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Abstract 

We study the large N limit of matrix models of M5-branes, or (2,0) 
six-dimensional superconformal field theories, by making use of the 
Bulk/Boundary correspondence. Our emphasis is on the relation be- 
tween the near-horizon limit of branes and the light-like limit of M- 
theory. In particular we discuss a conformal symmetry in the DO + D4 
system, and interpret it as a conformal symmetry in the discrete light- 
cone formulation of M5-branes. We also compute two-point functions 
of scalars by applying the conjecture for the AdS/CFT correspondence 
to the near-horizon geometry of boosted M5-branes. We find an ex- 
pected result up to a point subtle, but irrelevant to the IR behavior of 
the theory Our analysis matches with the Seiberg and Sen's argument 
of a justification for the matrix model of M-theory 
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1    Introduction 

The relation between gravity and gauge theory has been explored extensively 
for recent a few years. There seem to be two branches in such a direction. 
The one is matrix models proposed by [1, 2] for M-theory and by [3] for type 
IIB strin g theory as non-perturbative formulations of string theories. The 
other is the AdS/CFT correspondence, or more generally the Bulk/Boundary 
correspondence, of [4, 5], and it has been elaborated in [6, 7]. 

Since both relations may originate from the s-t channel duality, or equiva- 
lently from the UV/IR correspondence [8, 9], of string theory, one can expect 
that there is a close relation between the M(atrix) conjecture of [1, 2] and 
the Maldacena conjecture of [4, 5]. In fact the Seiberg-Sen limit [10, 11] 
for the matrix model of M-theory turns out to be in good harmony with 
the near-horizon limit of Maldacena, as discussed by Hyun and Kiem [12]. 
Thus it is expected that the Bulk/Boundary correspondenc e is utilized as 
an effective tool to analyze the large N limit of matrix models. Indeed in 
[13] Jevicki and Yoneya considered the large N limit of the matrix model of 
M-theory from this viewpoint, and emphasized the existence of a conformal 
symm etry, called generalized conformal symmetry [14], which might play 
an important role in the understanding of matrix models. 

In the present paper, we analyze the large TV limit of matrix models 
of M5-branes, or six-dimensional (2,0) super conformal field theories [15], 
by making combined use of the M(atrix) and Maldacena conjectures. Since 
these matrix models are conjectured to describe, not quantum gravities, but 
local quantum field theories, it is expected to be simpler than the matrix 
model of M-theory for testing the M(atrix) conjecture (e.g. covariance etc.). 
Thus they may be helpful for the better u nderstanding of the matrix model 
of M-theory. 

We give a brief review of matrix models of M5-branes, or six-dimensional 
(2,0) superconformal field theories in sect. 2. Then we can find that the 
geometry which we should consider is the near-horizon geometry of DO + 
D4 bound states. We an alyze it in sect. 3, and argue in particular a 
generalized conformal symmetry of the type discussed in [13]. We also give 
the near-horizon geometry of "boosted" M5-branes, which is the M-theory 
counterpart of the near-horizon g eometry of DO + D4 bound states. A 
certain effective action of a particle is calculated in two ways; one way from 
'matrix models' and the other way from 'the discrete light-cone quantization 
(or DLCQ) of M-theory'. We confirm agreement of both ways. 

This agreement is naturally explained from the argument in sect. 4. We 
study in detail a relation between the near-horizon limit and the Seiberg- 
Sen limit in the case of the DLCQ of M5-branes. It should be stressed that, 
assuming the Maldac ena's conjecture for our problem, we can justify the 
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Seiberg and Sen's argument more strongly than in the case of the DLCQ 
of M-theory. This is because we take the decoupling limit for "boosted" 
M5-branes (corresponding to M-theory) as well as for D 0 + D4 bound 
states (corresponding to matrix model), and thus it is sufficient in the large 
N limit only to consider the classical supergravities on their near-horizon 
geometries. Furthermore, since in our case 'M-theory' itself has a conformal 
symme try, we can clarify an eleven-dimensional origin of the generalized 
conformal symmetry by considering an alternative representation for the 
one given in sect. 3. 

In sect. 5 we calculate two-point functions of the DLCQ of (2,0) su- 
perconformal theories by applying the conjecture of [6, 7] for the AdS/CFT 
correspondence to our problem, and find an expected result up to a subtle 
correction w hich can be discarded concerning the IR behavior of the theory. 

Sect. 6 is devoted to conclusions and discussions. In Appendix A we 
extend some results in sect. 3 to more general cases. Finally in Appendix 
B we give some technical details to solve the differential equation for scalars 
in sect. 5. 

2    Preliminaries 

We begin with a brief review of matrix models of M5-branes, or (2,0) super- 
conformal field theories, [15, 16]. 

Let us consider M-theory in the background of longitudinal M5-branes. 
According to the M(atrix) conjecture of [1, 2], its DLCQ description is ex- 
pected to be a quantum mechanics of the DO + D4 bound states [18]. It 
is a U(N) super Yang-Mills quantum mechanics with an adjoint hypermul- 
tiplet and k fundamental hypermultiplets. DO-branes moving away from 
D4-branes describe supergravitons in this background. 

Now for M5-branes to decouple from the bulk, we take the limit that 
the eleven dimensional Planck length lp goes to zero. Thus in this limit 
DO-branes are confined in the D4-branes. In terms of the super Yang-Mills 
quantum mechanics, this limit corresponds to QYM -» oo, and the Higgs 
branch decouples from the Coulomb branch. Furthermore it is known that 
the Higgs branch is equivalent to the moduli space of N U(k) Yang-Mil 
Is instantons. This is intuitively because a DO-brane can be considered as 
the zero size limit of a 4D Yang-Mills instanton on the 5D worldvolume 
of D4-branes. In fact the Higgs branch gives the ADHM construction of 
instantons, 

[X,X^-[X,X^ + qiqt-^qi = 0, 

[X,X} + qiq
i = 0. 
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Thus we are led to the conjecture that the DLCQ of M5-branes, or (2,0) su- 
perconformal theories, can be described by a quantum mechanics on certain 
instanton moduli spaces [15]. 

XM 

Figure 1: A DO -f- D4 bound state: An adjoint hypermultiplet (two complex 
scalars X — X0 + iX1,^ = X2 + iX3) comes from 0-0 strings, while the 
fundamental hypermultiplets {qi,q\ i = 1, • • ■, k) are supplied from 0-4 and 
4-0 string s. 

3    Brane solutions in the near-horizon limit 

Next we consider the supergravity solution which corresponds to the large 
TV limit of matrix models of M5-branes, or (2,0) superconformal theories. It 
is expected to be the near-horizon geometry of the DO + D4 bound states, 
by taking into account the argument in the previous section and the Mal- 
dacena's conjecture of [4, 5]. This geometry enjoys a generalized con formal 
symmetry proposed in [13, 14], and just in the same way as the work of 
Jevicki and Yoneya [13], it determines the probe DO-brane action in the 
background of a source with a large number of DO- and D4-branes. We also 
consider the M-theory counterpart of the DO + D4 system, and it turns 
out to be the near-horizon geometry of "boosted" M5-branes constructed in 
[19]. We calculate a particle action with fixed light-cone mome ntum in this 
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background, and find agreement with the probe DO-brane action determined 
by the generalized conformal symmetry. 

