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1    Introduction 

In recent years string theory and M theory have provided us with a deeper 
insight into the dynamics of (mainly supersymmetric) gauge theories in var- 
ious dimensions. Difficult questions in field theory can turn out to have 
relatively simple answers when embedded into a string or M theoretic con- 
text. 

This powerful approach to the study of gauge theories comes, roughly, in 
two related forms: one can study physics localised on branes by decoupling 
"bulk degrees of freedom" or one can consider the physics localised near 
certain kinds of singularities in spacetime, a construction which goes by 
the name of geometric engineering. Constructions of the former type were 
initiated in [1] building on results of many other authors and are reviewed in 
[2], whereas geometric engineering was christened in [3] a paper which was 
also motivated by the results of several authors concerning massless states 
appearing at singularities. Many references to these works can be found in 
[3] and [4]. 

M theory compactified on a 7-manifold with G2 holonomy gives rise to a 
four dimensional theory with J\f = 1 supersymmetry. For a given 7-manifold 
X with G2 holonomy, what is the physics of M theory compactified on 
X ? At low energies we can use the eleven dimensional supergravity ap- 
proximation to M theory and one finds that the effective four dimensional 
supergravity theory describing the massless modes, as first noted in [5], is 
J\f = 1 supergravity coupled to 62 ^(1) vector multiplets and 63 neutral 
chiral multiplets, where bi are Betti numbers of X. Such a supergravity the- 
ory is relatively uninteresting physically. However, this particular massless 
spectrum, is that of M theory compactified on a smooth 7-manifold of G2 
holonomy. On the other hand, an important lesson learned in string theory 
and M theory over the past few years has been that interesting physics can 
arise when singularities in a "compactification manifold" appear. The main 
purpose of this paper is to initiate a study of the physics associated with 
singularities in spaces with G2 holonomy. In particular, we will construct 
and study 'local models' of natural (and perhaps the simplest) types of sin- 
gularities in this context; we will use these models to geometrically engineer 
four dimensional N = 1 supersymmetric Yang-Mills theories. Geometric 
engineering of M = 1 theories has been studied in detail previously in the 
context of Calabi-Yau backgrounds [6]. 

To motivate the types of singularities we will study consider the follow- 
ing. Let S be a K3 surface and {uoi} a triplet of Kahler forms defining a 
hyperkahler structure on S. Let T3 be a flat 3-torus and dxi a basis for its 
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cotangent bundle. Then the product manifold SxT3 admits a parallel G2 
structure defined as follows. 

(p   =   S^UiAdxj + -elikdxiAdxjAdxk (1) 

*(p    =    -S^uJiAwj + -eljkuJiAdxjAdxk (2) 

In the above 8%i is the identity matrix, e123 = 1 and is totally antisym- 
metric and we have used the Einstein summation convention. 50(3) acts 
naturally on both triplets u^ and dxi. The above G2 structure is hence 
manifestly 50(3)-invariant. 

Let K denote a finite subgroup of 50(3) under which the triplets uoi 
and dxi transform in the same representation. Then the orbifold OK = 
(SxT3)/K inherits the above parallel O2 structure. Furthermore, if K is 
not a subgroup of 50(2) C 50(3), then OK will not inherit a parallel 5C/(3) 
structure. We will always choose K (jL 50(2) in what follows. This technical 
restriction ensures M — 1 supersymmetry and not A/* = 2. 

If we now consider M theory on OKXR
4
, then we obtain an effective 

four dimensional theory with J\f = 1 supersymmetry (assuming as we will do 
that such an orbifold compactification is well defined in M theory). There 
are now essentially four cases to consider, (i) K acts freely on SxT3 and S 
is a non-singular K3 surface; (ii) K acts freely on SxT3 and S is a singular 
K3 surface; (in) K does not act freely and S is non-singular; (iv) K does 
not act freely and S is singular. By singular, we mean a K3 surface with 
A-D-E orbifold singularities, so that the notion of hyperkahler structure still 
makes sense. In case (i) OK is a smooth manifold and therefore the low 
energy physics is that we described above. OK clearly has singularities in 
the remaining three cases. In this paper we will describe the physics localised 
near singularities of type (n). We hope to address types (m) and {iv) in 
future investigations. 

For cases of type (ii) the space OK can naturally be thought of as being 
fibered by the K3 surfaces S. K3 fibrations of Joyce orbifolds [7] with G2 
holonomy were discussed in the context of M theory/heterotic duality in [8] 
and have been further investigated in [9]. 

We are interested ultimately in M theory physics near the singularities of 
OK- Since in the case of type {ii) these correspond locally to A-D-E surface 
singularities, in order to construct a local model we will 'replace' S with an 
orbifold C2/G, where G is a finite subgroup of SU{2). In other words we 
will be considering orbifolds of the form J^ = (C2/GxT3)/K.  By abuse 
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of notation, if we let c^ denote the hyperkahler structure on C2/G, then 
equations (1) and (2) define a parallel GVstructure on J. 

