,    N<1, (52) 

becomes 

(1 - z2)Y" - 2(1 + 2z)Y' + (^^ - 2) Y = 0 (53) 

which is the Jacobi equation. This has a complete set of normalizable 
solutions in terms of the Jacobi polynomials, provided that the mass 
spectrum is quantized as 

4r2 

M2 = ^n(n + 1),        n = l,2,... . (54) 
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In that case Y(z) ~ P^fi(z) in the standard notation of [14]. Hence, 
the mass gap must be of the order of the mass associated with the 
lowest eigenvalue n = 1, which gives a mass gap MgBjP ~ jfr. 

In the rest of this subsection we study the potentials arising from 
two different trajectories. 

3.2.1     Case I: 

For the trajectory passing through the centre of the 3-sphere we set 

£5 = #6 = 0 ,        u = 0 . (55) 

We have 

f(U) = U2(U2-r2
0),        g{U) = l (56) 

and C/min = TQ. Then the expression for the length and the potential as 
functions of C/Q are given by (we change the integration variable in (6) 
and (7) as p = U2): 

dp L   =   tfuJuZ-rlf    —= 
Jut Py/U (p-r0

2)(p-C/0
2)(p + C/0

2-r0
2) 

2J^(ll(k",k)-K(k)) , (57) 
'0 ' 0 

and 

Eqq     = 
27r l»A{ p-T\ 0 

(p-f/0
2)(p + t/0

2-r0
2)      yp 

C/o-ro 
TT 

V/2^02     Tl (k^Kik) - E(k)) + ^ , (58) 
TT TT 

where k =    / 
U(i   0 and kr = \/l — k2. 

V2Uo-ro 

For UQ ^> /btwe have the usual Coulombic behaviour and the poten- 
tial is given by (9). As UQ decreases, for UQ — 1.13ro the length and 
energy reach their maximum values Lmax = R2/ro and E™?* c^ 0.02ro. 
However, before that, for UQ — 1.38ro, the energy turns positive and 
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the corresponding value for the length is L c^ 0.88it!2/ro- As UQ -» ro 
we find that both the length and the energy approach zero as 

and 

The plots of the length and potential as a function of UQ and that of 
the potential as a function of the length are given by curve (a) in figs. 
27 3 and 4. We see that the behaviour is similar to the case of finite 
temperature, but zero rotation parameter. 

3.2.2    Case II: 

For the trajectory with 

#i — #2 = #3 = #4 = 0 , U — u , (61) 

we have 

f{U) = {U'2+rl)\        g{U) = l (62) 

and that [/mjn = 0. The expressions for the length and the potential as 
functions of UQ are given by (again we change the integration variable 
in (6) and (7) as p = U2): 

L   =   I?(UZ + r2
0)[ 

Ju 

dp 

ui (p + r2
0Wp(p-UZ)(p + UZ + 2r$) 

V2R2 

VW^ ,2 
nQ,*)-K(*)) (63) 

and 

Egg 
= ^x?"! P + r2

Q 1  \      Ut 0 

\/p(p-^o2)(/> + ^o2 + 2r0
2)      V^7       TT 

=   ^^^(K(A)-2E(ib)), (64) 
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where k = yj$j$Ay We find that for UQ -»■ 0 

and 

^^(ln(^)-V2.n(l + ^| (65) 

Hence, we find the linear potential 

s****1-  lm L>>f • (67) 

We note that the potential described by (63) and (64) is the same 
as that found in [22] using a two-centre metric, even though this is a 
different supergravity solution than (51). 

The plot of the potential energy as a function of the quark-antiquark 
separation is given by curve (b) in fig. 5. Notice the smooth interpola- 
tion between the Coulombic and confining behaviours. 