3.1    DO + D4 bound states 

Let us consider the type IIA theory in the background of Qo DO-branes and 
(34 D4-branes. Its low energy behavior is described by the supergravity on 
the following geometry: 

ds2
w    =    -^!?+.[^dxl + jHjr4(dr2 + r2dnl), 

V^0^4        V ^4 

Ao   =   ^(l-ffo-1), r (1) 

where 0 is a dilaton and AQ is a RR vector potential. a;|| denotes the spatial 
coordinates xl (i — 1,2,3,4) parallel to D4-branes, and r and JI4 denote 
the polar coordinates transverse to D4-branes. DO-branes sit at a point in 
:E||-directions on D4-branes. The parameters ls and gs = e^^00^ are the 
string length and the string coupling constant, respectively. 

We now take the near-horizon limit r —>► 0 and ls —> 0 (and also gs —> 0 
and £|| -> 0) as in [4, 5], keeping fixed the following three quantities: 

^    ?•    r (2) 

Here U corresponds to the energy of open strings stretched between D- 
branes. gs/h coincides with the Yang-Mills coupling constant in three di- 
mensions, but we are not sure its meaning in our context. In this limit, the 
above solution becomes 

ds2
l0   =   Z2 \ u2

j2 
[-Hdt+\ [Q* (dx\\)2 + H 

{ Q4 \ is ) 

fdU2       J02M 

e"2*   =   QlH-*, 

A0   =   -lsQ4UH-2, 

rr         9s VQoQA 
Is         U       ' 

(3) 

where we have gauged away a constant part of AQ. If if in the above equation 
were constant, the spacetime would be AdS2 x S'4 x R4 with radius ls\/ll.

1 

In order to trust the supergravity solution (3), the curvature R oc U/(gsls 

XVQOQA) = l72H~1 and the effective string coupling e^ must be small. 
These conditions are given by R <^i lj2 and e^ <C 1, and thus we have 

1       1 1 

yQlQS <ZU «f(QoQ4)2. (4) 

Although this metric is not AdS2, it can be written as {(Weyl factor) (AdS2 x54)} xR4 
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Hence, for large QQ and Q4, we have wide range to trust the supergravity 
solution. 

Similarly to [13], it is easy to show that this metric and the dilaton are 
invariant under the transformations, the time translation SH, the dilatation 
SD and the special conformal transformation SK' 

SHt =     1, Sot   = -t, SKt   = t2      (3±)2 Q0Q4 
1        {is )     2(74 

SHU = 0, SDU   = u, 8KU   = 2tU, 
^H 9s = 0, SDOS     = 9 s, bugs  = 2tgs. 

(5) 
They form an 517(1,1) algebra, 

[8D, $H] = 8H,        [8D, 8 K] = SK,        [8H, 8K} = 28D. (6) 

Note that H in eq. (3) is invariant under these transformations. In the solu- 
tion (3) and the 5i7(l, 1) transformation (5), gs and Qo appear only through 
the combination gsVQo excePt for the dx% part of the metric. Therefore, 
if we restrict ourselves at the origin x\\ = 0, the transformation laws for gs 

can be replaced with those for y/Q0. In the next section, we will utilize this 
property and give an alternative representation of this transformation. In 
particular we will discuss its meaning from the eleven-dimensional point of 
view. 

Next let us consider the scattering of a probe DO-brane in the background 
of the source DO + D4 system. If we consider only the motion along the radial 
direction f7, the effective action can be determined by the above 5C/(1,1) 
symmetry. Actually the invariance under the translation <5#, the dilatation 
dp and the time inversion restricts the effective action into the form 

(7) 

with an arbitrary function F. Here we assumed that the effective action is 
independent of the time derivative of the string coupling constant gs. Then, 
from the invariance under the special conformal transformation, we can fix 
the form of the effective action into 

Seff    =    jdt r^bnwA f(H)U, 

A 2w-1«. H^
2
    nn (9s\2U2 m 

with an arbitrary function f(H).  Thus the effective action of a probe DO- 
brane moving away from the source DO + D4 -branes is determined as 

Seff = I dt (l - VT^V) f(H) U. (9) 
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This effective action would be that of matrix models of M5-branes in the 
large Qo (and Q4) limit. Next we will show that it coincides with the one 
derived from the DLCQ of M-theory. 

3.2    M5 branes boosted along the longitudinal direction 

In the case of pure DO-branes [13], they found agreement between the effec- 
tive action for a probe DO-brane determined by the generalized conformal 
symmetry (corresponding to the matrix model) and a particle action [20] 
with fixed light-cone momentum in the plane-fronted wave background, i.e., 
the Aichelburg-Sexl metric (corresponding to the DLCQ of M-th eory). From 
the viewpoint of the Bulk/Boundary correspondence, the DLCQ of (large N) 
M5-branes, or (2,0) superconformal theories, is expected to be described by 
the near-horizon limit of "longitudinally boosted" M5-branes. Although the 
M5-brane solution is isometric in the longitudinal directions and thus it is 
boost invariant, one can define "longitudinally boosted" M5-branes as an 
extreme limit of longitudinally boosted non-extreme M5-branes. 

Let us start from a non-extreme, or non-BPS, N coincident M5-brane 
solution [19] with vanishing three-form 

ds2
Mb    =    H-z (-fdt2 + (dxn)2 + dxl)+Hl{f-ldr2 + r2dnl), 

nNll all ,    x 
a =  1 + —/,     / = I-HF, (10) 

which is a Schwarzschild type deformation of the extreme solution with a 
non-extremality parameter /i, such that \L —> 0 corresponds to the BPS- 
saturated limit. To compare with the matrix model, or the DO + D4 system, 
let us compactify along a longitudinal direction, say sc11, with radius i? and 
boost it along that direction by 

x11' 
cosh/3    sinh/3 
sinh (3    cosh (3 x (ii) 

Taking the extreme limit fi —> 0 and boosting infinitely /3 —> 00 with fixed 
Q = /ie^, the first two terms in (10) map to 

-fdt2 + {dx11)2    =    -{dt1)2 + {dx11')2 + ^f(cosh/3dt - sinh/3^11)2 

O/3 

->    dx+dx' + ^§-{dx-)2, (12) 

with the light-cone coordinates x± = x11 ± t'. Then we obtain the longitu- 
dinally boosted N coincident M5-brane metric 

ds2
Mb - ff-i Idx+dx- + ^f(dx-)2 + dxl\ +m{dr2 + r2dnl).     (13) 
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Under this infinite boost, the space-like compactification along x11 direction 
is changed to the almost light-like compactification with radius Re^3. There- 
fore, in order to have a finite light-like radius, the space-like circle must be 
shrunk to a point, i.e., R —> 0, as discussed in [10, 11]. 

In the near-horizon limit, r —> 0 and lp —> 0 with fixed U^ = r/lp, the 
solution (13) becomes 

I2 

ds2       -    ~p 

(TTN)* 

I2 

(TTN)* 
+ -^T 

TJ
2
 H-r+Jr- 4- ^ (dx )  _L. r/2 ^2 

uM5ax  ax   -+- —g —3       h aM5cJrz;|| 

(14) 

Here we introduced a new boost parameter Q and the finite light-like radius 
R by Q/i?6 = Q/lp. Note that the light-like radius R is the only finite 
dimensionful parameter of this system. 

