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Abstract 

Starting with the curvature 2-form a recursive construction 
of totally antisymmetrised 2p-forms is introduced, to which we 
refer as p-Riemann tensors. Contraction of indices permits a 
corresponding generalisation of the Ricci tensor. Static, spher- 
ically symmetric "p-Ricci flat" Schwarzschild like metrics are 
constructed in this context for d > 2p+1, d being the spacetime 
dimension. The existence of de Sitter type solutions is pointed 
out. Our 2p-forms vanish for d < 2p and the limiting cases 
d = 2p and d — 2p + 1 exhibit special features which are dis- 
cussed briefly. It is shown that for d = 4p our class of solutions 
correspond to double-selfdual Riemann 2p-form (or p-Riemann 
tensor). Topological aspects of such generalised gravitational 
instantons and those of associated (through spin connections) 
generalised Yang-Mills instantons are briefly mentioned. The 
possibility of a study of surface deformations at the horizons of 
our class of "p-black holes" leading to Virasoro algebras with a 
p-dependent hierarchy of central charges is commented on. Re- 
marks in conclusion indicate directions for further study and 
situate our formalism in a broader context. 

1    Introduction 

The basic aim of this work is to present Schwarzschild like solutions to a 
hierarchy of gravitational systems that we studied sometime ago [8, 15], 
which generalise the Einstein-Hilbert system in a very natural way. In 
this framework the Lagrangian is higher order in the Riemann tensor, 
but in such a way that only the quadratic power of the velocity fields 
(namely derivatives of the metric or the vielbein) appears in it. This 
formalism opens up broader possibilities of constructing gravitational 
instantons in suitable higher dimensions. Here we present another re- 
markable aspect, which is one more evidence of the aptitude of our 
generalisation. The spherically symmetric, static black hole (or the 
Schwarzschild metric) which is unique in the Einstein-Hilbert frame- 
work, is the first member of a hierarchy in our context. De Sitter type 
soluions also exist, rather systematically. 
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In the following sections we will deal with totally antisymmetrised 
2p-forms constructed from the Riemann tensor, to which we refer as 
Riemann 2p-forms or p-Riemann tensors. The explicit recursive pre- 
scription is given below. Throughout we will consider spacetimes of 
arbitrary dimension d, with (d — 1) spatial dimensions. Our 2p-forms 
vanish for d < 2p and the dynamics leads to very special, degenerate 
cases for d = 2p and d = 2p + 1.   The generic situation arises for 

d>2p + l>(p=l,2,3,...). 

Contracting indices of the Riemann 2p-forms one obtains the stan- 
dard Ricci tensor for p = 1 and a generalised hierarchy of "p-Ricci" 
tensors to be defined below. We show that for spherical symmetry one 
obtains as "p-Ricci flat" solutions a remarkable hierarchy of "p-black 
holes", generalising the Schwarzschild metric in d dimensions as follows 

ds* = -JVoodf + N^dr* + rM£^_2) , 

with 

2C 
Nip) = 1 - -^rr , (1) 

r    p 

^ld-2) being the line element on the unit (d — 2)-sphere.  For p = 1 
one recovers the standard lapse function in d dimensions [14], 

on 
^(D^^1-^- (2) 

The derivation of the solution (1) and the study of various aspects 
of interest will be given below. 

Let us present the construction of the p-Ricci tensors. A detailed 
account can be found in [15] where many sources are cited. We present 
here the essential steps using throughout differential forms in the frame- 
vector (vielbein) basis which will be most useful for our purposes. 

In the following sections we will be concerned with a particular, 
simple, class of metrics. Generally, for some metric, a suitable set of 
tangent frame vectors are the 1-forms 

ea = el dx*1 , 
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where as usual a, 6,... denote frame indices and /i, z/,... space-time 
ones. 

The torsionless antisymmetric spin-connection 1-forms 

uab = cj^dxt* = -ujba 

satisfy 

dea + uab Aeb = 0. (3) 

The curvature tensor is now given by the antisymmetric 2-form 

Rab = dLjab + ujac A ujcb = -Rba , (4) 

which can be expressed in the "e-basis" as 

Rab = R% ea' Ae*. (5) 

(5) is the Riemann 2-form corresponding to p = 1. Now we in- 
troduce the following recursive construction of totally antisymmetric 
Riemann 2p-forms. 