3.3    The general case 

We would like to study the quark-antiquark potentials arising at gen- 
eral values of // and TQ from trajectories having different, nevertheless 
constant, values for the angle 9. Since there is an explicit dependence 
of the metric components on 0, consistency requires that the variation 
of the Nambu-Goto action with respect to 9 is zero in order for the 
equations of motion to be obeyed. It is easy to see that this proce- 
dure allows 9 — 0 or 9 = 7r/2. There is no problem setting all the 
other angular variables to constants, since the metric components do 
not explicitly depend on them. 

3.3.1    Trajectory with 9 = 0 

In this case 

f(U) = U4- r2
0U

2 - ^ ,        g(U) = 1 (68) 
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and the integrals for length and energy, given by (6) and (7) respec- 
tively, take the form 

L = 2R^U*-rlUl-^ 

dU I 
and 

Uo-UH 

(69) 

F    1 r^ /   ^-^-A*4     1 Jqq 
TT 

(70) 

with C/Q > C/min = ^TfiTj where the location of the horizon is given in 
(42). For large C/Q the potential is, as usual, Coulombic, but there 
exists a maximal separation, as is depicted in fig. 2 for various values 
of /z. At the values of E/Q where the separation is maximal, also the 
energy is maximal and always positive (fig. 3). This means that there 
is a screening behaviour because, once the potential turns positive, a 
configuration of two separate strings, each bounded by a circle in the 
Euclidean time direction, is energetically favoured and corresponds to 
a vanishing force between the charges. As C/Q —>• UH we find that both 
the length and the energy approach zero as 

£=!^(,*+v)-"yipmyy  pi) 
and 

*« *—*r*\vr^ji) ■ (72) 

The second branch of the potential, starting at the point of maximal 
separation and going to zero distance and zero energy, is unphysical for 
three reasons. First, since the energy on this branch is always positive 
the first branch is preferred, as it it minimizes the energy. Second, it 
violates the concavity condition (11) (see also (79) below). Third, when 
UQ —> UH the circumference of the string in the Euclidean direction 
becomes arbitrarily small in the region close to the horizon. Since the 
loop is contractible, the string can split into two strings, which have the 
shape of discs bounded by a circle. Therefore, the potential vanishes, 
which explains the screening when the two quarks are separated beyond 
the maximal distance. 
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0.5 

Uo 

Figure 2: Curves (a), (b) and (c) correspond to the distance between 
a quark and an antiquark as a function of UQ, as computed using (69) 
for three different values of fi — 0, 3 and 10, respectively. Lengths and 

R2 

energies are measured in units of — and ro, respectively.   All three 
ro 

curves approach L — 0 as C/Q —> UH according to (71). For large U® 
they unify according to (8) irrespectively of the value of //. Curve (a) 
can be obtained using (57). Curve (c) is approximately what we would 
obtain using (46). 

3.3.2    0 = f 

In this case we have 

4        ..4\//r7-4       J2TT2        tA\ f(U) = Ui-n\       g(U) = (f/4 - f)/(U* - rlU2 - S) .     (73) 

The integrals for length and the potential energy are given by 

L = 2R2M-^ r 
V JUo 

dU 

y/(U*-tfU*-u*)(U*-U*) 
(74) 
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Energy 

0.2 

-0.2- 

.   Uo 

Figure 3: Curves (a), (b) and (c) correspond to the quark-antiquark 
potential as a function of UQ as computed using (70) for three different 
values of n = 0, 3 and 10, respectively. Energies are measured in units 
of r-Q. All three curves approach U = 0 as UQ —>• UH according to 
(72). For large UQ the curves become parallel as they follow (9) with 
the energy shifted in its curve by ^-. Curve (a) can be obtained using 
(58). Curve (c) is approximately what we would obtain using (47). 

and 

E. QQ 
-i r 

KJUo 
dU 

U4-^ 

^(U*-rZU*-Li4)(U*-UZ) 

u4 
F 

U4 - rlU2 - n4 

-U"?u{ 
u4 

t* 
U4 - rp2 - v4 ' 

(75) 

where UH is given by (42) .8 As usual, the dependence of the potential 
energy for small separations L of the quark-antiquark (corresponding 
to large UQ) is Coulombic. For UQ ->■ UH we have 