If the background metric 

dsii — <7++(<i£+)2 + 2gjr-dxJr dx~ + g {dx~)2 + gijdxldx\ (15) 

with x± — x11 ± x0 and i:j = 1, 2, • • •, 9, is independent of a;-, then the 
light-like momentum p_ = dC/dx~ is a constant in time r = ^+/2, and the 
dynamics is well described by the Routhian [20], 

-U   =    -m^-g^xV'x" -p-x   |m^o, 

This is a Hamiltonian for X- and a Lagrangian for the other variables. In 
our case, p- — 1/R and if we restrict ourselves to the motion along the 
radial direction [/, i.e., in = O4 = 0, then we have 

Q    \    V     R&UM, 
drn = dT^m i-Ji-^S-vi.). (17) 

The relations between the variables in the DO + D4 and the M5 systems 
will be naturally explained in the next section, and the result is given by 

(V, 2«, ^; Qo, Q4, -) = (RUhs, ^1 5r 5 Q. ^» «)      ■     (18) 

Under this identification, the Routhian (17) coincides with the probe action 
(9) with f(H) — H~2Q~1. At first sight, the correspondence of the time 
t in ten dimensions and the light-cone time x+ in eleven dimensions looks 
somewhat mysterious, but as we will discuss in the next section, it turns out 
to orginate from the noncommutativity of two procedures, i.e., to take the 
near-horizon limit and to uplift the ten-dimensional metric. 
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4    The light-like limit and the near-horizon limit 

As discussed in the work of Hyun and Kiem [12], the scaling limits given by 
Seiberg [10] and Sen [11] are in good harmony with the near-horizon limits in 
the AdS/CFT correspondence. Here we will argue the relationship between 
these two kinds of limits in detail, in the case of the light-cone description 
of M5-branes, or (2,0) superconformal field theories. 

We start with a brief review of the arguments given in [10] and [11]. For 
later use, it is enough to discuss only the case of compactification on a circle. 

Now let us compactify M-theory on a light-like circle, 

x~ ~x~- +2ITR, (19) 

where we defined the light-like coordinates x± = -y=(x11 ± t). 

The light-like compactification (19) may be viewed as an infinite boost 
limit (along the x11-direction) of the compactification on a space-like circle, 

x11 ~xn+2>KR. (20) 

In fact one can easily find that it is obtained as an R -> 0 limit of a large 

boost with parameter (3 = R/yR2 + 2R2 [10]. We should, however, note 
that it is not trivial whether this limit really exists or not in general [21].2 

Assuming the Lorenz invariance and the existence of the above light- 
like limit for M-theory, we can map M-theory on a space-like circle (20) to 
another M-theory on a light-like circle (19) by an infinite boost along the 
longitudinal di rection and by rescaling the parameters of the theory. Let us 
call the former theory M with Planck length /p, and the latter M with lp. 

Now since we are interested in a sector with fixed longitudinal momentum 
Pn = N/R for M, and fixed light-cone momentum P_ = N/R for M, the 

energy scale of the theory is R/lp for M (for small i? or in the IMF) and 
R/lp2 for M, respectively. Therefore the Hamiltonian o f these two theories 
match up in the scaling limit, 

lp -> 0, (21) 

R/lp
2 = R/l2 = fixed. 

The transverse directions are not affected by a longitudinal boost, and thus 
we should relate the transverse coordinates xl of M to those x1 of M via 

x^lp = x'/lp. (22) 

2The author in [22] argued some evidences for the existence of the light-like limit of 
M-theory. 



156 AdS7/CFT6 CORRESPONDENCE... 

From the scaling limit (21), M reduces to type IIA theory, denoted by 11 A, 
with the string coupling gs and the string length /s, 

g. = {Rltp?12 = R3/HR/l2
p)

3/4 -> 0, 
I? = (R/fp3)-1 - fl1/2(ie//2)-3/2 ^ 0. (23) 

Thus the DLCQ of M-theory is described by the low energy effective theory 
of DO-branes in type IIA theory. 

Now it is rather easy to see the compatibility of the above scaling limit 
with the near-horizon limit in [4, 5]. From the relation (22) of transverse 
coordinates, we have for radial coordinates, 

r/lp = r/lp. (24) 

This leads us to the near-horizon limit of Maldacena, 

Is -+ 0, 

r-^0, (25) 

U = r/C = r(R/l3
p) = fixed. 

9
2

YM = 9s/ls3 = (R/lp2)3 = m2
P)3 = Axed 

Thus the scaling limit of Seiberg and Sen is compatible with the near-horizon 
limit employed for DO-branes in the SUGRA/SYM correspondence [5]. 

4.1    DO + D4 bound states and "boosted" M5-branes 

Next we turn to the analysis of the large iV limit of matrix models of M5- 
branes, and develop further the relation between two kinds of limits discussed 
above. It is summarized by a diagram in fig. 2. 

Let us recall the near-horizon geometry of the DO + D4 system, 

\9sJ VQOQA \lsJ     Uz 

+ J92. {(dX1)2 + (dX2)2 + (dX3)2 + (dX4)2} 
V V4 l •'_ 

e"2*    =    (±)   Q^QIU\        A° = -{j))   Qo^ls, (26) 

where U = r/ls , X1 = xl/ls (i = 1, 2, 3,4), and we are taking the limit 

h -> 0,        gs -+ 0, 

r->0,        ^->0, (27) 

U = fixed,  ^ = fixed, X* = fixed. 
Ls 

fll2    -  f2 
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IIA 

near-horizon limit 
of DO + D4 

U -> oo 
(boundary) 

i >- 

M(atrix) conjecture 

M 

near-horizon limit 
of 'boosted' M5 

Bulk/Boundary 
(boundary) 

matrix model 
of (2,0) SCFT 

DLCQ 
of (2,0) SCFT 

Figure 2: The horizontal direction corresponds to the M(atrix) conjecture, 
while the vertical direction corresponds to the Maldacena conjecture. We 
discuss the matrix model and the DLCQ of M5-branes in the large N limit 
by making use of the Bulk/Boundary c orrespondence. 

From the viewpoint of the Seiberg and Sen's argument, this system resides on 
//A-theory. As we will show below, the M-theory counterpart of this system 
is the near-horizon geometry of M5-branes boosted along the longitudinal 
direction, as already discussed in the previous section. 

Now we reconsider the near-horizon limit (27) in view of the Seiberg and 
Sen's argument. First from the relations (23) for the string coupling and the 
string length, we find 

£■ = RV2(R/l2
p)V

2. 

In order to keep gs/ls fixed, we take the decoupling limit 

lp = R^R5^ -» 0. 

(28) 

(29) 

Here the dependence on R is determined purely on dimensional grounds. We 
have fixed the constant of proportionality to be 1 for brevity. As a result, 
we have 

il = — 
Is   ~ & 

(30) 

which is easily understood from the fact that there is now only one dimen- 
sionful constant R in this scaling limit. 

