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Abstract 

We obtain first order equations that determine a super symmetric kink 
solution in five-dimensional Af = 8 gauged supergravity. The kink interpo- 
lates between an exterior anti-de Sitter region with maximal supersymme- 
try and an interior anti-de Sitter region with one quarter of the maximal 
supersymmetry. One eighth of supersymmetry is preserved by the kink as 
a whole. We interpret it as describing the renormalization group flow in 
J\f = 4 super-Yang-Mills theory broken to an Af = 1 theory by the addition 
of a mass term for one of the three adjoint chiral superfields. A detailed cor- 
respondence is obtained between fields of bulk supergravity in the interior 
anti-de Sitter region and composite operators of the infrared field theory. 
We also point out that the truncation used to find the reduced symmetry 
critical point can be extended to obtain a new Af = 4 gauged supergravity 
theory holographically dual to a sector of Af = 2 gauge theories based on 
quiver diagrams. 
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We consider more general kink geometries and construct a c-function 
that is positive and monotonic if a weak energy condition holds in the bulk 
gravity theory. For even-dimensional boundaries, the c-function coincides 
with the trace anomaly coefficients of the holographically related field the- 
ory in limits where conformal invariance is recovered. 

1    Introduction 

The conjecture [1] of the equivalence of string theory on AdS$ x 55 to A/" = 4 
supersymmetric Yang-Mills theory in (3 + l)-dimensions derived some of its 
initial motivation and plausibility from the 51/(2,214) superconformal in- 
variance of both sides of the equivalence. Optimistically, one might expect 
that the strategy for computing Green's functions [2, 3] is more general, 
and applies to any situation where a quantum field theory (QFT) on the 
boundary of a spacetime can be related to properties of a quantum grav- 
ity theory in the bulk. To test this expectation it would be good to have 
an example of a QFT-gravity pair where the QFT is non-conformal but 
nevertheless well-understood at least in some aspects which can be probed 
from the gravity side. Furthermore, the bulk description should be in terms 
of a geometry in which the supergravity approximation to string theory is 
uniformly applicable. 

The main purpose of this paper is to provide such an example. The QFT 
will be the M — 1 supersymmetric gauge theory obtained from J\f — 4 super- 
Yang-Mills by adding a mass to one of the three chiral adjoint superfields. 
The mass breaks conformal invariance and drives a renormalization group 
flow. Using the methods developed by Leigh and Strassler [4] one can argue 
that the theory recovers superconformal invariance in the infrared, and that 
in fact there is a line of fixed points in the infrared as well as the ultraviolet. 
The theory can be made strongly coupled in both limits by making the 
ultraviolet 't Hooft coupling large, and so a supergravity description at large 
N should be possible. 

We believe that the supergravity dual of this field theory flow is the 
kink solution that is discussed in section 5, and which interpolates between 
the AdS geometries at two critical points of five-dimensional M = 8 gauged 
supergravity [5, 6, 7]. The critical point describing the UV end of the flow is 
the expected maximally supersymmetric vacuum of the bulk theory, which 
is dual to M — 4 SYM. The kink itself preserves four real supercharges, as 
does the field theory described in the previous paragraph. In the IR limit 
the kink approaches the critical point with J\f = 2 bulk supersymmetry that 

was discovered in [8]. 
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The most direct evidence for the correspondence between the field theory 
flow and the supergravity kink is that the symmetries match. Along the 
whole RG flow there is SU(2) x 17(1) global symmetry, and this symmetry 
is also present in the kink. The AdS geometries at the endpoints imply 
conformal symmetry in the UV and IR limits of the field theory, and there is 
SU(2,2|4) symmetry at the UV end and 517(2,2|1) symmetry at the IR end. 
Furthermore, the limiting behavior of the kink near its UV endpoint involves 
scalars with the right quantum numbers and dimensions to be dual to the 
mass term for one adjoint chiral superfield. There is additional evidence 
from the match of trace anomaly coefficients computed at both endpoints 
in field theory and through the AdS/CFT correspondence. The authors of 
[9] independently considered the field theory RG flow and the matching of 
trace anomaly coefficients. 

To probe this correspondence more deeply, we compute mass eigenvalues 
of all fields of gauged supergravity at the non-trivial supersymmetric critical 
point. We use this and the results of [2, 3] to obtain the scaling dimensions 
of the corresponding gauge theory operators. The details are presented in 
section 6 and in an appendix. Boson and fermion operators neatly combine 
into multiplets that are representations of the superalgebra SU(2,2\1) of 
J\f = 1 superconformal symmetry in four dimensions. We exhibit gauge 
invariant combinations of the massless superfields of the gauge theory whose 
scaling dimensions and 577(2) x U(l) quantum numbers precisely match the 
five short multiplets observed in supergravity. There are three additional 
long multiplets which complete the picture. This detailed field-operator 
map constitutes perhaps the strongest evidence that the supergravity critical 
point is indeed the holographic dual of the mass-deformed Af — 4 theory. 

Non-conformal examples of the bulk-boundary holographic relation al- 
ready exist in the literature (see for instance [10, 11, 12, 13, 14, 15, 16]), but 
from the point of view of testing the duality most of these are vexed either by 
an incomplete understanding of the boundary theory, or by a bulk geometry 
where supergravity is unreliable due to tachyons, or large curvatures, or a 
strong dilaton—or some combination of these. 

Our example is closer to the work of [17, 18, 19, 20, 21], and we draw on 
various aspects of these papers in our analysis. In [17] it was proposed that 
a blowup of an 55/Z2 orbifold, deformed to a coset manifold 50(4)/50(2), 
described the flow of an M — 2 super-Yang-Mills theory to an H — 1 in- 
frared fixed point through the addition of a mass term. The dual field to 
this mass term was a twisted string state, so a direct analysis of the flow 
geometry beyond the level of topology seemed difficult. Similar examples 
were considered in [18, 19], and in [18] it was suggested that the flows could 
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be described in terms of tensor multiplets of an J\f = 4 gauged supergravity. 
This was motivated in part by the work of [20, 21], where anti-de Sitter vacua 
of Af = 8, d = 5 gauged supergravity discovered in [6] were re-examined as 
candidate descriptions of non-supersymmetric fixed points of RG flows. The 
main example considered in [20, 21] was a S'[/(3)-symmetric point. Second 
order differential equations were found for a five-dimensional flow geome- 
try inteperpolating between the maximally supersymmetric point and the 
S'?7(3)-symmetric one. The field theory interpretation was that adding a 
mass to one of the four gauginos resulted in a flow to an infrared fixed point 
ofRG. 

A general problem of studying RG flows through the bulk-boundary cor- 
respondence is that the validity of supergravity depends on having strong 
coupling in the gauge theory, so that results cannot be compared with per- 
turbative treatments of the renormalization group flow. For instance, it is 
difficult to verify from a field theory point of view any of the properties of 
the 5?7(3)-symmetric critical point studied in [20, 21]. What allows us to 
make non-trivial field theory predictions about the infrared fixed point is the 
supersymmetry of the fixed point and the J\f — 1 supersymmetry that must 
be preserved throughout the flow. These predictions are analogous to those 
which have been checked in the conifold examples [17, 22, 18, 19]. What 
is new in our paper as compared to these is that we are able to give an 
explicit five-dimensional supergravity description of a supersymmetric flow 
geometry. 

Before restricting our attention to a particular example, we consider in 
section 4 some general properties of the supergravity kinks that could be used 
to describe renormalization group flows. We are able to identify a monotonic 
function along the kink which interpolates between the anomaly coefficients 
at one end and at the other. Using nothing more than Einstein's equations 
and a weak energy condition it is possible to show that such a function 
can always be found in any kink geometry with the Poincare symmetries of 
the boundary theory in flat space. The argument is dimension-independent. 
Thus, on rather general grounds, the holographic bulk-boundary correspon- 
dence implies a c-theorem, at least in the regime where classical gravity is 
a reliable guide to the bulk physics. In the four-dimensional case, an equiv- 
alent c-function was discussed independently in [20], and its monotonicity 
was checked using the equations of motion for the supergravity geometries 
considered there. 

In section 5 we find the supergravity kink corresponding to the super- 
symmetric renormalization group flow described above. We do this by de- 
manding that one eighth of supersymmetry is unbroken throughout the bulk, 
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and we thus obtain first order equations for a kink solution that interpolates 
between the maximally supersymmetric critical point and the one-quarter 
supersymmetric point of [8]. The first order equations for the scalar fields 
are the gradient flow equations of a "superpotential" defined on a restricted 
four-dimensional slice of the scalar manifold, and simply related to the po- 
tential of gauged supergavity on this slice. 

We work within the framework of gauged Af = 8 supergravity in five di- 
mensions because its full non-linear structure is known. This is not the case 
for the complete Kaluza-Klein reduction of ten-dimensional type IIB super- 
gravity on S5. The spectrum of five-dimensional Af — 8 gauged supergravity 
includes only the first few Kaluza-Klein modes of the ten-dimensional theory, 
but it is a complete theory at the classical level and was argued in [8] to be a 
consistent truncation of the parent theory. This has not been proven explic- 
itly but is expected after suitable field redefinitions of the heavy KK modes. 
Consistent truncation means that any solution of the truncated theory can 
be lifted to a solution of the untruncated theory. 

Another reason for working with five-dimensional gauged supergravity 
is that it efficiently encodes a class of metric deformations of the S'5, and 
a family of backgrounds for BM^ fields where the indices lie in the Sb 

directions. To be more specific, the five-dimensional gauged supergravity 
has 42 scalar fields that parameterize the coset EQ^/USP(S). Prom the 
holographic perspective two of these scalars correspond to the Yang-Mills 
gauge coupling and 0-angle, 20 of them parametrize Yang-Mills scalar masses 
(deformations of the metric on 55), and the other 20 parametrize the possible 
Yang-Mills fermion masses (special backgrounds for B^f1^. Indeed gauged 
Af = 8 supergravity in five dimensions is holographically dual to the Yang- 
Mills energy-momentum tensor supermultiplet, and the supergravity scalars 
are the moduli of this supermultiplet: the couplings and the masses. 

The lagrangian of gauged J\f = 8 supergravity has a scalar potential V 
which is invariant under the gauged subalgebra, 50(6) = 517(4), of ^6(6) • 
Critical points of the potential V give rise to AdS^ solutions of gauged su- 
pergravity. The list of known critical points can be found in [8]. For some of 
them the corresponding ten-dimensional geometry can be found in the lit- 
erature: for the 517(3) symmetric points see [23]; for the 50(5) symmetric 
points see [24]. The critical point which we claim describes the infrared end- 
point of our flow is the recently discovered 5C7(2) x ?7(l)-symmetric point 
with one-quarter supersymmetry [8]. The corresponding ten-dimensional 
geometry is, as yet, not known, but its metric can be computed using the 
results of [8]. 
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The known critical points of [8] were found by specializing to an eleven- 
dimensional, truncated submanifold, <S, of £76(6)/?75p(8). This is the invari- 
ant subspace under a particular SU(2) subgroup of 50(6) = 577(4). Since 
this scalar submanifold will play a major role in our work we will review its 
structure in detail in section 3 and in two appendices. 

In section 7 we point out that the truncation of the scalar manifold can be 
extended to the full theory and leads to a complete five-dimensional M = 4 
gauged supergravity theory coupled to two tensor multiplets. We suggest 
that this theory captures a sector common to all J\f = 2 superconformal 
gauge theories based on quiver diagrams [25, 26], and that the kink we have 
found may reflect certain renormalization group flows in these theories as 
well. 

A comment on* the counting of supersymmetries may prevent future con- 
fusion. A five-dimensional supergravity theory is referred to as having J\f- 
extended supersymmetry if the invariance of the lagrangian is characterized 
by 4J\f real supercharges, and similarly with a background of supergravity. 
The minimally supersymmetric five-dimensional supergravity has J\f = 2 in 
the lagrangian. As always, maximal supersymmetry is 32 real supercharges. 
A four-dimension field theory with A/"-extended supersymmetry also has 4J\f 
real supercharges, unless it also has conformal symmetry, which doubles the 
number of supercharges to 8A/\ In an effort to speak French to the French 
and English to the Americans, we will refer to a supergravity background 
dual to an N = 1 superconformal field theory as Af = 2. 

2    Field theory motivation 

Asymptotic freedom and confinement are difficult to capture reliably in a 
supergravity geometry. For asymptotic freedom this is because the 't Hooft 
coupling eventually gets weak in the ultraviolet, and a' corrections become 
important to any supergravity description. All geometric attempts to de- 
scribe confinement include singularities (some more malignant than others), 
and there is a variety of problems regarding the discrepancy between the 
confining string tension and the mass gap, nearly flat Regge trajectories, 
and unwanted global symmetries. The study of renormalization group flows 
in supersymmetric gauge theories provides us with some examples where 
both the ultraviolet and the infrared fixed points are conformal, and neither 
asymptotic freedom nor confinement is encountered. 