We can further divide the orbifolds J into two types. Since K acts freely 
on C2/GxT3, these differ according to whether or not K acts freely on T3. 
We will only consider cases in which K does act freely on T3, in which case 
J is naturally endowed with the structure of a fibration whose fibers are 
the C2/G orbifolds and whose base is the smooth 3-manifold T3/K. The 
singular set of the orbifold is MK = ({0}xT3)/K (where {0} is the origin 
in C2/G) and we can see that the singular set of J consists of a family of 
A-D-E singularities fibered over T3/K. 

In the next section we will study families of A-D-E singularities and 
compute the four dimensional massless spectrum localised near these singu- 
larities. The results of this section are in a similar spirit to results which 
have appeared in [10, 11, 3] concerning families of A-D-E singularities in 
Calabi-Yau spaces. We then describe some explicit examples of the orbifolds 
Jj£ for which G is any finite A-D-E subgroup of SU(2) and K is isomorphic 
to Z2XZ2 or Z2KZ4. It turns out that the geometrically engineered models 
obtained from M theory on J^ are described at low energies by pure Af — 
1 super Yang-Mills theory with A-D-E gauge group corresponding to G. 

We then take a slight detour and propose a Type IIA dual description of 
some of the M theory models involving D6-branes. This section also clarifies 
certain aspects of the computation of the spectrum in section two. Following 
a brief review of N = 1 super Yang-Mills theory (which is included mainly 
for completeness) we discuss the ^ supersymmetric BPS states present in 
the geometrically engineered models. We show firstly that the models engi- 
neered using Jj£ contain fractional M2-brane instantons (of a type discussed 
in [12]), which correspond in field theory to states with fractional instanton 
numbers; secondly we argue that fractional instantons of a particular topo- 
logical charge can generate a superpotential. This superpotential matches 
precisely that expected from field theory considerations. In [13] it was argued 
that fractional instantons generate the superpotential in an alternative con- 
struction [14] (now known as M QCD) of the same field theory (with gauge 
group SU(n)) using Type IIA/M branes. We refer the reader to [2] for fur- 
ther references to J\f = 1 models constructed using branes. Furthermore, it 
has been argued in [16] in field theory and in [17] in the geometrically engi- 
neered models of [6] that such a superpotential can be generated by torons in 
a certain limit. Several other aspects of fractional instantons in field theory 
have also been discussed in [18]. 

In the final section of this paper we describe a relation between the 



B.S. ACHARYA 231 

instanton generated superpotential and the parity anomaly on the M2-brane 
world-volume. The result here is that, modulo an assumption, M2-branes 
indeed know about the anomaly seen in the field theory. This is a satisfying 
confirmation of the main results which complement nicely the results of 
[23] in which superpotentials were generated using M5-brane instantons in 
Calabi-Yau spaces. 

Note Added. After completing the first version of this paper we were 
informed by G. Moore of the forthcoming paper [25] in which there is overlap 
with the present work. 

2    Supersymmetric Families of A-D-E singularities 

The orbifolds Jj£ can be thought of as families of C2/G orbifolds parame- 
terised by MR. MK is naturally a supersymmetric 3-cycle. This is straight- 
forward to establish since {0}xT3 is a supersymmetric cycle in C2/GxT3 

and K preserves its volume form. Therefore we are considering the orb- 
ifold singularities of JJJ as local models for supersymmetric (ie associative) 
families of A-D-E surface singularities which might develop in spaces of G2 
holonomy as we move through the moduli space of metrics. 

What is the M theory physics localised near the singularities of J^ ? 
In order to answer this question, we should first compute what massless 
modes are supported near the singularities. We will actually give a more 
general answer which computes the massless spectrum localised near any 
3-dimensional supersymmetric family of A-D-E singularities. Therefore we 
consider a manifold X with G2 holonomy. As we vary the G2 holonomy 
metrics on X we assume that we encounter a 3-dimensional family of A-D-E 
singularities parametrised by a 3-manifold M such that M is a supersym- 
metric submanifold of the singular limit of X. 

Begin first by considering M theory near an A-D-E singularity of the 
form {x}xR7, where {x} is the singular point in a 4-space with hyperkahler 
structure. The physics localised near such a singularity of spacetime is de- 
scribed by 7-dimensional super Yang-Mills theory on R7 with A-D-E gauge 
group H (determined by which A-D-E subgroup of SU(2) G is). The singu- 
larities of spacetime we wish to consider are locally of the form {x}xMxR4 

which occur inside a spacetime XxR4 with X a space of G2 holonomy. Prom 
the point of view of the 7-dimensional Yang-Mills theory we have essentially 
replaced R7 with MxR4. We should thus consider 7-dimensional super 
Yang-Mills theory on MxR4 and compute the massless modes in R4 a la 



232 M THEORY, JOYCE ORBIFOLDS AND SUPER YANG-MILLS 

Kaluza-Klein. 

Since generically M will not admit any parallel spinors one might first 
think that all supersymmetry is broken by this compactification. However, 
M is a supersymmetric 3-cycle in a space with G2 holonomy and this means 
that the Yang-Mills theory is twisted and is indeed supersymmetric. This 
is very much in the spirit of discussions in [10, 19]. We will illustrate this 
twisting shortly. 

