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Abstract 

We investigate the rotating D3-brane solution with maximum num- 
ber of angular momentum parameters. After determining the angu- 
lar velocities, Hawking temperature, ADM mass and entropy, we use 
this geometry to construct general three-parameter models of non- 
supersymmetric pure SU(N) Yang-Mills theories in 2+1 dimensions. 
We calculate glueball masses in the WKB approximation and obtain 
closed analytic expressions for generic values of the parameters. We 
also determine the masses of Kaluza-Klein states associated with inter- 
nal parts of the ten-dimensional metric and investigate the parameter 
region where some of these states are decoupled. To leading order in 
1/A and 1/JV (where A is the 't Hooft coupling) we find a global ^(l)3 

symmetry and states with masses comparable to glueball masses, which 
have no counterpart in the more familiar (finite A, N) Yang-Mills the- 
ories. 
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1    Introduction 

The extremal D3-brane provides one of the simplest illustrations of the re- 
cently found dualities between gauge theories and string theory on geome- 
tries which asymptotically approach the Anti-de Sitter space-time [1]. Be- 
cause the string models on these geometries are not understood to date, 
much of the attention has been devoted to those models where the curvature 
of the geometry is small everywhere, so that the system can be studied by 
using supergravity. This is the case for black brane geometries, which for 
large charges have small curvatures everywhere outside the horizon. The 
most general geometry with a regular horizon, which has a D3-brane charge, 
is given by the non-extremal D3-brane with three angular momenta. It is 
of obvious interest to investigate the spectra of this general (five-parameter) 
supergravity model based on the D3-brane. In this paper we determine the 
spectrum of the corresponding Laplace operator in the WKB approximation. 

Models of QCD in 2 + 1 dimensions can be constructed from the non- 
extremal D3-brane geometry by compactifying the euclidean time direction, 
which plays the role of an internal angle [2-7]. In the case of zero angular mo- 
mentum, there is a single mass scale in the spectrum (given by the Hawking 
temperature); Kaluza-Klein states associated with the compact Euclidean 
time have the same mass scale as the states with vanishing Kaluza-Klein 
charge (e.g. glueballs) and the dimensional reduction is not justified. This 
problem can be overcome by starting with a rotating D3-brane with large 
angular-momentum, in which case the radius of the circle shrinks to zero 
and the Kaluza-Klein particles decouple [5, 7]. Another problem in mak- 
ing contact with ordinary Yang-Mills theory was pointed out in [8]. While 
the static D3-brane has an SO(§) isometry group associated with the five- 
sphere part of the geometry, in pure non-supersymmetric Yang-Mills theory 
there is no counterpart of this 50(6) global symmetry. Introducing an- 
gular momentum breaks the 50(6) isometry group to smaller subgroups. 
When the maximum number of angular momentum components are turned 
on, the only remaining global symmetry is the Abelian (Cartan) subgroup 
U(\) x [/(I) x U{1) of 50(6). Although this is in a sense closer to QCD than 
a model based on the static D3-brane (which implies a large 50(6) global 
symmetry), there is no Abelian f7(l)3 global symmetry in weakly coupled 
non-supersymmetric SU(N) Yang-Mills theory without matter. A natu- 
ral question is whether the Kaluza-Klein particles, which are charged with 
respect to the f7(l)3 Cartan group, could have large masses (with respect 
to the glueball masses) in some region of the three-dimensional parameter 
space ai,a2,a3.1 In Sect. 4.3 it will be shown that in the supergravity ap- 
proximation these Kaluza-Klein particles cannot decouple in any region of 

1 There are two extra parameters associated with charge and mass of the D3-brane: the 
mass fixes the scale and can be set to 1; the charge is related to the 't Hooft coupling A 
and in the supergravity approximation does not affect the mass spectra. 
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the parameter space ai,a27a3. It should be noted that the WKB approx- 
imation is sufficient to establish that certain states do not decouple, since 
one can consider in particular states with sufficiently high radial quantum 
numbers so that the WKB approximation is close to the exact result. It is 
nevertheless reasonable to expect that these exotic Kaluza-Klein particles 
may decouple once all 1/A effects are incorporated, since the weakly coupled 
non-supersymmetric Yang-Mills theory that should govern the low-energy 
dynamics of the compactified D3-brane does not have these particles in the 
physical spectrum. A further discussion on this is given in Sect. 5. 

