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Abstract 

An expression for the oscillatory part of an asymptotic formula for 
the relativistic spin network amplitude for a 4-simplex is given. The 
amplitude depends on specified areas for each two-dimensional face in 
the 4-simplex. The asymptotic formula has a contribution from each 
flat Euclidean metric on the 4-simplex which agrees with the given 
areas. The oscillatory part of each contribution is determined by the 
Regge calculus Einstein action for that geometry. 
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1    Introduction 

The purpose of this paper is to give a physical interpretation of the function 
of 10 balanced representations of the Lie group SO(4) introduced in [1]. 
This value of the function is a real number calculated from a relativistic 
spin network associated to a 4-simplex. We call it a symbol, by analogy 
with the terminology of 6j-symbols for SU(2)1.Each balanced representation 
is determined by a non-negative half-integer j, the spin. The 10 balanced 
representations are associated to the 10 triangles of the 4-simplex.The spins 
are restricted by the requirement that the sum of the spins on the faces of 
each tetrahedron is an integer. 

' In this paper we determine the leading part of an asymptotic formula for 
the symbol, inspired by the corresponding formula for a Gj-symbol given by 
[5]. The formula has a contribution from each metric on the 4-simplex for 
which the area of the triangle is given by 2j + 1, where j is the spin label for 
that triangle. The phase factor for each contribution is determined by the 
Regge calculus formula for the Einstein action of the 4-simplex. An argument 
connecting the closely related balanced 15j-symbol and the Einstein action 
was given by [6]. 

The general context for the symbol as an amplitude in a state sum model 
was introduced in [1], and developed in [4]. Some more background is ex- 
plained in the Penn State lecture [2]. 

2    The symbol 

The symbol was originally defined in terms of a relativistic spin network 
evaluation in [1]. For the classical Lie group considered here, this is defined 
by taking the value of the 15j-symbol for SU(2) which is associated to the 
4-simplex with 5 additional spins specified at tetrahedra. The square of 
this number is then summed over the 5 additional spins, with appropriate 
weights. 

The relativistic spin network evaluation was shown to be given by an 
integral over copies of the Lie group SU(2) in [3]. (In that paper, the integer 
n = 2j was called the spin.) This definition is used as the starting point for 
this paper. 

1It is tempting to call this a lOj-symbol, but the terminology Nj-symbol already has a 
specific meaning, and the symbol is not one of these. 
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The five tetrahedra in the 4-simplex are numbered by fc = 1,2,... 5, and 
the triangles are indexed by the pair &, / of tetrahedra which intersect on the 
triangle. The 10 spins are thus {3ki\k < /}. 

The matrix representing an element g 6. SU(2) in the irreducible repre- 
sentation of spin jki belonging to a triangle is denoted Pki(g)- 

A variable hk G SU(2) is assigned to each tetrahedron k. The invariant 
/ G M is defined by integrating a function of these variables over each copy 
ofSU(2). 

The evaluation of the relativistic spin network is 

j = (-IJEK^JW  f Y[Trpk, (hkh^) . 
Jhesuw* Z* \ J 

The integration measure is the Haar measure on each of the five copies of 
SU(2), normalised to total volume 1. 

The geometrical interpretation of this formula given in [3] is that since 
the manifold SU(2) is isomorphic to S'3 by 

f xo + ixi     X2 + ixs 
x i—>- I 

\ — X2 + IX3     XQ — IXi 

each variable h G SU(2) can be regarded as a unit vector in R4. Further, 
this unit vector can be regarded as the normal vector to a 3-dimensional 
hyperplane in M4 through the origin. The idea is to interpret this as the 
hyperplane in which the tetrahedron lies in a geometrical simplex in M4. 
Similar variables were introduced in a first order version of classical Regge 
calculus by [7]. 

The weight for one triangle kl is a function of the angle (j) between the 
two unit vectors hk and hi in M4, 

rKp\hh~l 
_! 1       sin(2j + 1)0 

sin(/> 

This angle, defined by cos</> = hj* • hi, is the exterior angle between the two 
hyperplanes. Since the sum of the spins at a tetrahedron is an integer, the 
integrand is unchanged if h is replaced by — h at one tetrahedron. Thus the 
integrand does not register the orientation of the hyperplanes. 

