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Abstract 

In this paper we construct 206 examples of Calabi-Yau manifolds 
with different Euler numbers. All constructed examples are smooth 
models of double coverings of P3 branched along an octic surface. We 
allow 11 types of (not necessary isolated) singularities in the branch 
locus. Thus we broaden the class of examples studied in [7]. For every 
considered example we compute the Euler number and give a precise 
description of a resolution of singularities. 

1    Introduction 

In this paper we study a class of Calabi-Yau manifolds. By a Calabi-Yau 
manifold we mean a kahler, smooth threefold with trivial canonical bundle 
and no global 1-forms. One method of constructing Calabi-Yau manifolds 
is to study a double covering of P3 branched along an octic surface. 
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Let B be a surface in F3 of degree eight. Let C = Ops(4), C is a line 
bundle on P3 such that £®2 = 0F3(B). Then C defines a double covering 
of P3 branched along B and the singularities of the double cover are in 
one-to-one correspondence with singularities of B. 

If B is smooth then the resulting double covering is a Calabi-Yau three- 
fold, if B has only nodes (ordinary double points) then the double cover 
has also only nodes, and these nodes can be resolved by the mean of small 
resolution. In this case again the resulting threefold is Calabi-Yau. This 
construction was precisely described in [5]. 

In [7] a case of B being an octic arrangement (i.e. a surface which locally 
looks like a plane arrangement) was studied. In this paper we shall use 
methods introduced in [7] to study a bigger class of octic surfaces, namely 
we shall consider arrangements with ordinary multiple points of multiplicity 
2, 4 and 5. Altogether we allow 11 types of singularities of the branch locus. 

Our main result is the following theorem 

Theorem 1.1 If an octic arrangement B contains only 

• double and triple curves, 

• arrangement q-fold points, q = 2, 3, 4, 5, 

• isolated q-fold points q— 2, 4, 5 

then the double covering o/P3 branched along B has a non-singular model 
X which is a Calabi-Yau threefold. 

Moreover if B contains no triple elliptic curves then 

e(X) = 8 - ^(4 - 4d? + Qdi) + 2 ^(4 - di - dfididj -  ^ didjdk 
i i<j i<j<k 

+ 4p2 + 3p\ + I6P5 + 18p£ + 20pl + l3 + 2m2 + 36m4 + 667715. 

The idea of the proof of this theorem is to give a resolution of singularities 
of X by a sequence of admissible blowing-ups (i.e. blowing-ups that do 
not affect the first Betti number and the canonical divisor of the double 
covering, cf. [7]). We apply Theorem 1.1 to give examples of Calabi-Yau 
manifolds with 206 different Euler number (we realize any even number from 
the interval (—296,104) as an Euler number of a Calabi-Yau manifold). 
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2 Surfaces with ordinary multiple points 

Let B be a surface in P3 with only ordinary multiple points. That means 
that if we consider the blowing-up a : P3 —> P3 of P3 at all singular points 
of B then the strict transform B of B is smooth and intersect the exceptional 
divisor of a transversally. Let rrip denotes the number of p-fold points on 
B. The following Proposition contains the numerical data of B and B, 

Proposition 2.1 

4(B)   =   <2(d-4)2-5>-2)2pmP (1) 
P 

C2(B)    =   ds-M2 + 6d-^2(p-2)p2mp (2) 
p 

e(B)    =   d3-4:d2 + 6d-^2(p-l)3mp (3) 
p 

3 Octic arrangements with isolated singularities 

Definition 3.1 An octic arrangement with isolated singularities is a surface 
B C P3 of degree 8 which is a sum of irreducible surfaces Bi,..., Br with 
only ordinary multiple points which satisfies the following conditions: 

1. For any i ^ j the surfaces Bi and Bj intersects transversally along a 
smooth irreducible curve Cij or they are disjoint/ 

2. The curves Cij and Ck,i are either equal or disjoint or they intersect 
transversally. 

This definition is a generalization of the notion of octic arrangement intro- 
duced in [7] (where the surfaces Si are assumed to be smooth). Observe that 
from (1) SingB^ fl Bj = 0 for i ^ j. We shall denote di := deg.E^. 