The example upon which we want to focus is a relevant deformation of 
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M = 4 super-Yang-Mills theory by a mass term for one of the three Af = 1 
adjoint chiral superfields which, together with the AT = 1 adjoint vector 
superfield, fill out the full J\f = 4 gauge multiplet. In Af — 1 language, the 
superpotential is 

WP = Tr$3[*i,*2] + 5m,L:*i . (2.1) 

The first term is the superpotential required by M = 4 supersymmetry. The 
second term breaks M = 4 down to Af = 1, and also destroys conformal 
invariance, so the total number of real supercharges is reduced from thirty- 
two to four. The theory does have a non-trivial infrared fixed point. Indeed, 
it was shown in [4] that by choosing the anomalous dimensions 71 = 72 = 
— 1/4 and 73 = 1/2 for $1, $2, and $3, one could simultaneously make the 
NSVZ exact beta function [27], 

vanish, and make the superpotential in 2.1 dimension three, which is marginal. 
Note that it is immaterial in this analysis whether one integrates out $3 or 
not. The theory we have described has some features in common with Af = 1 
SQCD with Nf = 2^, and it is its own Seiberg dual. 

That the infrared fixed point of this flow is the holographic dual theory 
to the one-quarter supersymmetric vacuum found in [8] seems to have been 
observed independently by several groups, including the present authors, the 
authors of [9], and M. Strassler [28]. For us the crucial observation was that 
the coefficients in the trace anomaly predicted by field theory match those 
observed in supergravity. The coefficients we aim to calculate are a and c in 
the one anomalous point functions which in the notation of [29] read 

<^vW>^   =  -^R^R^ + ^-^v^       (2.3) 

in the presence of a metric g^ and a source V^ for the R-current R^. The 
normalization of a and c is such that c = 1/120 for a single free, real scalar, 
and c = (iVc

2 - l)/4 for SU(NC) super-Yang-Mills. The combinations a - c 
and 5a — 3c in the second line are consequences of Af — 1 supersymmetry 
[29]. In the ultraviolet, where we can effectively set 1713 = 0, we arrive at 
a - c = 0 and 5a — 3c oc |(A^ — 1) by inspection of the triangle diagrams in 
Figure 1. The current R^ assigns r(A) = 1 to the gauginos and r(^) = -1/3 
to the quarks. 

When m ^ 0, this R-current becomes anomalous, which is entirely ap- 
propriate since d^W1 is an Af = 1 superpartner of T^, and the theory now 
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is changing with scale. There is however a non-anomalous combination [30] 
of RJJ, with the Konishi currents, K1^. By definition, K1 assigns charge 1 
to the fields in the ith chiral multiplet and charge 0 to the fields in vector 
multiplets. The non-anomalous current is 

S,. = -R„ + S£MII-V)*J- (2.4) 

Here 7Z is the anomalous dimension of the ith chiral superfield, and the val- 
ues of 7jR are those discussed in the text preceding 2.2. 'T Hooft anomaly 
matching implies that {d^R^} in the infrared is equal to (^S,/i) in the ultra- 
violet. In the ultraviolet, j1 = 0 and the perturbative analysis in terms of 
fermions running around a loop can be applied. The result is a — c = 0 and 
5a — 3c = |(iV^ — 1) with the same constant of proportionality as before. 
Combining with the results of the previous paragraph, one finds 

a — c oc ^2r(x) 

a) 

5a-3c(x^r(x)3 

x 

b) 

Fig. 1: Triangle diagrams for computing the anomalous contribution to d^R*1. 
The sum is over the chiral fermions % which run around the loop, and r(x) is the 
R-charge of each such fermion. 

«IR CiR 27 

32 
(2.5) 

&UV       CUV        M 

The non-anomalous S^ current generates an exact symmetry of the mass- 
deformed theory, and it will be matched precisely by a ?7(1) symmetry of 
the supergravity kink solution. This symmetry is called ^(l)^ in subsequent 
sections. 

Prom the gravity side it is more straightforward to compute (T^), since 
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we can rely on the analysis of [31]. We remain in mostly minus conventions. 
Suppose we are given any compactification of string theory or M-theory (or 
any other, as-yet-unknown theory of quantum gravity) whose non-compact 
portion is AdS^ with R^ = Ag^. If we rescale the metric by a factor of 4/A, 

we obtain the dimensionless AdSs metric ^§5 with R^ = 4^. In defining 
a conformal field theory through its duality to the AdS^ compactification 
under consideration, the part of the action relevant to the computation of 
(T^) is the Einstein-Hilbert term plus the cosmological term: 

(2.6) 
where K^ = STTGS is the five-dimensional gravitational coupling. Directly 
from [31] we read off 

" = ^e^- <2-7) 

In solutions oiJ\f = 8 supergravity where the scalars are fixed, A = — |V. It 
was commented on in'[8] already that 

CUV        V VlR J 32 

The agreement betwen 2.5 and 2.8 is a sign that we have found the correct 
field theory interpretation of the infrared AdS region. It is straightforward to 
check the overall normalization of a and c: 2.7 leads to auv — cuv = N2/^ 
which differs from the SU(N) gauge theory result only by a 1/N2 correction. 
This agreement can be traced back to absorption calculations [32]. 

The essentials of the anomaly-matching analysis were worked out in [22] 
for the conifold theory introduced in [17]. Aspects of it were also employed 
in [21] and in particular in [9] in a field theory analysis independent of our 
own for the one-quarter supersymmetric fixed point of [8]. 

The fields involved in the interpolating solution between the maximally 
supersymmetric anti-de Sitter vacuum of gauged supergravity and the one- 
quarter supersymmetric vacuum have masses near the maximally supersym- 
metric end which correspond to operators of dimensions 2 and 3. These are, 
respectively, the boson and fermion mass involved in the second term of 2.1. 
Appropriately, turning on the scalar dual to the boson mass term preserves 
50(4) x 50(2) C 50(6), while turning on the scalar dual to the fermion 
mass term preserves SU{3). Together they break the symmetry down to 
SU(2) x U(l). If one regards the presence of these scalars in the interpo- 
lating solution, plus the supersymmetry, plus the existence of the interior 
AdS region, as sufficient evidence that the infrared fixed point in field theory 
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is described by the deformation of J\f = 4 super-Yang-Mills which we have 
discussed above, then the agreement between 2.5 and 2.8 can be regarded as 
a successful field theory prediction of the value of the scalar potential V at 
the saddle point that defines this solution. Prom this point of view, testing 
dimensions of scalar operators in field theory against masses of gauged su- 
pergravity fields amounts to checking field theory predictions of the second 
derivatives of V at the saddle point. 

J\f — 8 Supergravity and conformal phases of 
Yang-Mills theory 

All the 42 scalars in five-dimensional J\f = 8 gauged supergravity participate 
in the scalar potential except for the dilaton and the axion. In view of 
the correspondence to operators in the Yang-Mills theory explained in the 
introduction, critical points of this potential correspond to conformal fixed 
points of J\f = 4 Yang-Mills theory obtained by turning (Yang-Mills) fermion 
and scalar masses and running to the infrared. 

In an effort to classify some of the new phases of the Yang-Mills theory 
the authors of [8] classified all critical points of the Af = 8 gauged supergrav- 
ity potential preserving at least a particular SU(2) symmetry. The initial 
motivation for this was largely pragmatic: reducing the problem of forty two 
scalars to a solvable one involving only eleven. As we will explain in more 
detail in section 7, the truncation to SU(2) singlets can be extended to the 
whole J\f = 8 theory, and the result is a gauged J\f = 4 supergravity the- 
ory coupled to two tensor multiplets. We believe that this truncated theory 
is holographically dual to a subsector of operators which is common to all 
Af = 2 super-Yang-Mills theories based upon quiver diagrams. 

The purpose of this section is to review the analysis in [8] of critical 
points in supergravity with particular attention to the one that preserves 
one quarter of supersymmetry. This critical point is a reasonable candidate 
for the description of the IR fixed point of the field theory flow described in 
section 2. We begin in section 3.1 by summarizing the SU{2) singlet sector 
of the supergravity scalars. We also define a sort of superpotential which 
is helpful for the analysis of supersymmetry. We summarize this analysis 
at the critical point in section 3.2, and we extend it to non-anti-de Sitter 
geometries in section 5. 
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3.1    The scalar structure of the 577(2) singlet sector 

The J\f — 8 supergravity theory has a gauge symmetry of 5C/.(4) or 50(6). 
We consider the SU{2)I x SU(2)G x U(1)G subgroup of 311(4), and look at 
the singlets of 5(7(2)/. (The subscripts / and G on the groups are intended 
to distinguish the "Invariance" group from the residual "Gauge" group.) As 
was discussed in [8], these scalar singlets may be thought of as parametrizing 

the coset: 

*=S0(S5?^)X0(M)- ^ 
The group 50(5,2) contains an obvious 50(3) x 50(2,2) subgroup, and 
50(2,2) = 5L(2,]R) x 5L(2,IR). The 50(3) is 5C/(2)G, one 5L(2,IR) 
describes the dilaton and axion of the theory, and U(1)G is the compact 
subgroup of the other 51/(2, H). 

The scalar potential, V, on the eleven-dimenensional scalar manifold, <S, 
has a residual 5(7(2) x (7(1) x 51/(2, M) invariance and can therefore be 
parametrized in terms of four real variables [8]: 

V       =       -Zr 4 (1 - cos2(20) (sinh2(Vi).- sinh2(^2))
2) 

4 ! 
+/9

2(cosh(2^i) + cosh(2V2))  + z^pS (2 + 2sin2(2</)) 

-2sin2(2(?!>)cosh(2(^i - c^)) - cosh(4^1) - cosh(4^2))   (3.2) 

Our variables are related to those of [8] by rx = — (<pi — <£2)/2, Vy = (ipi + 
<£2)/2, and 6 = 20. As in [8], p = ea, parametrizes one sheet of the 0(1,1) 
factor of 3.1. 

The J\f = 8 supergravity has a USp(8) invariance, and in particular the 
scalar structure is encoded in two USp(8) tensors, Wat, and Aafcd. The 
truncation of the USp(8) indices to the singlets of 5(7(2)/ can be effected 
by projecting the 8 of USp(8) onto the space spanned by the four vectors 

v1    =    (1,0,0,0,0,1,0,0) , Si = (0,1,0,0, -1,0,0,0) , 
V2    =    (0,0,0,1,0,0,1,0) ,        V2 = (0,0,1,0,0,0,0, -1) .      (3.3) 

These vectors also turn out to be global eigenvectors of the tensor Wat,, with 
eigenvalues, Ai, Ai and A2,A2 respectively, where 

Ai    =    - 
e-2i<P   r 

p6 (2cos(2</>)  -   cosh(2^i)  +   cosh(2^2) 

+ 2i sm(2(j)) cosh((pi — (P2)) 

+  (2cos(2(/))(cosh(2(/Pi)+ cosh(2^2)) 
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+ 4i sin(2</>) cosh.((pi + ^2)) 

e-2i<t>   r 
A2    =    —7-^-   p6 (2cos(2^)  +   cosh(2^1)  -   cosh(2<p2) 

4/9z    L 
+ 2isin(2</>)cosh((^i — 992)) 
+  (2cos(2^)(cosh(2^i)+cosh(2^2)) 

+ 4i sin(2(/>) cosh((^i + ^2))   • 

These eigenvalues also provide a superpotential W related to V by 

v =  9_ y low 
7=1 

^|2-f^ 

(3.4) 

(3.5) 

where cps — y/6 a, and W = Xi or W — A2. We use the metric ^ to contract 
the indices of the partial derivatives of W with respect to <^, and as we will 
see, this is the proper metric on this part of the scalar manifold. 