R2ro 

V2UH 
(^ + 4//4)-1/4ln 

U H 

Ua-U H 
(76) 

8For fj, = 0 both (74) and (75) tend to the integrals in (63) and (64) after we 
change variables U2 -¥ U2 + TQ and rename UQ -> UQ + r^. 
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Energy 

:  Length 

Figure 4: Curves (a), (b) and (c) correspond to the quark-antiquark 
potential as computed using (69) and (70) for the three different values 
of // = 0, 3 and 10, respectively. Lengths and energies are measured in 
units of j- and ro, respectively. For small separations L —» 0, all three 
curves approach the Coulombic law. Curve (a) can be obtained using 
(57) and (58). Curve (c) is approximately what we would obtain using 
(46) and (47). 

and 

^A<r»+4"4>-1/4ln(ra' (77) 

Eliminating C/Q we find a linear confining behaviour 

E- ~  ^ qq   -    27^2 
L ,    for   L > 

R2ro 

H 
{rt + V) 4N-1/4 (78) 

However, for intermediate values of the separation, the behaviour of 
the system depends crucially on the value of the ratio A = ^. There is 
a critical value Acr ~ 2.85 such that for A < Acr the behaviour is quali- 
tatively the same as in the case fi = 0 that we have already examined 
(see curve (a) in fig. 5). 

However, for A > Acr the behaviour is different and resembles the 
situation occurring in first order phase transitions in statistical sys- 
tems.9 We describe the situation below and we also refer to figs. 6 and 

9In terms of thermodynamic quantities, our L, Eqq and UQ correspond to pres- 
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Energy 

Length 

Figure 5: Curves (a), (b) correspond to the quark-antiquark potential 
as computed using (74) and (75) for the two different values of /i = 2 
and 0, respectively, corresponding to A < Acr ~ 2.85.   Lengths and 

B? energies are measured in units of ^- and ro, respectively.   For small 
ro 

separation L —>- 0, both curves approach the Coulombic law. For large 
separation we obtain a linear behaviour. Curve (b) can also be obtained 
using (63) and (64). 

7 for graphical details of the length as a function of C/Q and of the po- 
tential energy as a function of the length. In particular, there are three 
different branches corresponding to the segments ABCDEF, FJKLM 
and MNOPQRS. For large C/Q, equivalently small L, we have the usual 
Coulombic behaviour given by (9) (point A in figs. 6 and 7). As we 
lower C/o, we see that for all points until point B there is a unique value 
for C/Q, that is a unique trajectory, corresponding to each value for the 
length. At point B two different values of C/Q correspond to the same 
value for the length (the other point is M) and after that, up to point D, 
there are three different C/Q'S for each value of the length (for instance, 
C, N and L). Note also that in the entire path ABCD the energy is 
the smallest compared with the points on the other two branches that 
have the same length. When the unique point D is reached, the energy- 
surface intersects itself and after that the energy minimum comes from 

sure, Gibbs potential and volume, respectively. At A = Acr the first order phase 
transition degenerates to a second order one. Then C/Q plays the role of an order 
parameter. For details on the related statistical and thermodynamical aspects, see, 
for instance, [7]. 
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the other branch of the curve. Hence, all three points Q, E and J have 
the same length, but the physical state corresponds to point Q since 
this has the smallest energy of the three. Therefore, we conclude that 
the physical path is not the one joining the points ADFKMOS but 
rather ABCDOQRS, where the energy is always a minimum for a given 
value of the length. Hence, the entire branch FJKLM connecting the 
two extrema F and M is unphysical. There is an additional reason why 
this branch is not part of a physical path, namely that the concavity 
condition for the potential (11) is violated there. This is easily seen by 
first finding the behaviour close to the two extrema marked by F and 
M. Using (12) and (13) we find that close to a maximum F 

