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Abstract 

We consider the generating function (prepotential) for Gromov- 
Witten invariants of rational elliptic surface. We apply the local mirror 
principle to calculate the prepotential and prove a certain recursion re- 
lation, holomorphic anomaly equation, for genus 0 and 1. We propose 
the holomorphic anomaly equation for all genera and apply it to deter- 
mine higher genus Gromov-Witten invariants and also the BPS states 
on the surface. Generalizing Gottsche's formula for the Hilbert scheme 
of g points on a surface, we find precise agreement of our results with 
the proposal recently made by Gopakumar and Vafa[ll]. 
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1      Introduction 

Since the pioneering work by Candelas et al. in 1991 [6], the theory of the 
Gromov-Witten invariants has been one of the central topics in mathematical 
physics related to string theory. Due to many contributions on this subject 
we have now well-developed mathematical theory[16] [4] of the invariants as 
well as the concrete methods to calculate them applying the mirror sym- 
metry of Calabi-Yau manifolds. However up to very recently our concrete 
methods have been restricted to the genus zero or genus one Gromov-Witten 
invariants. Although we have mathematical definition of the higher genus 
Gromov-Witten invariants, little was known about how to determine them 
explicitly for a given Calabi-Yau manifold. Regarding this a breakthrough 
has been made recently in [18] for a special class of Calabi-Yau manifolds 
which have a K3 fibration and have a dual description in the heterotic string. 
Independently Gopakumar and Vafa[10][ll] have derived a general form of 
the prepotential for the higher genus Gromov-Witten invariants, which in- 
cludes several interesting mathematical predictions on the Gromov-Witten 
invariants. 

In this paper we will propose a recursion relation holomorphic anomaly 
equation as a basic equation for the higher genus Gromov-Witten invariants 
of rational elliptic surface, and will make explicit predictions for them. We 
find exquisite agreement of our results with those by Gopakumar and Vafa. 

To state main results of this paper let us consider a generic rational 
elliptic surface obtained by blowing up nine base points of two generic cubics 
in P2. Under the assumption for the cubics the surface S has an elliptic 
fibration over P1 with exactly twelve singular fibers of Kodaira Ii type. We 
consider a situation in which the generic rational elliptic surface S appears 
as a divisor in a Calabi-Yau 3-fold X. Since the normal bundle Mx/s 'IS 

given by the canonical bundle Ks we can extract the genus g Gromov- 
Witten invariants Ng{(3) of class /? G -/^(S', Z) taking a suitable limit of 
the prepotential of the Calabi-Yau 3-fold X, which is called local mirror 
principle. Since even for genus zero invariants the determination of Ng=o(P) 
is technically tedious, in what follows, we will mainly be concerned with the 
following sum of the invariants 

((3,H)=d, (p,F)=n 

where H and F represent the pull back of the hyperplane class of P2 and the 
fiber class, respectively. Associated to these invariants we define generating 
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functions; 
oo oo 

ZgM ■= Y.N9-Anqd ,   Fg{q,p) := ^ Zg,nP
n . 

The latter is the genus g prepotential in topological string theory. For g — 0 
and g — 1 we determine it via the local mirror principle applying to X, and 
find a recursion relation satisfied by Zg]n (g = 0,1; n = 1,2, • • •) which we 
generalize for arbitrary g as follows: 

Conjecture 1.1 (Holomorphic anomaly equation for all g) The generating 
function Zg.n(q) has the form 

P29+2n-2(<t>,E2,E4,E6)(Zo;i(q))n     , (1.1) 

with some 'quasi-modular form' for the modular subgroup r(3) of weight 
2g + 2n — 2. (7h iAe special cases of g = 0 and n — I, it simplifies to 
P2n-2{E2,E4,E6) and P2g{E2{q3),EA(q3),E6{q3))7 i.e., exactly the quasi- 
modular forms of weight 2n — 2 and 2g; respectively). And it satisfies the 
recursion relation 

dZg;n       1 ^ n(n + l) 

We may 'integrate' our holomorphic anomaly equation under certain van- 
ishing conditions. In this paper we focus mainly on the special case of n — 1 
in which the equation simplifies to 

^^ - 36Z9-1;1  • (L3) 

We integrate 1.3 with the vanishing conditions and the initial data 

which has been found in [15] [14]. The E% theta function comes from the 
Mordell-Weil group of the rational elliptic surface and the eta functions in 
the denominator come from the twelve singular fibers. See [14] for the details 
and notations. Then we find that the solutions Z^i may be arranged into 
an all genus partition function of the topological string theory: 

Proposition 1.2 (Topological string partition function on S) 

aeB8(3t,<7)TT (l-<73n)4 v^    , w2o_2,o-A ^ n (1 _ ^i'_ x,.,=E zKM^^f 
(1.4) 
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where A represents the string coupling and £/, = e2A. 

We derive the same result following the proposal made in [11] for the BPS 
state counting of the families of genus g curves. From this viewpoint our 
result 1.4 comes from the following generalization of Gottsche's formula[9] 
for the Hilbert scheme S^ of g points on a surface S: 

Proposition 1.3 (Gottsche's formula with SX(2, C)L X SX(2, C)R Lefschetz 
action) For the Hilbert scheme S^ of g points on a surface S with a fibration 
structure we can decompose the Lefschetz SX(2, C) action on H*(S^) into 
the product 5X(2, C)L X SX(2, C)R, one for the natural fiber space of S^ 
and the other for the base space. If we write the Poincare polynomial by 

then the generating function G{tL,tji,q) = X^>oPtL,tR{S^)q9, for the sur- 
face with bi(S) = 0, is given by 

G(tL, tR, q) = n { (1 _ (tLta)»-lg») (1 - (tLtR)»+iq") 

(1 - tl(tLtRr^q-) (1 - t2
R(tLtR)"-lqn) (1 - (*L*jOn?n)MS)~2 

(1.5) 

We explain our result 1.4 in terms of the above generalization of Gottsche's 
formula by 

eE8(3t,t>y)G(-tL,-l?£) = ^^;1(g)A^-2(2sin^)2  . (1.6) 

This implies that the genus g curves Cg in S' satisfying (Cg, F) = 1 split into 
irreducible parts, one coming from the Mordell-Weil group and the others 
from elliptic curves (with possible nodal singularities) in the fiber direction. 

The readers who are not interested in the derivation and the proofs of 
the holomorphic anomaly equation may omit the following two sections and 
may start from the section 4 for our main results. 