The scalar and gravity part of the J\f = 8 supergravity action is [6]: 

Jd5X y/\f\   [ - i R   +   i ^ Paa6cdP/3a6Cd -   F (3.6) 

In 3.6 and in the rest of this paper, we are working in five-dimensional Planck 
v5 units such that K^ = 2. The efficient way to repristinate Newton's constant 

is to insert 2/K^ as an overall factor in from of 3.6: that way the equations of 
motion are not changed. In particular, the maximally supersymmetric AdSs 
vacuum of the theory is determined by the equation 

Rafi — Vo gap = g gap • (3.7) 

Comparison with the usual form, Rap = -j^gap, yields g = 2/L. In the 
AdSs x 55 vacuum of type IIB theory supported by N units of self-dual 
five-form flux, L enters as the radius of the S'5, and one has the standard 
relation 

L4 = 
KioiV 

(3-8) 
27r5/2 • 

In the foregoing parametrization of the scalar manifold, the scalar kinetic 
term of [6] reduces to: 

- IT (P.abcd Puabcd)     =     \\  E  9^ {dM) {dvVj) 

,2/ 

24"      v-p—--      / 2 

+ smh2(Vi - w) <r (M) iW) ■  (3-9) 

which indeed shows that the metric on the scalar fields <pj is simply 5ij. 
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3.2    Supersymmetric backgrounds 

To find supersymmetric bosonic backgrounds one sets the variations of the 
spin-1/2 and spin-3/2 fields to zero. Prom [6], the gravitational and scalar 
parts of these variations are: 

$Xabc     =     yft  [^P^abcd^   -   \gAdabcZd]   • (3.10) 

We remind the reader that we use mostly minus metric conventions, and 
{7^, 7^} = 2ry/XI/. For a background with constant scalars, one finds that 
the vanishing of Sip relates the AdS radius to the eigenvalues of W^. The 
vanishing of Sxabc is equivalent, via a tensor identity, to the vanishing of 
Si/jfjui-- However, vanishing of Sxabc directly leads to the condition that one 
has a supersymmetric background with constant scalars if and only if </> = 
0 and dW/d(fj — 0 in 3.5. This statement was proved with the help of 
Mathematica calculations, and is the first of several important places in this 
work where Mathematica was essential. Note that the conditions (j) = 0 
and dW/d(pj = 0 are sufficient but not necessary condition for V to have a 
critical point. 

One can easily verify that supersymmetry preserving ground states are 
obtained by taking: 

Vi  =  ±ilog(3),    ¥>2 = 0,    ip3 = y/6a= ^log(2),    0 = 0 . (3.11) 

All other 5?7(2)/-invariant supersymmetric ground states (besides the trivial 
Af — 4 point) are Z2 images of the ones specified in 3.11, and can be obtained 
from these either via the interchange ipi *-» (^2 or by going to the other 
component of 0(1,1). These supersymmetric ground states were found in [8]. 

They all have Vb = — ^-3— g2 and J\f = 2 supersymmetry (in the supergravity 
sense described at the end of section 1). The supersymmetry generators for 
3.11 are given by using the projectors vi and vi of 3.3. If one considers the 
ground states with (pi «->► (/?2, then the unbroken supersymmetries are given 
by V2 and ^ 

In section 6 we will investigate the supergravity spectrum at the critical 
point specified by 3.11. Our results, and their interpretation within the 
holographic map between bulk field and boundary operators, will provide 
detailed evidence that this critical point is the supergravity description of the 
infrared fixed point of the supersymmetric RG flow described in section 2. 
The prima facie evidence for this, as commented in section 2, is that the 
value of VQ translates into the correct trace anomaly for the supersymmetric 
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gauge theory. Before entering into the detailed investigation of the fixed 
point, we will show how supergravity can provide a description of the entire 
RG flow from the Af = 4 UV theory to the J\f = 1 infrared fixed point. 

4    Generalities on holographic RG flows: a e-theorem 

An important aspect of the AdS/CFT correspondence is the notion that the 
radial coordinate U of AdS can be regarded as a measure of energy. Thus 
a geometrical cutoff of AdS serves as an ultraviolet regulator. These ideas 
were implicit in [1, 2, 3] and have subsequently been developed more fully in 
[33, 34]. Phenomena that probe smaller values of U are to be thought of as 
probing the infrared structure of the theory. For instance, if one computes 
Green's functions by setting the values of supergravity fields at finite U, then 
making U smaller is believed to provide a natural coarse-graining of the UV 
details, thereby implementing a version of the Wilsonian renormalization 
group. 

In this context a supergravity "kink" in the [/-direction interpolating 
between U = oo and U = 0 can be thought of as an explicit construction 
of a renormalization group flow between a UV fixed point and an IR fixed 
point of the "boundary" field theory [20, 21]. Our purpose in this section 
is to exhibit the general ansatz for a kink and to demonstrate one simple 
property of kinks that translates via holography into a c-theorem for the 
boundary theory. 

4.1     The kink ansatz 

We start by considering arbitrary bulk dimension D. We are interested 
in boundary theories that are Poincare invariant in (D — 1) dimensions. 
The most general possible .D-dimensional bulk metric consistent with this 
symmetry can be written as 

d32 = e2A^VfjLudxlAdx'/-dr2.. (4.1) 

We will always use the mostly minus metric convention, which has the con- 
sequence that anti-de Sitter space has a positive cosmological constant. We 
could generalize 4.1 by replacing 77^ by an arbitrary Ricci-flat metric 7^, 
and none of the analysis in this section or the next would change. 1£A(r) = |, 
then 4.1 becomes anti-de Sitter space with Rap = ^r^gap- Other standard 
radial variables for anti-de Sitter space are U = er^/£ [1] and z = XQ = £e~r^ 



D. Z. FREEDMAN, S.S. GUBSER, K. PILCH, N.P. WARNER 377 

[2, 3]. The kink that we shall exhibit in section 5 interpolates between an 
r -» oo "ultraviolet" AdSs region, where A(r) is linear, and an r -> -oo 
"infrared" region, where A(r) is again linear, but with a larger positive slope. 
A sketch of the spacetime with the spatial boundary dimensions suppressed 
is shown in Figure 2. 

The geometry depicted in Figure 2 is not the only possibility allowed by 
the ansatz 4.1. For the purpose of studying the AdS/CFT correspondence we 
are interested in geometries which are asymptotic to anti-de Sitter space on 
one end: that is, A(r) ~ j as r -> oo. Other geometries are possible where 
curvature singularities appear at finite r [15, 16, 35]. It is also possible that 
the geometry will have no singularities that are causally connected to the 
boundary, but that A(r) never recovers linear behavior. The one general 
restriction, which we will prove in section 4.2, is A"[r) < 0. This rules out 
a second anti-de Sitter boundary: it is impossible to have ^'(r) approach 
a positive constant as r.—> oo and a negative constant as r —)* —oo. The 
monotonicity of Af(r) implies a c-theorem, as we shall see. 

4.2    A c-theorem 

The analysis of anomaly coefficients in [31] applies to anti-de Sitter spaces 
ACISD for any odd bulk dimension D. The anomalous value of (T^) appears 
in the supergravity analysis because the cutoff r = VQ does not respect 
diffeomorphism invariance. Different choices of radial variable (including 
those which mix the coordinates r and x^ in 4.1) correspond to different but 
conformally equivalent boundary metrics 7^. The general result of [31] is 

/m/M      universal ,. _ 
TO = ^^r ' (4-2) 

where the universal part is the same for all theories, and is a curvature in- 
variant involving D — 1 derivatives of the boundary metric. No such invariant 
exists in odd boundary dimensions. The denominator of 4.2 actually appears 
in the analysis of [31] as the inverse radius of the anti-de Sitter space, and 
no particular coordinate choice is implied. Expressing this inverse radius as 
A' is merely a convenience. 

The metric 
ds2  =  e^^i^dx^dx" )  - dr2 , (4.3) 

where 7^ is Ricci flat, has a Ricci tensor whose nonvanishing components 
are 

R^ = e2AW[A" + (D-1)(A')2} lilv ,        Rrr =  -(D-1)[A" + (A1)2} . 
(4.4) 
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We note that 

-(D - 2)M' = Rt
t-Rl = Gt

t-Gr
r = KI(T} - T?) , (4.5) 

r->- oo 

3 
< 
o 

c 

5 

AdSuv AdSIR 

uv 

iBiii 

kink 

Fig. 2: The supergravity kink interpolates between an asymptotically AdS space 
in the UV (r -* oo) and another in the IR (r -> — oo). The value of C(r) decreases 
monotonically as one moves toward the infrared, and in the asymptotic regions the 
value of C(r) approaches the central charge. 

where K,D is the D-dimensional gravitational constant and in the last equality 
we have used Einstein's equations, Gap = K2

DTap. Note that we are including 
any cosmological constant as a term in Ta^ proportional to gap. We would 
now like to argue that the last expression in 4.5 has to be nonnegative; 
Without resorting to a particular lagrangian, we can try to appeal to some 
appropriate positive energy condition. 

The stress tensor that supports the geometry 4.3 is diagonal: 

TJ* = diag{p, -pi, -p2, • • •, -PD-2, -PD-i} , (4.6) 

where PD-I — Pr- There are four different energy conditions in common use: 
for D > 2, they read [36]1 

1The form we quote for the strong energy condition is the natural one given its moti- 
vation in terms of the ricci tensor: Ra(3^a^ > 0 for timelike or null vectors £a. 
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Energy condition    General form Diagonal Tfi 

Strong: (T^ - ^g^T) ?? > 0    p + pi > 0, 

Dominant: Ta^
aT)0 > 0 P > \Pi\ (4.7) 

Weak: Taf3£
af >0 P + Pi>0,p>0 

Weaker: TapC*tf > 0 p + p* > 0, 

where ^a and 77a are arbitrary future-directed timelike or null vectors and 
£a is an arbitrary null vector. In the second column of 4.7 we have given 
the general definition of the energy condition, and in the third column we 
have indicated how it constrains a diagonal stress-energy tensor. What we 
have called the weaker energy condition is implied by all the others, and 
what we have called the weak energy condition is implied by the dominant 
energy condition. Otherwise there are no logical relations among the various 
conditions. With our convention that any cosmological constant should be 
included in the stress tensor as a term proportional to pa/3, none of the en- 
ergy conditions is satisfied by anti-de Sitter space, except the weaker energy 
condition. 

In our case, Poincare invariance dictates p+Pi = 0 for i — 1,2,..., D — 2. 
We would have p + pr = 0 as well if and only if the cosmological constant 
is the only contribution to the stress-tensor—and then we recover perfect 
anti-de Sitter space, so there is no RG flow at all. What we learn, then, is 
that given Poincare invariance, the desired monotonicity relation A" < 0 is 
exactly equivalent to the weaker energy condition.2 

Consider an example: suppose we had an action 

isa = ^rJdDx V\9\ [-R + \ g^MuPiPi - w] '     (4-8) 

where P^ represents derivatives of any set of scalar fields, MIJ is some 
positive definite metric on the scalar manifold, and V is any scalar potential. 
If we insist on Poincare invariance, then the scalars can only depend on r. 
Then we find 

Tt - T; = ±-MIJP;P! , (4.9) 

which is positive because Mu is positive definite. The scalar potential's 
contribution to T/ and TJT cancels. 

Our example is general enough to cover any flow in gauged supergravity 
involving only the scalar fields and the metric. (It seems difficult to preserve 

2In the initial version of this paper we mistakenly used the dominant energy condition 
in place of the weaker energy condition. We thank M. Porrati for private communications 
regarding the relevance of the weaker energy condition which cleared up this error. 



380 RENORMALIZATION GROUP FLOWS ... 

Poincare invariance on the boundary if one turns on any bulk matter fields 
with spin). But 4.5, together with the assumption of the weaker energy 
condition, constitutes an even more general proof that the quantity 

C(r) = ^ (4-10) 

is non-increasing along the flow toward the infrared. The parameter, CQ, is 
a constant. 

The result 4.2 shows that if the geometry is anti-de Sitter, then the 
anomaly coefficients of the corresponding conformal field theory are propor- 
tional to C. With appropriate definitions of those anomaly coefficients and 
of Co, we can say that C coincides with the anomaly coefficients for anti-de 
Sitter geometries. In the duality of J\f = 4 SU{N) super-Yang-Mills theory 
with M = 8 gauged supergravity, one can show that 

is the appropriate normalization to give C = a = c = ^- for the unperturbed 
maximally supersymmetric anti-de Sitter vacuum of the supergravity theory, 
and C — a = c — ^N2 for the one-quarter supersymmetric vacuum found 
in [8]. In 4.11, g is the gauge coupling in the five-dimensional supergravity, 
and it has units of energy. The important thing to realize is that once we 
have fixed CQ within a particular supergravity theory, the formula 4.10 gives a 
uniform prescription for computing the anomaly coefficients in any conformal 
theory dual to an anti-de Sitter vacuum of that supergravity theory. 