Eqq - E™ ~   ^[flP (L-x - L) [-1 T D1(Lm&x - L)1'2]  , 
(79) 

where the minus (plus) sign corresponds to the branch BCDEF 
(FJKLM) and Di is a positive constant. Close to the minimum M, 
the corresponding expansion is 

^ - Ertn - ^y {L " Lmin) [1 T D2{L " Lmin)1/2] ' (80) 
where now the minus (plus) sign corresponds to the branch MNOQR 
(FJKLM) and D2 is another positive constant. We see that the con- 
cavity condition (13) is violated in the branch FJKLM. In contrast, in 
the entire physical path ABCDOQRS this condition is preserved. Note 
also that exactly at the critical value A = Acr ~ 2.85 the first order de- 
generates to a second order phase transition. Then using the fact that 
not only the first but also the second derivative of the length vanishes 
at some critical value U™ we find that 

^ " *% -  ^MpV - Lcr) t1 " ^ - jLcr|1/3)  ' (81) 

for some constant D3. Therefore, using (12), we find that L — Lcr ~ 
(UQ — UQ

T
)
3
. It can also be shown that UQ — U™ ~ A — Acr for A > Acr 

and of course it vanishes, as usual for an order parameter, for A < Acr. 
Hence, the corresponding critical exponents take the classical values 3 
and 1. 

Finally, we want to comment on the confining behaviour for large 
quark-antiquark separation, present for all values of fj, and ro, which 
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is somewhat unexpected. Once the potential becomes positive, a con- 
figuration of two separate worldsheets is energetically preferred. The 
breaking of the tube-like worldsheet connecting the quark-antiquark 
pair is possible, if the proper length of the circle y/g^jTn ~ Vu' as 
the string approaches the horizon. Using our metric (40) we find that 
a breaking of the string is likely when either JJL > V^Rro or ro > \/R^ 
and in these cases one has screening as in the case of 9 = 0. On the 
other hand, for VQ ~ /i, the circumference ~ Va'R is quite large and 
the worldsheets on the confining branch of the potential are stable, al- 
though its energy is larger than that of two disconnected worldsheets. 
The answer to this problem might be related to the discussion in [22], 
where an (unexpected) linear potential was found to be unstable be- 
cause of extra QCD states. 

Length 

Figure 6: The quark-antiquark separation, as computed using (74) for 
A > Acr ~ 2.85. 

4    Rotating D3-brane for YM in three di- 
mensions 

Models of YM theories in 2+1 dimensions at zero temperature can 
be constructed, using non-extremal D3-branes, by compactifying the 
Euclidean time direction on a circle of circumference /? = 1/TH [32, 
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Energy 

Length 

Figure 7: The quark-antiquark potential as a function of the separation, 
as computed using (74) and (75) for A > Acr ~ 2.85. 

8]. An extension of this model, where there is a clear decoupling of 
the Kaluza-Klein modes associated with the Euclidean time compared 
with the modes that have vanishing Kaluza-Klein charge, is based on 
rotating D3-branes [26, 9, 27]. The space-space Wilson loop for the 
zero-rotation case has been computed in [5]. 

As before, setting all the angles to constants in searching for trajec- 
tories is consistent with the equations of motion only in the cases 6 = 0 
or0 = §. 

4.1     0 = 0 

In this case we have 

f(U) = U2(U2-rl),        g{p) = 
U2{U2-rl) 

m - rlU2 - /i4 (82) 
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Then the integrals for the length and the energy, given by (6) and (7) 
respectively, take the form 

L = 2R2y/uZ(UZ - r0
2) 

dU f ho  V(U4 - r2
0U

2 - ^){U* - UI){U* + 1%- r0
2) ' 

and 

U2{U2 - rg) 

(83) 

-i r 
~ KJUo 

Eqq = - I    dU 
V^ - r0

2t/2 _ )U4)(C/2 _ 0*)(tr, + U2 _ ^ 

U2(U2 - r2
0) 