A singular point of Bi we shall call an isolated singular point of the 
arrangement A point P E B which belongs to p of surfaces Bi,... ,Br we 
shall call an arrangement p-fold point We say that irreducible curve C C B 
is a g-fold curve if exactly q of surfaces Si,..., J5r pass through it. 
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We shall use the following numerical data for an arrangement: 

pl
q Number of arrangement g-fold points lying on exactly i triple curves, 

/s Number of triple lines, 

mq number of isolated g-fold points. 

4    Proof of Theorem 1.1 

Let B be an octic arrangement satisfying assumptions of the Theorem and 
let X be a double covering of F3 branched along B. We shall find a sequence 
of admissible blowing-ups (i.e. blowing-ups of double or triple curves and 
4-fold or 5-fold points) a : P* —> P3 and a reduced divisor S* C P* with 
ordinary double points (nodes) as the only singularities and such that 

B < B < B* (where B is a strict transform and I?* is a pullback of B 
by a), 

B* is even as an element of the Picard group Pic P*. 

Let us now describe an algorithm to obtain cr, the method is in fact a 
modification of the method introduced in [7]. We resolve all singularities of 
B except the nodes 

1. Resolution of multiple curves and arrangement multiple 
points. In these cases we shall apply the method described in [7]. 

2. Resolution of isolated 4-fold points. We blow-up a 4-fold point, 
and then replace the branch locus by its strict transform. 

3. Resolution of isolated 5—fold points. We blow-up a 5-fold point, 
and then replace the branch locus by its strict transform plus the exceptional 
divisor. The proper transform intersects exceptional divisor transversally 
along a smooth plane curve of degree 5. We treat this curve in the same way 
as as an arrangement double curve i.e. we blow-up this curve, and replace 
the branch locus by its strict transform. 

The double covering of P* branched along B* has nodes (corresponding 
to nodes of B*) as the only singularities. 

4. Resolution of nodes. There are two possibilities for the resolution 
of a node on a 3-dimensional variety: blow-up or small-resolution (for details 
see [5]) 
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We shall denote the non-singular model of X by X if in step 4 we choose 
a blow-up and by X if we choose a small resolution. To any node on B we 
have associated a line on X. X is a blowing-up of X at all this lines. As a 
consequence we see that e{X) = e{X) + 2m2. 

The blow-ups used in steps 1—3 are (according to [7]) admissible, i.e. 
they do not affect the first Betti number and canonical divisor of X. We see 
therefore that 

K+ = E< 2 

where E2 denotes the exceptional divisor on X associated to all nodes of B 
hence 

Kx = 0. 

In order two compute e(X) we compare our case with the one studied 
in [7]. Prom the Proposition 2.1 we see that in our case e(P3) increases by 
2ra2 + 2m4 — Sras whereas e(B) decreases by 32m4 + 727715. 

The Euler number e(X) is hencefore greater by 

2m2 + 867714 + 56m5 

in comparison with the case with no isolated singular points.   Using [7, 
Thm. 3.4] proves the theorem. [] 

5    Examples 

In this section we shall apply Theoreml.l to study various examples of octic 
arrangement. As a result we obtain 206 examples of Calabi-Yau manifolds 
with different Euler numbers, we shall for instance realize every even number 
from the interval (—296,104} as an Euler number of a Calabi-Yau manifold. 

We shall need information about the number of nodes allowed on a nodal 
surface of degree < 8 in P3 Using results from [1, 3, 4] we can formulate the 
following proposition 



222 DOUBLE COVERINGS OF OCTIC ARRANGEMENTS.. 

(di,d2,...,dr) Pi Pi Pi [Pf Pi h m2 e(X) 

8 

8 

8 

-296 

1 -294 

; : ; 

107 -82 

(1,1,2,4) 

(1,1,2,4) 

(1,1,2,4) 

1 -80 
1 1 -78 

.; 

i 16 -48 

(1,1,1,1,4) 

(1,1,1,1,4) 

1 1 -46 
; 

I 

1 16 -16 

(1,1,1,1,1,3) 

(1,1,1,1,1,3) 

(1,1,1,1,1,3) 

(1,1,1,1,1,3) 

(1,1,1,1,1,3) 

(1,1,1,1,1,3) 

1 -14 

4 -8 
2 1 -6 

; 

2 4 0 
5 1 2 

; ; ; 

5 4 8 

(1,1,1,1,2,2). 2 1 10 

(1,1,1,1,1,3) 

(1,1,1,1,1,3) 

3 1 12 

': 

3 1 4 20 

(1,1,1,1,1,1,2) 1 22 

(1,1,1,1,1,3) 

(1,1,1,1,1,3) 

1 2 24 

': '. 

