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Abstract 

By analysing supersymmetry transformations we derive new 
BPS equations for the D = 11 fivebrane propagating in flat 
space that involve the world-volume three-form. The equations 
generalise those of 2,3,4 and 5 dimensional special Lagrangian 
submanifolds and are relevant for describing membranes ending 
on these submanifolds. 

e-print archive:   http://xxx.lanl.gov/hep-th/9906162 



776 J.P. GAUNTLETT 

1    Introduction 

The world-volume theories of branes in string theory and M-theory 
are an interesting setting for studying BPS equations. One notable 
feature is that the solutions incorporate a spacetime interpretation [8, 
14, 18] which arises from the fact that the scalar fields describe the 
embedding of the brane in a target space. The world-volume theory of 
the D = 11 fivebrane, for example, has a BPS self-dual string soliton 
that preserves 1/2 of the world-volume supersymmetry, or equivalently, 
1/4 of the spacetime supersymmetry [18]. It is charged with respect 
to the world-volume self-dual three-form and one scalar field is excited 
that is harmonic in four variables. The simplest solution with a single 
centre can then be visualised as a semi-infinite membrane ending on 
the fivebrane. This configuration can be represented as the array 

M5:   1   2   3   4   5 m 

M2 :   1 6 ' ^ 

with the self-dual string lying in the 1 direction and the 6 direction 
corresponding to the excited scalar field. 

Here we will derive the BPS equations corresponding to adding more 
membranes to this array. Specifically, we will analyse arrays with 2,3,4 
and 5 orthogonally intersecting membranes, lying in the {2,7}, {3,8}, 
{4,9} and {5,10} directions, which preserve 1/8, 1/16, 1/32 and 1/32 
of the spacetime supersymmetry, respectively. The BPS equations are 
obtained by analysing the supersymmetry transformations of the five- 
brane world-volume theory in a flat target space. As in [10, 11], the 
array of orthogonally intersecting branes provides a guide in construct- 
ing the BPS equations. More specifically, each membrane in the array of 
intersecting branes suggests which projections to impose on the super- 
symmetry spinor parameters and in addition which scalar fields should 
be active. This information then leads to the BPS equations. 

We will argue that the equations are appropriate for describing a 
membrane ending on a fivebrane world-volume, some of which is a 
special Lagrangian submanifold. To see this, we first note that a conse- 
quence of the projections imposed on the spinor parameters arising from 
the arrays of membranes orthogonally intersecting a single fivebrane, is 
that one can add certain fivebranes to the array "for free", i.e., with- 
out imposing further conditions on the spinor parameters.  Following 
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[4, 5], it was shown in [10] (see also [15, 1]) that an array of intersecting 
fivebranes only corresponds to BPS equations on the world-volume of a 
single fivebrane that imply that the fivebrane world-volume (or part of 
it) is a calibrated submanifold [16]. By adding extra membranes to the 
array (1) we find that the fivebranes we can add for free correspond to 
the special Lagrangian calibrations. More precisely, adding 2,3,4 and 
5 membranes corresponds to the projections for fivebranes related to 
2,3,4 and 5 dimensional special Lagrangian manifolds, respectively. The 
full BPS equations will involve the world-volume three-form and can 
be interpreted as membranes ending on such fivebrane world-volumes1. 
It should be emphasised that since the BPS equations incorporate back 
reaction, the fivebrane world-volume will in general no longer be special 
Lagrangian. Both the geometry and the topology could be different. 

Let us illustrate this interpretation further for the simplest case. As 
we will later see explicitly, adding a membrane in the {2,7} directions 
to the array (1) gives rise to an extra projection on the supersymmetry 
parameters which implies that we can add an anti-fivebrane in the 
{3,4,5,6,7} directions for free to obtain the array: 

(2) 

The two intersecting fivebranes alone correspond to a two-dimensional 
special Lagrangian submanifold, or equivalently, a complex curve in the 
{1,2,6,7} directions. This is the M-theory setup that has been used 
to analyse iV = 2 superYang-Mills (SYM) theory [23]. By including 
the membranes, the corresponding BPS equations will have solutions 
that can be interpreted as a membrane ending on this curve. In the 
Yang-Mills setting these configurations will correspond to monopoles 
and dyons. Such membranes were first considered in [9, 17, 22] without 
including the back-reaction on the fivebrane. The BPS equations that 
we discuss here which do include the back-reaction were first presented 
in [11, 21] and the application to dyons was analysed in [21]. In [11, 21] 
the BPS equations were derived and checked in a certain approxima- 
tion in the "covariant formalism" of the fivebrane [19].  Here we shall 

M5 12   3   4   5 
M2 1                       6 
M2 2                        7 
M5 3   4   5   6   7 

1Note that BPS equations for other configurations of intersecting fivebranes and 
membranes were derived in [11]. 
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derive the exact BPS equations in the Hamiltonian formalism [6]. A 
consequence of this is that we will be able to present the exact energy 
functional for these configurations that was presented in approximate 
form in [3]. 