We should emphasize that the Yang-Mills coupling of the quantum me- 
chanics for the DO + D4 system [18] goes to infinity, 

gYM <XR 
1 -» oo, (31) 
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as opposed to the pure DO-brane case with finite Planck length lp. Thus, in 
this limit, the Coulomb branch decouples from the Higgs branch . In M- 
theory language, M5-branes decouple from the bulk, leaving a six-dimensional 
field theory, without gravity, on the five-brane worldvolume. This matches 
with the observation for matrix models of (2,0) superconformal field theories 

[15]. 

Next let us look at the radial coordinate U and transverse coordinates 
X1. As is given in eq. (25), we have for [/, 

U = R(r/l3
p), (32) 

and for X1 from eq. (22), 

Xi = ^- = xiR1^(R/ll)1^. (33) 

Note that the combination r/lp appeared in eq. (32) has mass dimension 2 
and is nothing other than the variable /7|f5 for "boosted" M5-branes given 
in the previous section. In general cases, all the parameters of M-theory a 
re supposed to be finite, and so is the radial variable U of 7/^4-theory, as 
already indicated in eq. (25). In this case, however, as we are considering 
the decoupling limit of M-theory, we have to take an r —> 0 limit in order to 
keep U fixed. Hence we are led to take the near-horizon limit in M-theory 
as well as in type IIA-theovy: 

lp = ^1/6i?5/6 -> 0, 

r -► 0, (34) 

U2M5 = r/ll= fixed (=R-lU). 

Note also that the transverse coordinates X1 in type IIA-theoiy are finite, 
since eq. (33), in the decoupling limit (29), deduces to 

X1 = R-lx\ (35) 

Applying the Seiberg and Sen's argument to (2,0) superconfomal field 
theories, it must be shown that the DLCQ Hamiltonian of M5-branes in 
M-theory is equal to the Hamiltonian of DO-branes moving on D4-branes in 
type //^4-theory. In our context this statement may be equivalent to show 
that the supergravity action in the near-horizon geometry of M5-branes, 
compactified on a light-like circle, with fixed light-cone momentum coincides 
with the one in the near-horizon geometry of the DO + D4 bound states. 

To show this, it is useful to uplift the near-horizon geometry of the DO 
+ D4 solution to eleven dimensions. In general the uplifted metric is given 
by [23] 

9 

da?! = e-i*<fa?o + e^{dxn - £ Amdxm)2. (36) 
m=0 
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In the present case, this amounts to 

uSu    —    /s 2JL-drdx- + Qo_Qil3(dx-)2 

RQT 
RU 

R2U2 
or 
u2 (du2 + u2dn{J 

(37) + ^{(dX1)2 + (dX2)2 + (dX3)2 + (dXA)2} 

where we have defined r = i?t, x~ = x11 //s, and used the relation, ls/gs — R, 
in the scaling limit discussed above. 

Using the relations (34) and (35) between the coordinates in IIA- and M- 
theories, we can rewrite the eleven dimensional metric to 

dsu c .UA/T^        -,   _       ^0^4        / i   —\2       ^4 2^drdx- + ^r-(dx-)2 + $- UdU2
m + U2

M^l) 
QA n UM5 UM5 

+ % Udx1)2 + (dx2)2 + (dx3)2 + (dx4)2} (38) 

This is exactly the metric (14) of "longitudinally boosted" M5-branes given 
in the previous section.   Note that the uplifted metric is written in terms 

~2 
of only the quantities in M-theory except for the overall coefficient ls , al- 
though it is originally described by only the quantities in LL4-theory. Since 

~ 2 
the overall coefficient ls is cancelled in the action, we can replace it with the 
square of the Planck length 1% of M-theory. Let us see it more precisely and 

show the equivalence of the IIA action to the M-theory action. Concentrat- 
ing on the Einstein-Hilbert term in the action, the supergravity action for 
IIA-theoiy is given by 

:IIA ^e-^Ris) .gv.e -«- = —L, /       dx11 / dl0xJg(s)e-2*R(s\ 

(39) 
where the superscript (s) denotes the string metric of (26). 

The action (39) can be rewritten as 

r27v 

-.1 
2-nl 

ilIA 
1 rin r i  
-» /     dx' / d^xUgWe-2*^ 
-C Jo J V 

InL   JO J V 
(40) 

where the superscript (11) indicates the uplifted eleven dimensional metric 
of (38). 

r2 
Now it is clear from the above eq.   (40) that the overall coefficient ls   of 

~ 9 
the metric (38) is cancelled by the constant l/ls    in front of the action. 
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Thus the r.h.s of the eq.  (40) is equal to the M-theory action SM, that is, 

Some remarks are in order: 

(i) Scrutinizing the uplifted metric (38), we can find that the time t in IIA- 
theory gets mapped to the light-cone time r in M-theory. This is favorable 
for the DLCQ interpretaion of the matrix model of M-theory. The cru cial 
point here is that we first take the near-horizon limit and then uplift the 
metric to eleven dimensions, but these two procedures do not commute, i.e., 
near-horizon limit + uplifting ^ uplifting + near-horizon limit. If we adopt 
the opposite pro cedure, the time t in //^-theory becomes the usual time, 
not the light-cone time, in M-theory as well. 

(ii) We dropped the constant portion l/gs of the gauge potential ^o in eq. 
(26). This reflects in the identification of xll/ls in IIA-theoiy with x~ in 
M-theory. However it is natural to add it before taking the near-horizon 
limit , since the gauge potential AQ goes to zero at infinity in its presence. 
On the other hand, after taking the near-horizon limit, we should drop it 
away because l/gs is divergent in this limit. Furthermore it is merely a 
choice of the gauge whether we add the constant portion or not. Thus we 
consider it is reasonable to drop l/gs from AQ in the present case. 

(iii) The light-cone coordinate x~(— xn/ls) in M-theory is finite, as it should 
be. The range of x~ is from 0 to 27r, as we can see it from the explanation 

for the equivalence of two actions SIIA and SM. 

(iv) The boundary lies at U = oc for the DO + D4 system, and UM5 — oo 
for the "boosted" M5-branes, respectively. Note that the boundary of the 
DO + D4 system corresponds to that of the "boosted" M5-branes from the 
relation U = R~1U^f5. This is desirable for a 'derivation' of matrix models of 
M5-branes, or (2,0) superconfomal field theories, as can be seen from fig. 2. 

Note also that the effect of the boost,   ntrU—C^"")2? in the uplifted metric 
K   UM5 

(38) becomes negligible approaching to the boundary. Thus this metric takes 
the form of AdS? x S'4 in the light-cone coordinate at the boundary. This 
point will be stressed in the computation of two-point functions in the next 
section. 

4.2    Conformal symmetry 

In the previous section, we showed that there exists a conformal symmetry 
(5) in the DO + D4 system. Here we re-examine it and will give an alternative 
represention for that symmetry, which is valid only at the origin of the 
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transver se space. This representation seems to be suitable for identifying 
the conformal group of the DO + D4 system with a certain subgroup in a 
six dimensional conformal group of M5-branes. 