1 2 4 32 

(1,1,1,1,1,1,2) 

(1,1,1,1,1,1,2) 

(1,1,1,1,1,1,2) 

3 1 34 

1 36 
1 1 38 

(1,1,1,1,1,1,1,1) 40 

(1,1,1,1,1,1,2) 1 5 1 1 42 
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(di,d2,...,dr) P\ P\ Pg rf P§ '3 m2 e(i-) 

(1,1,1,1,1,1,1,1) 1 44 

(1,1,1,1,2,2) 1 1 2 1 46 

(1,1,1,1,1,1,1,1) 2 48 

(1,1,1,1,1,1,2) 3 1 1 50 

(1,1,1,1,1,1,1,1) 3 52 

(1,1,1,1,1,1,2) 1 3 1 1 54 

(1,1,1,1,1,1,1,1) 4 56 

(1,1,1,1,1,1,2) 2 3 1 1 58 

(1,1,1,1,1,1,1,1) 5 60 
(1,1,1,1,1,1,2) 6 2 62 

(1,1,1,1,1,1,1,1) 6 64 

(1,1,1,1,1,1,2) 1 6 2 66 

(1,1,1,1,1,1,1,1) 7 68 

(1,1,1,1,1,1,2) 2 6 2 70 

(1,1,1,1,1,1,1,1) 8 72 

(1,1,1,1,1,1,2) 4 1 2 74 

(1,1,1,1,1,1,1,1) 9 76 
(1,1,1,1,1,1,2) 1 4 1 2 78 
(1,1,1,1,1,1,1,1) 1 2 1 80 

(1,1,1,1,1,1,2) 2 4 1 2 82 

(1,1,1,1,1,1,1,1) 8 1 2 84 

(1,1,1,1,1,1,2) 2 2 2 86 
(1,1,1,1,1,1,1,1) 12 88 
(1,1,1,1,1,1,2) 1 2 2 2 90 
(1,1,1,1,1,1,1,1) 4 1 2 92 

(1,1,1,1,1,1,2) 2 2 2 2 94 
(1,1,1,1,1,1,1,1) 6 2 2 96 
(1,1,1,1,1,1,2) 

(1,1,1,1,1,1,2) 

(1,1,1,1,1,1,2) 

3 2 2 2 98 
4 2 2 2 100 
4 2 2 2 102 

(1,1,1,1,1,1,1,1) 

(1,1,1,1,1,1,1,1) 

(1,1,1,1,1,1,1,1) 

(1,1,1,1,1,1,1,1) 

(1,1,1,1,1,1,1,1) 

(1,1,1,1,1,1,1,1) 

7 2 3 104 
9 1 1 3 108 
3 3 3 112 

1 3 3 3 116 
2 3 3 3 120 

4 4 4 136 
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Proposition 5.1 

a. For m2 = 0,1,2,3,4 there exists a nodal cubic surface with exactly 7712 
nodes, 

b. For 7712 — 0,1,..., 16 there exists a nodal quartic surface with exactly 
7x12 nodes, 

c. For 7712 = 0,1,...,65 there exists a nodal sextic surface with exactly 
7x12 nodes, 

d. For 7x12 — 0,1,..., 107 there exists a nodal octic surface with exactly 
7712 nodes. 

Using the above Proposition and Theorem 1.1 we can compile a table 
containing numerical data of octic arrangements and corresponding Euler 
numbers. Most of Euler numbers can be obtained from several different 
arrangements, in the table we give one example per number. In the table 
we avoid arrangements with 4-fold and 5-fold points, they do not leave to 
new Euler numbers. On the other hand arrangements with 4-fold and 5-fold 
points usually have higher Picard number then the ones with only nodes. 

Most of the examples in the table are modification of the ones given in [7] 
obtained by adding isolated singularities. In many cases it is easy to write 
down explicit equation of the branch locus. Proof of Theorem 1.1 gives a 
detailed description of a resolution of singularities. Although the resolution 
of singularities is not uniquely determined, the different resolutions of the 
same double solid differ only by flop. Consequently most of the numerical 
data (like f.i. Euler number) are uniquely determined (cf. [11]). 
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