The organization of this paper is as follows: In section 2, we will introduce 
a Calabi-Yau hypersurface and its mirror, and introduce the hypergeometric 
series representing the prepotential Fo(£) for the Calabi-Yau hypersurface. 
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In section 3, we will take a limit to reduce the prepotential to the one relevant 
to the rational elliptic surface (, local mirror principle). We will analyze the 
reduced prepotential and the mirror maps in detail, and will prove the re- 
cursion relation, holomorphic anomaly equation at g = 0. Using the formula 
in [1] for Fi, we will also prove the recursion relation at g = 1. In section 
4, we will propose our recursion relation for all genera, and solve the recur- 
sion relation with some vanishing conditions. There we also discuss about 
the Gromov-Witten invariants coming from Zg-i(q). In the final section, we 
discuss some relations to the recent developments on the counting problem 
of the BPS states in topological string theory[ll][15]. There we will find a 
generalization of Gottsche's formula for the Poincare polynomials of S^. 

Acknowledgments: Two of the authors (S.H. and M.-H.S.) would like 
to thank N.Yui for her kind hospitality during their stay (August, 1998) 
at Queen's University where very early stage of this work has been done. 
The research of S.H. and M.-H.S. is supported in part by Grant-in Aid for 
Science Research (A-09740015 for S.H. and B-09440015 for M.-H.S.), the 
Ministry of Education, Science and Culture, Japan. The research of A.T. is 
supported by Research Fellowships of Japan Society for the Promotion for 
Young Scientists. 

After our submission of this paper to the e-print archive, hep-th, we are 
informed by A. Klemm that he is testing the higher genus prepotentials Fg 
for several surfaces other than our rational elliptic surface (work to appear). 
We would like to thank him for sending us his preliminary draft prior to 
publication. 

In References [15] and [19], a different base F + eg, instead of our if, 
is used to define Zg=o.n. In this case we consider our generating function 
Zg.n for the invariants Ng.^n = Z) ^giP) summed over /3 with (/?, F + eg) — 
of, {(3,F) — n. Then our Conjecture 1.1 should be read as follows: 

The generating function Zg.n(q) has the form 

P2g+6n-2{E2, E4, EQ) 
V(Q) 

I2n 

with a quasi-modular form P2g+6n-2{E2, ^4? -Be) 0f weight 2g + 6n — 2; and 
satisfies the same holomorphic anomaly equation as 1.2 replaced by the pref- 
actors j2 and ^. 

It is worthwhile remarking here that in this case the integration constants 
may be determined consistently for all g and n by simply requiring the van- 
ishing conditions for the first few terms in the g-expansion of Zg.n(q), which 
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is defined by 4.5 (3.18 and 3.27) with D{g,h,k) - Ch{g-h, l)^-3(0 <h< 

2    Mirror symmetry of a Calabi-Yau hypersurface 
in P2 x Fi 

In this section we will consider a Calabi-Yau hypersurface which contains a 
generic rational elliptic surface as a divisor. We collect necessary formulas 
for the (genus zero) prepotential. 

Let us start with the Hirzebruch surface Fi which is defined by the 
quotient (C4 \Z)/ ~ with 

Z = {(1*1,1*2? ^3? ^4) € C4 I ui — U2 = 0 or 1/3 = 1/4 = 0} 

and C*-actions 

{ui,U2,U$,U±) ~ (AitZi,AiU23l/AiW3,l*4) ~ (^l,^2,A2^3,A2^4)     , 
(Ai,A2EC*)    . 

We may consider a generic hypersurface in the product of the surface Fi 
with P2 given by the data 

*< 

3,75 

(1,2). ^ 

where (1,2) refers to the homogeneous degrees with respect to the first scal- 
ing by Ai and the second one by A2. The defining equation may be written 
explicitly as 

gZfi{zi,Z2,ZS,UiiU2)ul + fci{zi,Z2,Zz,Ui,U2)u\ = 0   , (2.1) 

where 21, £2? ^3 represents the homogeneous coordinate of P2 and (73,3 (, /s,!,) 
refers to a generic homogeneous polynomial with bi-degree (3,3) (, and (3,1), 
respectively,) for the coordinates 21,22,^3 and ui,U2. This is an elliptic 
Calabi-Yau hypersurface over Fi with the Hodge numbers h1,1 = 3 and 
/i2'1 = 75. Two of the three elements in iJ1'1(X) come from the base Fi and 
the other comes from the fiber elliptic curve. We may find in X a rational 
elliptic surface S with its defining equation of bi-degree (3,1) in P2 x P1. It 
appears as a divisor ^3 = 0, which is the cubics in P2 over the (—1) curve 

inFi. 
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The positive classes in H2(X, Z) are generated by the three integral ele- 
ments in if1'1(X) corresponding to the divisors 

H - (zx = o) n x , F = (m = o) n x , £ = {u± = o) n x . 

We sometimes denote the corresponding forms by Ji, J2 and J3, respectively. 
It is straightforward to determine the non-zero intersection numbers K^ = 
Jx Ja A Jb A Jc and C2 Ja — /x c2(^) A Ja with the second Chern class C2{X) 
to be 

TV-top _ 9 T^top _ o Tftop _ q i^*op _ q 
21112 ~~ Z   '    ^113 — 0   '    ^123 — 0   ?    ^133 — 0   ' 

C2 Ji = 36  ,   C2 J2 = 24 ,   C2 J3 = 36  . 

The ambient space P2 x Fi is so-called the toric Fano manifold, and 
thus we can easily construct the mirror Calabi-Yau hypersurface Xv based 
on Batyrev's toric method[Bat]. Furthermore the prepotential of the mirror 
Calabi-Yau hypersurface Xv is determined by the general formula obtained 
in [12] [13]. 

Here we collect necessary formulas to determine the prepotential. We 
start with a hypergeometric series representing a period integral for a defor- 
mation family of Xv parameterized locally by x, y, z\ 

wo{x) =     ^2    c(n,m,k)xnymzk  , 
n,m,fc>0 

with 
r(l + 3n + m + 2A:) 

c(n,m, k) = r(i + n)3r(i + m)2r(i + k- m)r(i + k) 

The local parameters (x,y,z) has been chosen so that its origin represents 
the celebrated boundary point where the monodromy is maximally degener- 
ated [21] [22]. The series WQ(X) represents the period integral for the invariant 
cycle about this degeneration point and satisfies Picard-Fuchs differential 
equation (see Appendix). As a complete set of the solutions of the Picard- 

Fuchs equation, we have {wo{x) , Wa (x) , wb (x) , w^(x)} (a, b = 1,2,3) 
where 
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wiihwo(x,p) = £n,m,fc>oc(« + Pi,m + P2,k + p3)x
n+P^ym+^zk+^. In terms 

of the solutions of the Picard-Fuchs equation, the mirror map is defined by 
the relation 

tfl = H*LJ*)   (a = 1,2,3), (2.2) 
WQ{X) 

which connects the deformation parameters (x,y,z) to those (^1,^2,^3) pa- 
rameterizing the complexified Kahler moduli of X at the large radius 
(Im(£G) —> 00). Now the prepotential of the mirror Xv is defined to be 

^-^(^-"'-E^'J + E^ ■ 

Then the mirror symmetry conjecture asserts that the prepotential F(x) 
of the mirror Xv combined with the mirror map provides, up to terms of 
classical topological invariants, the generating function Fo(t) of the Gromov- 
Witten invariants of X; 

rm   -   1 V Kt0Pf i i    V (c2Jfe)*ft , C(3)x(^) 

a,o,c v        / 

where we substitute the inverse relation of 2.2 into F(x). 