In R7 the symmetries of super Yang-Mills theory include 
Spin(3)xSpin(6,1). Spin(3) is the R-symmetry group and 5pm(6,1) the 
cover of the Lorentz group. Spin(3) also acts as rotations of the hyperkahler 
structure associated with the A-D-E singularity. The fields of the theory are 
all massless and consist of three scalars fa transforming in the (3,1), gauge 
bosons transforming in the (1,7) and 16 fermions in the (2,8). When we 
'compactify' to MxR4 the Spin(§, 1) symmetry is broken to 
Spin{Z)'xSL{2^ C). Here Spin(Z)' is the cover of the structure group of M 
and 51/(2, C) is the cover of the Lorentz group in 4-dimensions. However, as 
is perhaps evident in equations (1) and (2), the fact that M is a supersym- 
metric submanifold inside a space with G2 holonomy means that the theory 
is 'twisted': in fact the two Spin(3) groups are identified under this twisting. 
In this 'twisted' theory the symmetry group is just 50(3)xSX(2, C) with 
50(3) the structure group of M. We give an alternative and clearer descrip- 
tion of this twisting in terms of wrapped D6-branes in Type IIA theory later 
in this paper. 

The fields and their transformation properties under this twisted sym- 
metry group are, in the bosonic sector two 1-forms on M which are scalars 
in R4. These transform as 2(3,1). There are also scalars on M which are 
gauge fields on R4; these transform as (1, 2(8)2). The fermions of the theory 
are organised in the following fashion. There are two spacetime fermions 
one of which is a scalar on M the second of which is a 1-form on M. The 
fermions thus transform as (1 + 3, 2 + 2). These fields will be massless if 
they are zero modes of the relevant derivative operator on M. In this case 
the relevant operator is just the Laplacian on M. 

We thus find that the massless spectrum supported near this family of 
singularities consists of 1 gauge field, bi scalars and l + &i fermions. (61 is the 
first Betti number of M). We should also recall that in the uncompactified 
theory all the fields transform in the adjoint representation of the A-D-E 
gauge group. This however, does not imply that the gauge group of the 
four dimensional theory is the same as that in seven dimensions; as noted 
in the context of F-theory, when obtaining lower dimensional gauge fields 
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from higher dimensions by 'fibering' A-D-E singularities over some space B, 
certain monodromies in the fibration can act as outer automorphisms of the 
A-D-E group and hence break the gauge group to the subgroup commuting 
with this automorphism. In this paper we will mainly consider situations 
in which this does not occur. Whether or not such a monodromy occurs 
depends upon the choice of the group K in the spaces J^. If we assume 
that such outer automorphisms do not occur then all the above massless 
fields transform in the adjoint representation of the A-D-E gauge group. 
Otherwise they transform under the broken gauge group. The massless field 
content is then precisely that of pure M = (1 + 61) super Yang-Mills theory 
in four dimensions. 

For the orbifolds Jjg, M is T3/K and has &i = 0. Hence the massless 
spectrum consists of pure M = 1 super Yang-Mills theory with A-D-E gauge 
group determined by G. 

As a check of this result consider the special cases when K is the trivial 
group or a subgroup of 50(2). When K is trivial, jf ^ C2/GxT3 and M 
= T3. Hence our computation correctly predicts that the massless modes 
supported near the singularity are those of pure J\f — 4 super Yang-Mills 
theory. In the case when K is a subgroup of 50(2) and J^ admits a parallel 
SU(3) structure, M = CP1xS1 and our computation correctly predicts a 
spectrum [10, 11] which matches that of pure J\f = 2 super Yang-Mills theory. 

For concreteness we introduce some particular examples of spaces with 
the properties we require, namely a well defined G2 holonomy structure and 
an associative family of C2/G hyperkahler orbifold singularities. In fact, for 
these examples, K = Z2XZ2 or Z2IXZ4 and we can define one such space 
for each A-D-E subgroup of SU(2). 

2.1    Examples 

Our first example orbifolds J^ xz > are defined as follows. We begin with 
the case G = Zn and R7 = C2xR3. Let (^1,^2), and Xi (i = 1,2,3) 
denote coordinates for the C2 and R8 factors respectively. Form C2xT8 

by identifying: 
(xi) = (xi + 1) (3) 

Define three finite groups of isometries of the above C2xT3, which are 
respectively isomorphic to Zn, Z2 and Z2 and which together generate T = 
(Z2xZ2)KZn: 

'Zn((*):(zuz2,xux2,xz)    =    (e2™/"*!, e-2™'"^ xu X2, x3) (4) 



234 M THEORY, JOYCE ORBIFOLDS AND SUPER YANG-MILLS 

Z2(/?) I (21,22,^1,^2,^3).     =     (-ZliZ2i-x1 + -i-X2,X3 + -) 

Z2(7) • (ZUZ2,X1,X2,X$)     =     (-Z*,-Z2,-Xi,X2 + -,-X3) 

We have denoted by (a, /?, 7) the generators of the three cyclic groups and 
* denotes complex conjugation. 

The orbifold J^xZ* is defined as the quotient (C2xT3)/r. 