For p = 2 we define 

Rabcd = Rab A Rcd + Rad A Rbc + Rac A ^6 ^ ^ 

having cyclically permuted (65c, d). Using the antisymmetry of i?a6 

and, the fact that i^6 A Rcd = Rcd A Rab since 2-forms commute, one 
readily verifies that Rabcd is totally antisymmetric. 

For p = 3 we define 

■nabcdef    -Dab A   rycdef   i    oa/ A   rybcde 

+ Rae A #/6crf + i2arf A i?e/6c + Rac A it;de/6   (7) 

having cyclically permuted (6, c, d, e, /). There are 15 terms of the type 
Rab A Rcd A ^e/ in (7) and again it can be checked readily that Rabcdef 

is totally antisymmetric. 

The general recursion scheme is 

■naia2."Q>2p    T>a>ia>2  A   jDazCLi'-^p 

+ cyclic permutations of (a2, as,... , a2p) ,    (8) 
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which consists of 3.5...(2p - 3)(2p -1) terms of the type Raia2 A i?"3"4 A 
... A i2a2p-i02p) and is totally antisymmetric. In the e-basis 

^oa.-.a,, = Rl^--^ ebi A gk... A e^. (9) 

For p = 1 the Ricci tensor is given by 

R(i)ab = Y,Ra
b
cc = Ra

b- (10) 
c 

We define the p-Ricci tensor to be 

(p)fei ~~ (2p-1)1    ^     6ia2-a2p ' v11; 
(a2,...,a2p) 

such that the p-Ricci scalar pertaining to it is 

a 

The overall constant (2p — 1)! in (11) takes acount of the number of 
permutaions of the indices summed over subject to the total antisymme- 
try of both upper and lower indices. This normalisation factor, though 
convenient, is however not essential for our purposes. 

The corresponding generalisations of the Einstein-Hilbert Lagra- 
ngian and the Einstein tensor are given in [15]. But, apart from point- 
ing out in passing how de Sitter type solutions arise very simply and 
evidently, our concern here will be limited to p-Ricci flat solutions. 

In the absence of matter and cosmological constant the Lagrangian 
is \f\(j\Ritf) and the variational minima are obtained (in the e-basis) [15] 
from 

%)6 - ^<%) = 0- (13) 

For the p-Ricci flat case, consistently with R^ = 0, the solutions satisfy 

%)£ = 0 • (W) 

One computes (11) for a given metric introduced as an ansatz and 
involving one (or possibly more) unknown function (s) to be consistently 
determined to satisfy the constraints (14). 
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In this paper we study the spherically symmetric solutions, in which 
case it is natural to start (since we have the hierarchy (1) in mind) with 

ds2 = -Ndt2 + N-ldr2 + r2<m2
id_2) , (15) 

and see if one can obtain an N satisfying all the constraints (14). In 
the event, we will start with the Kerr-Schild (K-S) form of the metric 
given by 

gr*   =   rf-201*1" (16) 

where Tfoo = --1,% = 5y, (i=l,25 ... ,d-l), and 

1% = »r WM - gTlvlv = 0 . (17) 

For black hole type solutions with a horizon, one assumes C > 0. 

For spherical symmetry one may set 

li = lo— = kxi , (18) 
r 

with r = y^l2 and |£j|2 = 1, and /Q = /o(r) a function of r only. 

Now (15) and (16) are related through 

Xo = t + Jlj-r>     L = l° = ^c{1-N)-        (19) 

The K-S form is non-diagonal and thus loses some simple properties 
of (15). But we consider its introduction worthwhile for the following 
two reasons. 

• In (15) there are two distinguished coordinates (£, r) while in (16) 
there is only one, XQ, all the space-coordinates being treated on 
the same footing. As will be shown below, this leads to a smaller 
number of groups of terms to be summed over. (In fact, for spher- 
ical coordinates each angular one, 9^ also contributes differently 
through sin 0$ to the line element. But, as will be seen, this feature 
gets absorbed in the e-basis for Rab.) 
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• The second, and more important reason is, that the K-S form 
is more efficient for generalisation to axial symmetry [14, 7]. In 
exploring such possibilities, faced with the complexities of the 
combinatorics involved, it would be helpful to to have ready the 
results of the spherically symmetric limit to fall back on as checks. 