U* - rlU2 - //4 

-\iy( U2{U2-r2) 
C/4 _ ^2 _ ^  ' 

with UH as given by (42). For small distances we have, as usual, a 
Coulombic behaviour for the potential, whereas we find, as Uo —> UH, 
a linear behaviour since 

and 

ia#£rt + V)-V>h (_<!»_) (85) 

*« - 4«w+vrl/2ln(zfM 
"   2^L'        f0r   i»:^('-5 + V)-1/2.       (86) 

Similar to what we have already encountered in section 3, there exists 
a critical value Acr — 0.46 for the ratio \ = f-, such that for A > Acr 

the behaviour goes smoothly from Coulombic to confining. However, 
for A = Acr there is a second order phase transition and for A < Acr the 
behaviour differs and resembles the one depicted in figs. 6 and 7. 

It is important to note here that this is not a transition from con- 
finement to Coulombic potential in a three-dimensional theory, but in 
a four-dimensional theory on a circle. Only for large separation of the 
external charges is the theory effectively three-dimensional and do we 
observe confinement. But for small distances the string can probe the 
extra dimension and the Coulomb behaviour is that of the compactified 
four-dimensional theory. 
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4.2    9 = 1 

In this case we have 

f(U) = UA ,        g(U) 
U* 

(87) [/4 _ r.2t/2 _ ^4   • 

Then the integrals for the length and the potential energy are given by 

dU 
L = 2RZU( 

'2rr2 

/ Ju Uo   y/iUt-rSlP-MU'-US) 
(88) 

and 

E. m -i r 
* Juo 

dU 
U4 

i rUo 

- /    dU 

^(w-riw-^iyt-ut) 
u2 

y/U4 - r%U2 - (j,4 

U2 

uH       y/U* - r2U2 - M
4
 ' 

(89) 

where UH is given by (42). The behaviour is Coulombic for small sep- 
arations and confining for UQ —> UH, since we then have 

L ^ ij^+vr^h/ UH 

V2K Uo-UH)  ' 
(90) 

and 

E -   ~ qq   -    2V2', 

U
H  /r4 , 4w4ri/4!   (    UH  

2V2n{o+  ^) \Uo-UH 

2nR2 Z-L,        for   L>JR2(r0
4 + V)-1/4- (91) 

As in section 4.1 we found a transition from confinement to the Coulomb 
law, but the force between the external charges is a smooth function 
of L. Also in this case the comments made in the last paragraph of 
section 4.1 apply. 
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5    Concluding remarks and some open 
problems 

We have studied Wilson loops and computed the associated heavy 
quark-antiquark potential within the AdS/CFT correspondence and 
in the supergravity approximation. 

We have studied four-dimensional supersymmetric gauge theories at 
zero temperature with broken gauge symmetry, using multicentre D3- 
brane solutions. In this case we found that there is a complete screening 
of charges that we attributed to the existence of a mass gap in the gauge 
theory. It is very important to understand such a mass gap from a field 
theoretical point of view. A first difficulty is that the mass gap, and 
in fact all interesting phenomena, occur at a scale ~ -p-, whereas the 
vev masses ^ ro are much larger. This has a similarity with the fact 
that two different energy scales occur in the AdS/CFT correspondence 
[23]. It is also important to understand to what extent our results are 
a feature of the continuum nature of the brane distribution. 