3    Holomorphic anomaly equations for g = 0,1 

Let us consider the following limit 

F(q,p) := F(t) - {topological terms)\imt3->oc 

with g = e27rzii ancj p _ e27rzi2 Since the class J3 measures the volume of the 
fiber P1 of Fi parameterized by U3, ^4 and the volume of the curve contained 
in the divisor S — (u^ = 0) fl X are measured to be zero by this class, the 
limit luits —> 00 throw away all the Gromov-Witten invariants except those 
of the curves contained in the rational elliptic surface S. Thus we may 
expect that the reduced prepotential F(q,p) coincides with the generating 
function defined in Section 1. This is so-called the local mirror principle, and 
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somehow generalize the arguments done for the isolated (—1, —l)-curves in 
Calabi-Yau manifolds[17] [8]. 

In our case of the_elliptic Calabi-Yau hypersurface X in P2 x Fi, the 
limit Imta —> oo which translates to the limit z -> 0 in the mirror Xv 

greatly simplifies the period integral wo(x)] 

wo(x,y,z)\z=o    = Zn>o rjl+np^ =: Hx)  • 

We note that the series (j)(x) is nothing but a solution of the Picard-Fuchs 
equation of the fiber elliptic curve of S: 

{e2
x - 3x{36x + 2)(3^ + !)}(/>(*) = 0  . (3.1) 

Another solution of 3.1 about x = 0 may be given by 

fa) = \ogixMx) + Y, Inl^l M1 +3n) - w + n))xn ' 
n>0     ^ ' 

where ^(z) = ^logF(z). 

Now looking at the relations between the 'periods' of X via the prepo- 
tential and the period integrals of X^: 

u,«)    , 

it is straightforword, although involved technically, to derive the following 
consice form for the derivative ■^-F(p,q) (tp := £2) under the limit Imia —*• 
00 (cf. Sect.7 of [14]). 

Proposition 3.1 

dtp        k+w    ' 
where we define 

fn{x) = --{(f){x)Cn^{x) - ^{x)Cn(j){x)} , 

with a linear operator 

(_l)n    n 
cn = ^-1[l(wx + k) . 

n x n! *\ 
fc=i 
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Remark 3.2 By constructing Barnes integral representation of the series 
(j){x)^ it is an easy exercise to make an integral symplectic basis of the 
Picard-Fuchs equation 3.1. It turns out that our bases (j){x) and (j)(x) in 
fact constitute an integral symplectic basis about x = 0. Therefore we may 
write the holomorphic one form of the elliptic curve by QE — foA + (friB, 
where A and B are symplectic bases of the elliptic curve. Then the function 
fi{x) may be written by — S/^f^ A 9xrtE- This is so-called the classical 
Yukawa coupling [6] of the elliptic curve, and may be determined from the 
Picard-Fuchs equation 3.1 to be fi{x) = jz^f^- For the other functions 
fm(x)(m > 2) we will find a powerful recursion relation. 

The relation 2.2 is also simplified in the limit z —» 0 due to the following 
relations 

w0{x,y,0)    =    (j>{x),   wY\x,y,Q)=<j){x), 

w. fay,o)  = z(x)+ Y, £m<t)(x)yr' 
m>l 

(3n)! where €(x) = Sn>o (^m (ip(3n + 1) — ^(1)) xn.  As the inverse relations of 

2711 
.w^Cz.j/.O) 

7   i ;  

2.2, we have x — x(q,p) and y = y(q,p) with q = e      "-O^.J/.O)   and p — 

Q w0(x,y,0) 

Proposition 3.3 Under the limit z —v 0; we find that: 

1. The inverse series x(q,p) does not depend on p and is given by the 
level three modular function; 

.fa.P) = ^ . (3.2) 

where £35 (g) = ^ % is the Thompson series in the notation of [7]. 

2. The inverse series y{q^p) is determined iteratively as a power series of 
p through the relation 

y(q:p)=p^x)e-^>iCm{x)yrn   , (3.3) 

Z(x) 
where ip(x) = e   tw and cm(x) =   ?£y'. 
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Remark 3.4 The function i/;(x) with x = t  ^ N has first appeared in [14], 
and has been determined in terms of the modular functions of level three[28]; 

^{x{q)) = q* (t3A{q))-* {tsBiq))*    , 

where t^Aio) = x(i-27x)'  ^Iso the following relations are standard results 
coming from the Gauss-Schwarz theory for the Picard-Fuchs equation 3.1; 

Mx(q)) = 03(q)e3(q
3) + e2(q)e2(q3)   , (3.4) 

^x^xil - 27x)' = niq)2*  ,   ^^ = ct>(x)2x(l - 27z) , (3.5) 

where 62(q) = Emezl1"1^ and 03{q) = EmezQ^- 

The following lemma may be derived directly from the definition cm(x) 
and the relation 

4>{x) 

which follows from 3.5; 

l/\     h      fiE2(q)\ 
3 V       12      36 0(x)V  ' 

Lemma 3.5 Under the relation x = t 
1t ), the function Cmfa) =    ^ix) 

may be written by 

cm(x) = BmUi)^i + Dm(h)  , (3.6) 

where Bm and Dm are some polynomials of fi determined by the following 
recursion relation; 

Bm+i       =-j^i{{^x+m + 2-^)Bm + ^Dm)   , 

Dm+i    =-(^w{-\(h-8)Bm + (Mx + m + &)Dm} ,       (3.7) 

with initial values Bi = — & and i?i = — A. 

We present here the first few terms coming from the recursion relation 
3.7; 

B2 = ^flB3 = — (ft - l/f) ,2?4 = ^ [fl - l/f + I/^ ,... 

(3.8) 
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= ~36    V1"^)   '   jD3 = "TS2 V1"'54L + "6")   ' 

^4 — 3888 V-Zl 17   ^   68 )   ' W^/ 

We can verify directly using the Picard-Fuchs equation 3.1 that the formal 
solution of the recursion relation may be written in terms of the functions 
fm(x) in Proposition 3.1 as 

am-    36 
,   Dm = 1 ((m + 1)2/m+i + (30, + m + 2 - 4)/m 1 /i  [       m 12       J 

(3.10) 
As a result we see that the functions /m(:r)'s may be determined in terms of 
the recursion relation 3.7. 