Now let us rewrite the near-horizon metric (26) of the DO + D4 bound 
states as 

ds2 
10 

-20 

+ .[^{(dX1)2 + (dX2)2 + (dX*)2 + (dX4)2 j 
V Qi L J 

2TT3 
4 u    5 QiU ^n = 

R uzL (41) 

Note that the dependence on R ,or equivalently on gs, appears only through 
the combination R/\/(Jo, except for the transverse part of the metric. There- 
fore if we restrict ourselves at the origin of the transverse space, X1 = 0 (i = 
1,2,3,4)3, the transformation laws for (fs in (5) can be replaced with those 
for T/QQ. Focusing on the special conformal transformations, we obtain as 
an alternative representation, 

SKt 

SKU 

SKVQO 

6KR 

SKX' 

_      2R2U* 
2tU, 

2ts/Ch>, 

0, (or equivalently,     5K9s 

-tit1    (=0). 

(42) 
= 0), 

We would like to remark that although the above symmetry is valid only at 
the origin of the transverse space, this feature matches with the observation 
for the DLCQ of (2,0) superconfomal field theories [16], in which it was 
argued that the states i nvariant under the special conformal symmetry of 
the quantum mechanics must be concentrated completely at the origin of 
the moduli space. 

Next we read off the transformation laws for the coordinates in M-theory 
from the above transformation. The transformation law for x~ = x11 /ls is 
not determined a priori. So we require the conformal invariance, not only 
for the ten dimensi onal metric (41), but also for the uplifted metric (37). 

3Strictly speaking, it is allowed that we are on a three-sphere, (X1)2 -f- (X2)2 4- (X3)2 + 
(X4)2 = c2, where c is a constant. We can, however, shrink the radius c of the 3-sphe re 
to zero by a dilatation. 
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Then we find4 

^ = fe (£) = ?• <43) 

Note that the term QQQ4:/2R
2
U

A
 in Sjct is crucial to obtain this transfor- 

mation law. 

Using the relations between the coordinates in IIA- and M-theories, we get 

^X+    =   - ((X+)2 +   QoQ4   ^ 
2^6^5, 

SKX- 
2Q4 

r/2  ' 
^[/M5   -   X+UMS, (44) 

5^   -    -X+x1    (=0), 

where we redefined the light-cone coordinates r and x~ by X+ = r/i? and 
X~ — Rx", respectively. Here we omitted the transformation law for Qo, 
although it is necessary for the invariance of the eleven dimensional metric 
under t his special conformal transformation. The number of DO-branes, QQ, 

however, appears only in the term    °6
44    (dX~)2 in the eleven dimensional 

Zn  UM5 
metric, and thus it is negligible for large UM5- 

Now we can see that this conformal symmetry is indeed a subgroup of the 
six dimensional conformal group of M5-branes, for large UMS- The special 
conformal transformation of M5-branes is given in [24], 

8X°    =   e%X"-6»(x2 + ^)/2, 

5U   =   -eaXaU, (45) 

where a and ft run from 0 to 5, and N5 is the number of M5-branes. 

Let us look at the special conformal transformation with respect to the 
light-cone time direction, that is, only e_ is nonvanishing in the above trans- 
formation: 

SX+    =    e-(X+)2, 

SU   =   -e'X+U, (46) 

SXi   =   e-X+T, 

where we define X± = ^- (X5 ± X0), and * = 1,2,3,4. 

4It is possible to add an arbitrary constant to this transformation law. As can be seen 
from eq. (46) below, the value of the c onstant should be set to c2/2R, where c is the 
radius of 3-sphere mentioned in the last footnote. 
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When X1 = 0, the special conformal symmetry (46) of M5-branes coin- 
cides with that obtained from the DO 4- D4 system (44) under the identifi- 
cation U = C/M5J X1 = x1, and TTA^S = Q4, up to the term QOQ4:/2R

6
UM5 

in (44) and an irrelevant overall minus sign. For large UMS, QoQ4/2i?6C/^5 

is much smaller than the other terms, in particular, 2Q4:/U^. Hence we 
conclude that the conformal group of the DO + D4 system can be interp 
reted as a subgroup of the six dimensional conformal group of M5-branes 
at the origin of the transverse space, for large UM5I i-e-5 approaching to the 
boundary. Again this result accords with an observation for matrix models 
of (2,0) superconformal f ield theories [16]. 

5    Two-point functions 

We discussed in detail the compatibility of the scaling limit of Seiberg and 
Sen with that of Maldacena in the last section. In particular we gave an 
argument which showed the equivalence of the IIA action (corresponding to 
the matrix model) with the M-theory action (corresponding to the DLCQ) in 
the case of (2,0) superconformal field theories. In this section we compute the 
correlation functions of the DLCQ, or equivalently matrix models, of (2,0) 
superconfomal theories, by using the corr espondence between supergravities 
and boundary field theories [6, 7]. We adopt, in particular, the strategy of 
[6] to the case of the near-horizon geometry of "boosted" M5-branes. As we 
will show below, the results agree with those obtained from matrix models 
of (2,0) superconformal theories [16]. This agreement can be thought of 
as an evidence either for the Maldacena's conjecture of the correspondence 
between supergravities and boundary field theories, or for the M(atrix) c 
onjecture especially in the large N limit. 

Let us begin with a brief review of the AdS/CFT correspondence [4] [6, 7]. 
It is instructive to consider the AdS5/CFT4 correspondence as an example. 

At low energy limit, string theory on D3-brane backgrounds reduces to 
type IIB supergravity in the background of black 3-brane solutions. On the 
other hand, the low energy effective theory of N D3-branes is described by 
J\f = 4 U(N) super Yang-Mi 11s theory on the four dimensional world volume 
[26]. The near-horizon limit of Maldacena [4] is just the low energy limit of 
D3-branes, in which D3-branes decouple from the bulk and the energy of 
open strings stretched between D3-branes is kept fixed. Thus we can expect 
that J\f = 4 D = 4 U(N) SYM theory is described by type IIB supergravity 
on the near-horizon geometry of D3-branes, i.e., AdS^ x S5. In other words, 
type IIB SUGRA on AdS^ x S'5 is a sort of the mas ter field theory of J\f = 4 
D = 4 U(N) SYM theory. In particular, since the loop expansion parameter 
of type IIB SUGRA on AdS5 x S5 is of order l/AT2, the "master field theory" 
of M = 4 U{N) SYM theory is expected to be the classical type IIB SUGRA 
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on AdSs x S*5, in the large N limit. 

Now let us see the more precise correspondence between type IIB SUGRA 
on AdSs x S5 and Af = 4 SYM theory. The former has an 50(2,4) x SU{4) 
symmetry, since the AdS^ space has an 50(2,4) isometry which amounts 
to the four di mensional conformal group at the boundary, and a 5-sphere 
has an isometry 50(6) ~ 5/7(4). On the other hand, the latter becomes a 
conformal field theory at the origin of the moduli space, and has an 5C/(4) 
.R-symmetry. Therefore the conformal poin t of J\f = 4 SYM is conjectured 
to live at the boundary of the AdSs space. 

Let us proceed to the correspondence of correlation funtions. Since a 
local operator in field theory is a small disturbance in spacetime, it seems 
likely that a small fluctuation around the AdS space corresponds to a local 
operator in conformal field theo ry at the boundary of the AdS space. To be 
more precise, the fluctuation around the AdS space must be on-shell in order 
to pick out only the boundary contribution. From a perspective of string 
theory, the restriction on the on-shell fluctuations is nothin g other than the 
condition that the beta-function is vanishing, i.e., conformal invariance of 
the worldsheet. Thus it is natural to consider only the on-shell fluctuations 
around the AdS space. 