The second of these points concerns however a future project. As 
will be seen in the following sections we will also fully exploit the special 
advantages of (15). 

2    Construction of p-Ricci tensors for 
spherical symmetry and solutions 

For the K-S metric (16) the frame vectors are 

(20) 
<$ = t + c ya 

< = < - c ina, 

and ea = = e^dx^ with ea - = Vabeb. 

The spin-connections ; are 

< = rdK - riavdve\ (21) 

and cu"6 = wf dx" = -w6". 

Since (18) holds for spherical symmetry it is convenient to introduce 
the notations 

dr = Xi&x1 ,        er = x^e* , (22) 

giving 

e0   =   dx0 - C L (da;0 + dr) 

e1   =   d^' + CLxi (dx0 + dr) 

er   =   dr + C L (dx0 + dr) (23) 

in which L = /Q. 
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Using now (4) and (21) one obtains, after straightforward simplifi- 
cations, 

R0i   =   Ae^^ + Bxie^e' 

Rij   =   F^A^ + He'Aix^-Xi^) (24) 

where, with L' = ^ and L" = 0, 

A   =   ^ , B = C (l" -J)= (CL" - A) 

F   =   2-¥>        H = ch-Ipl=(F-A). (25) 

Note that the de Sitter solution in d dimensions is obtained by- 
setting 

L = r2,        A = F = 2C,        B = H = 0, (26) 

yielding 

Rab = 2CeaAeb . (27) 

For higher p members of the hierarchy, one continues to obtain similar 
features. Starting with p = 2, where 

Rabcd = 3(2C)2ea A eb A ec A erf. (28) 

The situation does not change essentially as p increases, giving at each 
stage a constant R(py Having pointed this out, we consider henceforth 
only p-flat solutions without cosmological constant. 

As a check one may verify, to start with, that for 

L = r-(rf-3) 

one indeed obtains the Schwarzschild solutions in d dimensions [14] 
satisfying 

R{1)
a

b = Rl = Rlt = 0. (29) 

This will of course also emerge as the simplest particular (p = 1) case 
of our general solution given below. It is very instructive to study in 
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detail the cases p = 2 and 3. For low values of d one can even write 
all terms in the summations explicitly. The general structure is seen to 
emerge more clearly at each successive stage. For brevity however, we 
present directly the general case. From (8) and (24) one obtains the 
following results. 

No summations are involved in the following particular cases of 
T->aia2...a2p 
/t6162...62p 

necessary for the passage to R(p)y One has 

Tf0ii...i2p-i   pv 
riii1...i2p-i "~ U 

T}iii...i2p-i   n 

-rt0u...«2p-i - U 

->0zi...i2p-i _ aS;::2:i = (1.3.5. ...(2p - s))^-2 {& - I)AF 

<2:::& = (1.3.5. ...(2p -1))^-1 [F - H^ +...+^ 

tf&Z = -(1.3.5. ...(2p- l))F^1^1x 
?JlOJ2—i2p-l     

Jl ' *i # ii 

(30) 

(31) 

(32) 

(33) 

(34) 

tftiZX-! = (L3-5- -(2P " 3))^    [(^^ " 2(P - 1)AH) Xi.xj,] . 
(35) 

For obtaining R^ one has to sum over the appropriate indices in 
each case. To start with one notes, trivially, from (30) that 

iW- r9r,_-n!   E   ^ 
.Oii.-^p-i 

(2p-l)!     ^    "<*I-<»P-I 
U>...,*2p-1 

0. (36) 

Similarly, from (31) 

%)o = 0 • (37) 

Concerning the other cases it is helpful to note the following points, 

(38) E (*£+-+o=(t:2
2) 

It     7.a_      1 ^ ' *lv>*2p-l 

and 

E    (4 + • • • + -l-J = ( I _33 ) (I - 4) , (39) 
22,...^2p-l 
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where we have used the usual notation 

/ a \ a\ 
\b J      b\(a-b)\' 

For (38) one notes that in summing over the (2p — l)-tuples, each 
Xi occurs as many times as the possibility of selecting (2p — 2)-tuples 
(of distinct x/s) among the coordinates after fixing 0 and i, namely 
among (d — 2). Then one uses 

d-l 

For (39) one uses analogous arguments, and 

We use such results and consider the normalisation factor in (11) 
to be absorbed implicitly by exhibiting only contributions of distinct 
numbers of combinations, as in (38) and (39). For convenience we also 
introduce the notations 