After discussing this case we will consider arrays with three inter- 
secting membranes. We will see that the projections for the membranes 
imply the projections corresponding to a three dimensional special La- 
grangian submanifold. Such submanifolds are relevant for describing 
N = 2 SYM in d = 3 [20] and the equations for the membranes cor- 
respond to solitonic excitations in these theories. The BPS equations 
that we derive provide a starting point to analyse such states. 

The projections for four intersecting membranes automatically im- 
ply those for five so we will consider these cases together. The resulting 
BPS equations are appropriate for studying membranes ending on four 
or five dimensional special Lagrangian submanifolds. The BPS equa- 
tions for the five membrane case are in fact the most general in the 
sense that by setting certain scalar fields to zero we can recover the 
BPS equations for all previous cases. In all cases the equations are 
rather complicated and (almost) no attempt will be made for finding 
solutions here. 

2    Two Intersecting Membranes 

To derive the BPS equations we will use the Hamiltonian formalism 
of the fivebrane theory [6] which is derived from the "Lagrangian" for- 
malism of [2]. The bosonic world volume fields consist of scalars X**, 
/JL = 0,..., 10, and a closed three form field-strength H that satis- 
fies a self-duality condition. In the static gauge we have X0 = a0, 
Xa — oa, a, b, ••• = 1,...,5, where (a0,aa) are coordinates on the 
fivebrane world-volume. We will only consider static, bosonic config- 
urations2 XT(aa), T = 6, ...,10, Habc(a

a), and we shall take a flat 
target space. The spatial components of the world-volume metric, gab, 

2 In the Hamiltonian formalism we only need to specify the spatial components 
oiH. 
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are then given by 

gab = $ab + daX
TdbX

T. (3) 

It was shown in [11] that bosonic configurations that preserve su- 
persymmetry must satisfy 

'e,     (4) ydet(g + H)ab = £t70 |rai...a5e
ai-a5 - ^r^6 + Tat

a 

lere 

3! Vp               ClC2C3 ' 

*/ 
^abcde TJ      TJ 

—     J-\             ttabc-Hdef j (5) 

and e is a 32 component Majorana spinor satisfying €*€ = 1. We use 
the convention that e12M5 = 1. The gamma-matrices ra are the flat 
spacetime matrices, 7^, pulled back to the world-volume: 

ra = Ja + daX
T
7T. (6) 

It is useful to introduce the density 

nab = ^gHab (7) 

so that the closure of the three-form H is then daiiab = 0. 

We now turn to the arrays of two membranes intersecting a fivebrane 
according to the pattern (2). To preserve supersymmetry we must 
impose the following projections on the supersymmetry parameters: 

012345 = 6 

70166 = 6 

7027e = e (8) 

and hence the configuration preserves 1/8 of the supersymmetry. These 
projections imply that <y)34567e = — e which means that we can indeed 
include the final fivebrane in (2) for free, as claimed earlier. To realise 
this configuration of intersecting branes as a supersymmetric configu- 
ration of the first fivebrane we set all scalar fields to zero except for 
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X6 = Yl and X7 = Y2, which will be functions of aa = (a\aa), 
where, in this section, i, j, • • • = 1,2 and a, /?,••• = 3,4,5. By substi- 
tuting this ansatz into (4) and imposing the projections (8) we will be 
able to derive the BPS equations. 