Let F be the subgroup of T which acts with fixed points and denote by Tf 

the quotient group F/F. Then it is easy to see that F = Zn (generated by 
a) and F' ^ Z2XZ2 (generated by {3Zn and ^Zn). Tf acts freely on C2xT3; 
therefore the singular set of the orbifold J consists of {0}xT3/r/

? where 
{0} is the origin in C2. The singular set is thus a T3/r/ family of ^4n_i 
singularities. 

There is one subtlety pertaining to these examples: there is a non-trivial 
monodromy of the singularity for n > 2. This is due to the group relation 

7aA;7~1 = a~k (5) 

More generally, if we replace Zn in the above with any of the finite A-D- 
E subgroups of SU(2)y but keep the group Z2XZ2 fixed, we obtain a space 
J^ xZ whose singularities are a family of A-D-E singularities fibered over 
Mz2xZ2- For the cases corresponding to D and E gauge groups one can 
in fact check that there is no monodromy corresponding to outer automor- 
phisms of the Lie algebra of the gauge group. 

Our second example orbifolds are obtained by taking K = Z2XZ4. This 
group is defined to act in the following way on C2xT3: 

3 1 
Z2(/9

/) : {zi,Z2,XljX2,X3)     =     {-Zl1Z2i-Xi,-X2 + -iXs + -) (6) 

24(7?) : (zuZ2>xi,X2,xs)    =    {-iz2,izi,xi + -, -X2 + ^, -xs) 

The orbifolds Jz2l><Z4 are defined as above for G any ADE subgroup of 
SU(2). In this case one may check that F = G x (Z2 x Z4). The singular set of 
^Za KZ4 consists of a family of ADE singularities fibered over T3/(Z2 x Z4). In 
these examples, because Z2XZ4 commutes with G, there is no monodromy 
of the singularity. The cases in which there is a non-trivial monodromy will 
be discussed in detail in a forthcoming companion paper, since we do not 
wish to cloud the main points of this article with these issues. 
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3    Relation to D6-branes 

In this section we will relate M theory on J^-11 to a certain configuration of 
partially wrapped D6-branes in Type IIA theory. The purpose of this section 
is really to confirm the computation of the massless spectrum of M theory 
fields supported near the singularities of J and give a clearer origin for the 
twisting of the 7-dimensional gauge theory that we discussed previously. As 
such this paper can be read independently of this section. 

M theory on C2/ZnxR7 gives rise to a supersymmetric SU(n) Yang- 
Mills theory which is supported near the An-i singularity; hence this gauge 
theory lives naturally on R7. In fact, the same 7-dimensional gauge theory 
arises as the low energy world-volume theory on n parallel D6-branes in 
Type IIA string theory on R10. The moduli space of this 7-dimensional 
super Yang-Mills theory is Symn"1(R3). Prom the point of view of the 
D6-branes, this moduli space is easily understood; since they are parallel 
they all live at a point in R3 and hence we have a "splitting" of R10 = 
R3xR7 corresponding to transverse versus world-volume dimensions. Then 
Symn_1(R3) is just the moduli space of n particles on R3 subjected to one 
constraint which eliminates their center of mass motion. Prom the point of 
view of M theory on C2/Zn, it is more difficult to understand the gauge 
theory moduli space since it is related to the moduli space of hyperkahler 
structures on certain ALE-spaces and their orbifold degenerations. What 
will be important is the fact that the SO(3) R-symmetry group of the gauge 
theory acts on the coordinates of the various R3 factors in the moduli space 
according to the 3-dimensional representation. This 50(3) also acts on the 
hyperkahler orbifold C2/Zn via rotations of the three Kahler forms on this 
space. 

Since M theory on C2/Zn gives rise to a gauge theory equivalent to that 
which comes from n D6-branes at a point in R3, M theory on C2/ZnxT3 

corresponds from the point of view of the D6-branes to world-volumes which 
are no longer R7 but rather T3xR4. This "compactification" of the 7- 
dimensional D6-brane world-volume does not affect the R3 to which they 
are transverse. If we take the 7-dimensional gauge coupling constant to 
zero, whilst at the same time shrinking the volume of the 3-torus, then we 
can obtain an effective 4-dimensional super Yang-Mills theory which lives 
on R4. This theory has 4-dimensional J\f = 4 super symmetry. When we 
further orbifold M theory on C2/ZnxT3 by K to give M theory on J^n, a 
natural proposal is that this procedure commutes with the duality between 
M theory on C2/ZnxT3 and the configuration of n (wrapped) D6-branes 
in Type IIA theory. Hence, if this is the case, we expect a dual description 
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of M theory on 3%? in terms of Type IIA theory on (R3xT3)/K* with n 
D6-branes wrapped around the T3 in the cover. Here K* is the image of 
K under the map from M theory to Type IIA theory. In particular, since 
K acts freely, the expectation that the Type IIA dual exists is fairly well 
justified [20]. 

Our next step will be to determine K*, and hence make a proposal for a 
Type IIA description of M theory on J^-n. 