X   =   U-2 [p(rLZ/) + (d - 2p - 1)L2] 

Y   =   Lp-2 [r2(LL" + {p- 1)Z/2) + (d - 2p)(rLL')] .       (40) 

Using all these results, combining terms and simplifying, completing 
the necessary summations and using (24), one obtains finally, 

BwS = (1.3.5...(2p-3))F>-2 
(2,-IMF (   ^ 

= ^(1.^...(2P-S))("-_\)~Y (41) 
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%);. = (1.3.5...(2p-3))^-2 (BF - 2(p - 1)AH) 

-(2p-l)FH 
/ d-3 

(d "M \2p-2 ) 

JL><i*Aj 'j 

\2p-l 

= ^(1.3.5...(2p - 3)) ( 2^~ \ )2^r(Y- 2X)xixji    i * j 

(42) 

i?(p)^(1.3.5...(2p-3))^-2 (2p - i)AF 

+ (BF-2(p-l)AH)(( 

f d-2 
\2p-2 

d-2   , .2 

2p-2   lXi 

d-3 
2p-3 

+ (l.3.5...(2p-l))Fp-1 

d-3 

(1 - xj) 

Hi'-i'-" 
d-2 
2p-l 

+ 1   2p_2  |(1-^) 

(d-3)! 2?- 
C>(1.3.5...(2p-3))l2p_2)!(d_2p)!r2p 

+ (d- 2p)X + (d- 2p)(Y - 2X)x2
i] . 

■[(P-1)Y 

X; 

(43) 

From (36), (37), (41), (42) and (43) we see that for all (a,b), 

R(p)ab = 0 

provided that 

X   =   Lp-2 [p(rLL') + (d-2p- 1)L2] = 0 

Y   =   Lp-2[r2(LL" + (p-l)L'2) + (d-2p)(rLL')]=0.   (44) 

Since a constant factor of L can be absorbed in C, the single neces- 
sary and sufficient constraint satisfying (44), and hence the variational 
equations (41)-(43), turns out to be 

Lp = r-W-ip-1) 

Differentiating (45) once yields 

X = 0 

(45) 
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and differentiating a second time, 

Y = 0. 

For p = 1 this reduces to the standard Schwarzschild metric in d di- 
mensions [14] with 

L = ll = r^-V . (46) 

Let us now indicate briefly certain complementary features arising 
when one uses the diagonal metric (15). Now one has 

ds2 = -Ndt2 + ATMr2 + r2dQ2
id_2) , 

'd-S x  2 

where 

<m2
{d_2) = dO2 + sin2 Mfl2 + •••+( H sin 0n,)   d^-2 • (47) 

For a diagonal metric one can set (no summation being involved) 

ea   =   y/gZdxa ,        xa = t,r,8i,...1 ^_2 

uab   =   -^= [(dbJgra)e
a - {da^)eb] . (48) 

yQaaQbb 

Thus, in particular, 

oM = u)ij   =   -(cos 0i sin ^+i... sin 9j-i)d0j 

=   --cos^ (J^sin^J     e> = -ujii,        i < j .(49) 

These can be shown to satisfy the remarkable relation 

dujij + ^TV* A Ljkj ^-^JAei,        l<hj,k<d-21 (50) 
k 

independently of d. 

By virtue of (50) as well as other more evident relations one obtains 
finally (with index i standing for 0$) 

^-N' er Ne\       Rij = \ 
2r rl Rri   =   -—N' er Ne\       Rij = — (1 - iV) ^ A ej       (51) 



ANTISYMMETRISED 2p-F0RMS ... 803 

withij = l,2,...(d-2). 

Thus Rab is "diagonalised" leading to dramatic simplifications in 
certain respects. But as pointed out in section I, there are now more 
distinct blocks to be summed over in evaluating R(p)y Let us illustrate 
this for the simplest nontrivial case, p = 2. Now for i2(2)J(= ^(2)^) one 
has four distinct classes of terms as compared to two in the previous 
case. Thus 

^(2)i=E^+E^+E^+E^-    (52) 
j jk jk jkl 

Implementing (51) in (6) one obtains finally, on the right hand side 

^1 [ _ r^i _ TV)JV" + r^-JV')2 - (d - 4)r(l - N)N' 

+ (d - 4)(1 - N) (-2rN' + (d - 5)(1 - N)) ] .   (53) 

The intermediate, suppressed, steps are straightforward. 