Now we want to consider a kink spacetime which is asymptotic to anti-de 
Sitter spaces for r —> ±oo. The analysis of [31] does not apply directly to 
such a spacetime. But its asymptotic limits as r -> ±oo are anti-de Sitter 
vacua, and we can think of obtaining the UV and IR anomaly coefficients 
for these vacua from 4.10. To apply the analysis of [31] directly we must 
"lift out" one asymptotically anti-de Sitter end from the kink and make it 
into an exactly anti-de Sitter spacetime. But the answer for C is exactly the 
same as if we had evaluated limr^±00C(r) in the original non-anti-de Sitter 
kink geometry. This is precisely analogous to the situation in field theory: 
properties pertaining narrowly to a given fixed point do not depend on a 
particular flow that leads into it or out of it; such properties can be studied 
just as well by considering the trivial flow which remains forever at the fixed 
point. 

It is difficult or impossible to give a scheme-independent definition of the 
central charge away from conformal fixed points.   Flows may exist which 
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pass arbitrarily close to one fixed point on their way to another. For these 
a "scaling region" exists where Af is much larger than higher derivatives of 
A. The function, C(r), in such a region is close to the anomaly coefficient of 
the nearby fixed point. 

In [37], the monotonicity of the c-function followed trivially from the 
fact that the RG flow was the gradient flow of the c-function. In general 
it seems difficult to prove any analog of that statement in four dimensions. 
However, for supersymmetric supergravity kinks, an analogous statement 
can be proven: as we will explain in section 5, A' can be expressed as a 
function of the scalar fields (without derivatives), and the trajectory of the 
scalars throughout the flow is specified by gradient flow of that function. 

Our proof of a holographic c-theorem also applies to flows such as the 
one envisaged in [17], where light string states from twisted sectors are in- 
volved. In addition, it would apply to flows involving any or all of the massive 
Kaluza-Klein states arising from any compactification of ten-dimensional su- 
pergravity down to five-dimensions. It even applies if the matter lagrangian 
includes higher derivative terms, provided the weaker energy condition con- 
tinues to hold. However, the proof does rely on Einstein's equations. It 
would be interesting to explore whether the argument can be extended to 
cover the alterations in the gravitational action that arise through a' cor- 
rections. We should also add that the inequality A" < 0 turned out to be 
exactly the weaker energy condition on the stress-tensor supporting the ge- 
ometry, so if consistent matter violating the weaker energy condition exists 
in the bulk in a regime where the classical gravity approximation is valid, it 
seems likely that one could use it to construct holographically a boundary 
theory which violates the c-theorem. 

In summary, we seem to have a dimension-independent proof of a c- 
theorem from the weaker energy condition. It applies to theories where a 
gravity dual can be found in which Einstein's equations hold, and in which 
the gravity approximation applies. Besides the obvious large iV, strong cou- 
pling restrictions, this also amounts in four dimensions to the restriction 
a — c = 0, at least to leading order in large iV. (The 1/iV corrections were 
explored in [38, 39].) The proof of the theorem, equation 4.5, is appropriately 
trivial for such a general truth. 

There have been other recent efforts toward a c-theorem in higher dimen- 
sions: [40, 41] take a field theoretic approach, [42] works with thermodynamic 
quantities,3 and [43] uses the AdS/CFT correspondence.  When this work 

3Monotonicity of the thermodynamic c-function considered in [42] follows from the 
inequality (T^) > 0, where () indicates a thermal average and T^ is the stress tensor in 
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was complete, we learned that an equivalent form of the c-function in 4.11 
was discussed in the later versions of [20].4 Its monotonicity was checked for 
the flows considered there. 

5    Supersymmetric flows 

To make the correspondence between the supergravity theory and the bound- 
ary theory on the brane more complete, one should be able to find the flow 
between the central critical point with maximal supersymmetry and the 
J\f — 2 supersymmetric critical points described in section 3.2. In particular 
one should be able to preserve M = 1 supersymmetry on the branes all along 
the flow, i.e., the kink should itself be supersymmetric. Thus we once again 
study the Killing spinor conditions, i.e. the vanishing of 3.10, but the metric 
now takes the form 4.1 and the scalars depend on r. The vanishing of Sxabc 
directly relates r derivatives of the scalars to the gradient of W. Specifically, 
to solve Sxabc — 0 we find that we must first set (/> = 0. There are then 
two classes of supersymmetry preserving kink solutions that are related by 
<Pi *-> ¥2- Here we will describe the family that contains the flow to 3.11. 
We will use the same 7-matrix conventions as [6]. 

For an unbroken supersymmetry along the flow of the form 

ea  =   (v$  + Sjy) eAW2ri , (5.1) 

where v^ and v® are given in 3.3 and rj is a constant spinor, the vanishing of 
SXabc requires: 

d-r - f IT • <5-2> dr 2 ocfj 

where W — Ail^o (see 3.4). In this section, except as indicated explicitly, 
the subscript j on (fj runs from 1 to 3. One can show that for such an ea to 
satisfy the symplectic-Majorana condition in five dimensions, 77 must be a 
Majorana spinor in the four dimensions of the brane. To verify this one uses: 
Qabyb _ _~a^ Qab-b _ ^ where ft is the USp(8) symplectic form. One also 
needs the fact that the four-dimensional charge conjugation matrix, (7, may 
be written as C = 7rC, where C is the five-dimensional charge conjugation 
matrix. As a result, we see that the kink preserves a single, four-dimensional 
Majorana supersymmetry, i.e. the flow preserves Af = 1 supersymmetry on 
the brane. Mathematica was again essential to deduce the simple result 5.2 
from the 48 conditions Sxabc = 0. 

what we would call the boundary theory. 
4We thank A. ZafFaroni for bringing this work to our attention, and also M. Porrati for 

subsequent discussions. 
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The vanishing of v^S'i})^ and vfSij)^ yields one more equation: 

A' =   - | W . (5.3) 

One can easily verify that a solution to the first order equations 5.2 and 5.3 
automatically satisfies both the gravitational and scalar equations of motion 
arising from 3.6, 3.9 and 3.5.It is worth noting that the equations 5.2, 5.3 
have a certain similarity to the attractor mechanism [66]. There is also some 
relation to the supergravity domain wall literature (see for example [67]). 

The other family of supersymmetric kinks is obtained by taking W = 
^21^=0? and replacing vi,vi by V21V2* The conclusions are otherwise identi- 
cal. 

As promised in section 4.2, we have produced a function of the scalars, 
W, which is related to the c-function by 

27   A/"2 

CM = 5 W • (M) 

and whose gradient flow trajectories determine the scalar profiles in the 
supergravity kink. Since the scalars are viewed in the AdS/CFT correspon- 
dence essentially as parameters in the lagrangian, we can assert that the su- 
persymmetric renormalization group flow is gradient flow. The monotonicity 
of A' is of course a trivial consequence: using 5.3 and 5.2 one obtains 

A„ _  _£sr \dW2 2 ^ |^2
<0 (55) A    -        6   2^\d(p       -       3  Z. \dr     ^

0' ^ 
J J 3 

The monotonicity of A' is related to the local potential energy of the su- 
perkink. Perhaps more fundamentally, recall that the value of the superpo- 
tential at either end of a kink may be thought of as determining the topo- 
logical sector [44].1 Thus the change in C(r) as r goes from large positive 
values (the ultraviolet) to large negative values (the infrared) is a measure 
of the topological charge of the superkink. 

Note there are infinitely many supersymmetry preserving solutions start- 
ing at the point of maximal supersymmetry, ^ = 0, (j) = 0.  Most of these 

1 Unlike standard kinks, where a field flows from one minimum of a potential to another, 
our kink flows from a local maximum of the gauged supergravity potential to a saddle 
point. As long as there are relevant perturbations in the gauge theory, there will always 
be directions in the potential where the second derivative is negative, but that does not 
spoil stability of the saddle point vacuum in supergravity provided the Breitenlohner- 
Freedman bound is satisfied. Instead of using finite total energy to restrict the asymptotic 
behavior of the kink, we can use the requirement that there be no naked singularities. 
With this criterion our kink is locally unique. 
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solutions go to W —> — oo, and it requires the correct initial conditions to 
reach the non-trivial supersymmetric critical point. We can set (j) = 0 and 
Lp2 — 0 throughout the flow: the first restriction is necessary to preserve 
supersymmetry, and the second is necessary to preserve the U{1) symmetry 
which is present at the infrared fixed point (as commented in section 2, a non- 
anomalous U{1) current exists for the entire field RG flow, and it should be 
reflected in a (7(1) symmetry of the supergravity solution). One can check 
that ^-1^2=0 vanishes, so (^2 = 0 is also consistent with supersymmetry. 
The superpotential now reduces to 

W = V cosh(2(/?i) (p6  - 2)  -(3p6 + 2) (5.6) 

The contour maps of V and W on the (a = 4^3, <£i) parameter space 
are shown in Figure 3. The map of V shows five extrema. Point 1 is the 
maximally supersymmetric point. It is a local maximum of both V and 
W. Points 2 and 3 are Z2 equivalent SU(3) invariant points. In the <pi 
direction these points sit at a quadratic minimum of V; in the ^3 direction 
they sit on a cubic inflection point. Points 4 and 5 are Z2 equivalent A/" = 2 
supersymmetric points. These points are generic quadratic saddle points of 
both V and W, and the contours surrounding them are locally hyperbolas. 
The superkink which we study follows a path from the central maximum of 
W down the "ridge" to the saddle point labelled 4. We have been unable 
to find an analytic solution to the steepest descent equations, but we will 
discuss a numerical solution as well as analytic treatments of the endpoints 
at the end of this section. 

-0.2     -0.1       0        0.1       0.2 

Fig. 3: The contour map of V (on the left) and W (on the right), with <pi on the 
vertical axis and a = -7x^3 on the horizontal axis. The five labelled points are the 
only extrema of V in this plane. V has vanishing first derivatives in all directions 
orthogonal to the plane. A numerical solution of the steepest descent equations is 
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shown superimposed on the contour plot of W. 

Consider the mass matrix, M^-, for the tpj at a critical point of W. 
Differentiating 3.5, setting 0 = 0 and using dW/d(pj = 0, one gets: 

d2V g2  A     d2W       d2W 2g2 rTr    d
2W 

d(pid(pj 4   ^ d(pid(pk d(pkd(pj 3 dpidtpj 

/QW\
2 (  3  \   d2W 

=    (V)   ^^  - 4%), where^ =   (_) (5.7) 

The mass scale is set by the inverse radius, l/£, of the AdS space, and 
this may be written \jl = \/—V/3 = — |W, where we have used 3.5. For 
</> = 0 the matrix Uij is real and symmetric, and so has real eigenvalues, 5^, 
k = 1,2,3. It follows that the eigenvalues of £2M2j are simply: 

mg  = Sk(Sk  - 4) . (5.8) 

Combining this with the results of [2, 3] we see that a particular eigenvalue 
5k of (^) dt.fap. is related to the conformal dimension A^ of the field theory 
operator dual to the variation of the fields <pj in the corresponding eigen- 
direction either by A*. = 5k or A*. = 4 — 5^.. 

Since U = eA^ is the renormalization scale on the flow, we should be able 
to read off the leading contributions to the /3-functions of the couplings cpj 
in the neighborhood of the end points of the flow. Note that -^ — A' U^j — 

A. 
dU' — |W U-jfj. Hence, 5.2 becomes 

^^77 ^  =   - o w ^T  ~ -UJk    .. . <fy>* , (5.9) dU ^ 2 W ^ crit.pt. 

where we have expanded to first order in the neighborhood of a critical point, 
and where Ujk is defined in 5.7.2 The eigenvalues, 5j, ofUjk thus determine 
the behavior of the scalars y)j near the critical points. First, to depart the 
UV fixed point (U — +oo) the flow must take place in directions in which the 
eigenvalues are positive {i.e. the corresponding operators must be relevant), 
and to approach the IR fixed point {U —> 0) the eigenvalues must be negative 

2 We regard U = e ^ as a natural measure of energy scale because of the conformal 
factor e2A(r) in the metric 4.1. Other definitions have been proposed [34]. For instance, U 
could be taken as the inverse of the coordinate time t it takes for a light ray to propagate 

to a given radius. This gives U = (j^0 dre~A^j     . The difference is immaterial in 5.9 

because we are operating close to the UV fixed point. 
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(i.e. the corresponding operators must be irrelevant). At the central critical 
point, the eigenvalues are 8^ = 1,2,3, corresponding to ^1,^3,^2- Since 
(P2 = 0 on this flow, only the eigenspaces of eigenvalue 1 and 2 are used. 
The supergravity fields (fi and (fs are dual to operators of dimension 3 and 
2, respectively: the fermion and scalar mass terms. 