Gauge theories at finite temperature were also studied using ro- 
tating D3-brane solutions. In this case we found two distinct classes 
of potentials. One is similar to that obtained by using non-extremal 
D3-branes with zero rotation and the other to one that interpolates 
between a Coulombic and a confining potential. In the latter case, 
depending on the ratio of the extremality to the rotation parameter, 
the interpolation is smooth or the transition between the two regions 
is reminiscent of phase transitions in statistical systems. The potential 
contains three distinct branches, one of which violates the concavity 
condition that states that the force between a quark and an antiquark 
is a monotonously decreasing function of their separation. However, 
the physical path, similarly to the physical isotherm in statistical sys- 
tems, connects the Coulombic and the confining regions of the potential 
through the coexistence point, where the potential is smooth, but the 
force is discontinuous. It would be extremely interesting to under- 
stand this discontinuity from a field theory point of view. Using the 
same rotating brane solution, non-supersymmetric three-dimensional 
gauge theories at zero temperature were also studied by computing 
the heavy quark-antiquark potentials from the associated space-space 
Wilson loops, yielding similar results. 
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There are several straightforward, but quite important, generaliza- 
tions of our work. The first is to study the potentials arising from the 
most general rotating D3-brane solution [11, 19, 27] (eq. (30) in [27]), 
which contains three rotational parameters. It can be easily seen that 
there exist trajectories with all the angles corresponding to S5 fixed. 
Second, it will be interesting to compute the heavy quark-antiquark 
potential from the space-space Wilson loop obtained by using the ro- 
tating D4-brane solution of [10]. This is appropriate for studying, in 
the present context, four-dimensional non-supersymmetric gauge theo- 
ries at zero temperature. Finally, we mention that a concavity condition 
for Wilson loops, generalizing (11), has been derived [12] for the cases 
in which there is a relative orientation between the quark and antiquark 
with respect to the sphere coordinates. The prototype computation of 
such potentials was done, for the case of the ^4^55 x S5 background, in 
[21], and it indeed obeys the condition of [12]. In that respect it is im- 
portant to know if this generalized concavity condition is obeyed by the 
similar potentials one would obtain using rotating D3-brane metrics. 

Another important line of research concerns the inclusion of cor- 
rections to the leading order supergravity approximation. It would be 
interesting to include oZ-corrections to the supergravity backgrounds 
and to study how they affect our solution. Note that such corrections 
are always present for the N = 4 theory on the Coulomb branch, since 
the Weyl tensor does not vanish and the Gross-Witten term in the su- 
pergravity action is non-zero. Only at the origin of the Coulomb branch 
is the Weyl tensor exactly zero and AdS^ x 55 an exact background of 
type IIB string theory. Although a complete formulation of string the- 
ory in the background of Ramond fields is still missing, it would also 
be interesting to calculate corrections due to worldsheet fluctuations. 
This could be done, for instance, using a Green-Schwarz formulation 
and expanding around the classical configuration. Calculations of this 
kind have recently been performed in [15]. 

A    D3-branes distributed on a ring 

In this appendix we compute the quark-antiquark potential for N 
branes distributed, uniformly in the angular direction, around the cir- 
cumference of a ring of radius ro in the x5-Xe plane [28]. Their centres 
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are given by 

Xi = (0,0,0,0, ro cos fc, ro sin fc) , 

^ = —,    » = 0,1,...>JV. (A.l) 

In the near-horizon limit the harmonic function is given by 

IJ_R4 U2+r2
0 

~ a'2 [{U2 + r2)2 - 4r0
2
W2]3/2 ^^ ^ > 

U* = U'* + ... + {%,     u2 = Ui + Ui. (A.2) 

where 

v      '     cosh (Nx) - cos (Nil)) v     ' 

\{U2 + r2)2 - 4r0
2n2J       cosh Nx cos m _ ! 

+ iV- 
U2 + r^ (cosh Nx — cos JVt/;)2 

The variable x appearing in (A.3) is defined as 

whereas ^ is the angular variable in the rrs-rcg plane. In the limit of a 
continuous distribution of branes where N ^$> 1, we may set EJV equal 
to 1. This is a very good approximation unless we approach the ring at 
U = u = ro down to distances such that U/TQ — 1 = C>(^) or smaller. 