It will be convenient to introduce the notation (pSp2)^^6^7), so 
that projections on the spinor imply that 

7lPle     =     72/^2^ = 712345^ 

7iP2e   =   -72Pie • (9) 

We then find that 

ri2345e - [(1 " det C^)7l2345 + diY* + $y'ey7i2 + daY^i 

+ (daY^djY1 - da^djY^aPi + ea^d0Y%Y2
7a]6.      (10) 

Similarly 

-^a6ra6e = [(n^ijdiY^ + naidaY
i)7l2Zi5 

+ (daY
kHaidiV

lekl - iil2{l - detaiy
J"))712 

+ {iPdiY* - na[idQY%)l2pl - U^Yafi] e       (11) 

and 

taTae = tajae + fdJTpie . (12) 

To ensure the equality of the two sides of (4) the sum of (10)-(12) 
must vanish except for terms proportional to 712345 e- We conclude that 

H^   =   0 
U™   =   daY

i 

^2   =   €ijdiyJ + daY
kdaY

idiY
lekl 

l-det^yj 
diY1   =   0. (13) 

The first equation comes from noting that rap = 7Q/9 +... and ensuring 
that the jape terms vanish. The next three equations follow from the 
vanishing of the terms 7aje, 7126 and e, respectively.   Using these it 
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is straightforward to show that the 7aP;e and 72P16 terms also vanish. 
These equations also imply that 

ta = —€aprydpY     UryY 
U   =   0. (14) 

From the functional form of gab we then conclude that ta = g^U = ta. 
These facts then ensure the vanishing of the 7ae, 7^ and pit terms. 

To match the two sides of (4) we are thus left to show that 

y/det(g + H) = 1 - det dtf' + d^daY1 + U12^2 - ^F1) .  (15) 

We first note that the determinant can be rewritten 

det(gab + Hab) =g+ ^Uab + gabtath . (16) 

and using (14) we have 

9abtath = (VF1 x VF2)2 , (17) 

where V = (c^, 34,55). We can then use Mathematica to show using 
(13) that (15) is indeed an identity. The closure of H imposes one 
additional equation: 

dadaY* - eijdjH12 (18) 

In summary, we have shown that (13), (18) are the relevant BPS 
equations corresponding to the configuration of intersecting branes in 
(2), and that the solutions will preserve 1/8 of the spacetime supersym- 
metry. These BPS equations were first presented in [11, 21] using the 
covariant formalism of the fivebrane [19]. The preservation of super- 
symmetry was checked up to terms quadratic in the spatial derivatives 
<9a. By contrast here we have checked the supersymmetry in the Hamil- 
tonian formalism exactly. 

The form of /Hal in the BPS equations is somewhat analogous to 
that of a membrane in the {0,1,6} directions and iia2 that of a mem- 
brane in the {0,2, 7} directions. More specifically, if we set Y2 = 0, 
say, then we precisely obtain the BPS equations for a single self-dual 
string in the 1 direction. Alternatively, if one sets da = 0 and imposes 
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dxY2 — d2Yl we get H = 0 and combined with the last equation in (13) 
we are left with the Cauchy-Riemann equations for Yl,Y2 as a func- 
tion of a1, a2, corresponding to the two intersecting fivebranes. We thus 
conclude that the equations generalise the Cauchy-Riemann equations 
to include a non-zero H and thus are relevant for describing membranes 
ending on complex curves in four dimensions, or equivalently, a two di- 
mensional special Lagrangian submanifold. As the equations include 
the back-reaction of the membrane on the fivebrane geometry, the five- 
brane world-volume will in general no longer be a complex curve in the 
{1,2,6,7} directions because only half of the Cauchy-Riemann equa- 
tions are imposed. Note that one can impose diY2 = c^F1 and still 
have non-zero H if da ^ 0. These equations are somewhat simpler, but 
it was shown in [21] that they do not admit finite energy solutions, and 
hence only provide an asymptotic description of the dyons in N=2 SYM 
theory. Finally, if one imposes <% = 0 we obtain the BPS equations for 
the delocalised intersecting self-dual strings discussed in [10] and [13]. 

We conclude this section with a comment about the energy of solu- 
tions solving (13). It was shown in [12] that the energy density squared 
of static fivebrane configurations is given by 

E2 = det(#a6 + Hah) + tatbm
ab , (19) 

with mah = 6ab — gab. For the configurations we have been considering 
we have tati)m

ab = 0 and hence 

=   ydet(gab + Hab) 

< - (yy1 x * 
1-detdiYi 

This last expression differs from that given in [3] but agrees with it up to 
terms quadratic in the spatial derivatives which was the approximation 
employed there. Note that if we impose the other Cauchy-Riemann 
equation on Yl and F2, diY2 = c^1, we obtain 

£ = 1 + djY^jY1 + daY
idaYi (21) 

as in [3]. 
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3    Three Intersecting Membranes 

We now consider adding another membrane to the array (2) to obtain 

(22) 