Since both the Bm and Dm are polynomials of fi(x) = 1_27x " ^I(o)' 
they have nice behavior under the level three modular subgroup r(3). There- 
fore the modular anomaly comes from the i^-term in cm. We may express 
this anomalous behavior via the partial derivative of cm; 

dcm(x) 1 fm(x) 
dE2 36 0(x)2   ' l       j 

which plays a central role in the following derivations of the holomorphic 
anomaly equations. 

3.1      Holomorphic anomaly equation at g — 0 

Now we are ready to prove the recursion relation for Zo;n(<7)'s, which come 
from the mirror symmetry conjecture through the expansion 

!;^> = EJ^" = E»W*»". (3.12) 

Theorem 3.6 (Holomorphic anomaly equation at g = 0 (c.f.[19])) The func- 
tion Zo-n satisfies the recursion relation 
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(Proof) Prom Proposition 3.1 and Proposition 3.3 , we have 

where the quasi-modular property (anomalous modular property) appears 
in cm through 3.11. Now we first note 

d y 

dtp 1 + Em=l mcmy 

Using this and the relation 3.11, we have 

^oo      dcran,m d^ = -vY2Li$&vm = i_±   _d_ . 
dE2    i + TJm=i^mym    36[dtp

y,[dtp  ' 
(3.14) 

Now we have 

d   , d 
dE2(£-n - ^E/^-w"-1^ 

= £ £/,.(,w.-'l(£1()(£n 

which says, up to constant terms for p, that 

dF(q,p)        I   ( d A2 

This proves the recursion relation. 

Now we determine the explicit forms Z^n for lower n from the formula 
3.12. After coming to a conjecture about the form of Zo;n, we remark that 
the holomorphic anomaly equation 3.13 with some obvious inputs for the 
Gromov-Witten invariants suffices to determine the form Z^n for all n. 

Since our formula 3.12 is written in terms of the known functions fi(x),ip(x) 
with x — t  ^ , and E2{q) for each order of p, and also the order of p coin- 
cides with the order of ^(x), it is easy to deduce that ZQ;n has the following 
form in general, 

£o;n = Go;„(/l,|^2n(^)n    , (3-15) 
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where we have factored the form of Zo;i = 4^. Looking into the detail of the 

expansion of 3.12, we see in general that (j)2 x Go;n(/i, ff) is a polynomial 

of % with coefficients being polynomials of l//i over Q. Here we present 
the first few of them, 

-6 

0,4 31104 V        h      fi 3l       /i^    2     9   V 
269      /,.,     16     64,,8     6250,.      S .„2,4 

Go*   =    62208000 ((1 - X +/F^  + 7263(1-^ 
_2000 12     24)       2 + ^25_     N 

242r       /i      /^   2^      21789   V 

Now we note the following relations for the polynomials of l//i; 

E4=   9(8-£)   ,   E6 = -27(l-f+ |)   , 

27(/)8 - IS^^4 -Ej- 8£6(/>2 - 0 . (3.16) 

Using these relations we find that 

^053 =     69984 (^4 + ^^2) 0   6   ?    ^O^ = 83^08 (^ + 5^4£?2 + 12^|) 

^OjS = 40310784 (iffE4 + T^^ + XE4^2 + SSE^J 
-10 

Here we observe explicitly that 0 disappears nontrivially in the final expres- 
sion of Zo-n for lower n's. We do not have general proof about this but may 
state it as follows; 

Conjecture 3.7   The function Zo]n(q) in 3.15 takes the form 

Zo;n(q)=P2n-2(E2,E4,E6)(Zo-i(q))n   , (3.17) 

where P2n-2 is a quasi-modular form of weight 2n — 2. 

Remark 3.8 The function Zo]n contains the multiple cover contributions. 
We may subtract these contributions considering 

ZoM := Zo-M -   E   TzZ0;n/k(qk)  ■ (3.18) 
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The q series coefficients of Zo-n "count" the numbers of rational curves C in 
our rational elliptic surface S satisfying {CyH) = d and (C,F) = n. The 
homology classes of curves in £, in general, have the form [C] = dH — aiei — 
(1262 — • • • — ageg with ai, a2, • ■ •, ag > 0. Therefore we have 3d — ai — 0,2 — 
 ag = n for (C, F) = n, which implies 3d > n. In other words, we should 
have 

^0^ = 0 for d<^ (3.19) 

for the coefficients of Zo;n- From a simple counting of the dimensionality 
of the quasi-modular forms of weight 2n — 2, we see that the vanishing 
condition 3.19 together with the above Conjecture 3.7 provides sufficient data 
to determine the integration constants for the recursion 3.13, and determine 
completely Zo;n for all n (, see Section 4). 

3.2      Holomorphic anomaly equation at g = 1 

According to [1], we have an explicit expression for the genus one prepotential 
Ffcov(t) in terms of the discriminant of the hypersurface X] 

l \WQ{X)J 

xdw(a;,y^)-Sa;-V3^4det (jj£) } ,       (3.20) 

where the discriminant may be determined from the characteristic variety 
of the Picard-Fuchs equation presented in the Appendix. Several exponents 
in 3.20 have been fixed by the requirements of the asymptotics of Ffcov 

when Imta -> 00. The explicit form of the discriminant is a complicated 
polynomial of x,y and z, however, in the limit z —> 0, it simplifies to 

dis(x, y, z)\z=o = (1 - 27x)3{l - 27x + (1 + yf - 1}  . (3.21) 

Also under this limit, it is easy to show from the definition that the mirror 
map z(q:p,r)  (r = e27™*3) simplifies to 

z(q,p,r) =,re~^"+S->iCm(x)ym =r^{x)s—^—  . (3.22) 
y{q,p) 

Now using the relations 3.5 it is straightforward to derive; 
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Proposition 3.9 When r —> 0; up to the topological term —^ Z]c(c2^c)*c — 
—Slogq — 21ogp — 31ogr7 we have; 

(3.23) 

Remark 3.10 

1. For the p-independent term of Ffcov(q,p) the local mirror symmetry 
does not apply. This is because these curves are parallel to the fiber 
elliptic curves of X and therefore can move outside of the rational 
elliptic surface. In fact we see that 

~ (4    d=3 

after subtracting the genus zero contributions Ngz=o-d,o — 168 (d = 
1, 2 mod 3), 144 (d = 0 mod 3). The number 4 should be regarded as 
the Euler number of the base Fi for the elliptic fibration. 

2. There is a difference in the normalization of the prepotentials between 
pBCOV ancj our Fg_1 in the introduction. These are related by the 
factor 2 coming from the orientation of curves as 

Fl(q,p) = lF1
BCOV(q,p)  . (3.24) 

Now we define the generating function Zi.n through 

Fl(q,p) = YfZi;n(<l)Pn  > 
P>1 

and prove the holomorphic anomaly equation at g = 1. 