We studied two kinds of trajectories, one where the trajectory is 
orthogonal to the plane in which the ring is lying, i.e. u = 0, and one 
where the trajectory runs in a radial direction in the plane of the ring 
towards the centre of the ring, i.e. U = u. In the first case we find 
(without setting in (A.2) EJV = 1) for f(U) and g(U) the same functions 
as in (62). Hence, the corresponding quark-antiquark potential is the 
same as the one computed in section 3.2.2. In the second case we 
consider only the continuum limit, where EJV = 1. We have 

(TT2 _ ^3 
fW = jp^t>       S(U) = 1 (A.5) 
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and Umin = ro. After we change variables as p = U2, we obtain for the 
length and the energy the integrals 

L = R2(U>-r2
Q)V

2 

I dp (p + rg) 
^  VP(P - riniP- r2

0nug + r2
0) -(p + r2)(U2 - r0

2)3] 
(A.6) 

and 

^    27r InJu*    P\ 
Vuf+rl(p-r2o)3/2 

VPI(P - rtm2 + r2) -(p + r2)(U2 - r0
2)3 

l_ [ _ Uo - ro 
TT 

(A.7) 

For UQ 3> VQ the potential is Coulombic and has the same form as in 
(9). In contrast to the previous trajectory, we do not find confinement 
for C/Q — TQ. We approximately evaluated the behaviour for UQ ~ TQ. 

The result is 

L - 
2v^r(2/3) R2 

r(l/6)     Vro(Uo-ro) 

and 

E. £ML 
^ -    v/^r(i/6) 

(Uo-r0). 

(A.8) 

(A.9) 

Therefore 

Arc  -     4V7r ^r(1/6)y| 
fi4 

roL2 (A.10) 

This can be interpreted as a screening of the L-1 Coulombic poten- 
tial to an L~2 potential at large separation. The latter behaviour is 
characteristic of a quark-antiquark potential of a gauge theory living 
on D4-branes or on D3-branes smeared along a transverse direction. 
Indeed, for large L, when the corresponding trajectory approaches the 
ring circumference, it can be shown [28] that the supergravity solution 
becomes that of a D3-brane with a transverse direction smeared out. 
One finds that f(U) = 4roC/3 and g(U) = 1. Then applying (6) and 
(7) we confirm (A.8)-(A.10). 
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Finally, let us mention that there is no known finite-temperature su- 
pergravity solution corresponding to the ring geometry for D3-branes. 
Owing to the no-hair theorem, the rotating D3-brane solutions are 
unique; in the supersymmetric limit, they give rise to a uniform distri- 
bution of D3-branes, in the case of one angular momentum, over a disc. 
The ring geometry arises naturally in the supersymmetric limit of rotat- 
ing NS5- and D5- branes [29]. Then, the background corresponds to the 
exact conformal field theory coset model SL(2,R)/U(1) x SU(2)/U(1) 
[28, 29]. 

Acknowledgement 

We would like to thank C. Bachas for a discussion. On the day we sub- 
mitted our paper in hep-th we received [13] which has some overlap with 
sections 2 and 3.2 of our paper concerning complete screening in Wilson 
loops and mass gaps in the spectrum of gauge invariant operators in 
backgrounds corresponding to continuous distributions of D3-branes. 

References 

[1] M. Abramowitz and LA. Stegun, Handbook of mathematical func- 
tions, Dover Publications, New York, 1964. 

[2] C. Bachas, Phys. Rev., D33 (1986), 2723. 

[3] B. Baumgartner, H. Grosse, and A. Martin, Nucl. Phys., B254 
(1985), 528. 

[4] A. Brandhuber, N. Itzhaki, J. Sonnenschein, and S. Yankielowicz, 
Phys. Lett., B434 (1998), 36, hep-th/9803137. 

[5] A. Brandhuber, N. Itzhaki, J. Sonnenschein, and S. Yankielowicz, 
JHEP, 06 (1998), 001, hep-th/9803263. 

[6] P. Byrd and M. Friedman, Handbook of Elliptic Integrals for Engi- 
neers and Physicists, second edition, Springer Verlag, Heidelberg, 
1971. 



886 A. BRANDHUBER AND K. SFETSOS 

[7] H.B. Callen, Thermodynamics and introduction to thermostatis- 
tics, 2nd edition, John Wiley & Sons, New York, 1985. 