2    The rotating D3-brane background 

The D3-brane has an internal 50(6) rotational isometry, which allows three 
independent angular parameters, hifaih- The metric for the case I2 = h — 0 
was given in [5]. The general metric with parameters h^faih was recently 
given in an appendix in [9] and was obtained by duality transformations of 
the black hole solutions of [10] (there are two typographical errors in the 
expression of [9] that are corrected below). The rotating D3-brane metric is 
given by 

dsiiB    =   /o"1/2( - hodxl + dxj + dxl + dxl) + /0
1/2 

nLxti + J)-^ 
I2 -I2 

+   r2 ( A x dO2 + A2 cos2 6dil)2 - 2 2   2 
3 cos 9 sin 6 cos -0 sin tydOdil) 

r^ 

1 \ o;^2 /)j/02   ,   /i    ,   ^ 
2 

+    (1 + ^) sin2 Odipi + (1 + -f) cos2 (9sin2 ^d<p| 

I2 2m 
+    (1 + -|) cos2 9 cos2 ^dipl +   fi A . {h sin2 Odipi 

rz rbA/o 
2 .  . 9,, ,       2/,      2,,    \2\      4racosha 7 +    12 cos 6 sm y)dip2 + ^3 cos  6 cos ipdips) r———dxo 

J r^Afo 

x    (li sin2 9dp 1 4- h cos2 0 sin2 ^d^ + ^3 cos2 9 cos2 ipdip^)   , (i) 

where 
/2 p p 

A    =    1 + 4" cos2 9 + 4 (sin2 0 sin2 ^ + cos2 ^) + 4- (sin2 0 cos2 ib + sin2 ?A) 

/2i2 /2/2 72/2 +      f4sin20+fl^cos20sin2V) + ^cos20cos2V;) 

;2 ^2 ^2 

Ai    =    1 + 4 cos2 9 + 4 sin2 (9 sin2 ^ + 4 sin2 9 cos2 ^ , 

;2 ^2 

A2    =    1 + 4 cos2 ^ + 4 sin2 ^ > 
2m n      ^      2msinh2a , x 

^0    =    1-^A,      /o = l+       r4A       ■ (2) 
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The dilaton field $ is constant, e$ = gs. The angular part differs from 
eq. (69) of [9] in the components GQO and G^. Some interesting thermo- 
dynamical aspects of rotating D3-branes have recently been investigated in 
refs. [11, 9, 12] in the context of gauge/string-theory correspondence, which 
indicate that there may be a phase transition in M = 4 super-Yang-Mills 
theory at finite temperature [11, 12]. At zero temperature the supergravity 
solution corresponds to the continuum limit [9, 13] of a multicenter static 
D3-brane solution and describes a Higgs phase of J\f = 4 super-Yang-Mills 
theory with a vacuum having a Zj^-type symmetry [13]. It would be in- 
teresting to extend these discussions to the general case (1) of maximum 
number of angular momenta. The interpretation is somewhat different in 
the present case, where (1) will be used to construct a static space-time, 
with the Euclidean time parametrizing an internal circle. 

The parameters m and a are related to the D3-brane charge iV by 

sinh2 a = ^(27rgsNa/2/m)2 + 1/4 - 1/2 . (3) 

For completeness we also include the 4-form gauge field [9] 

1 - f ~1 
C(A)     = ^    JO       dxi A dx2 A dx3 A /cosh a dt_ll sin2 g d u\ 

sinh a 
—I2 cos2 9sin2 tp dcpi — Is cos2 9 cos2 ip dipi) . 

The location of the horizon r = r# is given by the largest real root of 

3 

n(r2 + ;2)-2mr2 = 0, (5) 
i=l 

which is a cubic equation for r2. The angular velocities fii, ^25 ^3 associated 
with motion in (^1, (^2, ^3 can be determined by requiring that the vector 
r] = -r^r + Qi-jf- be null at the horizon. They are independent of the angles, 

so that one can compute them by evaluating ry2 at different values of 9 and 
ip. At 9 — 0,^ = 0, r]2 is independent of f2i52, so that setting rj2 = 0 
determines ^3. Similarly, by evaluating r]2 at 9 = 0,^ = 7r/2, and using 
the value of ^3 already obtained, one finds £12, whereas by evaluating it at 
0 = 71-/2, ip = 7Y/2 one obtains fix. The result can be written compactly as 

Vi =      ,     X _, /2, ,       i = 1,2,3. (6) 
cosha^r^ + If) 