M5 12   3   4   5 
M2 1                       6 
M2 2                       7 
M2 3                       8 

To preserve supersymmetry we must now impose 7038e = e in addi- 
tion to (8). This means that the configuration preserves 1/16 of the 
spacetime supersymmetry. If we denote (76,77,78) = (p1,/?2,/?3) then 
we have 

rytp%e   =   ry1p1e = 712345^       no sum on i 

7yc   =   -7Ve       z^i, (23) 

where in this section i, j, • • • = 1,2,3. As in the previous section these 
projections imply that we can add several other fivebranes for free. 
In fact one finds we can add the fivebranes corresponding to three 
dimensional special Lagrangian submanifolds (see section 2.2 of [10]). 

To realise the intersection of such membranes and fivebranes on the 
first fivebrane we let three scalars be active: (X6, X7, Xs) = (F1, F2, F3) 
with Yl = Yl(a^ aa), where in this section a, /?, • • • = 4,5. As before we 
substitute this into (4) and impose the projections to determine ti. The 
vanishing of the terms with e, 7a/?e> 7m^ and jije imply, respectively, 
that 

diY*   =   det(^yj) 

Ha(3   =   0 

nai   =   MijdaY
j 

fiij   =   eijkAk 

A1   =   {diYj + daYmdaY
idmYl)eijkMu1 (24) 

where the matrix M is defined as 

Mi, = Sij - {-l)i+j det{dkYl) (25) 
Hi 

where the subscript on the det^- indicates that we remove the zth row 
and jth column of the matrix dkY1 before taking the determinant. It 
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is then straightforward to show that the 7apie and 7[iPj]e terms auto- 
matically vanish using the lemmas 

tirdiY'   =   daY^iY3:- daY
j{diYl) 

MijdkYj   =   dkY* - (dtY^Stk (26) 

One can use Mathematica to show that (24) implies 

ta   =   e^dpY^Y^k (27) 

and hence the vanishing of the ^ke and 7ae terms. By expanding the 
identity 

daY%YjdkY^ - 0 (28) 

one can then show that 

t'dtY1 + tadaY
l = -^eapdaY%Yj6ijkdkY

l (29) 

and hence the p^e terms vanish. To complete the proof of supersymme- 
try one is then left to prove that 

Jdebig + H) = 1 - i^r)2 + ^d^djY* + -HTdaY* + H^d^ 
(30) 

This can again be established using Mathematica. The closure of the 
three form H then implies that 

d^ + diW = 0 . (31) 

The other equation, dairia^ = 0, is automatically satisfied by virtue of 
(24). 

Let us discuss some special cases of these equations. Firstly we note 
that if we impose 

dtf* = d^ ,        daY1 = 0 (32) 

then we have H = 0 and the equations are simply those of a three 
dimensional special Lagrangian submanifold [16].   The more general 
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equations can thus be seen to include cases relevant for describing mem- 
branes ending on such submanifolds. Note that we can just impose the 
first equation in (32) leading to the equations for a three dimensional 
special Lagrangian manifold with non-zero three-form. By analogy with 
the case of two intersecting membranes one is lead to suspect that this 
simplification will not admit finite energy solutions. 

We next consider the case where Y2, is a function of aa only. In this 
case the self-dual strings are delocalised in the a1 directions. In this 
case we find 

H™   =   daY1 

yij   =   #tf = o (33) 

and the closure of H then implies that the Yl are harmonic functions of 
two variables. The solutions of these delocalised membranes then have 
a logarithmic behaviour. Note that the energy of these solutions is 

E = 1 + daY
idaY

i . (34) 

Finally, if we set F3 = 0 then the equations become exactly those 
of the last section corresponding to two intersecting self-dual strings. 

4    Four and Five Intersecting Membranes 

The projections imposed on the spinor parameters for the case of four 
intersecting membranes with a fivebrane automatically imply the pro- 
jections for a fifth membrane so we shall analyse these cases together. 
The general configuration can be written 

M5 12   3   4   5 
M2 1                       6 
M2 2                       7 
M2 3                       8 
M2 4                       9 
M2 5 

(35) 
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where Jt represents the number 10. In addition to (8) we must impose 
7°38e = ^ 70496 = € 705»6 == 6f  We then have: 