[8] C. Csaki, H. Ooguri, Y. Oz, and J. Terning, JHEP, 01 (1999), 017, 
hep-th/9806021; 
R. de Mello Koch, A. Jevicki, M. Mihailescu, and J. Nunes, Phys. 
Rev., D58 (1998), 105009, hep-th/9806125; 
M. Zyskin, Phys. Lett., B439 (1998), 373, hep-th/9806128. 

[9] C. Csaki, Y. Oz, J.G. Russo, and J. Terning, Phys. Rev., D59 
(1999), 065008, hep-th/9810186. 

[10] C. Csaki, J.G. Russo, K. Sfetsos, and J. Terning, Phys. Rev., D60 
(1999), 044001, hep-th/9902067. 

[11] M. Cvetic and D. Youm, Nucl. Phys. B477 (1996), 449, 
hep-th/9605051. 

[12] H. Dorn and V.D. Pershin, Phys. Lett., B461 (1999), 338, 
hep-th/9906073. 

[13] D.Z. Freedman, S.S. Gubser, K. Pilch, and N.P. Warner, 
Continuous distributions of D3-branes and gauged supergravity, 
hep-th/9906194. 

[14] I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series and 
products, fifth edition, Academic Press, New York, 1994. 

[15] J. Greensite and P. Olesen, JHEP, 04 (1999), 001, 
hep-th/9901057; 
S. Forste, D. Ghoshal, and S. Theisen, JHEP, 08 (1999), 013, 
hep-th/9903042; 
S. Naik, Phys. Lett., B464 (1999), 73, hep-th/9904147. 

[16] S.S. Gubser, I.R. Klebanov, and A.M. Polyakov, Phys. Lett., B428 
(1998), 105, hep-th/9802109. 

[17] A. Kehagias and K. Sfetsos, Phys. Lett., B454 (1999), 270, 
hep-th/9902125. 

[18] Y. Kinar, E. Schreiber, and J. Sonnenschein, Q anti-Q po- 
tential from strings in curved space-time: Classical results, 
hep-th/9811192. 



[19 

[20; 

[21 

[22 

[23; 

[24 

[25 

[26 

[27; 

[28; 

[29; 

[30 

[31 

WILSON LOOPS ... 887 

P. Kraus, F. Larsen, and S.P. Trivedi, JHEP, 03 (1999), 003, 
hep-th/9811120. 

J. Maldacena, Adv. Theor. Math. Phys., 2 (1998), 231, 
hep-th/9711200. 

J. Maldacena, Phys. Rev. Lett., 80 (1998), 4859, hep-th/9803002. 

J.A. Minahan and N.P. Warner, JHEP, 06 (1998), 005, 
hep-th/9805104. 

A.W. Peet and J. Polchinski, Phys. Rev., D59 (1999), 065011. 

S. Rey and J. Yee, Macroscopic strings as heavy quarks in large N 
gauge theory and Anti-de-Sitter supergravity, hep-th/9803001. 

S. Rey, S. Theisen, and J. Yee, Nucl. Phys., B527 (1998), 171, 
hep-th/9803135. 

J.G. Russo, Nucl. Phys., B543 (1999), 183, hep-th/9808117. 

J.G. Russo and K. Sfetsos, Adv. Theor. Math. Phys., 3 (1999), 
131, hep-th/9901056. 

K. Sfetsos, JHEP, 01 (1999), 015, hep-th/9811167. 

K. Sfetsos, Rotating NS5-brane solution and its exact string theo- 
retical description, Proceedings of the 32nd International Sympo- 
sium Ahrenshoop on the Theory of Elementary Particles, Buckow, 
Germany, 1-5 September 1998, hep-th/9903201. 

B. Svetitsky, Phys. Rep., 132 (1986), 1. 

E. Witten, Adv. Theor. Math. Phys., 2 (1998), 253, 
hep-th/9802150. 

[32] E.   Witten,    Adv.   Theor.    Math.    Phys.,    2    (1998),    505, 
hep-th/9803131. 