Consistently with our previous derivation, this expression vanishes 
for 

N = N{2) = 1- 2CL(2) - 1 - 2CV-^-5) . (54) 

One can verify that for the general case one indeed obtains 

N{p) = 1 - 2CL(p) = 1 - 2Cr-^1 . (55) 

We will not rederive here this result. But important uses of the 
diagonal metric are presented in the following sections. 

3    Maximal extensions and p-dependent 
periodicity for Euclidean signature 

The limiting cases 

d = 2p       and       d = 2p + 1 
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will be briefly discussed in the following section. For 

d > 2p + 1 

one has a Schwarzschild like event horizon in 

ds2 = -N{p)dt2 + iV-Jdr2 + r2dn2
{d_2) , (56) 

with 

at 

v     d-2P-l 

W (K\    ' 

K 

One can introduce Kruskal type coordinates, generalised for p > 1, 
to desingularise the horizon. We will be particularly interested in the 
Euclidean section and the p-dependence of the time-period which be- 
comes necessary for consistency. For the standard case (<i=4, p = 1) 
this period is well known to be inversely proportional to the Hawking 
temperature of the black hole. Here we generalise the treatment (for 
d > 4 , p = 1) presented in [5]. For d = 4 a detailed study citing basic 
sources is to be found in [2]. 

We start directly with the Euclidean continuation of (56), 

ds2 = JV(p)di2 + iV^dr2 + rWid_2) . (57) 

Defining 

J   N{p) 

we introduce the coordinates (77, () satisfying (for some constant A to 
be fixed later) 

1 

^Ar* 1 /^2   ,   /■2\ AXt _   (V ~" ^C e^=^ + Ca),        e    -(^TcJ ^ 

leading to 

12      ^(p)(4A-e--  )  -(ai,--tar]-)-tr-air{d_2) ds2 = iV(p)(4A2e2A^)-1(dC2 + drj2) + r2dQ2       . (60) 
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Setting 

r = Kpp    and    n = d-2p-l,        r>K,p>l (61) 

(62) 

It is not necessary for our purposes to evaluate the integrals, though 
that is possible. As in [5] we use 

1 1/1 £n~2 + 2xn-3 + • • • + (n - 2)x + (n - 1) 
xn-l      n\x-l xn-1+xn-2-\ \-x + l 

'(63) 

resulting in 

Kp  f   dp 
r* 

n Jjzi + M (64) 
where the function f(p) which we do not evaluate, does not contribute 
to the singularity at p = 1 or r = K. Hence 

e"2Ar* = (Gr)"_1)    "   e"m(r) (65) 

where the function h(r) creates no singularity at the horizon. Choosing 

one obtains the required desingularisation at the horizon as a direct 
generalisation of the standard case for p = 1, namely of 

It should be noted that for Lorentz signature there is already an 
essential singularity at r = 0 and for Euclidean signature the domain 
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of real values of (77, () corresponds to r > K. Hence in both cases a 
fractional power of r in N(p) does not introduce a crucial supplementary 
complication. One may also note that though the power of r in N(p) is 
in general fractional, for any p and d satisfying 

d= (n/ + 2)p+l ,        nf = 1,2,3,... 

it becomes an integer. Examples of such integers for p > 1 are 

(d,p;n/) = (10, 3;1), (11, 2; 3),... 

From (59) and (66) one obtains for t a period 

^pTd^T'    d>2p+1-        (68) 

For d = 4, p = 1, K = 2M one gets back to the well-known result for 
the Schwarzschild metric 

p = p(1) = STTM . (69) 

For fields on the Euclidean section, periods and temperatures are re- 
lated inversely through the Boltzmann constant. Here one sees that, 
for given d, P^ increases and hence the temperature decreases as p 
becomes larger. 

4    Special cases 

We briefly indicate certain features of the special cases d — 2p, d 
2p+ 1, and d = 4p. 