The identification of how K* acts on our wrapped D6-brane configuration 
in Type IIA theory on R3xT3 follows from the simple observations: (i) the 
50(3) R-symmetry of the 7-dimensional super Yang-Mills theory acts via 
the 3-dimensional representation on the coordinates of R3; (ii) in M theory 
on Jj" it acts on the triplet of Kahler forms uji living on C2/Zn; (m) in M 
theory on jfn K also acts (as a subgroup of SO(3)) on the triplet of 1-forms 
dxi in the same way as it does on the Kahler forms; (iv) since the T3 is 
'common' to both the Type IIA and M theory backgrounds, this shows that 
K* acts on the the coordinates of T3 in the same way as K. Combining 
these facts we learn that if the R3 and T3 have coordinates Vi and Wi = 
Wi + 1 respectively, then the 1-forms dvi and dwi transform under K* in the 
3-dimensional representation. Moreover the coordinates w^ transform under 
K* in the same way as under K. 

It will be useful to denote the complex coordinates Yi as 

YjEzvj+iwj (7) 

We can define a Calabi-Yau structure on R3xT3 by defining the Kahler 
2-form and holomorphic 3-form 

a;   =    ^P'dYiAdYf (8) 

Cl   -    Ic^dYiAdYjAdYk (9) 
6 

These forms are clearly preserved by the K* action on R3xT3. In 
fact, they are manifestly 50(3) invariant. Hence, the quotient space YK 

= (R3xT3)/K* admits a Calabi-Yau structure. Furthermore, since K* acts 
freely on the T3 factor, YK is a smooth complex threefold, which (although 
its holonomy is not precisely SU(S)) we can regard as a Calabi-Yau threefold. 

We are thus considering Type IIA string theory on YxR4. This space- 
time background preserves eight supercharges. We would now like to re- 
introduce our n parallel D6-branes which fill R4. Since the D6-branes world- 
volume is 7-dimensional, it must be of the form MxR4, where M is a real 
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3-dimensional submanifold of YK- Furthermore, these D6-branes should be 
invariant under half of the eight supercharges preserved by the background, 
since we are ultimately interested in a configuration with M — 1 super- 
symmetry. This will be the case if, and only if, M is a special Lagrangian 
submanifold of YK- In fact, as we have discussed above, the D6-branes are 
sitting at the origin in the R3 and are wrapped around the {0}xT3 in the 
R3xT3 covering space of YK- The image of this particular T3 subman- 
ifold in YK is simply ({0}xT3)/K* which we thus take as M. This real 
3-manifold is indeed a special Lagrangian submanifold of YK- Thus, we 
propose that the Type IIA configuration which is dual to M theory on JK

n 

is given by Type IIA string theory on YK with n D6-branes wrapped around 
the submanifold M. 

Let us now consider the Yang-Mills theory which describes the low en- 
ergy world-volume dynamics of the D6-branes. We are thus considering 
7-dimensional SU(n) super Yang-Mills theory on MxR4. Ordinarily, one 
would conclude that such a theory is not supersymmetric since M does not 
admit parallel spinors. However, M is a special Lagrangian submanifold in 
the Calabi-Yau threefold Y. and this fact implies that the super Yang-Mills 
theory is 'partially twisted' and indeed supersymmetric [19]. This will be ex- 
plicitly illustrated shortly. Ultimately we are interested in the massless fields 
which propagate on R4 and so we will think of this 7-dimensional Yang-Mills 
theory in a Kaluza-Klein fashion as being compactified from seven to four 
dimensions on M. 

In flat R7, the symmetries of the Yang-Mills theory include 
G = Spin(3)xSpin(6,1). The Spin(3) is the R-symmetry group and the 
Spm(6,1) the double cover of the spacetime Lorentz symmetry. The fields 
are all massless and consist of three real scalars fa which transforming as 
(3,1) under G, the gauge fields ^4^, which transform as (1, 7) under G, and 
two spacetime fermions transforming as (2,8). All of these fields transform 
in the adjoint representation of the gauge group SU(n). Compactification 
of this theory on M to R4 breaks G to G' = 5pm(3)xS'pm(3)/x5L(2, C), 
where 30(3)' = Spin(3)/Z2 acts on the tangent bundle of M and SX(2,C) 
acts on R4 as the double cover of the Lorentz group. Under G7, the scalars 
transform as (3,1,1), the gauge fields split into a gauge field on R4 trans- 
forming as (1,1,2(2)2) and three 'new' scalars (/)[ transforming as (1,3,1). 
The fermions transform as (2, 2, 2) + (2, 2, 2). As we remarked above, the 
lack of parallel spinors on M usually implies that the theory is not super- 
symmetric. 

Now we must 'remember' that we are really discussing D6-branes wrapped 
around a supersymmetric cycle in a Calabi-Yau threefold. Prom this point 
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of view, the scalars </>f are re-interpreted as sections of the normal bundle 
iV(M) to M inside YK and the scalars <^ as sections of the tangent bundle 
T(M) to M. The fermion fields are sections of the spin bundle of M with 
values in the spin bundle constructed from the normal bundle. Thus far, we 
have not utilised the Calabi-Yau structure of YK- A remarkable observa- 
tion due to Mclean [21] asserts that T(M) = iV(M). In other words, the 
Calabi-Yau structure of YK allows one to identify the normal bundle with 
the tangent bundle. 