The Hawking temperature is obtained from rj2 by the formula 

TH =   lim   1fi   2)      2NV^2VV • (7) 
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Being constant, it can be computed at 9 — 7r/2,'0 = 0. After a somewhat 
long but straightforward calculation we find 

1          -(rSr-rJXrir-ri), (8) 
47rr^m cosh a 

where r^^^r^ are the three roots of eq. (5). The second line in (8) can be 
proved by multiplying (5) by (r2 — r^)-1 and taking the limit r2 -» rjj. The 
mass, entropy and angular momenta are given by 

MADM    =    Vf^5)2md+smh2a),       V(n5) = ir3, (9) 

5   =    ^^i^^mrgcosha, (10) 

Ji    = —m/icosha,      2 = 1,2,3, (11) 
47rGAr 

where V3 is the volume of the 3-brane. 

3    WKB method 

Glueball masses in the models of [2, 5] have been calculated in the WKB 
approximation in [14]. By extending the approach of [14], we develop in this 
section a simple formalism that will be useful to calculate the different mass 
spectra (including Kaluza-Klein modes) in the present case of three angular 
momenta. 

We are interested in differential equations of the form 

du {f{v)du<l>) + (M2/i(u) +p(t0) 0 = 0, (12) 

where M represents a mass parameter, and /(IA), h(u) and p(u) are three ar- 
bitrary functions that are independent of M and have the following behavior. 
There is a point UH, where 

/ « fi(u-uH)Sl ,     h^hi(u-UH)s\    P^PI{U-UH)
S3
 , as    u -► UR , 

(13) 
for some constants 51, 52, S3, /1, hi and pi. Similarly, we assume that 

/ ~ /2^ri 5     h ~ h2Ur2 ,    p « p2^r3 5        as    1/ -> oc , (14) 

for some other constants ri, r2, rs, /2, /i2 and p2- For large masses M, 
one may apply WKB methods to obtain the approximate spectrum and 
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expressions for (p.   In order to apply standard formulae from the WKB- 
approximation theory we cast (12) into the form of a Schrodinger equation 

^ + V{y)il) = 0 . (15) 

The necessary transformation that brings (12) into the form (15) is 

ey = u — UH , </> = e2/~2^; 5 (16) 

with the potential given by 

JO      ^ jo      4 /0       /o 

fo = e-yf,    ho = eyh,    po = eyp. (17) 

From the asymptotic expressions (13) and (14) one finds that 

F(y)^^MV52-5l+2^+^e^-5l+2^-^(5l-l)2, for    y « 0 , (18) 
Ji h 4 

and 

y(y) « b.M2e-lri-r2-2)y + ^g-Cn^-^j, _ l(ri _ ^2 ^ for     y » 0 . 
72 72 4 

(19) 

Consistency requires that 52 — si + 2 and ri — r2 — 2 are strictly positive 
numbers, whereas 53 — si + 2 and ri — rs — 2 can be either positive or zero 
(see also below). From these expressions we see that there are two turning 
points yi and y2, given by solving V(yi) = 0 in (18) and Vfa) = 0 in (19). 
To the order of approximation that we will be interested for the computation 
of M, we have 

2. 
yi = in 

where 
<*i = S2 - si + 2 ,        A = n - r2 - 2 , (21) 

and 

a2 = |si-l|    or   a2 = Msl-iy-^-   (if 53 - sj + 2 = 0) , 

A-ln-ll    or   /32 = Jin - I)2 - 4^   (if n - ra - 2 = 0) .(22) 

Then the mass spectrum is computed using the standard WKB formula 

(m - 0 TT = I"2 dy^/p^ ,        m > 1 . (23) 
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One may expand the right-hand side as a power series in j^. The leading 
term is O(M) and is obtained by keeping, in the expression for V(y) in (17), 
only the first term, and integrating y from — oo to +00. One obtains 

(m--)7r = M/     dyJ-r=M        duJ- = M^ (24) 
^ J-00      v ^0 JuH       V J 

where the last equality defines the constant £ with scale dimension of length. 
The first correction of order O(M0) has a contribution from the term 

^M F dye^y - MM r dye-fay = -^ - ^ , (25) 
Ji      J-oo V h      Jy2 ai      "i 

representing the correction that accounts for the extension of the limits of 
integration from yi^ to =Foo. There is another subleading contribution from 
around the turning points 

r dy ( MM^VZK _ MMe-fay] 
Jyi       Vv h 4      y /i J 

+    /     ^/iM^-f-JlMel-Ulp-,)^!' 
(26) 