4.1    d = 2p 

It is easily verified that when d = 2p the Lagrangian R^ is a total 
divergence and hence can possess topological rather than dynamical 
properties. In fact one obtains the Euler number which, if our solution 
is implemented, is constrained to be zero - a new possibility arising for 
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p > 1. Here we express the single surviving 2p-form in terms of total 
differentials and note the relation with our general solution. 

The simplest example is provided by 

d = 4,  p = 2. 

From (51) and (6) 

RtrOM   =   R* A RM* + Rth A R^i + RMi A Re2r 

=   '^[-^-N)Nn + (Ni)2]eiAerAe9lAe02.    (70) 

In conventional notations, 9i = 9, 62 = f — 0, and using N = 1 — 2CL, 

Rtrect> = ^1^2^ d^ A d  / d L2\ dr A d cos ^ A d0 (71) 

For the general case 

d=2p>        ^=1,2,3,... 

the angular factors can again be expressed as total differentials in an 
evident fashion while, crucially, the coefficient of dr can be shown to 
become 

^(^)- (72) 

The computation is straightforward but will not be presented here. We 
just note that this coefficient vanishes for 

If = a + c2r (73) 

with Ci and C2 constants. Our generic solution 

LP = r-(d-2P-i) = r ^ 

for d = 2p is included in (73) for ci=0 and C2 = 1, giving 

N{p) = 1 - 2Crp = 1 - 2Cr% . (75) 

For d = 4 this gives 

JV(2) = 1 - 2Cr* . 
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In section 3 we generalised Kruskal coordinates to negative fractional 
power of r in N^y Let us just mention that one can formally generalise 
Gibbons-Hawking coordinates [2, 10] for such a "cosmological" horizon 
involving a fractional power -. 

Flat space is of course, as always, a solution (ci = C2 = 0). But 
for C2 = 0 one obtains a constant I/. This situation is discussed below 
since it arises generically for d = 2p + 1. 

4.2 d = 2p + 1 

In this case our generic solution itself gives 

LP = r-(d-2P-i) = 1 m (76) 

This corresponds to the situation where the L2 term is absent in X 
given by (40). 

For 2C < 1, now 

JV = 1-2C = A2<1 (77) 

and one has still Lorentz signature with 

ds2 = -X2dt2 + \-2dr2 + r2dft?d_2) . (78) 

Setting r = px one can obtain an "isotropic" form. We do not propose 
to discuss further here this degenerate case. Of much more interest is 
the following one. 

4.3 d = 4p : double selfduality 

The general formulation of double selfduality and the generalised Yang- 
Mills instantons constructed, for Euclidean signature, in terms of the 
spin-connections was the major theme in [15]. For d = 8, de Sitter and 
Fubini-Study metrics were obtained by the present authors, imposing 
double selfduality [8]. Here we will verify that our Schwarzschild type 
(p-Schwarzschild) solutions also satisfy double selfduality for d = 4p. 
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To start with we note that (51) along with (8) ensures rhat Ra^a^-"a^p 
has only one non-zero component 

■naiaz—CLip 
aia2...a2p ' 

This "diagonalisation" simplifies dramatically the situation.   In the 
general formulation, in frame indices, the double self-duality constraint 

paia2-a2p _ aia2...a2vdid2...d2vr r>ciC2...C2p /JQ\ 
jrL6i62...62p   ~~  (Or)])2 thb2'"b2pCiC2...C2pjrtdid2.^d2p \i y/ 

reduces to 

Laia2...a2p a2p+ltt2p+2.-.a4p \ou/ 

for all choices of complementary sets of the 4p indices. 

For d = 4, p = 1 

2C 
1-N = — 

r 

and the well-known double selfduality of the Schwarzschild metric is 
assured through the relations 

1 or1       1 

since from (51) 

K = -\N",        Rg = ±(l-N). (82) 

Even more directly one has 

r>t2    prl r>tl     r>r2 fQQ\ 
Kt2 - Krl J Ktl - Kr2 (°d) 

each one being just 

2r ' 

Thus one has a gravitational instanton on the Euclidean section with 
nontrivial topological indices (Euler number and Hirzbruch signature). 
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The spin-connections lead to a selfdual Yang-Mills field [4]. It is a gen- 
eral fact that such a construction provides a solution for the combined 
gravitational-YM system. This is because the metric is not affected by 
a back-reaction of the YM field, since the stress energy-momentum 
tensor of the selfdual YM field vanishes. 