Indeed, one can perform the analysis of the ridge-line flow in the neighbor- 
hood of (fi = 0 by considering the series expansion 

W = -f-y-¥>3 + t/^i¥>3 + -" - (5-10) 

where we have set (f2 = 0. We will operate in units where g = 2. Keeping 
only the quadratic terms in the expansion leads to tpi ~ ±e-r, (ps ~ zbe_2r, 
and with this behavior the cubic term is of the same order as the quadratic 
terms. We must keep this term even in a lowest-order analysis of the behavior 
of (^3. The correct analysis of the asymptotics is 

(5.11) [i + 2] ^3=^/1^1 ^3 ~ i/| a2
0re-2r + a^ 

i 2r   >     as r —> 00 . 

It is straightforward to verify that higher order terms in 5.10 do not 
change this story: roughly speaking, two powers of cpi are worth one power 
of y?3 in the expansion of W. The integration constant ag is, up to factors 
of order unity, the fermion mass resulting from the term ^mTr$3 in the 
superpotential (see 2.1). Supersymmetry fixes the value of the coefficient 
of re~2r in the asymptotics of ^3. This coefficient, again up to factors of 
order unity, is the square of the boson mass resulting from the mass term 
in the superpotential. The integration constant ai is not determined by 
supersymmetry, and reflects the possibility of different states in the theory, 
only one of which is the vacuum which preserves conformal invariance. We 
do not yet have a way of determining ai analytically, but we will shortly 
discuss its numerical evaluation. 

The flow near the IR critical point 3.11 is a little simpler. The eigenval- 
ues, Sk, oiUij are 1 + \/7, 1 — \/7, 3. The only negative one is 1 — \/7, and so 
the corresponding eigenvector determines the direction from which the flow 
approaches the fixed point. The asymptotics (again in units where g — 2) is 
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VH log 3-6o^ 1 ^^^ (512) 

25/3    ^ 
A = —(v^-1) 

The irrelevant operator in the field theory that controls this flow has dimen- 
sion 3 + \/7. Because of the possibility of shifting r additively, the coefficients 
ao, ai, and 60 are not all independently meaningful. The two combinations 

that are invariant are 60&0 an<^ ^ + \ § l0gao- Additive shifts of r amount 
to rigid dilations of the boundary, and the flow is invariant under these if we 
make a corresponding shift of the parameter m in the superpotential. 

A numerical solution interpolating between 5.11 and 5.12 is easier to find 
if one starts from the infrared end. Then the differential equations are stable 
in that a small perturbation in the initial conditions damps out over time. 
The opposite is true of the flow from the ultraviolet end to the infrared end, 
which is appropriate since relevant deformations become more important in 
the infrared. Our results for the invariant combinations of coefficients are 

Mo « 0.1493 ^ + \\ logao « -1.4694 . (5.13) 
a0       V 3 

Minus the logarithm of the first number can be thought of roughly as the 
width of the kink. The second number represents the choice of vacuum state 
that leads to infrared physics with non-vanishing central charge. 

6    Supergravity fields and the operator map 

The symmetries of the supersymmetric critical point [8] in AdS§ include 
J\f = 2 supersymmetry and the gauge symmetry SU(2)jJ so the supergravity 
fields should be classified in representations of the corresponding superalge- 
bra £17(2,211) x S,?7(2)/. The AdS/CFT correspondence requires a one to 
one map between these fields and gauge invariant composite operators of the 
boundary theory, in this case the mass deformed Af = 4 super-Yang-Mills 
theory discussed in section 2. In J\f = 1 superspace this theory contains a 
chiral spinor superfield Wa describing the gauge multiplet, and three chiral 
scalar superfields $^, i — 1,2,3, describing supermatter. The component 
expansions are 

Wa  =  K + e? -(aflal/)paFfIU + ieapD - Pio^D^, 
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*< = zi + e^ai + e^i. (6.1) 

In this section we will discuss the spectrum of fields in bulk supergravity 
theory and propose a map to operators of the boundary theory. Some as- 
pects of the corresponding unitary representations of 577(2,2|1) [45, 46] are 
summarized in Appendix B with a brief discussion at the end of this section. 

The main technical task is to study the action of the gauged supergravity 
theory of [6, 7] expanded to quadratic order about the M — 2 critical point 
and to compute the mass eigenvalues of all fields. This is an unfortunately 
complex matter. The general approach is discussed in Appendix A. We 
will give the decompositions of supergravity fields - which transform under 
USp(8) x 517(4) in the full theory - with respect to the unbroken gauge 
subgroup SU(2)j x 17(1)R at the critical point. This will help readers un- 
derstand the group-theoretic structure of the results. The detailed masses, 
however, depend crucially upon accurate calculation of the scalar 27-bein 
VabAB ^ the critical point and of the USp(8) tensors Wab and A^cd, which 
are given by a quadratic and a quartic expression, respectively, in terms of 
that 27-bein. Moreover, the computation of the masses of scalar fields re- 
quires quadratic expansions of those tensors about the critical point, and a 
similarly complicated determination of the kinetic term. 

6.1    The fermion masses 

The relevant part of the supergravity action reads [6]:1 

+ \ JligA^x^l^t + \i9Xahc{\Abcde - ^bdWce)x^ de 
a 

(6.2) 

where the spin-3/2 field ^ and the spin-1/2 field xabc transform as 8 and 
48 of USp(8), respectively, and satisfy the symplectic Majorana conditions. 

There is a super-Higgs effect in this sector. The simplest way to treat 
it is to observe that the spin-1/2 supersymmetry transformation rule in [6] 
reduces to, cf. 3.10, 

SXabc = -\JyAdabce
d, (6.3) 

and this describes a rank 6 linear transformation from the 8-dimensional 
space of the ea into the 48-dimensional space of the Xabc Thus one can fix 

^n this section, to conform with the notation in [6] we use indices fi^u for space-time 
indices in five dimensions. 
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the gauge by using 6 spinor parameters of the broken supersymmetries to 
eliminate the 6 fields in the range of the transformation. Those are precisely 
the same 6 fields as in the mass-mixing term in the Lagrangian 6.2 which 
can thus be dropped in this gauge. The action on the space of remaining 
fields has no mixing between the spin-3/2 and spin-1/2 fields and it is clear 
that the remaining spin-3/2 part of the Lagrangian is not modified in the 
process. 

The final diagonalization of the spin-3/2 action can be described quite 
explicitly. Since the kinetic term is already in the canonical form, all that 
remains is to diagonalize the symmetric matrix Wab, which at the critical 
point is given in (A.42). It has two 2-dimensional eigenspaces and one 4- 
dimensional eigenspace as follows 

Ai=-22/3, t;i =(1,0,0,0,0,1,0,0), ^=(0,1,0,0,-1,0,0,0), 

A2=-|22/3, ^=(0,0,0,1,0,0,1,0), v2=(0,0,1,0,0,0,0,-1), 

A3=-|22/3, v3=(0,0,1,0,0,0,0,1), i;3=(0,0,0,1,0,0,-1,0), 

A4=-|22/3, i;4=(0,1,0,0,1,0,0,0), v4=(l, 0,0,0,0, -1,0,0). 

Define projections -0* • = t/^ia, ^i — i^n^ia of ^ onto the eigenspace 
(vi,Vi). In terms of those modes we get a standard kinetic term, with the 
symplectic matrix LO acting by u;vi = vi, LOVI = — vi, and a standard sym- 
plectic mass term [47]. The quadratic action in each eigenspace reads 

e-%/2 = \»afrtterpDvlh + i^^r^i, (6.4) 

where 
m*      3   x 1 l  w      22/3 /« ^ 

As expected the sector with mi = (3/2)p£Ai is the gravitino of the M = 2 
theory and the remaining states are massive spin-3/2 fields with masses 
mi, i = 2,3,4, given in 6.5. This is consistent with the decomposition 
USp(8) -»• SU(2)j x U(1)R, 

8   ■ ->     (21/2©2_1/2)e(l1©l_i)e2xlo. (6.6) 

of which the first two singlets, li©l_i, correspond to the gravitino in A/- = 2 
theory. 
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The diagonalization of the action for the remaining 42 spin-1/2 fields is 
more involved and we have carried it out in Mathematica using formulae 
from Appendix A. As with spin-3/2, the symplectic Majorana condition 
requires that the masses occur in pairs ±ra. We have checked that the mass 
eigenstates transform correctly under SU(2)i x ?7(1)# as predicted by the 
following branching rule 

48     -»     (3i © 3_i) © 2 x 3o © 2 x (23/2 © 2.3/2) 
© 4 x (21/2 © 2_1/2) © (I2 © I-2) 

©3x (li©l_i)©4x IQ. (6.7) 

The six Goldstino modes that are absorbed into massive spin-3/2 fields are 
identified using 6.6 as (2^2 © ^-1/2) © 2 x IQ. 

6.2    The boson masses 

The computation of the masses of the vector fields, Ajf \ and the antisym- 
metric tensor fields, Bf£, is quite straightforward and similar to the one 
above for the fermions. One must consider two terms in the action 

e-'LAB = -IH^H^ + ^-e^eapSjjB^DpBr/l3 ,        (6.8) 

H°b = F^jV1^ + £   'QV/aa6, (6.9) 
where 

and F^vu are the field strengths for the vector fields. Note that the first 
term in 6.8 gives rise to the kinetic term for the vectors, but the mass term 
for the antisymmetric tensors,1 and is the only source of cross-terms. At the 
quadratic level the Chern-Simons like kinetic term for the antisymmetric 
tensors is invariant under a shift 

B^    -»■    B^ + X^JKFVJK, (6.10) 

in which XIOL
JK is chosen to remove the cross terms. In this process the 

kinetic term and thus the mass eigenvalues of the vector fields are modified. 

The decomposition of the vector fields with respect to SU{4) D SU{2)I x 

17(1)* is 

15     ->     3o ©lo© (23/2© 2.3/2) ffi(21/2©2_1/2)©(li©l-i)©lo. (6.11) 

^his observation may be rather puzzling at the first sight - it is, however, quite 
natural since the antisymmetric tensors correspond to field strengths of vector fields in the 
ungauged theory [5, 6, 7]. 
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One expects that all but the first two modes, corresponding to unbroken 
gauge symmetries, become massive. As we have discussed above, the actual 
values of the masses are effected by the mixing with the antisymmetric tensor 
fields. However, the usual Higgs effect, in which 11 massless Goldstone 
bosons are eaten by the massive vector fields, does not directly affect the 
calculation. Therefore the masses can be determined from 6.8 once the 
proper shift 6.10 has been made. 

Since the antisymmetric tensor fields have a first order action, their 
masses come in ±ra pairs corresponding to the terms in the SU(2)i x ^(l)^ 
decomposition 

12   ->   2 x (21/2 e 2_1/2) e 2 x (ii e i_i). (6.12) 

As for the vectors, the main difficulty here is to compute the metric (VV)/a jp 
that encodes the dependence of the masses on the expectation values of the 
scalar fields. 

The calculation of masses of the scalar fields presents additional difficulty 
if one wants to consider the full set of 42 fields, rather than the restricted 
subset corresponding to the gauge fixed subspace of the scalar manifold S 
discussed in section 3. In the general case one must calculate carefully both 
the a-model kinetic action at the critical point and expand the potential to 
the quadratic order in all directions. The calculation can be simplified by 
restricting to different sectors of 517(2)/ x £/(!)#, one at a time, which in 
this case are given by the branching 

42        -»        3oe2x (3ie3_i)e(23/2e2_3/2) 

e 3 x (21/2 e 2_1/2) © 2 x (i2 e i_2) © (ix © i.x) 

©5xlo. (6.13) 

By carrying out a careful diagonalization we find a perfect agreement of the 
mass spectrum with this decomposition. In particular, the result displays 
13 massless states of which the two real 577(2)/ singlets are the dilaton and 
the axion and the remaining 11 are the Goldstone bosons from the breaking 
S77(4) —> SU(2)i x U(1)R. Their quantum numbers are in agreement with 
those of massive vectors in 6.11. 

6.3    The £77(2,2(1) spectrum and the operator map 

The ultimate test of our result for the mass spectrum is to verify that it can 
be assembled into irreducible unitary representations of the superalgebra 
5*7(2,2|1) x S77(2)/. 
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The relevant representations of SU(2,2\1) are parametrized by the en- 
ergy EQ = A, of the lowest weight state, equal to the scaling dimension of the 
corresponding boundary operator, the two spins ji and J2 and the i?-charge, 
r. These quantum numbers designate a representation of the bosonic sub- 
algebra 17(1) x 517(2) x SU(2) x U(l) where the first and last U(l) factors 
are the energy and i?-symmetry, respectively. The relation between A and 
the mass for various fields may, for example, be found in [48] for d = 4. In 
general, for AdS^+i, the relations are 

(i) scalars [3]:    A± = ±(d ± Vd2 + 4m2), 
(ii) spinors [49]:    A = |(d + 2|m|), 
(iii) vectors:    A± = i(d ± y/(d - 2)2 + 4m2), 
(iv) p-forms [50]:    A = I(rf ± ^/(d - 2p)2 + 4m2), 
(v) first-order (d/2)-forms (d even):1    A = i(d + 2|m|), 
(vi) spin-3/2 [53, 54]:    A = |(d +2|m|),- 
(vii) massless spin-2 [3]:    A = d. 