Now let (f) be an on-shell fluctuation. Type IIB SUGRA action ISG[<I>] 

is likely to accord with the generating functional for connected correlation 
functions of the boundary conformal field theory. This is because it is the 
generating functional for connected correlation functions of type IIB closed 
strings (in ^-channel), and using the s-t channel duality, we can consider it 
as that of open stings (in s-channel). Thus we can arrive at the conjecture 
of [6, 7], 

exp /    <t>oo)       = exp (iKscM), (47) 
JMA I CFT 

where .M4 is the conformal compactification of Minkowski space, O is a 
conformal field, and KSG\^^[ is the minimum of ISG\

<
^ with the boundary 

Condition, (/>|boundary = 00- 

This conjecture is extended to more general cases, i.e., the AdS^+i/CFT^ 
correspondence, although many of them are not based on string theory. 

Next we turn to the computation of two-point functions of the DLCQ of 
(2,0) superconformal theories. We use the uplifted eleven dimensional metric 
(38), and thus we do not work on the AdS space exactly. As mentioned in the 
last section, the uplifted metric (38), however, takes the form of AdS-j x 54 

in the light-cone coordinate, as we approach to the boundary [7M5 = oo. 
Hence we can expect that our computation will essentially reduce to that of 
AdS-j x 54, and indeed it is as we will see below. 
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5.1    Scalar s 

Now we calculate two-point functions of scalars. The scalar modes around 
the "boosted" M5-branes can be analyzed just in the same way as done 
completely by Nieuwenhuizen [27]. The only difference appears in the form 
of Laplacian in the li nearized equations.5 The reason is the following. The 
"boosted" M5-brane has the spa cetime structure Mr x 54, in which Mr is 
an Einstein space with the Ricci tensor R^l = \/3 9aL and the four form 

field strength F4 takes the form of the Freund-Rubin ansat z, F^ — —8(3464, 
where 64 is the volume form of 4-sphere. These properties are exactly same 
as those of AdSr x S4. Hence the Kaluza-Klein mass spectrum of fluctuation 
modes coincides with that listed in Table 1 of Ref. [27]. 

Let us denote scalar modes by cp collectively. The linearized equation of 
scalars is given by 

fp7 -M
2)cp = 0, (48) 

where the Kaluza-Klein mass M2 can take three series of values, (fc+3)(fc+6), 
(fc + 2)(fc + 5), (fc = 0, !,•••), and k(k - 3), (k = 1,2,---), multiplied by a 
factor Q4 

/ , inverse square of the radius of SA. The seven dimensional 
Laplacian  squarer is explicitly written as 

Br = Q: -2/3 
jff5-oUM5UM5dUM5 -    4   8   dT + yp2-ord- + —%- ^ Oi 

(49) 
For convenience, we introduce a coordinate z = I/UMS- Then the linearized 
equation (48) is rewritten as 

fdzz-*dg - ^§±z*dl + 8g4aTa_ + 4Q4 E dl - ^ ^ = 0.     (50) 

Here we defined m2 = M2Q^ , and it takes three series of integral values, 
as mentioned above. 

Now we expand the scalar </? into Fourier modes, 

/>       7 p       74 r, 4 

ip = (^(z) exp^ATox") y -= y —-2 (po(w, **) exp(zu;T + i ^ %^),   (51) 

where ATQ is an integer, for the range of x~ is from 0 to 2TT. Since we 
are considering the discrete light-cone quantization of (2,0) superconformal 
theories, we should not sum over integer ATQ. 

5This holds for the other modes, and in general the difference arises in the form, not 
only of Laplacian, but also of differential operators of other kinds. 
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As a result, we have for the scalar modes, 

* d       c d QQUI
2 R ,  ,      4m2 

w —w 1 — w   ±1  
dw       dw     64QIR*{2NOUJ + fc2)4 w2 <p(w) = 0,      (52) 

with k2 = Y^i=i kf, and we rescaled the argument z to w — 2v/^4J2]Vo^H-~PJ 
x^. Two cases, ±, in the above equation correspond to 2NQLU + k2 < 0 and 
2A^OCJ + A;2 > 0, respectively. 

A remark is in order: 

The light-cone momentum NQ naively seems to be equal to the number of 
DO-branes, Qo, in view of the DLCQ interpretation of the DO + D4 system. 
We should, however, take into account the normalization of the target space 
coordinates of the quantum mechanics on the instanton moduli space [16]. 
Focusing on the cente r of mass coordinates, the sigma model action is given 

by 

S   =    -^ / dtdt^dtx1 = k- I dtdtX^tX1 = R I dtdtPdtX1 

gsls J Qs J J 

=    ^Jdtdt^dtx^ (53) 

where all the quantities were defined in the last section. Those with and 
without tilde are associated with the near-horizon geometry of the DO + D4 
system and the "boosted" M5-branes, respectively. The index i runs from 1 
to 4. 

Thus the center of mass part of the Hamiltonian is proportional to i?, not 
to R/Qo, although the latter is the natural normalization for the DLCQ 
interpretation. This indicates that the dependence on Qo is absorbed into 
the coordinates xz, and w e should set iVo to 1, in our normalization. 

Now we solve the linearized eq. (52) for scalars. Although it is not easy 
to solve it exactly, we only need the asymptotic behavior of the solutions in 
the vicinity of the boundary of the spacetime, i.e., w = 0 (UMS — oo) and 
w — € fty (UMS = 0), for our purpose. 

Suppose that Qo ~ QA, denoting them by Q, and u ~ k2.6 Then the 
differential eq. (52) is schematically rewri tten as 

5 d     _5 d w6 4m2 

W d^W    d^+ (QR
2

UJ)
2 ~w2' 

ip(w) = 0. (54) 

We further assume that \QR
2

UJ\ <^ I.7   Let us divid e this equation into 
three regions. They are characterized by (I) {w^/QR2^ <§; 1, (II) \w\ <^ 1 

6
CJ has mass dimension 2, since the light-cone time r — Rt has dimension (length)2. 

7We would like to emphasize that this condition for u (and so k2) is not too restrictive, 
since we are interested only in the behavior of correlation functions at long distance. 
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and \w3
/QR

2
<JJ\ > 1, and (III) |'u;4/Qi?2w| > 1, respectively.  Accordingly 

the differential eq. (54) takes the fo rm in each region, 

(I) 

(H) 

(III) 

5 d    _5 d      4m2 

dw        dw      w2 cp{w) = 0, 

4m2 
5 d     _5 d wb 

dw        dw      (QR2u)2       w2 

5 d    _5 d wb 

W ~d^W    d^ + {QR
2

UJ)
2 

(55) 

<p(w) = 0, (56) 

<p(w) = 0, (57) 

As we will show in more detail in the Appendix B, we can find two indepen- 
dent solutions for the differential equation (52). Matching the solutions in 
the overlap regions, they behave like, in each region, 

<p{w)    =    < 

and 

W r(-i//4+l) w       ' 
(II)   yWj-vlM, 

l(m)v^y1/4«»(» + l!^L), 
2-'//4(4Qfi2cj)-(^+3)/4     3+1/ 

r(i//4+l) W        ' 
y3/4^/4(y), (58) 

where z/ = \/4m2 + 9 and takes odd integral values 2A;4-9, 2k+7 (k = 0,1, • • •) 
and 2/c — 3 (A; = 1,2, • • •). J±^/4: are the Bessel functions, and y = W^/AQFPUJ 

(strictly v/^oQ4kk4/25^2Q4|2iVoa; + A;2|2). 