Theorem 3.11 (Holomorphic anomaly equation at g — 1)  The function 
Zi]n(q) satisfies the following recursion relation; 

~QV~ 
= 36 2^(n - s)sZi;n-sZ0;s-\ ^ Zo'n  (n-1)- (3-25) 

S = l 
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(Proof) Since we have already shown the relations 

dy        1     d        d dcm 1 fm 
dE2      3QKdt//Kdtp  

u/  '   dE2        36 

and 
d y 

-y = 
dtp 1 + Em=l mcmy' 

it is straightforward to derive 

a  1 =    ^log{{(l-27rC) + (l + y)3-l}- 
dE? dy 

e-Em>lC™(-X)y,n Qy 

l + Zm>irncm{x)y™JdE2 

Edcm   m Ylm>lm'WE%y 

rn^ldE2
i'        (1 + Em>i mcmy-) 

3  log{{(l-27a;) + (l+y)3-l}-5 
dtp 

Q-T,m>xCm{-x)ym      i   Q 
X 1 + ETO>i mcm(x)ym^^drp

Fo' 

i(Al06((1_27l) + (1 + !/)3_iri 

e-Em>ic-(:r)ym d 

+ 1    a  F+1<B)*F + 36^Fo + 36(^)Fo 

1 + Em>imcm(a;)ym       ^ 

1 / d PBCOV)( d      ,      1   d     d 

Taking into account the difference of the normalization 3.24, we conclude 
the recursion relation. [1 

Now we may determine the generating function Zi]n(q) explicitly from 
3.23 under the relation Fi(q,p) = lFfC0V(q,p).   As in the cese of genus 
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zero, we may represent Zi^n in terms of fi(x),ip(x) and -E^)- Correspond- 
ing to 3.15, we have 

Zv,n = Glrn{fi, ^)02n {^y = Ghn(fu ^)4>2n (Zo^T    .       (3.26) 

After straightforward evaluation of 3.23, we obtain for the first few of Gi;n's; 

If we use the relations 3.16 for the polynomials of l//i, we find 

2y    2     36 
+^2£l + ^£|>^6 

Contrary to the case of g = 0, the (^-dependence remains in Zi-n(q) after 
the elimination of the polynomials of l//i. Thus we arrive at the follwing 
weaker statements about Zi]n(q); 

Proposition 3.12 The generation function Ziin(q) in 3.26 takes the form 

Zl;n(q) = P2n(<fi,E2,E4,E6)(Zo;i(q))n   , 

where P2n is a 'quasi-modular form' of weight 2n for the modular subgroup 
r(3). 

Remark 3.13 

1. The form of the polynomial P2n is not unique because of the relation 
3.16 among 0,^4 and E§. 
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2. The function Zi^n contains the contribution from the genus zero curves 
(i.e., the degenerated instanton [1][8],) as well as the contribution from 
the multiple covers. We may separate these in Zi;n as follows; 

Zi;n(g) = Zi;n(g) +    Y,   ^^(k)^^) + — J2^o-n/k(qk)  , 
k\n,k^l k\n 

(3.27) 
where cr-i(k) = Ylmlk m' ^^ func^on Zi;n{q) is expected to 'count' 
the numbers of the elliptic curves C with (C, F) = n in S. As is the 
case of g = 0, we have certain vanishing conditions for the elliptic 
curves, which is useful to determine the integration constants for our 
holomorphic anomaly equation 3.25. However as we will argue in the 
next section the appearance (j) in the polynomial i^n increases unknown 
parameters in the integration constants. From this reason holomorphic 
anomaly equation become less powerful than the case of g = 0 to 
determine Zi]n. 

4      Predictions for Gromow-Witten invariants of 
higher genera 

4.1      General considerations 

From the analysis for g = 0 and g = 1, we naturally come to the following 
conjecture about the holomorphic anomaly equation for all genera. 

Conjecture 4.1 (Holomorphic anomaly equation for all g) The generating 
function Zg]n(q) has the form 

P2g+2n-2(<t>,E2,EA,E6) (Z0.tl(q))n (4.1) 

with some 'quasi-modular form' for r(3) of weight 2g + 2n — 2. (In the 
special case of g = 0; it simplifies to P2n-2(E21E^1E§), i.e., exactly the 
quasi-modular form of weight 2n — 2). And it satisfies the recursion relation 

dlr = T2    £    £ S(n - 8)Z*»Z<'»- + ^^ Vi;n  •       (4-2) 
2 9'+9" =9 5=1 

In the following we will consider the solutions of the holomorphic anomaly 
equation.   For this purpose, first of all, we need to have some data to fix 
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the 'integration constants' for our recursion relation 4.2. Let us suppose 
that a curve Cg in the rational elliptic surface is in a homology class [Cg] — 
dH — aiei — a2e2 ageg, where e^'s refer to the —1 curves from the blowing 
ups. Then, since Zg.n counts the Gromov-Witten invariants of genus g curves 
with ([Cg]iF) = n, we should have 

9 

([Cg},F)=3d-J2^=n , (4.3) 
2=1 

and for the arithmetic genus 

^O^JtzMzH-taH^l,,,. (4.4) 

If the curve Cg is singular, the arithmetic genus might be different from 
the genus of the normalization of Cg. We will come to this point later, 
however for the moment we will ignore this difference. Then it is easy 
to see that the above two constrains provide us several vanishing condi- 
tions on the numbers of curves. In Table 1 we have presented the lowest 
degree d =  ([Cg],H) for which a curve Cg may exist for given g and n. 

n\g 0 1 2 3 4 5 6 7 8 9 
1 0 3 6 g 12 15 ' 8 21 24 27 
2 3 z. g 7 9 0 12 13 15 ' 3 1. 4 7 7 10 10 4 2 3 Z 4 5 6 7 7 
5 2 3 i. 4 5 5 6 7 7 8 

Table 1.   Each number shows the lowest degree d — ([C^],i7) 
for curves of given g and n. 

The homology classes of curves in the table may be written explicitly 
for given g and n. For example, for n = 1 they are simply given by [C^] = 
ei + gF (i = l,---,9) . The data in the table provides us vanishing 
conditions for the first few terms in the g-expansion olZg]n(q), where tilde 
represents the subtraction of the degenerated instantons from the Gromov- 
Witten invariants. We may relate Zg]n(q) (g > 2) to the subtracted functions 

by 

Zg.n(q) = Zgin(q)+   Y,    D(9^^)^n/k(qk) + YlT,D<<^h,k)Zh.n/k{qk)   , 
k\n,k^l h=Q k\n 

(4.5) 
with some rational numbers D(g,h,k). Therefore all we need to fix from 
the vanishing conditions are the 'integration constants' together with the 
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rational numbers D(g,h,k). For higher n > 4 it turns out that the van- 
ishing conditions in Table 1 are not sufficient to determine completely both 
the integration constants of the recursion 4.2 and the form of the degener- 
ated instanton D(g,h,k). However we will see based on a simple counting 
arguments that for lower n < 3 they suffices at least to fix the integration 
constants for our recursion relation. Especially for the case n — 1 they 
determine both the integration constants and the form of the degenerated 
instanton. 