For d = 8 , , p = 2, we have 

1 - AT = 2C r"^8-4"1) = 2C r-f . (84) 

This assures in the crucial equality between 

1„..\ /I ,-      ^\     _/   Nr 

and 

i«g=(~^/)(^(l-^))+2 2r 

and hence the double selfduality constraint 

Ktrl2 - ^3456 • \™) 

Here, as before, the indices 1,2,... ,6 refer to 0i, 02> • • • ? ^6 respectively. 
Other constraints due to (80) can als be shown to be satisfied system- 
atically. 

For the general case with d = Ap 
d-2p-l 2o-l 

1-N = 2C r p     = 2C r'p    . (86) 

This satisfies the crucial relation 

(-HG^1-^)^-2'^)2 

= (2p-1)^(1-AT) j    ,    (87) 

which assures the double selfduality constraint 
j?trl2...(2p-2) _  D(2p-l)(2p)...(4p-2) /ORN 
/ttrl2...(2p-2) — iX(2p-l)(2p)...(4p-2)  ' V00; 

Other constraints due to (80) can als be shown to be satisfied system- 
atically. 

A systematic study of the topological properties of this class of 
gravitational instantons and those of the associated YM ones (both for 
the general p case in the sense of [15]) will be presented elsewhere. 
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5    A comment on surface deformations 
and near-horizon symmetry 

A number of recent papers explore "gauge" algebra of surface defor- 
mations restricted to event or cosmological horizons [6, 13]. The refer- 
ences [6, 13] deal with any dimension d , but of course for p = 1. Other 
important sources, mostly concerning specific low dimensions, are cited 
in these papers. From both types of horizons, the (r, t) plane playing 
a crucial role, a Virasoro subalgebra emerges from the study of surface 
deformations with a central charge 

where A is the area of the horizon, (STTG)"
1
 is the overall factor of the 

boundary terms in the full generator of surface deformations, T is the 
period of rotational perturbations considered and lastly (3 is obtained as 
a coefficient on developing the lapse function iV near the horizon. Note 
that C in (89) denotes the central charge and should not be confused 
with the constant C in the ansatz (20). For a Schwarzschid black-hole, 
for example, fi turns out to be the inverse of the Hawking tempera- 
ture [6]. 

For our case, starting with (56), i.e. 

cUVfr)        _ fd-2p-l\ = 27Y_ 
\r=K — 

hence 

dr \      pK      J      (3{p) 

when 

AP) " d_2p_1 ■ (90) 

This is, of course, directly proportional to the period P^ derived 
before (see (68)) and gives for the Schwarzschild case with 

d = 4 ,  p = 1 , K = 2M, 
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P = 47rM . (91) 

We do not intend to undertake a study of surface deformations for 
our horizons. We just point out that, quite plausibly, a p-dependent 
hierarchy of central charges will emerge in our context. 

6    General remarks 

To construct our metrics as variational minima of the traces of higher 
order terms, we have gone beyond Einsten theory generalised to higher 
dimensions. Higher order gravitational terms are nowadays familiar 
(the so called (it!2)2 and it!4 terms) in string theory effective actions [11, 
12]. But we consider separately the members of one particular hierar- 
chy of higher order terms, that in which only velocity-square terms 
appear, generalising the Einsten-Hilbert term directly, and not pertur- 
bative contributions, starting with the standard formalism. In certain 
constructions of topological field theories [1] higher order terms are in- 
troduced directly at the start. One may keep such aspects in mind. But 
the real motivation for presenting our formal structure is the discovery 
of the remarkable class of solutions with their simple, suggestive and 
beautiful properties discussed above. Thus, for example, rich topologi- 
cal possibilities involving generalised gravitational and YM instantons 
enter in the wake of our solutions merely as a particular case (d = 4p). 
More generally, topological aspects in higher dimensions [1, 9] deserve 
study specifically in the context of our formulation. 

An adequate formulation of surface deformation algebras, alluded 
to in Sec. V, might be of interest. We intend to explore elsewhere 
possibilities of axially symmetric, stationary solutions in our context. 
All these aspects along with a deeper understanding of the role of higher 
order forms provide an interesting program. 
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