In order to compute two-point functions, it is necessary to take into 
account sub-leading contributions to the first solution in the region (I). 
The region near the boundary, w = 0 (UM5 = oo), is characterized by 
l^/Qi?2^! « 1 (z/R < 1), and lies within the region (I). Since |^6/Qi?2a;| < 
1 <^i |l/w;2| in this region, we can consider the following differential equation 
to find sub-leading contributions: 

c d       * d 
wb—w~b-— 

dw        dw 
Am2 

Ur 
V(w) = =F^M, (59) 

where we treat the r.h.s as a perturbative correction to eq. (55) in the region 
(I). Note that this equation is nothing but the Bessel (or modified Bessel) 
equation for 2NQUJ + k2 < 0 (or 2Nov + k2 > 0), and is exactly same as the 
one for massive scalars in AdSj x S*4 [7].8 

Thus we obtain sub-leading contributions to the first solution, which we will 

3Strictly speaking, we are working in the Lorentzian, not in the Euclidean, space.[28] 
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denote (pi(w), near the boundary w = 0 as 

/7-\(i/-l)T(^-l)       / 1 

n=l 

^wfr-wl"™10*""^1"1""1- (60) 

Here the dots '• • •' denote the higher order corrections, and they are irrelevant 
to the computation of two-point functions. Note that v is an odd integer, as 
mentioned previously. 

Now it is crucial to determine the boundary conditions for scalars in the 
calculation of two-point functions. At the boundary z/R = 0 [w = 0), it is 
determined so that we normalize the boundary value of ip(w), regularized by 
an IR (UV) cutoff e (z > e) on the bulk (boundary) theory, to 1 [6]. We do 
not, however, have a natural way to fix the boundary condition at z/R = oo 
(y = oo), as opposed to the case of the Euclidean AdS space [28].9 Here we 
shall choose the boundary condition at z/R — oo (y = oo) in the following 
way: 

Since we are now considering a matrix quantum mechanics, it is usual to 
perform a Wick rotation r -> — ir, or equivalently u -> iuj. Accordingly we 
should rotate x~ to zx-, or equivalently iVo —> —iNo, to keep the metric 
of the "boosted" M5-branes real valued. We should, however, note that 
it is somewhat strange to adopt this Wick rotation in view of the DLCQ 
interpretation, since the time r in a matrix quantum mechanics is the light- 
cone time in DLCQ. But our at titude here is that we can justify this Wick 
rotation by referring to matrix descriptions of theories in DLCQ, and we do 
perform the usual Wick rotation for a matrix quantum mechanics. Then 
we can fix the boundary condition at z/R = oo (y = oo) b y choosing 
the solution, in the region (III), which falls off exponentially for z/R 2> 1 

(y»i)- 

As a result, we have a solution 

where <pi(w) and ^(w), respectively, denotes the first and the second solu- 
tion (including the sub-leading contributions) in eq. (58). 

According to the ansatz (47), two-point functions in momentum space 
are given by 

0(u;,k2)0(uf,k'2)) = f       , hl2.KSG[<po], (62) 

9This ambiguity of the boundary condition is similar to that discussed in [28] in the 
case of the Lorentzian AdS space, but they are in fact different. In our case, the ambiguity 
comes from the boosted effect, rather than Lorentzian nature of our geometry. 



H. AWATA, S. HIRANO 169 

where <po is the Fourier transform of (p^.   The minimum KSGVPQ] 
0^ ^e 

SUGRA action is written as 

KSGYPH] = CYQ*
3

 J<fixy/-fetgWgu"*UM>tpdUMB<p 
UM5 = 1/£ 

UM5=0 

(63) 

Here c is a normalization constant of the 11D SUGRA action.  The factor 
^TJ-Q/   is the volume of 4-sphere. 

Thus the two-point function for scalars is given by 

0((i;,fe2)C?(a;/,fc'2))    =    -Cy (^e)2^^^ + ^{k + k1) 

x    Ql 
-1M12 [(^ - 1) 

(2iVow + r y log |2Ar0w + r 

-2i/ 
r(i-i//4) fvWQlM 1//2- 

r(l + i//4) I       AB? 
(64) 

Performing a Fourier transformation to position space, the two-point func- 
tion becomes 

O{x+,x)O{0,x>))    =    -ci^tf^Ql W [{u - I)!]2 (Rx+y+3 

x    expf-^ii^U2-^^,r(1/2 + ^4) 

i?2 

2       Rx+ 
i//2 

r(i + i//4) 

(i?x+)^2+ ww^ (*-*') (65) 

where the light-cone time a;+ is equal to r/i?, and A^o should be 1, as dis- 
cussed above. The cutoff y^Qle, rather than e, is employed in the computa- 
tion of correlation functions in the AdS/CFT correspondence [25] . 

Some remarks are in order: 

(i) The two-point function consists of two elements, up to contact terms. The 
first element in eq. (65) is of the expected form. It is exactly the two-point 
function of scalar primary operators with dimension A = v + 3 in DLCQ of a 
conformal field theory [16]. The dimension A takes values in even integrals, 
2k + 12, 2k + 10 (ft = 0,1, • * •) and 2fc (ft = 1, 2, • • •), and it coincides with 
the analysis of [29, 30, 31] for (2,0) superconfomal field theories. 

(ii) The second element in eq. (65) has the correct dimension with respect to 
the conformal symmetry in section 4.2. This term is, however, not desirable 
from the viewpoint of the DLCQ of (2,0) superconformal theories. But as far 
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as the IR behavior of the theory is concerned, we can drop it away because 
it contains a delta-function factor 54(^ — x'). Thus we have 

0(^)0(0,*-.)} ~ ^exp (-f <^|£) . (66) 

(iii) Having discarded the second term in eq. (65), the above equation (66) 
shows the boost invariance of the DLCQ description, since the light-cone 
time x^ and the radius R of the light-like circle appear only throug h the 
combination Rx+. 

(iv) In a direct analysis of the quantum mechanics on an instanton moduli 
space, it is necessary to regularize the singularities corresponding to small 
instantons. In fact it was done by adding a Fayet-Iliopoulos term to the 
Yang-Mills quantum mechanics o f DO + D4 bound states [16], and the 
resolved moduli space of instantons were interpreted as the moduli space 
of instantons on non-commutative R4 [17]. In the present case we have 
reguralized the UV divergence of the boundary theo ry by introducing an 
IR cutoff e (or y^Q^e) of the bulk theory. But we are not sure how our 
regularization scheme is related to that of [16, 17]. 

6    Discussions 

In the present work we analyzed the large JV limit of matrix models of 
M5-branes, or (2,0) superconformal field theories, by applying the Malda- 
cena's conjecture of the Bulk/Boundary correspondence to the DLCQ of 
M5-branes. We discussed in detail the relation between the near-horizon 
limit and the Seiberg-Sen limit. This analysis seems to support the Seiberg 
and Sen's argument [10, 11] of a justification for the DLCQ interpretation 
of the matrix model of M-theory. 