Combining everything we find that 

r2 

M2 = ?-m(m-l + ^ + ^)   + O(m0) ,        m > 1 .        (27) 
r        V Oil      Pi J 

The validity of the WKB approximation requires that o^/ai + P2/P1 ^ m 
and that the turning points, as computed using (20), be large in magnitude. 
This gives the conditions 

mm-lH 1--^-)   2>   -7—£ uH 1    and    ——f u^ . (28) 
V ai      Pi/ hi A12 

4    Glueball masses in QCD3 

The three-parameter QCD3 model is obtained from the rotating D3-brane 
metric (1) in the following way. We first go to Euclidean space by letting 
t —> —ir and k —t Hi, i — 1,2,3. Then we take the "field-theory" limit [1, 5] 

tf=^,        ^o4 = ^,        0* = ^,        a'-^O. (29) 
a' a'* a' 
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The rotating D3-brane metric in this limit takes the form 

dslB   =   a'A1/2 U\,.       C/o4 ^ 2 
^2 [(i - ^4)^ + dxi + dx2 + dxi) 

R2dU2 R2 

+     "   "  2 TTT + ^i- [ Aid02 + As cos2 9dip2 

2 2 2 

+    2  2
rr9 

3 cos (9 sin6 cos ^ sinipdOdip + (1 - -^) sin2 Odcpj 
U U 

a2 a2 \ 
+    (1 - -1) cos2 6 sin2 ifxlipl + (1 - yj|) cos2 9 cos2 ^(/P

2
 j 

0-dr(ai sin2 0(i(pi + 0,2 cos2 ^ sin2 ^d^ + ^3 cos2 ^ cos2 ipdcps) 
U2A 

(30) 

where i?2 = y/^ng^N — fixed, and 

22 2 
A   =    1 - ^r cos2 0 - ^! (sin2 6 sin2 ^ + cos2 ip) - ^ (sin2 (9 cos2 ip 

2   2 2   2 2   2 

+   sin2 V7) + -^ sin2 (9 + y^ cos2 e sin2 ^ + 7^ cos2 ^ cos2 ^ ' 

Ai    =    1-7^- cos2 (9-^| sin2 <9 sin2 ^ - -^ sin2 9 cos2 ^ , JJZ ijz fJZ 

A2    =    l-^coS
2V-i|sin2</>. (31) 

For large U the space becomes asymptotically AdSs x S'5, each factor having 
radius R (in string units). In the limit (29) the Hawking temperature is 
given by 

TH   -    J^(2U2
H-a2-al-a2

+
a*a2a^ 

2^mi\;UH~Ui~U2~U3^~us 
(32) 

Uff being the largest real root of f(U) = 0: 

/ = ll(U2 - a2) - UlU2 = {U2 - U2
H)(U

2 - U2)(U2 - U2) , (33) 
1=1 

and U2,U2 the two other roots.   The Yang-Mills coupling of the (2 + 1)- 
dimensional field theory is given by 

9YM3 = 9YM4
T

H ,        PYM4 = 27r ^ • (34) 

The 't Hooft coupling A is defined by A = g$M N/(27r) = THRA/(A7r). 
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In what follows, we will make use of the following formulas 

y/G = R2A1/2U3 cos3 9 sin 6 sin ^ cos ip , (35) 

and 

A, -2--2 

2 

R2Al/2   '      U [/2A1/2   ^     (1 _  a|) _ U*_   ' 

4.1    0++ glueballs 

Masses for 0++ glueballs are determined from the differential equation 

-^d^e-^VGG^d^ = 0 . (37) 
VG 

We look for solutions of the form ^ = (f)(u)elk'x and identify the glueball 
mass square with M2 — —k2 [2]. After changing variable as u = U2 (and 
UQ — UQ etc.), we find an equation of the form (12) with 

3 134 

f = l[(u-a2)-u2u, h=—, p = 0. (38) 
i=i 

The constant UH is found by solving the cubic equation / = 0, which can be 
written as 

uH — a uH + (b  — U0)UH — c — 0 , 

c = alalal,        3 = (01,02,03) >        6 = (0203,0103,0102) •   (39) 

For the various constants necessary for the application of the WKB method 
of Sect. 3, we find 

si = 1 ,     52 = 0 ,    n = 3 ,    r2 = 0 , 

ai = 1 ,    a2 = 0 ,    A = 1 ,    ft - 2 . (40) 