As an extreme case let us first consider the genus zero generating func- 
tions Z()]n(q) (n = 1,2, • • •). As we have already considered in Remark 3.8, 
the only undetermined in this case are the integration constants in the poly- 
nomial P2n-2 in 3.17. We see that these constants can be fixed by the 
vanishing conditions in Table 1 comparing the first column of the table with 
the dimensionality of the modular form of a given weight, which is given by 
the series 

l + t4 + t6 + t8+t10 + 2t12+t14 + 2t16 + 2t18 + 2t20 + ---   . 
(1-*4)(1-*6) 

(4.6) 
Now let us look at the functions Zg;n(q) for all g and lower n(< 3). In this 
case we only have the weaker assumption on P2^+2n-2 in 4.1.  Taking into 
account the relation among 0, E4 and EQ in the second line of 3.16, we may 
estimate the relevant dimensionality of the modular form P2g+2n-21^2=0 (7 
integration constants of the holomorphic anomaly equation,) by 

{\*flVCl-#)     =   l + t2 + 2t4 + 3t6 + 3t8+4t10 + 5t12 + 5t14 + 6t16 

+7£18 + 7£20 + ---   . (4.7) 

The growth of the dimensions should be compared with each line of the 
table 1 under a suitable shift. From these comparisons of the numbers of 
the 'integration constants' and the numbers of the vanishing conditions, we 
may deduce that for n < 3 the vanishing conditions suffices to determine the 
integration constants while leaving some of D(g,h,k) undetermined. To go 
beyond this rather unsatisfactory situation, we need to know more details 
about the numbers of genus g curves of a given homology classes or the 
form of the degenerated instanton D(g, h, k). Though our simple vanishing 
conditions are insufficient to determine all the unknowns, we see from the 
first line of the table they are restrictive enough to fix the form of Zg;i(q) 
and D(g, h, 1) completely. In the next subsection we will present a detailed 
analysis of Zg]i(q) for all g. 
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4.2      Gromov-Witten invariants Z9;1 and degenerated instan- 
tons 

To get some intuition about the curves Cg in 5, let us first recall the form of 
2o;i(9) obtained in [14] [28] 

Z0;l(g) -       .(,3)12 {-"-^W) (4-8) 

where 7 = (1,•••,!,— 1). The appearance of the E% theta function origi- 
nates from the well-established fact that the sections of the rational elliptic 
surface form additive group called Mordell-Weil group, and it becomes a 
lattice isomorphic to the E% lattice endowed with a positive definite bilinear 
form[25][14][24]. The eta functions in the denominator have been explained 
by introducing pseudo-section which is a composite of a section with some of 
the twelve singular fibers with its homology class a + kF. Thus the function 
ZQ-I counts the numbers of pseudo-sections in S which are not irreducible 
but naturally come in the theory of the stable maps[5]. 

Now in our general case of genus g curves with (Cg,F) = 1 the function 
Zg.^i counts the genus g sections of the elliptic fibration of S. Since the 
generic fiber spaces are elliptic curves, the genus g section are composite 
of two components, one is a pseudo-section and the other consists of g fiber 
elliptic curves. The genus g sections of the lowest degree are those with their 
homology classes given by 

[Cgl^et + gF    (* = l,.-.,9). (4.9) 

Thus the expansion of Zg-i(q) start from q39 with its coefficient 'counting' 
the number of the genus g sections of class 4.9. (This is the vanishing 
condition we have listed in Table 1 for n = 1 and g.) The g elliptic curves 
in general avoid the twelve singular fibers and make a ^-dimensional family 
parameterized by Sym^(P1). 

As we have already remarked, the vanishing conditions for the 'num- 
bers' of curves grow much faster than the dimensionality of the integration 
constants 4.7 plus the numbers of the unknowns D(g, /i, 1) in 

9-1 

Zg;1(g) = Zg]1(q) + X>(2,M)^M(?)   • (4-10) 

Owing to this nice property, we can integrate our holomorphic anomaly 
equation for n = 1, 

Hf - hz°-" • (4-ii) 
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with the results listed in Table 2 for Z^;i(^),s. For the degenerated instantons 
D(g,h, 1) we find 

^2;l      =     Z2;1+x(M2)Zo;l 

Z-,,i    =    Zaji + ^x(M3)Zo;i - ^Z1;i (4.12) 

Z4;l -        Z4;l   +   -X(M4)Z0;1   +   —Z2;1   -   -Z3;l 

^5;1     =     Z5]i + —x(M5)Zo;l - ^-^^2;1 + ^^3;1 " ^^4,1    , 

with the orbifold Euler number of the moduli space of genus g stable curves, 

x{Mg) — 2Q(2Q-2)! (^ — 2). In fact these forms of the degenerated instantons 
D(g,h,l) (0 < h < g) coincide with recently established results in [11][23], 
where we have 

^;i(?) = EC^-/i,l)ZM(g)   , (4.13) 

with the coefficients determined by 

{tamf^tc^e* . ,4,4) 

Zo 1=    9 + 36^ + 126g2 4- 36093 + 945(74 + 2268g5 + 5166(76 + 11160g7 + 
i=-18g3 - 72g4 - 252<f - 77V - 2106g7 - 5292g8 - 1256V + 

Z, =   27(7b H-108^ + 378gb + 122V + 341 Vu + 8820(7il + 21663g12 + • 
Z, i^-SG^ - 14Vu - 504^11 - 1710g12 - 4860g16 - 12852^i4 + 
Z* !=   45(712 + ISOg13 + 630g14 + 2232<715 + 6453gle, + 17388g17 + 
Z* i = -54^15 - 216g16 - 756^17 - 2790g18 - 8190^19 - 22428g20 + • • • 

Table 2. Solutions of the holomorphic anomaly equation 4.11. These 
are related to Zg-i by 4.12. 

We note in Table 2 that for the first three terms in the expansion we 
have 

Z9-M = (-l)fix(Sym5(P1))(V + 36^+1 + 126^+2 + • • •) (4.15) 

where x(Sym^(P1)) represents the Euler number of Sym^(P1) = Pp.  This 
is also in agreement with the argument in [11] for counting curves with 



200 HOLOMORPHIC ANOMALY EQUATION ... 

moduli. From the fourth term in the series expansion 4.15 contributions 
from the singular fibers come in, which somehow generalize the situation we 
encountered in the case of g = 0. 