^apae   =   71/91c = 712345 c       no sum on a 

7ye   =   -7y€       a^b (36) 

where (p1,..., p5)=(76,..., 71') and a, 6, • • • = 1,..., 5. These projec- 
tions are those for five dimensional special Lagrangian submanifolds; 
the corresponding fivebranes that one can add to (35) for free can 
be found in section 2.4 of [10]. For this case all five scalar fields 
(X6,..., X^)={Yl,..., F5) are excited. Again we substitute into (4) 
and demand equality. The right hand side of (4) becomes 

(l - \{daY
a)2 + l-daY

bdhY
a + det dY + nabdaY

b 

\ Z Z a\a 

+ (daV1 - hla^ det dY + det dY) eVe 
y Z ab\ab J 

+ (f + ]-daY
cdbY

deahcde\ J^ee 

+ UcY^ + W[aY
cdbY

ad^Yb - ^ncd + ^nabdaY^dbYA e^0cde 

+ (u^daY't _ daY
ad[bYc] + d[bY

adlalYc] 

+ (-l)b+cdetdY)e^\bpc]e 
b\c / 

+ (tadaY* + \eblb2b3b4b5dhY
hdb5Y^deYA e^Qpee (37) 

where Yi = Y\ 

The vanishing of the et70e terms implies the BPS equation 

daY
a - lxatb det dY + det dY = 0 (38) 

2 ab\ab 

We next note that the vanishing of the et70a6e and e^0^[bpc]€ terms 
imply that 

£«* _ <fLabdaY
cdbY

d - 2d[cYA 

-W^d^d^Y' + Zd[aY
ddbY

adc]Y
b = 0 

ila[bdaYc] _ daY
ad[bYc] + d[bY

adla]Yc] + Zbc = 0 (39) 
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where 

Zhc = J(-l)6+c (det^y - detdr 
2 \ b\c c\b j 

(40) 

If we multiply the second by d^Y6, and substitute into the first equation 
we find after some algebra 

U^ = TacN;h
l (41) 

where 

AU = Sab + daY
cdcY

d 

Tab = (daY
b - dbY

a) (l - l(dcY
c)2 + ±dcY

dddY^ 

+ {ddY
cdcY

a - (dcY
c)ddY

a) (dbY
d - ddY

b) - 2ZcadcY
b     (42) 

We then need 

te = leabcdeQ^Q^ ^ 

for the 6^70ae terms to vanish. Using the identity 

eabcdedaYbdcYddeYf = eabcdedaYbdcYddfYe , (44) 

which comes from the identity d^YbdcYadeYf] = 0, we conclude from 
(43) that the 6t70pa6 terms also vanish. 

We have thus shown that solutions to the BPS equations (38) and 
(41) together with the closure of H, dafLab = 0, preserve 1/32 of the 
supersymmetry provided that 

Jdet(g + H) = 1 - l{daY
a)2 + l-daY

bdbY
a + det dY + HabdaY

b 
v
 2 Z a\a 

(45) 

We have not quite been able to show this with Mathematica using the 
machines available. However, we have made some highly non-trivial 
checks and we strongly expect that it is in fact true. 

Note that if daY
b = dbY

a we have Hab = 0 and the BPS equations 
truncate to those of a five dimensional special Lagrangian submani- 
fold [16].  We note also that setting Y5 = 0 will give rise to the BPS 
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equations for four intersecting membranes associated with a four di- 
mensional special Lagrangian submanifold, while if in addition we set 
y4 = 0 we recover the equations obtained in the last section. Thus, 
these BPS equations are the most general of the type considered in this 
paper. 

5    Conclusions 

We have constructed BPS equations corresponding to membranes end- 
ing on fivebranes and revealed how they generalise those of special 
Lagrangian submanifolds. The only new solutions that were presented 
here were those corresponding to three delocalised intersecting mem- 
branes. It would be very interesting to construct less trivial solutions, 
but the analysis presented in [21] for two intersecting membranes indi- 
cates that this could be very difficult. 

If we dimensionally reduce the general configuration (35) on one of 
the fivebrane directions then we obtain a D-4-brane intersecting a fun- 
damental string with four D-2-branes. By reducing the BPS equations 
that we have derived one will obtain BPS equations for the abelian 
Dirac-Born-Infeld theory relevant for these configurations. By addi- 
tional T- and S-duality transformations, one can in principle obtain 
BPS equations for many different configurations of intersecting branes. 
Following [12] it was shown in [7] that simpler BPS equations for the 
abelian Dirac-Born-Infeld theory have a natural analogue for the non- 
abelian theory. Presumably this will also be true for these more com- 
plicated cases. 
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