We have converted results for mass eigenvalues of all fluctuations into 
scale dimensions by the formulas. Results are tabulated in Tables 6.1 and 
6.2 in which each horizontal band corresponds to a representation of the 
product of 517(2,2|1) with the 377(2)/ flavor symmetry. The detailed struc- 
ture of these SU(2, 2|1) representations is given in Appendix B, and the entry 
in the tables denotes the lowest weight energy and the S77(2)/ x 17(1)^ quan- 
tum numbers at each level. In all but one case we take A = A+, the largest 
root given above. The unique exception is the complex scalar triplet with 
A = A_ = 3/2. This assignment is required by the well known relation 
A = 3r/2 for J\f = 1 chiral primary operators and, of course, by the struc- 
ture of the 5C7(2,2|1) representation. The choice A = A_ was made, also 
for group theoretic reasons, in another recent study [18] of the AdS/CFT 
correspondence. It is also known that the chiral multiplet in AdS^ supersym- 
metry requires quantization with both "regular" and "irregular" boundary 
conditions [55] when scalar masses are in the range — d2/4 < m2 < 1 — <i2/4. 
See [56] for a discussion valid in AdSd+i- 

There is presently no coherent prescription to calculate correlation func- 
tions of scalar operators of dimension A < 2 from the AdS/CFT correspon- 
dence, and the two-point function appears to be particularly difficult. The 
following procedure seems a provisionally satisfactory application of the pre- 
scription of [2, 3]. Consider the three-point correlator (1^0*0), where O is 
the operator of "irregular" dimension and J^ is a conserved current of the 
boundary theory. In the present example J^ could be one of the global SU(2) 

1See [51] for d = 4.   Entry (v) is for forms with first order actions [52], while entries 
(iii) and (iv) are for forms with Maxwell type actions, possibly augmented by mass terms. 
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currents or the R-symmetry current, both of which correspond to fields in 
five-dimensional gauged supergravity. Note that we do not specifically rely 
on supersymmetry here, but only on the existence of some conserved current 
under which O is charged. The three-point function above was studied in 
[57]. The required integral over AdS^ converges for A > 1, exactly the range 
needed! The two-point function (0*0) can be then obtained from the Ward 
identity for JM, and it has the correct power law, namely l/\x — y|2A.2 

The short representations and corresponding superfields3 are listed in 
Table 6.1. They are either chiral, and thus satisfy A = 3r/2 for the lowest 
component, or they have protected dimensions because the multiplet con- 
tains one or more conserved component operators: for example, the SU(2) 
flavor current in Tr$TA$, and the U(1)R current, supercurrent, and stress 
tensor in the supercurrent superfield Jad- Since the massive field $3 is effec- 
tively integrated out in the flow, the IR theory contains the massless chiral 
superfields $$,1 = 1,2 with A = 3/4 and r = 1/2 and the gauge superfields 
Wa with A = 3/2 and r = 1. We see that the short multiplets found from 
AdSs supergravity contain all bilinears formed from these fields, all with 
correct quantum numbers. This is a striking confirmation of the validity of 
the correspondence in a new and more complex theory. 

The first long multiplet in Table 6.2 is a massive vector representation of 
SU(2,2|1) with irrational and clearly unprotected A. We use the designation 
K(x, 9,6) to indicate that it corresponds to a general scalar superfield in the 

2We thank E. Witten and L. Rastelli for useful discussion on this point. 
3The relation between SU(2, 2|1) representations and boundary superfields in the con- 

text of the AdS/CFT correspondence has recently been discussed in [58, 59]. 
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boundary theory. 

A 0 X ^ Bpv    ipft "'/ii' 

P(!,0,0;1) 
Tr ^i^j 
complex 

3 
2 
2 
5 
2 

3i 

3-i 
3o 

^(2,0,05 0) 
Tr$TA$ 
real 

2 
5 
2 
3 

3o 
3i e 3_i 

3o 

2>(f,i,0;|) 

complex 

9 

fi 
143 
4 

2l/2 

23/2 

2-l/2 

2l/2 

X>(3,0,0;2) 
TrWaWa 

3 
7 
2 

12 
li 

complex 4 lo 

V(3,ll,0) 

real 

3 
7 
2 
4 

lo 
lie i-i 

lo 

Table 6.1: The five short 577(2,2|1) representations in the mass spectrum of super- 
gravity fields at the Af — 2 critical point and the corresponding J\f = 1 superfields 
in the boundary gauge theory. For each complex representation above there is an 
additional representation with the same dimension, spin and SU(2)i content, but 
opposite ^7(1)^ charge. 

We would like to identify the scalar superfield K(x, 9,9) with an operator 
in the gauge theory. We speculate that it is the Kahler potential. This is a 
sensible guess because the Kahler potential evolves in the RG flow, and the 
scalar field that measures the approach of our trajectory to the M = 1 point 
sits in the supergravity multiplet dual to K(x^919). This scalar field has a 
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dimension 3 + \/7 in the infrared. 

4> x B fif 

395 

A 

D(A,0,0;0) 

K 
real 

l + yfi lo 
l + ^/l 
2+V7 Is 

S + vY lo 

^W ' 2'u' 2''       4 

complex 

4 
13 
4 

sl/2 

-1/2 
sl/2 tb ^-3/2 2_, 

23/2 2_1/2 

-1/2 

sl/2 

P(3,0,i;i; 

complex 

3 
7 
2 
4 
9 
2 

lo 

1-2 

1-1 

Table 6.2: The remaining SU{2,2\1) representations in the supergravity mass 
spectrum. The representations labelled complex are again doubled as described in 
the caption for Table 6.1. 

The lowest weight states of the remaining long multiplets have spin 1/2 
and maximum spin 3/2. We assign them to boundary operators which are 
non-chiral spinor superfields Aai(x,0,6) and Ea(#,0,6>). The natural candi- 
dates for these operators are the 3 supercurrents of the J\f = 4 theory which 
are explicitly broken by the mass term in (2.1). In the absence of the mass 
term the 3 extended supercurrents are components of the fif — 1 517(3) 
triplet superfield4 

Si(x,M) = THWa** + ^Jik$jDa$k), (6.14) 

where Da is the gauge and supercovariant derivative. We suggest that Aaj 
and Sa are the i — 1, 2 and i — 3 components of this superfield, respectively, 
and we note that the R-charges agree with this assignment. The scale di- 
mensions A generally disagree with the naive sum of those of the elementary 
fields as is expected for non-chiral operators. 

4We thank M. Grisaru for this information. 
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The two massive spin-3/2 representations have strikingly different com- 
ponent structure, for example Aa; contains a scalar component, but Sa does 
not. We have confirmed in Appendix B that these representations are char- 
acterized by null or shortening conditions which eliminate states, specifically 
the condition 2EQ = 4(J2 + l) + 3r with fa = 0 for Sa and 2Eo = 4(J2 + l)+3r 
with J2 = \ for Kai. Thus they have a protected structure in the same sense 
in which a chiral superfield with 2EQ = 3r is protected. The structure of 
these representations suggests they should not be called long representations, 
but perhaps semi-long. The detailed correspondence between the supergrav- 
ity fields which are components of these representations and the components 
of the superfields S^ is left here as a curious open question. 

Although the detailed analysis of the representations of Table 6.2 is 
given in Appendix B, it is worth remarking here that their structures can 
be described in terms of the Higgs effect in which a massless multiplet of 
SU(2,2|1), which contains a component gauge field, eats a lower spin mul- 
tiplet. The massless representations are listed in Table 5 of [6]. The states 
of the massive vector multiplet we have called K in Table 6.2 are exactly 
those of a massless vector multiplet plus a hypermultiplet5 in which one of 
the 4 real scalars is eaten. A massive spin-3/2 field has the choice of eating 
a spin-1/2 field from a vector or antisymmetric tensor multiplet. The states 
of the Sa representation are those of a massless gravitino multiplet plus a 
tensor multiplet with one spin-1/2 field and one scalar eaten to make its 
massive higher spin components. On the other hand the states of the Aai 
representation are those of a gravitino plus vector plus LH spinor multiplet 
with a spinor and two scalars eaten. We have already seen that no Higgs 
mechanism is required to make an antisymmetric tensor massive. 

7    J\f = 4 supergravity 

Thus far, our explicit analysis of the 517(2)/ invariant subsector of gauged 
J\f = 8 supergravity has focussed largely upon the scalar manifold. We now 
return to the consideration of the J\f = 4 supergravity theory associated with 
the SU(2)i invariant subsector of the complete M = 8 theory. 

The J\f = 4 supergravity in five dimensions was first considered in [60], 
but was only really explicitly described in [61]. The latter reference also 
considers the coupling to an arbitrary number, ra, of vector multiplets, and 
goes on to discuss the gauged theory with an 517(2) gauge group. Various 

5A hypermultiplet is the direct sum of a LH and RH spinor multiplet in the notation 
of [6]. 
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gaugings of pure M — 4 supergravity {i.e.  not coupled to vector or tensor 
multiplets) were also considered in [62]. 

The field content of the M = 4 graviton multiplet is one gravitino, four 
gravitinos, six vectors, four spin-^ fields and a single, real scalar. The content 
of the JV = 4 vector multiplet is: one vector, four spin-| fields and five 
real scalars. The scalar manifold of the supergravity coupled to m vector 
multiplets is: 

gQ(5»™)        x 50(1 1) 

where the factor of 50(1,1) represents the scalar of the graviton multiplet. 

If one truncates the ungauged M — 8 theory to the singlets of 577(2)/ one 
gets precisely J\f = 4 supergravity coupled to two J\f = 4 vector multiplets. 
However the truncation of the 50(6) gauged supergravity yields something a 
little different from that of [61] because the residual gauge group is SU(2)G X 

U(1)G and not just 5(7(2). The gauging of the extra 17(1) appears to require 
the dualization of some of the vector fields into tensor gauge fields just as in 
[6]. One can easily determine the field content and compute the structure of 
the field theory by truncation the results of [6] to the 5(7(2)/ singlet sector. 
Indeed, the four vectors 3.3 can be used to project the USp(8) structure 
appropriately. To be explicit: 

(i) The gravitinos of the J\f = 8 theory transform 4 © 4 of 5(7(4). 
Under 5(7(2)/ x SU(2)G x U(1)G, one has 4 = (2, l)-(+|) 0(1,2)(-|). 
Thus there are four gravitinos that are singlets under this 5(7(2)/, 
transforming as 2(-±)e2(+|) of SU(2)G x U(1)G. They are explicitly 
given by the inner products of 3.3 and the Af = 8 gravitinos. The 
supersymmetries decompose similarly. 

(ii) The vector fields are in the 15 of 5(7(4) and the 5(7(2)/ singlets 
are simply the adjoints of SU(2)G x U(1)G. 

(iii) The tensor gauge fields are in an 51/(2, R) doublet of 6*8 of 5(7(4): 
and each member of the 5L(2, R) doublet gives rise to two tensor gauge 
fields that are singlets of SU(2)G but have charges of ±1 under U(l)G. 

(iv) The spin-1 fields are in the following representations of SU(2)G x 
U(1)G: 2(-|) © 2(+|) © 2 x 2(-i) © 2 x 2(+i) 

(v) The eleven scalars were described above. 

Putting this together, the theory consists of an M = 4 graviton supermul- 
tiplet and two Af = 4 tensor gauge super multiplets. The former has: one 
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graviton, four gravitinos, four vector fields, two tensor gauge fields, four 
spin-\ fields, and one real scalar. The tensor gauge multiplet has the same 
spin-\ and scalar content as an M = 4 vector multiplet. 

The truncation process can be viewed in two ways. Mathematically one 
is identifying a subset of fields whose Lagrangian and equations of motion in- 
volve only those fields, and such that any solution of the truncated equations 
of motion can be lifted to a solution of the untruncated equations of motion. 
Perhaps the simplest way of finding such a truncation is by restricting to the 
fields that are singlets under some particular symmetry (here it is 5C/(2)j), 
and then Schur's lemma guarantees consistency with the equations of motion 
of the untruncated theory. Physically the truncated theory can be taken as 
a new field theory in its own right, and it is consistent and well-defined at 
least at the classical level. Or one can regard it as part of the original (or 
perhaps another) larger field theory. 