For the first few of ^;i(g)'s we have determined explicitly the forms 
of the polynomials P2g{4>, E2, E^, EQ). We find that if we use the following 
relations 

3E2(q
3)    =    24>(q)2 + E2(q)  ,   9E^q3) = 10^)4 - E4(q)   , 

27E6(q
3)    =    35<f>(q)6-7E4(q)<l>(g)2-E6(q)  , (4.16) 

they summarize into concise forms; 

_  qleEa(3t,t7) _ i      , 
^   -   —^3)12— '       zi;i - 12^^ )Zo;1 

Z2;i    =    Y^(5E2(q
3)2 + E4(q3))Z0.1 (4.17) 

Z3;i    =    ^^(35E2(q:i)3 + 21E2(q
3)E4(q

3)+4E6(q3))Zo]l    . 

Proposition 4.2 The solutions of the holomorphic anomaly equation 4-11 
take the following general form 

Zg;i{q) = P2g{E2{q3),Ei{q3),E(i{q3)) Z^{q)   , 

where P2g is a quasi-modular form of weight 2g. 

The reason of this simplification will be explained in the next section. 
Here for later use we define Gg;i by 

Z9.1(q) = eE8(3t,t1)gg.tl(q3)   , (4.18) 

which should count the genus g pseudo-sections made from a section, say 
the zero section. We verify directly that the functions Qg-i^s depend on q 
through q3 and have the following expansions; 

0o;i =       1       + 12<73+ 90 q6 + 520 q9 + 2535 q12 + 10908 q15 + ••• 
g^ = -2q3    -SOq6  - 260q9 - 1690q12 - 9090q15 - 42614q18 -  ••• 
g^ =      3qQ   +52q9 + 507 q12 + 3636 q15 + 21307 g18 + 107772 q21 + • • • 
^ = -4g9   -78g12 - 840g15 - 6570g18 - 41580q21 - 225432g24 - ••• 
£4^=    5g12   +108g15 + 1271 q18 + 10756 g21 + 73083 g24 + •■• 
g^ = -6g15 - 142g18 - 1812g21  - 16494q24 - 119770q27 - ••• (4.19) 

In the next section we will discuss geometric interpretation of the numbers 
in the above expansions. 
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5      Discussions 

5.1      Counting BPS states 

In this section we would like to discuss relations of our results to the very 
interesting proposals made in the recent works by Gopakumar and Vafa 
[10][11]. 

It is known in physics that the genus g prepotential Fg has a mean- 
ing as the genus g topological partition function of the twisted Calabi-Yau 
sigma model in the type IIA string theory and it does not receive the string 
perturbative corrections due to the fact that the dilaton belongs to the hy- 
permultiplet in the type IIA string. Since the heterotic/type II string duality 
connects the heterotic dilaton field to one of the vectormultiplet moduli in 
the type IIA side, we may expect to extract the non-perturbative properties 
in the type IIA side from the perturbation theory in the heterotic string. 
In our case of the topological amplitude Fg, Gopakumar and Vafa [10][11] 
have found that it can be derived from the one loop integral in the heterotic 
side. They found that the Schwinger one-loop calculation for a particle 
in a constant background electro-magnetic filed applied to the BPS states 
with spin {J1J2) under 50(4) = SU(2)L x SU(2)R determines the higher 
genus Fg. According to [11] the contribution of each BPS state with spin 
O'l? J2) t0 Fg is determined by the following decomposition with respect to 
SU{2)L C SU{2)L x SU{2)R] 

(Jij2) = f:ar[(1-)®2(0)r  , (5.1) 

where we allow ar formally to be negative integer. Then the topological 
partition function has the following expression 

E^-2^= E    E   EMr)/  7(2*4)     e-Mwmim) , 
(5.2) 

where A measures the central charge of the BPS state T and the summa- 
tion over m is explained as the central charge of the fifth dimension which 
originates in the M-theory. In the type IIA theory the central charge A is 
measured by the Kahler classes of the corresponding Calabi-Yau manifolds, 
and after the integration we arrive at 

00 -1    / i\\2r-2 

5;A2'-2
W=    £    E£«?r(2sinT)    f,    M 

<?=0 0^r1eH2{X,Z)  r>0  k>0 K / 
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where a^ represents the summation of ar(r) over the BPS states F with 
charge 77, and qkl1 = exp(—27r(kr],K)) with K = tiJi + • • • + thi,iJhi,i the 
Kahler class. Expanding 5.3 with respect to A we obtain 

^(9) =        E E E«f k29-SCh(g - h, l)g*  , (5.4) 
0^77G^2(X,Z)  ^=0   k\Ti 

which is the general form proposed in [11] and we have reproduced in our 
special case (, see 4.12 and 4.14). 

In the type IIA picture the BPS state appears as the D2 brane with 
the flat U(l) connection. Let us suppose that a genus g curve in a Calabi- 
Yau manifold comes with the moduli of the deformation Ai. Together with 
the Jacobian of each curve we have the fiber space M -> M for the BPS 
states. Gopakumar and Vafa argued based on the M-theory that in this 
case the counting BPS states in 5.2 is interpreted by the Lefschetz SX(2, C) 
decomposition of the cohomology of the moduli space Ai. They propose the 
Lefschetz decomposition with respect to the fiber SL(2, C)L and the base 
SX(2, C)R of the cohomology H*(M). Once we assume existence of these 
SX(2, C) actions1 , we may arrange this decomposition as 

I9®Rg + h-i ® R9-i + -- + Io®Ro  , (5.5) 

where Ik := [(^) © 2(0)](S)/c. Identifying this decomposition with that in 5.1, 
they propose 

<Xk = x(Rk)    (fc = 0,--->i7), (5.6) 

where x(Rk) is the dimensions of the SL(2, C)R representations in R^ 
weighted with (—1)2^R. As argued in [11] we can determine ctg and ao easily 
by the geometric Euler numbers; 

<*g = (-l)dx(M)  ,   ao = (-lAiM)  , (5.7) 

where d — dimA^ and d = dinxM. 