For our gauge theory, this is the 'origin' of the twisting which implies the 
theory is supersymmetric. Since the tangent and normal bundles to M have 
been identified, both sets of scalars can be considered as sections of T(M). 
On the other hand, if .5(M) denotes the spin bundle of M, the fermions can 
now be regarded as sections of S®S ^ A0(M)ffiA1(M) - A0(M)eT(M) 
In effect, all fields now transform under a group G" = S'0(3)//xS'L(2, C), 
where 30(3)" is again the structure group acting on the tangent space to 
M. Under G" both sets of scalars transform as (3,1), the gauge fields as 
(1, 202). The fermions now transform as (1,2) + (1, 2) + (3, 2) + (3, 2). 
These latter fields are thus two spacetime spinors which are also scalars on 
M and two spacetime spinors which are 1-forms on M. 

We can finally compute the massless field content of the; gauge theory 
on R4. Fields on R4 will be massless if they are also zero modes of the 
derivative operator which acts on them. The two four dimensional scalars 
are 1-forms on M, so they will give rise to massless fields if the (free part 
of the) first cohomology group of M is non-trivial. Since we have two such 
scalars they will contribute 2&i scalars to the four dimensional theory. The 
four dimensional gauge fields are zero-forms on M so, since b0 is 1, it gives 
rise to one massless four dimensional gauge field. The spinors split into zero- 
forms and 1-forms on M, and they contribute (1 + bi) massless fermions to 
the theory. Also, due to the fact that the compactification on M preserves 
the SU(n) gauge symmetry, all these fields take values in the Lie algebra 
of SU(n). The four dimensional massless field content therefore consists of 
one gauge field, 2bi scalars and 1 + bi fermions which all transform in the 
adjoint of the SU(n) gauge group. How many supersymmetries exist in the 
four dimensional theory ? The supersymmetries of the theory are in one to 
one correspondence with the fermion zero modes. These number 1 + &i. 

Since the first Betti number of M is zero, we find that the massless field 
content is precisely that of Af = 1 super Yang-Mills theory with gauge group 

SU(n). 

Note that classically J\f = 1 super Yang-Mills theory has a 17.(1)  R- 
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symmetry group. Spin(S) symmetries are nowhere to be seen in that theory. 
How is this fact reconciled with the statement of the previous paragraph? 
Firstly, the supersymmetries and massless fields are all singlets under the 
Spin(3) action, so in the theory of interest, this group acts trivially. Sec- 
ondly, the U(l) R-symmetry of the theory is also present - it is simply not 
obvious in the way we have described the theory. This can easily been seen 
by noting that an R-symmetry acts on the superspace coordinates. In fact 
the superspace measure d29 transforms under 17(1) R-symmetries with a 
charge minus that of the holomorphic 3-form O. In fact, if we canonically 
normalise so that under a U(l) rotation d26 transforms with charge —2, then 
the U(l) R-symmetry of the model acts on the coordinates of Y as follows: 

U(l) : Yj -> e&Yj (10) 

This is clearly not a manifest symmetry of the wrapped D6-brane configura- 
tion. Therefore, the symmetries of the Yang-Mills theory are not obviously in 
contradication to those of the D6-branes wrapped on M. Suppose, for argu- 
ments sake, that the D6-branes were wrapped around a special Lagrangian 
submanifold M' in some other Calabi-Yau threefold Y'. Further suppose 
that 6i(M/) = 1. Then, according to the above analysis, the effective four 
dimensional theory has J\f = 2 supersymmetry. Classically, a field theory 
with these supersymmetries has an 5pm(3)x?7(l) R-symmetry group. How- 
ever, in the D6-brane model, only the Spin(3) symmetry is obvious. 

4    N = 1 Super Yang-Mills 

For completeness and in order to compare easily with M theory results 
obtained later we briefly give a review of Af = 1 pure super Yang-Mills 
theory. More detailed reviews can be found in [15]. We begin with gauge 
group SU(n). J\f = 1 SU(n) super Yang-Mills theory in four dimensions is 
an extensively studied quantum field theory. The classical Lagrangian for 
the theory is 

£ = "4^(F^)2 + ^0^AO + i3^i?^a/" (11) 

F is the gauge field strength and A is the gaugino field. 

It is widely believed that this theory exhibits dynamics very similar to 
those of ordinary QCD: confinement, chiral symmetry breaking, a mass gap. 
Supersymmetry constrains the dynamics of the theory so strongly, that the 
low energy effective superpotential for the model is known. It is given by 

We// - cfise27riT/n (12) 
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here r is the complex coupling constant, 

0      .47r 

T = T*+'7 (13, 

and // the mass scale. 

In particular, the form of this potential suggests that it is generated 
by dynamics associated with "fractional instantons", ie states in the theory 
whose quantum numbers are formally of instanton number ^. Such states 
are also closely related to the spontaneously broken chiral symmetry of the 
theory. Let us briefly also review some of these issues here. 