In particular we can interpret the generalized conformal symmetry in DO 
+ D4 bound states (corresponding to matrix model) as a conformal symme- 
try of the DLCQ of six-dimensional conformal field theories (corresponding 
to M-theory). To do so, it turned out that we should consider the trans- 
formation of the number of DO-branes Qo, rather than that of the string 
coupling constant gs (or gs), in the generalized conformal transformation of 
DO + D4 bound states. 

We also calculate two-point functions of scalars in the DLCQ of (2,0) su- 
perconformal theories, by employing the conjecture [6, 7] for the AdS/CFT 
correspondence, although the near-horizon geometry of "boosted" M5-branes 
is not an AdS spac e.    Due to the fact that the near-horizon geometry 



H. AWATA, S. HIRANO 171 

of "boosted" M5-branes is still an Einstein space, the computation [27] of 
Nieuwenhuizen has been carried over in our case. In fact two-point functions 
contain a subtle contribution, but it can be dropped away as far as the IR 
behavior of the theory is concerned. Thus we can obtain an expected result. 
This also shows an evidence for the Maldacena's conjecture in the case of 
"boosted" p-branes [32]. 

It is obvious that we should make a direct analysis of matrix models of 
M5-branes and compare it with the results here. In particular it is interest- 
ing to see how the generalized conformal symmetry in sect. 4.2 is realized 
in the direct a nalysis of matrix models. It might be related to large iV 
renormalization group transformations of matrix models [33] and [34, 35], 
and shed some lights on how to determine the large N limit of the matrix 
model of M-theory. 
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Appendix A 

We extend some results in sect. 3, and in particular present generalized 
conformal symmetries, probe actions and the Routhians in more general 
cases. The supergravity solution corresponding to Np coincident Dp-branes 
is 

d$?0    -   H;l2{-dt2 + dx^+H*{dr2 + r2dtil_v), 

-2(f)     _        -2TT
2:

T' TT   _ 1    ,   9sQpl>s   P 

e —   9s   Up     J tip - H Y^— » 

Aoi...p   =   g;l(l-H-1), r (67) 

where xy collectively denotes the coordinates parallel to Dp-branes, and r 
and Cts-p are the polar coordinates transverse to Dp-branes. The parameter 
Qp is proportional to the number Np of Dp-branes. In the near-horizon limit, 
r -> 0 and ls —» 0, keeping fixed U = r/l2 and <?yM = g^-3, the above 
solution becomes 

as10     —     *s H-lU2{-dt2 + cfcjj) + H{U-zdUz + dtti_p) 
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AOI...P   =   -Qp(lsU)p+1H-4. 2 (68) 

Here we dropped a constant part of Aoi---p with a suitable choice of the 
gauge. For p = 3, H is a constant in U and the space-time is AdSs x 55 

with radius IsVH. 

Now let us look at the transverse part of the metric. 

dslQ   oc   -H'Wdt2 + H (u-2dU2 + dtf) , 

e'2*   oc   IP, H=(jL.y, (69) 

where g is proportional to gs. 

This is in general invariant under the following 5?7(1,1) transformation 

SHt   =    1,     5Dt   =    -t,     5Kt   =    -^-(a/J + l)-1^2^-2, 
SHU   =   0,    5DU   =    U,     SKU   =   2tU, (70) 
SH9    =   0,     SDg    =   ag,     SKg   =    2atp. 

In the case of D^-branes at x\\ = 0 and of DO + D4 bound states, a set of 
parameters (a, /?, 7) is equal to (3 — p, 1/2,p — 7) and (1,1, —3), respectively. 
The effective action for a probe particle moving along the radial direction 
U in the background of source Np Dp-branes is determined by this SU(1,1) 
symmetry as 

Stiff = Jdt(l-y/T^)f{H)Ut        w = ^U2=y%^   .    (71) 

with an arbitrary function /. 

In the case of pure DO-branes and DO + D4 bound states, the eleven dimen- 
sional metric and the gauge potential AQ take the form 

ds2
n    =   er<pds2

10 + e^(dxn-Aodt)2, 

=    -2e^Aodtdxn + es*{dx11)2 + e^g^dxW, 
13 

A2   =    -c(»-)^i10), (72) 

with r = —2/3 and s = 4/3. Thus t and x11 correspond to the light-cone 
coordinates x±. Then a particle action with fixed light-cone momentum p_ 
is described by the Routhian, 

/ 
dtTZ = dtp-A0 

1 - \1 + im^ I • (73) 
N       9tt V 

If Cl = 0 (and iy = 0), this coincides with that of eq. (71) with f{H)U = 
P-AQ. 
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In this appendix, we give in more detail a construction of the solution for 
scalars in section 5.1. 

We can easily find the solutions for each region. In region (I), two inde- 
pendent solutions are given by w3±l/ with u = y/Am2 + 9. We can rewrite 
the equations for region (II) and (III), respectively, into 

(H) 

(III) 

iVa 
4y2 dy dy 

li/2±qri/2± + 1 <p{y) 

<p(v) = o, 

= 0, 

(74) 

(75) 
dy dy 

where y is schematically equal to w^/AQR2^, and strictly to y/QoQ^uilw4/25 

xR2Ql\2Noijj + k2\2. Thus, in region (II), we have the solutions y3^J±1//i{y): 

and those in region (III) are given by their asymptotic forms J^y1/4 

x cos (y =F W2
4

±1)7r) at y -+ oo. 

Next let us match the solutions in the overlap regions. We can trivially 
match the solutions in region (II) and (III). We need more care for matching 
the solutions in region (I) and (II). The overlap region between (I) and 
(II) are characterized by {QR2^1/3 <C \w\ <C [QR2^1/4, or equivalently by 
1 <C \w6

/(QR
2

UJ)
2
\ <C |l/w2|. Hence in this overlap region we can obtain 

the sub-leading contributions to the solutions w3±l/ in region (I) from the 
equation 

c d       c d 
wb-—w b — 

dw        dw 
4m2 

w* 
(p(w) 

w 
<p{w). 

(QRM2 

This can be rewritten, in terms of the variable y{<^ 1), as 

(76) 

1/2. 
dy y -1/2 iL 

dy 
m 
4y2 <p(v) = -<p(y)- (77) 

Here we can consider the r.h.s. as a perturbative correction. Denoting the 
sub-leading contributions by <p(y) = <pi{y) + fyiv) + • ■ •? and the homoge- 
neous solutions y(3±I/)/4(= iu3±I//(4Qi22ci;)(3:tl/)/4) by <pQ(y), the sub-leading 
contributions (p(y) are obtained iteratively by 

ry 

Jo 

9^-1/2   , 
^ ^(3+I/)/49/(3-I/)/4 

u      V yK .f(3-)/4y(3+,)/4^._i(0    (i>1)B 

(78) 
As a result, we have 

<P(V)    =   ^o(y) + Vi(y) + --- = 2±ty/4r(±z,/4 + l)y3/4J:tl,/4(y),   (79) 
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and thus the two solutions w3±l/ in region (I) are connected to 

2T»/^QR2tyl±>')/4 y3/4j±v/4(y) in region (II) (not a linear combination of 
them), as given in eq. (58). 
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