Now let us consider our genus g pseudo-sections with a fixed section, 
say the zero section. Counting BPS states for these pseudo-sections are 
summarized in the generating function Qg-i in 4.19. As we have seen in 
the last section the genus g pseudo-sections come with the moduli M(g) := 
Sym^(P1) = Pg. Furthermore the data of the Jacobian may be specified by 

^ne of the Lefschetz 5L(25 C) actions is the multiplication of the Kahler form k. Since 
our moduli spaces have a natural fibration structure TT : M(g) —> M.(g) with a section 6, 
we may decompose the Kahler class k into kL = (k — TT* (*,*(&))) and kn = L*(k). This 
decomposition defines the 5L(2, C)L X 5L(2, C)R actions. We would like to thank Y. 
Shimizu for pointing this out to us. 
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g points on 5, one for each elliptic fiber. Therefore we naturally come to the 
space 

M{g) = SfmiS)  , (5.8) 

where ~ represents the resolution of the orbifold singularities via the Hilbert 
scheme of g points on 5, which we denote S^. The construction of the 
Lefschetz actions on this space and making the decomposition 5.5 would be 
interesting problem, however we already have predictions for the decompo- 
sition; 

Ig X x{Rg) + Ig-l X X(^-l) + ■ ■ ■ + /o * X(#o)   • (5-9) 

Namely we can read 5.9 in our expansion 4.19: 

g = l -2/i + 12/o 
g = 2 3/2-30/i+90/o 
g = 3 -4/3 + 52/2 - 260/1 + 520/o (5.10) 

2 = 4 5/4 - 78/3 + 507/2 - 1690/i + 2535/Q 

g = 5 -6/5 + 108h - 840/3 + 3636/2 - 9090h + 10908/Q 

In the next subsection we propose a natural generalization of Gottsche's 
formula for the Poincare polynomials of S^ and reproduce the above pre- 
dictions. Our generalization of Gottsche's formula suffices to determine the 
decomposition 5.5. 

5.2      Gottsche's formula with 57,(2, C)L x SL{2, C)R 

Gottsche's formula describes the generating function for the Poincare poly- 
nomials of the Hilbert scheme of g points on a surface S. In our case it 
appears as a natural resolution S^ of the symmetric product Sym^(5) for 
the rational elliptic surface. If we assume the existence of the Lefschetz ac- 
tions SL(2: C)L x 51/(2, C)^, then the Poincare polynomial can be written 

Pt(SW) = (&) TrH.{s[9])t
2^+h,R) (5.H) 

in terms of the diagonal 5L(2, C) action. Then the problem is to recover 
both left and right charges in the above formula, namely, ^,^(5^) = 

(tgLt
9

R)Trt^3,Lt^3,R. In the case of g = 1, we note that the decomposition is 
unique as follows 

(^ 1)L,R © 8(0,0)L)jR = (1)L+R 8 9(0)L+fl (5.12) 
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Now let us recall Gottsche's formula[9] 

G(t,q) = TT rn   • (5.13) 

As has been interpreted in [26] there is a close relation between (co)homology 
elements and the bosonic oscillators associated to each elements in H*(S). 
Under this correspondence the classical cohomology is represented by the 
lowest modes, say ak(—l) (k = 1, • • •, 12), and generate the symmetric prod- 
uct of H*(S). The higher mode excitations ak{—m) come from the singular 
strata of the point configurations. Here it is natural to assume that the 
higher mode excitation a/c(—m) have the same spin as the lowest mode 
%(—!), whose spin contents are uniquely determined in 5.12. Under this 
assumption it is easy to recover the 51/(2, C)^ x 51/(2, C)R spin weights in 
Gottsche's formula; 

G{tL,tR,q)    =     J]|__ 
(tLtR)n-lqn) (1 - (*L*/0n+V) 

1 
)n qn)Sj> (1 - «i(«L«fl)n-1?n) (1 - tR(tLtR)n-lqn) (1 - (tLtR)nqny 

(5.14) 

which provides us the Poincare polynomial PtL,tR(S^) as the coefficient of 
q9. Then our predictions (5.10) for the Lefschetz decomposition should be 
verified in the formula 

(d5i*"-(sW)L~, - M^+bf 5_i 
+x(Rg-i) (tL + Y + 2)     +--- + x{Ra) ■ 

(5.15) 

For lower #, we have found complete agreements of our predictions from the 
generating functions Qg^ with those coming from the above formula. For 
example, for g — 3 we obtain from 5.15 

- 4 [tL + -^ + 2^   + 52 (tL + i- + 2)    - 260 (tL + i- + 2\ + 520 , 

which should be compared with 5.10. We may summarize the above results 
into a formula relating Gottsche's formula with our generating functions 
4.18; 

G(tL,-l,-^) = X;^;i(93)f^ + r + 2)P   ' (5-16) tL
 g>0 \ IL J 
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5.3      Topological string partition function 

So far we have fixed a section to discuss the moduli space of the curves 
Cg. To recover the contributions from the Mordell-Weil lattice, we simply 
need to multiply the Es theta function to the functions we have discussed. 
Therefore for the BPS state counting on the rational elliptic surface S we 

3 

consider the function QE^t^t^G^tL, —1, j-) in terms of the generalized 
Gottsche's formula. Now it is easy to deduce the following relation; 

e£8(3t,<7)G(-tL,-i,A = £^i(<7)(-^-r + 2V' 
^ s>o tL 

=   ^Z5;1(g)A2^2(2sin^)2  ,    (5.17) 

where ti = elA and we have used the form of the degenerated instantons 
3 

given by 4.13. This implies the function 9^(3^,t^)G(—ti,, —1, ^-) provides 
us the all genus topological partition function. We may write 5.17 explicitly 
by 

q  ^¥W~ n (1 - ^)2(1 - ig3n)2 - T.ZMX       (28m-)    . 
(5.18) 

Here we recognize the helicity generating function in the left hand side. Thus 
the topological partition function has a simple but suggestive form that the 
genus zero function ZQ-I multiplied by the helicity generating function, which 
is actually the starting point of the analysis done in [11]. 

Here for completeness we prove the compatibility of the above result 5.17 
with our holomorphic anomaly equation 4.11. For this purpose we note the 
following identity which can be proved in a straightforward way; 

U^J n (i _ eixqnni _ e^n)2 = exp l^2 L -irE2k{q) { 
(5.19) 

The compatibility may be easily verified if we use Si^l^3) = 2(/)(g)2 + fyiq) 
found in 4.16 and the value ((2) = z^-, since we have ^ for the both side 
of 5.18 after the differentiation with respect to E2{q). Also the formula 5.19 
explains the simplification we have encountered in Proposition 4.2. Namely 
we have 

^Z9;Hg)A2^Zo;1(g)exp|2^^E2fc(Q
3)(Ayfcj    .       (5.20) 
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Appendix. Picard-Fuchs equations of the mirror Xv 

Following [12] [13] the Picard-Fuchs differential operators about the large 
complex structure limit are determined to be 

Vi    =   90* - Wx0y - 66xez + 246z0y - 16^ - 27x{36x + 6y + 29, + 2) 
x(30x + 0y + 29z + 1) - Zy{9x - 89z){9y - 9Z) 
+z{mx + 320z + 32) (30* + 0^ + 202 + 1) 

V2   =   e2
y + y(39x + 9y + 29z + l)(9y-9z) 

Vs   =   {9z-9y)9z-z(Wx + 9y + 29z + 2){Wx + 9y + 29z + l) 

where 9X — x-^, etc. Looking at the characteristic variety of this system we 
have determined the discriminant 3.21. 
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