Under the 17(1) R-symmetry of the theory, the gauginos transform as 

X^eiaX (14) 

This is a symmetry of the classical action but not of the quantum theory (as 
can easily be seen by considering the transformation of the fermion determi- 
nant in the path integral). However, if the above transformation is combined 
with a shift in the theta angle of the form 

2n ^^ 
T-^T + —-a (15) 

then this cancels the change in the path integral measure. This shift sym- 
metry is a bona fide symmetry of the physics if a = |^, so that even in the 
quantum theory a Z2n symmetry remains. Associated with this symmetry 
is the presence of a non-zero value for the following correlation function, 

(XX(x1)XX{x2)^XX(xn)) (16) 

which is clearly invariant under the Z2n symmetry. This correlation function 
is generated in the 1-instanton sector and the fact that 2n gauginos enter 
is due to the fact that an instanton of charge 1 generates 2n chiral fermion 
zero modes. 

Cluster decomposition implies that the above correlation function de- 
composes into 'n constituents' and therefore there exists a non-zero value 
for the gaugino condensate: 

(AA)^O (17) 

Such a non-zero expectation value is only invariant under a Z2 subgroup 
of Z2n implying that the discrete chiral symmetry has been spontaneously 
broken. Consequently this implies the existence of n vacua in the theory. 
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In fact, it can be shown that 

(AA) = 16™ JVe// = -^Ve2™/" (18) 

In view of the above facts it is certainly tempting to propose that 'frac- 
tional instantons' generate the non-zero gaugino condensate (18) directly. 
But this is difficult to see directly in SQCD. We will see that this is precisely 
what the dynamics of M theory on J^- predicts. 

More generally, if we replace the SU(n) gauge group by some other gauge 
group H, then the above statements are also correct but with n replaced 
everywhere with C2(H) the dual Coxeter number of H. For A-D-E gauge 
groups C2{H) = E^ai, where r is the rank of the gauge group and the a; 
are the Dynkin indices of the affine Dynkin diagram associated to H. For Anj 

all the di = 1; for Dn groups the four 'outer' nodes have index 1 whilst the 
rest have a* = 2. E6 has indices (1,1,1,2,2,2,3), E7 has (1,1,2,2,2,3,3,4) 
whilst E8 has indices (1,2,2,3,3,4,4,5,6). 

5    Theta angle and Coupling Constant in M theory 

The physics of M theory supported near the singularities of C2/GxR7 is 
described by super Yang-Mills theory on R7. The gauge coupling constant 
of the theory is given by 

^~^ <19> 

where lp is the eleven dimensional Planck length. In seven dimensions, the 
analog of the theta angle in four dimensions is actually a three-form 6. The 
reason for this is the seven dimensional interaction 

L/-0AFAF (20) 

(with F the Yang-Mills field strength). In M theory 6 is given by A, 
the three-form potential for the theory. 

If we now take M theory on J^ we have essentially 'compactified the 
seven dimensional theory with a twist' and the four dimensional gauge cou- 
pling constant is roughly given by 

S   T (21) 
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where VM is the volume of M.   The four dimensional theta angle can be 
identified as 

6 = f A (22) 
JM 

The above equation is correct because under a global gauge transformation 
of A which shifts the above period by 27r times an integer - a transformation 
which is a symmetry of M theory - 0 changes by 27r times an integer. Such 
shifts in the theta angle are also global symmetries of the field theory. 

Thus the complex gauge coupling constant of the effective four dimen- 
sional theory may be identified as 

(c is a normalisation constant) The quantities on the right hand side in 
the above expression are the real and imaginary parts of a complex scalar 
field in the theory which is the bosonic part of the single massless chiral 
superfield in the background J^. (The reason that there is only one massless 
chiral superfield stems from the fact that 6|tr, the third string theoretic Betti 
number of J^ is equal to one.) In view of this we should really view r as 
a background superfield and regard the above equation as an expression for 
its vacuum expectation value. 

6    BPS States 

In any Af = 1 supersymmetric theory, a natural class of states to discuss 
are the BPS saturated states. These are states which are invariant under 
two of the four supercharges. In general, such a theory can contain BPS 
instantons, strings and domain walls. However, in the pure J\f = 1 super 
Yang-Mills theory which interests us, only BPS instantons and domain walls 
can appear. A simple and natural question to pose is where are these states 
in the M theory and Type IIA backgrounds we have been discussing? 

The instantons will be of primary interest to us in this paper. 

6.1    M2-brane Instantons 

In M theory on C^/GxR7, the M theory state which corresponds to an 
instanton of charge one in the super Yang-Mills theory is one M2-brane 
whose world-volume is of the form R3 C R7. We can think of this charge one 
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M2-brane as |G| G-equivariant M2-branes on C^xR7. However, because 
G does not act on the R4 which is transverse to the world-volume of the 
M2-branes in spacetime, these |G| M2-branes can be at different positions 
in spacetime. Prom the point of view of a low energy field theory observer in 
R7, each of these branes carry fractional instanton number. These are just 
the fractional branes described in [12]. 