The set of five hyperplanes determines a geometric 4-simplex in M4 up to 
overall scale and parallel translation, assuming the generic case where any 
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four of the unit vectors are linearly independent. Moving one of the hyper- 
planes parallel to itself away from the origin, defines a geometric 4-simplex 
as the space bounded by the hyperplanes. The distance the hyperplane is 
moved from the origin is undetermined, so the overall scale of the simplex is 
undetermined. This possible scaling includes negative scaling factors, which 
invert the 4-simplex. 

In this way, the integration can be regarded as an integration over the 
set of geometric 4-simplexes modulo isometrics and scaling. The isometries 
are products of translations and transformations by elements of 0(4). This 
set of 4-simplexes is parameterised by the ten angles </>, which are subject to 
one constraint equation. This is the same as the space of edge lengths for 
the simplex, modulo scaling all 10 lengths simultaneously. 

Note that the scaling by a factor —1 does not change the orientation, so 
the geometric simplexes up to scaling are oriented simplexes. However the 
value of the integrand does not depend on this orientation. 

3    Asymptotics 

For large values of the spins, the asymptotic value of the integral can be 
calculated using the method of stationary phase. The important terms are 
the sin(2j + 1)0, as these depend on the asymptotic parameters, the spins j. 
These are expanded as exponentials to apply the stationary phase method, 

sin(2j + 1)0 = -(expi(2j + 1)0 - exp-i(2j + 1)0). 

The sin 0 factors in the denominator do not vary as j -» oo, so can be treated 
as part of the integration measure. 

For each triangle, introduce a variable e^i which can take the values ±1. 
Then the integral expression for I can be written 

(*)     e^i ww VJ<, sm(W    v fe ; 

Now each term in this sum depends on slightly more than the angles of a 
simplex. This is because the term is not invariant under the replacement 
h -> — h. The geometric simplex determined by the hyperplanes has outward 
normal vectors n^ for the tetrahedra, and n^ = ±hk for each k. This means 
that either 0 or TT — 0 are the exterior angles of the geometric 4-simplex. 
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Each integral can be split into a number of domains where these five 
signs take particular values. Now changing h —)► —h shows that each domain 
is equivalent to a domain where n*. = h^ for all fc, but for different values of 
the €&{. Therefore we can assume that n^ = /i&, and so the (/> are exactly the 
exterior angles of the geometric simplex. Now it is possible to compute the 
stationary points. These are the stationary points of the action 

S = y^eki(2jki + l)<fo./. 
k<l 

The one constraint between the (f) can be taken account of using Schlafli's 
differential identity [Ponzano and Regge 1968] 

^ AM dcfrki = 0, 
k<l 

where the AM are the areas of the triangles of one of the geometric 4- 
simplexes determined by the (j) (i.e., fixing a particular scale for the 4- 
simplex). This constrained variation is exactly as for the corresponding 
first order formalism for Regge calculus [8]. Using a Lagrange multiplier fi 
for this constraint, 

dS = ^ eki(2jki + 1) ctyfcf = n^2Aki d<t>kh 
k<l 

and so for each triangle 

eklfijkl + 1) = Mw- 

Since the {AM} are only determined up to overall scale, it is most convenient 
to take fi — ±1 to fix this overall scale. Then the result is that for a stationary 
phase point in the integrand 

1. The eki are either all positive or all negative. 

2. The angles (/> are those of a geometric 4-simplex with areas AM = 
2jkl + I- 

3. The integrand is expi/iS^, with SE = Y^k<i Aki^ki which is the Regge 
calculus version of the Einstein action for a 4-simplex, and // = ±1. 

The last point about the Einstein action requires a little more expla- 
nation. The Einstein action for a 4-manifold is the integral of the scalar 
curvature on the manifold plus the integral of the mean curvature of the 
boundary. Here, the scalar curvature is zero and so the action for the flat 
4-simplex is entirely the boundary term [9]. 
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Each stationary phase point occurs 25 times, so the asymptotic formula 
is 

The sum is over the set of metric 4-simplexes a C M4 modulo isometries, 
which are such that the area of the triangle kl is given by 2JM + 1. As the 
squares of the areas are quadratic polynomials in the squares of the edge 
lengths, and the mapping is non-degenerate, at least in the regular cases [8], 
this appears to be a finite set. 

The prefactor P is calculated in the usual way for stationary phase in 
terms of a determinant. This does not oscillate with the asymptotic param- 
eters j and so is quite different to the cosine term. Finally, there is also a 
contribution D to the asymptotics of the integral from degenerate simplexes, 
when two of the h's coincide. We have not analysed these terms. 
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