Naively, one might hope that the J\f = 4 truncation of gauged J\f = 8 
supergravity corresponds to a truncation of Af = 4 Yang-Mills to its SU(2)j 
singlet sector. However, the SU(2)j invariant subsector of J\f = 4 Yang-Mills 
is simply a pure M — 2 Yang-Mills theory, which is not a superconformal 
field theory, and so cannot, by itself be holographically dual to the M = 4 
supergravity theory. The error in this naive hope is that fundamental fields 
of supergravity are not dual to fundamental fields of Yang-Mills, and so one 
must proceed more carefully. In other words, the truncation to the SU(2)i 
invariant sector must be applied to the gauge invariant composite operators 
rather than to the fundamental colored fields themselves. 

There are however many ways to build a superconformal field theory 
around the same set of SU(2)i invariant composite operators dual to the 
truncated Af = 4 supergravity theory. The focus of this paper has been on 
adding adjoint hypermultiplets to make the Af = 4 theory; however there 
are also the J\f — 2 superconformal gauge theories whose gauge groups and 
matter multiplets are encoded in an ADE quiver diagram [25]. Using the 
D-brane formulation of H — 4 Yang-Mills theory one can make an orbifold 
construction [63, 26] using a finite subgroup F of SU(2)j. These finite sub- 
groups also have an ADE classification, and indeed the ADE orbifold leads 
to the corresponding ADE J\f = 2 "quiver theory." The common subsector 
of all these conformal field theories is the F invariant gauge-singlet opera- 
tors, corresponding holographically to untwisted closed string states. This 
is in a sense the Af = 2 Yang-Mills "core" of the theory. It is thus tempt- 
ing to identify this universal subsector of the conformal field theories as the 
holographic dual of Af = 4 supergravity coupled to two tensor multiplets. 
Inclusion of the twisted sectors may involve further coupling to additional 
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J\f = 4 supermultiplets. The truncated Af = 4 supergravity is dual to the 
stress tensor of the full superconformal field theory plus its superpartners 
under Af = 2 superconformal invariance. 

To see more explicitly how this should work, observe that the 11 scalars 
of J\f = 4 supergravity coupled to two tensor multiplets provides precisely 
the proper moduli of the J\f = 2 Yang-Mills vector multiplet: that is, the 
gauge coupling, the #-angle, a real, symmetric 2x2 mass matrix for the two 
real scalars and a complex, symmetric 2x2 mass matrix for the two complex 
fermions. The 517(2) x 17(1) i?-symmetry can then be used to reduce the 
nine mass parameters to five, and these can be represented by diagonal mass 
matrices with real traces. The U(l) axial symmetry can be used to reduce 
this by one further parameter, leaving four independent mass perturbations, 
which correspond to the four independent scalars described in [8]. 

If fsf = 4 supergravity coupled to two J\f = 4 tensor multiplets does 
indeed provide the common core of all the quiver models, then the scalar 
manifold S considered in [8] is not only part of the phase diagram of A/* = 4 
Yang-Mills, but is that part of the phase diagram that is common to J\f = 4 
Yang-Mills and to all the Af = 2 quiver theories. The critical points and 
flows described here would thus also be common to all these theories. 
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APPENDIX A. 377(2) invariant scalar manifolds in Af = 8 
supergravity 

In this appendix we review the construction of the 517(2) invariant sectors 
of the scalar manifold of Af = 8 d = 5 gauged supergravity which played a 
central role in [8]. In particular, we derive an explicit parametrization of the 
manifold S in section 3 and collect some explicit formulae which are used in 
the computation of the mass spectra in section 6. 

The scalar fields in Af — 8 supergravity are described by a non-linear 
a-model on the non-compact coset space EQ^/USP(8) [60]. In the gauged 
theory [5, 6, 7] the global symmetry group E^ is broken to an 50(6) 
subgroup, which then becomes the local gauge symmetry group of the theory 
The authors of [8] considered those scalar field configurations which are 
invariant under an SU{2) subgroup of 50(6) that we call 517(2)/. Let C 
be the commutant of SU(2)j in E^ and K C C the maximal compact 
subgroup of C. Then the reduced scalar manifold S corresponding to a 
given 317(2)! is 

S~C/KcE6(6)/USp(8). (A.l) 

The commutant of SU(2)j in 50(6) is the group of residual gauge transfor- 
mations on 5, which will be denoted by G. 

The scalar potential, V, restricted to the fields in 5, is invariant under 
the residual gauge symmetry, G, and, in addition, under 51/(2, R) of the ten- 
dimensional theory. Because of this invariance the potential restricted to S 
actually depends on a reduced number of independent parameters, denoted 
by dim V which is less than dim 5. 

There are four inequivalent embeddings of SU(2)i <-> 50(6) correspond- 
ing to the following branchings of the fundamental and the vector represen- 
tations of 50(6): 

517(2)/    C KG dim S   dimF 

(i) 50(5,2) x 0(1,1) 50(5)x50(2) 5f/(2) x U{1) 11 4 
(ii) 5L(3,]R)x5L(3,IR) 50(3) x 50(3) 517(2) 10 4 
(iii) G2(2) ^0(3) x 50(3) £7(1) x 17(1) 8 4 
(iv) 0(1,1) x5L(2,]R) - - 4 1 

Table A.l: Scalar manifolds, 5, for inequivalent embeddings 5C7(2)/ ^ 50(6). 

Our starting point is a real 27-dimensional realizations of i^g) in the 
5JL(6,1R) x 5L(2,1R) basis1 (£jj,£/a), zu = -ZJJ, as described in [60] and, 

^e use the notation I,J,... = 1,...,6 and a,ft... = 1,2 for the 51/(6,IR) and 
5L(2, H) indices, respectively. 



D. Z. FREEDMAN, S.S. GUBSER, K. PILCH, N.P. WARNER 401 

in particular, in Appendix A of [6], which the reader should consult for 
conventions and further details. An infinitesimal E6(6) action on (ZJJ, zIa) 
is given by 

SZJJ     =     -AKIZKJ-^KJZIK + ^IJKI3ZK\ 
8zIa   =   AtjiZ*" + AV//3 + VKLIaZKL (A.2) 

where A1 j, Aap and XuKa = \eijKLMN^a^LMNp correspond to 5L(6, K), 
5L(2,1R) and the coset elements, respectively. The antisymmetric matrices 
K1 j = — A-7/ generate the gauge group 50(6). 

Define 4 x 4 't Hooft matrices 

m (±)   _ 

V 
±1 

=Fl 

(±)        1 

V-i 

/ 

4^ = 
V 

±i 

±i 
Tl 

A 

/ 

Tl      \ 
1 

/ 
(A.3) 

satisfying 

and 

fo^,^]  =  0,        [V^,^]  = erstriF 

2e^kn 
(±)kl ±#)«. 

The SU(2)i in case (i) is generated by the 50(6) matrices 

4~)    0   0 

(A.4) 

(A.5) 

(A.6) 

The residual gauge group is SU(2)G x U(1)G, where SU(2)G is generated by 

the rjl^ in the same 4x4 block as above, so that SU{2)i x SU(2)G is the 
obvious 50(4) subgroup of 50(6), while U(1)G are the 50(2) rotations in 
the 56-block. 

Now, let us introduce a new basis in which the 50(5,2) transformations 
acquire a canonical form. A helpful observation here is the branching of the 
27 of E6{6) under SU(2)i x 50(5,2) x 0(1,1), 

27     -»•     (l,l)(-4)©(3,l)(2)©(l,7)(2)e(2,8)(-l), (A.7) 
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The corresponding new basis is explicitly given by 

W(l,l 

«(3,i: 

"(1,7 

u(i,r 

u(i,r 

w(2,8; 

u14 
(2,8 

W(27,8 

«(2,8: 

U(l,8; 

U\ti 

zse; (A.8) 

1  < >     .2      _   1 r,   _,.   x   ..3 1 
=      -7=(*12 - ^34) , «(3,i) = -^(«13 + ^24) , W(3,l) = -^(^14 - Z23) !   (A.9) ^V-l.       ^; ,   "(3,1) -  ^V-H   ■   ^4, ,   "(3,1) -  ^ 

=      --/I(^12 + ^34) ,  «fi>7) = -/|(213 - 224) ,  "(1,7) = --y= (214 + 223) , 

=    i(*51 - ,62), 4i7) = i(,52 + ,61), ««li7) = i(^ -1-,«),        (A.10) 

1 1 1 
=      -75(215 - ^25) ,' W(|,8) = -^(^16 - iZ26) ,  W(|,8) = ^(^35 + ^45) , /^V^ID       ""ZQ;,   "'(2,8)—    /ov   10       ^^Z'   "(2,8)—      /K 

1 1 1 
-^(^36 + 1*46) ,   ^(2%) =  g (221 + ^11) '  ^(2,8) =  3 (*36 + ^46) ,   fi[2

6
|8) = ^(Z21 + fa11) ,  t$j8) = -(*22 + iz12) ,   (A.ll) 

^-fe81),!!^^^-^); 
2V ^    ^'^      2' 

(2:35 - ^45) ,  ^2,8) = ~~7f (Z36 ~ ^46) '  W(2,8) = "75 (*15 + ^25) ' 
■^   ' ' ,22       _ 1   („ A„    ^     ,,,23 1 

i(2,8) - _ 

1    , .    .       , on 1 
(*16 + **26) ,  ^.S) = " o (^ + W31) , (A.12) 

■|(^+fe32)tl?f8) = 5(^1-fo11),  ^B)^^22       ^ 

We will denote the elements of this basis by vP1, O = 1,..., 27 and define 
the transition matrix O, 

zu^OuntP,        zIa  = 0Ianun, (A.13) 

and its inverse O, 

t*n  =  Jon/J^j + On/a*/a. (A.14) 

The eleven-dimensional family of infinitesimal noncompact transforma- 
tions of the group 50(5,2) x 0(1,1) is parametrized by #*, t/*, i = 1,..., 5 
and a, such that 

(AM  =  diag(-a,-a,-a,-a^    ^5 _ /     2a + z4-y5J)'   (A*15) 

(Af>)    -     {-XS+y*       x4+/   J' (A-16) 

and 

3 

=     SJJ62 =  ^^V7, ]/J51      _      ^ _ 

*=i 
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3 

E/J61      =      _S/J52  =   ^v^f,    J,J=1,...,4, (A.17) 

where r/,. = ijr   . It is now easy to verify that these transformations commute 
with SU(2)i. Moreover, we find that in the new basis they become 

^(1,1)   =   -4cw(i,i), (A.18) 

5up
{3tl)  = 2au'i3tl)1 (A.19) 

Su\li7)   =  2au\ltT)+Mi(x,y)ijiJ{lt7); (A.20) 

and 

where 

^(2,8)   =    -au(2,8)+M8(X>y)U(2,8)> (A-21) 

M8(x,y)  =   ^(sTife + yTifr), (A.22) 
i=l 

and MT(X, y) is the corresponding vector matrix 

/ 0    x   y\ 
M7(x,y)  =   -2 I xT    0    0 I (A.23) 

\yT    0    0/ 

satisfying 
Mg^^-f^Mg^j/)  - MfayYiTj. (A.24) 

The 50(5,2) gamma matrices f *, i = 1,..., 7, are given in Appendix C. Note 
that uL 8x and u?2 8x form a pair of symplectic Majorana spinors, n?2 ^ — 

iY2(u}2 8v)*, as required by the reality of the 27 of E^y 

Let us write A.18-A.21 in the matrix form SvP1 = M(#,?/,a)0s{7s. The 
reduced scalar manifold S consists of finite transformations 

D(x7 y, a) = exp M(x, y, a), (A.25) 

and by the standard properties of the non-compact cosets [64] has global 
coordinates xl, y% and a. 