The precise amount of charge carried by these branes is naturally encoded 
in the extended Dynkin diagram associated with the A-D-E singularity. As 
explained in [22], the dynamics of a charge one D-brane moving on C2/G 
is described by a quiver gauge theory on the world-volume whose quiver 
diagram is related to the affine Dynkin diagram of the A-D-E group. Let 
di denote the Dynkin index for the i'th node of such a diagram; then the 
gauge group of the theory is IiiU{ai) which means it is natural to associate 
di D-branes to the i'th node. Since 

mUi = C2(H) (24) 

where r is the rank of the group ff, the single D-brane 'fractionates' into 
r + 1 fractional D-branes the i'th of which carries charge c 

a/Hy In the M 
theory lift of this structure that we wish to consider here, with the D-brane 
replaced by the M2-brane, it is natural to assume that the same fractionation 
of charge takes place. 

For example, in the case when G is Zn so that the gauge group is 5?7(n), 
all the n nodes have index 1 and the single M2-brane instanton fractionates 
into n identical fractional instantons each of charge ^. 

Now consider the case when we geometrically engineer using J^. The M 
theory states which correspond to field theory instantons now correspond to 
M2-branes wrapped around the supersymmetric 3-cycle MK- However, the 
group G is still acting transverse to these M2-branes and hence one can see 
that the BPS spectrum of M theory on Jjg contains fractional M2-brane 
instantons. 

We have argued that M theory on J^xR4 gives rise to a geometri- 
cally engineered version of super Yang-Mills theory with four supercharges 
and A-D-E gauge group. Furthermore, we have identified instantons of the 
field theory as M2-branes in M theory. Since in the super Yang-Mills the- 
ory in question, a charge one instanton generates 2c2(H) chiral fermionic 
zero modes, we can fairly safely assume that the corresponding charge one 
wrapped M2-brane also generates precisely 2c2(H) such zero modes. This 
has the following simple consequence: a fractional M2-brane instanton of 
charge c }H, generates two fermionic zero modes. This implies that they can 
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in principle generate a superpotential in the four dimensional theory. If such 
a superpotential is generated, it will be of the form, 

W = C.e-Sl (25) 

where Si is the supersymmetric action for the M2-brane instanton (and C 
is a dimensionful normalisation constant). Sj will contain a contribution 
proportional to the volume of the M2-brane world-volume (ie M), with a 
constant of proportionality determined by the topological charge. 

In fact 
W = C.e2*iTlC2(H) (26) 

The reason that the exponent comes precisely with the above factor is 
that exp(—Si) for an instanton of charge one must be given by 

e2niT (27) 

This is because the real part of the exponent is minus the action for one 
instanton and the superpotential must be holomorphic. A convenient way 
of writing (27) is 

C,,.e27riT = Iir+1
1Wra« (28) 

Hence, we can interpret Wai as exp^Sj*), where S** is the action for a 
fractional instanton of charge JTT^T. Thus we see that equation (26) is just 
the action for those fractional instantons associated with nodes of index 1 
(ie with topological charge C2}H))- 

Clearly the result (26) agrees with the field theory expectation (12). 
Moreover the fact that the superpotential is dynamically generated by an 
object carrying a fractional instanton number also agrees with the results of 
[16, 17, 13, 18]. 

6.2    Relation to Membrane Anomalies 

In field theory instantons are usually associated with anomalies. Whether or 
not the M5-brane instantons considered in [23] generated a superpotential 
was shown to be related to a certain anomaly in rotations of the normal 
bundle to the M5-brane. On the other hand, M2-branes have odd dimen- 
sional world-volumes and the only known anomaly associated with them is 
the so-called parity anomaly on the world-volume [24]. This can occur if the 
world-volume of the M2-brane is transported around a transverse circle. 
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For a charge one M2-brane with world-volume M, the path integral for 
M theory includes the factor 

ei^A (29) 

The change in this factor as the world-volume is transported around a 
transverse circle S1 is 

e*/Mxsi(A7r+G) (30) 

where A is a certain characteristic class [24] and G is the field strength of A. 
Since 27ri?er = /M A, from the point of view of our geometrically engineered 
theory, the above change can be interpreted as a shift in the theta angle 

r_>r+JMxS>(** + g) (3!) 
27r 

If we compare to field theory, then (at least for certain choices of circles 
around which the membrane is transported) it is natural to try and identify 
this rotation as a consequence of an R-symmetry transformation. If we let 

e
i/Mxsi(A7r+G) =e

ik<* (32) 

we wish to determine the 'charge5 k. We can determine k as follows. In 
field theory, if we normalise the R-symmetry generator as in (14) so that 
the gauginos transform with charge one, then the superpotential transforms 
with charge two. Equation (28) then implies that 

.fe = 2S<ai = 2c2(fir) (33) 

With the charge determined we see that equation (31) becomes 

r^r+
24^a (34) 

27r 

This agrees precisely with the field theory result (15). Hence if our assump- 
tions about the R-symmetry are correct M theory "knows" that the chiral 
symmetry is Z2C2(H) since the cancellation of the membrane anomalies im- 
plies that (34) is a symmetry. The generation of the superpotential (26) 
then implies that this chiral symmetry is spontaneously broken to Z2 by 
fractional M2-brane instantons. This is a rather satisfying result. 
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