To define the 27-bein on S we introduce yet another basis, zab, a^b = 
1,....-, 8, transforming in the 27 of USp(8). It is defined in terms of the 
5L(6,]R) x 5L(2,]R) basis by (see (A.45) of [6]) 

zab   =   ^{rij)abzij + _^{ria)al>zla^ {AM) 
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where the gamma matrices TJJ and F/Q are given in Appendix C.l. By 
combining transformations between the various bases, we find that the 27- 
bein(V/Ja6,V/Q

a6)on<Sis 

yUab   =    lGabuDQ^QVIJ ) y^ab   =   Ga6
nZ?nS 0S/a , (A.27) 

w here 

Gabu =  i(r/7)a60/Jn + -?=(r/ar
60/an, (A.28) 

while the inverse 27-bein is 

Vabu = OuaD^G^ab,        Vab
Ia = 0/an5n

sGV (A.29) 

with 

Gn
ab = ±daiJ(rij)°b--j=da

Ia(rIa)ab. (A.30) 

The potential, V, of gauged TV = 8 is defined in terms of USp(S) tensors 

Wabcd = ^SIJVImbVjpcd,        Wab = Wc
acb, (A.31) 

where the USp(8) indices are lowered using the symplectic metric f2a6. We 
have [6] 

V = -±g2(2(Wab)
2 - (Wabcd)2) . (A.32) 

In general, the potential, V, is invariant under the GR X GL group of 
local transformations of the 27-bein, where GR = USp(8) and GL = SO(6) x 
SL(2, H). Upon restriction to the scalar submanifold, <?, a subgroup of those 
transformations 

D     ->     G'DG'-lP, (A.33) 

preserves S and leaves V invariant. The transformations in G' act linearly 
on x1 and y1. In terms of the 5x2 matrix (x,y) in A.23 this action is 
schematically of the form 

(x,y)     ->     ^Rso^       Rso 2) (x>vXRso(2Y) >      (A-34) 

where the SO(3) subgroup are the 5G(5,2) rotations in the (123)-hyperplane, 
the SO(2) are the rotations in the (45)-plane and 50(2)', which rotates 
(xl,yl) as a doublet, are the rotations in the (67)-plane. The group of resid- 
ual gauge transformations, G, in Table A.l consists of 50(3) and a diagonal 
S0(2) in 50(2) x 50(2)' above. Another combination of the 50(2) rota- 
tions is a part of 5L(2,1R). An infinitesimal action of P, the noncomapct 
generators of 5L(2,1R), with parameters e1 and e2 on (x,y) is given by 

x4 y4)   -+   (x4 + £l  y4 + £2) (ASS) 
x5   y5)     ^     [x5-s2   yt + e1 h {A-6b) 
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It was argued in [8] that using those invariances one may set all parameters, 
but a?1, xA, y2 and a, to zero, thus reducing the dependence of the potential 
from 11 to 4 parameters. This simplification allowed the authors of [8] to 
compute the potential explicitly in terms of the variables r^, ry, 9 and a, 
where 

x1 = rxcosO,     x4 — rx sinO,    y2 = Ty . (A.36) 

The M = 2 critical point is at rx = ry = ±\ log(3), 0 = 0 and a = ao = 
|log(2). It is invariant under £17(2)/ x U(1)R subgroup of 50(6), where 
the i?-charge subgroup U(1)R is an unbroken subgroup of SU(2)G X J7(1)G- 

To identify this subgroup we note that the matrix M(#, y, a) at the critical 
point, when expressed in the SX(6,]R) x SX(2,IR) basis using A.26-A.28, is 
given by 

(A'j)   = diag(-ao,-ao,-ao,-ao,2ao,2ao),        (Aa^)  =  (0),   (A.37) 

and 

S/J51        =       S/J62   =    ±     1     log{Z)vMlJy 

2y/2 

S/J6i      =     _S/J52  =   ±    1   log(3)r?(+)/^ (A.38) 

The only nontrivial condition is that the S's above are invariant under 
U(1)R, which determines the .R-charge generator 

It has been normalized such that under SU(2)i x U(1)R <-> 50(6) we have 

6     -5-     2i/2 © 2-i/2 © li © l-i • (A.40) 

Finally, we compute the USp(8) tensors Wa6, Wa&cd and 

Aabcd = -3Wa[bcd\\. (A-41) 

at the critical point. In particular, 

/-15 -1 \ 

{Wab) = ^w* 

-15 
-13 -1 

-13 1 
1 -15 

-1 -15 
1 -13 

-1 -13/ 
(A.42) 
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APPENDIX B. Unitary multiplets of 517(2,2|1) 

In this appendix we recall the classification of the unitary highest weight 
representations of the superalgebra 5f7(2,2|l) in [45, 46] (see, also [65]) and 
work out explicitly shortening patterns for the multiplets that are relevant 
for the discussion in section 6. 

A unitary highest weight representation of SU(2,2|1) can be decomposed 
into a direct sum of unitary highest weight representations of its bosonic 
subalgebra 517(2,2) x [7(1). The latter has a maximal compact subalgebra 
17(1) x 517(2) x 5*7(2) x 17(1), in which the generator of the first [7(1) factor 
is the energy and that of the second is i?-charge. The two SU(2) factors 
give the obvious 50(4) subalgebra of 5*7(2,2) ~ 50(4,2). Highest weight 
representations, 'D(Eo,ji,J2;r), of 5?7(2,2|1) are parametrized by the cor- 
responding four quantum numbers. 

Theorem [45, 46].   A representation, U(Eo,ji,J2'ir), is unitary if and 
only if one of the following conditions (i)-(iv) holds: 

(i) Eo > 2ji - f r + 2 and EQ > 2j2 + |r + 2 for juJ2 > 0, 
(ii) E0 = -|r and EQ > 2J2 + |r + 2 for ji = 0 and J2 > 0, 
(Hi) EQ = |r and EQ > 2ji - |r + 2 for ji > 0 and J2 = 0, 
(iv) EQ = r = 0 for ji = J2 = 0. 

Maximal representations (long multiplets) consist of the 16 representa- 
tions of 5*7(2,2) listed in the second column of Table B.l, each with mul- 
tiplicity 1. One may notice that each representation in the multiplet is 
uniquely identified by its (ii, J2; r)- The level in the first column of the table 
is the minimal number of supersymmetry operators that must be applied to 
the vacuum to reach a given representation. 

Shorter multiplets arise when either J1J2 — 0, or, more interestingly, 
when some of the equalities in the unitarity bounds (i)-(iii) are saturated. 
In the latter case some of the descendant 5*7(2,2) representations that are 
predicted by the tensor product rules are missing. A complete list of short- 
ening patterns is given in [45]. One can succinctly summarize the structure 
of the resulting short modules as follows: 

Corollary.De/me N(x) = 1 for x / 0 and N(0) = 0. Let 

ni+) = N(Eo + 2ji + |r),        n^ = N(Eo - 2ji + |r - 2) ,(B.l) 

4+) = N(E0 + 2j2 - |r),        f4") = N(E0 - 2J2 - Z-r - 2), 
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and 
8l=N{j1), S2 = N(J2). (B.2) 

The multiplicities of the 517(2,2) representations in the decomposition of a 
unitary representation, V(EQ1ji1J2]r)1 are determined by B.l, B.2 and the 
appropriate products of these numbers as given in Table B.l. 

The short multiplets in Table 6A in section 6 are either chiral (complex) 
or non-chiral (real). The shortening conditions for the chiral multiplets are: 

(R) .EQ = — |r and ji = 0 for the RH-multiplets, 
(L) EQ = |r and J2 = 0 for the LH-multiplets. 

We then have n^"^ = 0 and n^     — 0> respectively.  For a generic value of 
J5o, a LH-multiplet is a direct sum of four 517(2,2) multiplets for j > 0 and 
three multiplets for j = 0 as shown in Table B.2.  The RH-multiplets are 
obtained by (ji, J2) -> U2J1) and r -> -r- 

Level $U{2,2)representation Multiplicity 

0 D(Eo,ji,J2;r) 1 

1 D(E0 + ±,j1 + l,J2;r-l) »« 

D{E0 + lj1-^J2;r-l) sin[ ) 

D{Eo + ±,ji,J2-l;r + l) 32712 

D(Eo + l,ji,J2 + br + 1) 4+) 

2 D(Eo + hh,J2;r-2) tfW 
D(Eo + l,ji + l,J2 + br) n^ni+) 

D(Eo + lJ1 + ^J2-br) S2n{+)4-) 

D(Eo + l,ji-%,J2 + br) Sln[-)n^ 

D(Eo + l,ji-^J2-hr) siS2n\ ^2 

D{Eo + l,jij2;r + 2) vtW 
3 I>(Eb + §,ii,j2 + |;r-l)' n^ntW 

D(Eo + %,ji,J2-l;r-l) s1n{-^n^ 
D(Eo + lji-lj2;,r + l) S2n^n[-)n{-) 

D(Eo + lji + l,J2;r + l) n^n^n^ 

4 D(Eo + 2,j1,J2;r) n^n^n^n^ 
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Table B.l: Multiplicities of SU(2,2) representations in the decomposition of an 
5£/(2,2|l) unitary representation 'D(Eo,ji,J2'1r). 

The non-chiral short multiplets are obtained by setting ji = J2 = jj 
EQ = 2j + 1 and r = 0 so that n^ = n^ — 0- The multiplet is shown 
in Table B.3. For a complete list of massless chiral and non-chiral short 
multiplets with spins not exceeding 2, we refer the reader to, e.g., Table 5 
in [6]. 

E\R      r r-1 r-2 

Eo 0',0) 
Eo + h (i + io)©(j-i,o) 

Table B.2: Chiral LH-multiplets V(EoJ,0;r), where r = ^EQ. 

E\R      -1 0 1 

Eo + ^   U + hJ) 0\i + §) 

Table B.3: Non-chiral multiplets V{E0,j, j; 0), where E0 = 2j + 2. 

The multiplet with irrational EQ found in section 6 is an example of a long 
representation with only nine 517(2,2) representations because its vacuum 
representation has ji = J2 = 0. 

Finally, there are multiplets with the simplest type of shortening when 
only one vanishing condition holds, so that the resulting multiplet extends 
through four energy levels, rather than three as in the case of the usual 
short multiplets. The defining vanishing relation for the modules of this 
type which arise in section 6 are: EQ = 2ji - |r + 2 or #0 = 2J2 + |r + 2, 

which is the same as n^ = 0 or n^ — 0- We will refer to them as RH and 
LH semi-long multiplets. A typical LH-semi-long multiplet is of the form 
given in Table B.4. 
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E\R      r+1 r-1 r-2 

EQ U1J2) 
Eo + k Ui,J2 + l)                       ih + hih) 

in -1,32) 
EQ + I Ui + hih + s) 

(h-hh + l) 
{31,32) 

Eo + I Uuh + h) 

Table B.4: LH-semi-long multiplet V(EoJij2]r), where r = |(Eo - 2J2 - 2). 

The corresponding RH-semi-long multiplet is obtained from the above by 
(JI1J2) —> (J2)ji) and r —> —r. Once more there might be a further shorten- 
ing of semi-short multiplets for ji or J2 equal zero. An example is the last 
multiplet in Table 6.2. 

APPENDIX C. 50(7) and 50(5,2) gamma matrices 

In this appendix we summarize explicit realizations of the 50(7) and 50(5,2) 
gamma matrices, which are needed to derive some of the formulae in sec- 
tion 6 and Appendix A. 

C.l. 50(7) gamma matrices 
We follow here the same convention as in Appendix A of [6], where the 

50(7) gamma matrices, Ti = (F^6), i = 0,1,..., 6, are hermitian and skew 
symmetric (i.e. pure imaginary) and satisfy 

TQ — i ri^FsF^rs . 

A particular realization with these properties is given by 

/ \ / 

(C.l) 

(C.2) 

\ 

—1 

Ti = ,r2 = 
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—i 

—i 

,r4 = 
—I 

—I —I 

r5 = 
—t 

We also define 

and 

l \ 
—i 

I 

, r6 = 

) \ 

—% 

—I 

rjj = -(rjrj-rjr/), 

T/a = (r/,ir/ro), 

for /, J = 1,..., 6 and a = 1,2. 

/ 

(C.3) 

(C.4) 

The USp(8) indices, a, 6,... = 1,..., 8, are raised and lowered using the 
symplectic form 

nab =-nab = ir(i
ab, (c.5) 

which is given by 

(««6) = -1 
-1 

-1 

V 
We refer the reader to [6] for further details. 

C.2. 50(5,2) gamma matrices 
The 50(5,2) gamma matrices, f^, i = 1,..., 7, satisfy 

(C.6) 

where (THJ) = diag(l, 1,1,1,1, —1, —1). We use the following representation: 
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ri = 

-i 

-i ,r2 = 

1/ \ —I 

Ta = (-1) 

\ / 

,f4 = 

1 / 

-1 

V 

r5 = 

-i 

r6 = 

-i 

/ 

-1 \ 
-i 

i 
i 

-i 

r7 = 
-i 

-i 
-i 

\ / 

Since the spinor representation of 50(5,2) is pseudoreal, we may define 
symplectic Majorana spinors, xQ) a = 1,2.  In the present realization they 
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satisfy 
xa =-iea0r2(xey, (c.7) 

where e12 = 1. 
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