Therefore (27) gives 

TT
2 

M2 = -y m(m + 1)  + O(m0) ,        m > 1 , 

Z=?L. Tdu (us - a2u2 + (P- u2)u - c ) ~l/2 . (41) 

The integral in (41) can be performed explicitly. Let UH,UI and 112 be the 
roots of / = 0. One obtains 

, R2K{k) 1   / 2UH-U1-U2 \1/2 

[(uff-uOCuff-ua)]1/4 ' V2V       2[(u//-ui)(nH-«2)]1/2, 
(42) 
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where K(k) is the complete elliptic integral of the first kind, i.e.   K(k) — 

Jo       /    de We may distinguish two cases, according to whether ui 
V l-fc2sin2 9 

and U2 are real or complex. In the former case the above result can also be 
written as (UH > UI > 112) 

The validity of the WKB approximation requires that the conditions (28) 
be satisfied. These imply 

/      „.   \ -1/2 / \ -1/2 
m(m + l)»(l-^)        (1-—)        K2(k). (44) 

In the case of three real roots UH > UI > U2, and ui not too close to UH, 

k is always less than 1, so that K(k) is of order 1, and (44) implies that 
the WKB approximation can be applied. It breaks down when UH — ui. 
For the case of 1 real and 2 complex roots, this happens if Im ui ~ 0 with 
UH — Re ui (or with UH < Re ^I, in which case k ~ 1). 

If c — (110,2(13 = 0 (say, as = 0), there are then three real roots - one of 
them being ^3 = 0-, since (a2)2 — 462 + 4:UQ > 0. The situation is similar to 
the one-angular momentum case discussed in [5, 7, 14]. The case ai =0,2, 
UQ = 0 is special. This gives a double root with ui — U2 = a2, so that 51 = 2, 
n = 3, 52 — r2 = 0 and S2 — si + 2 = 0 and hence the WKB method breaks 
down (cf. eq. (19)). breaks down. The WKB method breaks down also in 
the case ai = 0,2 = as ^> UQ (see also below). 

The formula for the mass spectrum (41) for 0++ glueballs and its res- 
onances implies an important prediction for the ratio between masses of 
two arbitrary resonances: it is independent of ai (up to corrections of order 
1/m2), depending only on the radial quantum numbers 

Ml „  m(m + l) 
M£,      ro'(m' + l) ' l    ) 

This was observed in [14] for the case of QCD4 with one angular-momentum. 
It implies that glueball masses with m > 1 vary only slightly in the whole 
parameter space 01,02,^3. 

4.2    Kaluza-Klein modes with r dependence 

For particles with U(l) charge associated with the circle parametrized by r 
one can check that there exist simple (angular-independent) solutions of the 
form 

tf = (j>[jj)e
ik-xe2irinTHr . (46) 
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Substituting this into eq. (37) we obtain 

»^5 (n (i -1) - $) «w 
+R2 (UM2R2 - 47r2n2Tj|C/3A1/2Grr) 0 = 0, (47) 

where Grr is given in eq. (36). Introducing a new radial coordinate u = U2 

we obtain eq. (12) with M2 replaced by M2 - 47r2n2T^ and 

i?4 

f = u3 — a2u2 + (b  — ^Q)^ — c , /i = — , 

R^n2T2
Hulu (48) 

i^3 — a2!/2 + (62 — i^o)^ — c 

Note that this equation is invariant under cyclic permutations of (ai, a2, as). 
We find 

5i = 1 ,     52 = 0 ,     53 = -1 ,    n = 3 ,     r2 = 0 ,    rs = -2 , 

ai = 1 ,     as = 7 77—^ r ,    ^1 = 1,     02 = 2 -       (49) 
{uH -ui){uH -U2) 

Using (32) we see that o-; = n.   Then (27) (with M2 -> M2 - 47r2n2T^) 
gives the formula 

TT2 

M2 = 47r2n2T^  +  72 m(m + 1 + n)  + C>(m0) , m > 1 ,        (50) 

where £ is given by (42). Using (28) we obtain that WKB is valid when 

m(m + 1 + n) > {uH - iii)1/2(ii^ - U2)1/2- ^    and 
UHR 

(UH - UI)
1
/
2
(UH - U2)ll2 

In order to obtain QCD3 through a dimensional reduction of QCD4, it is 
necessary that the mass scale for these Kaluza-Klein states be much larger 
than that for the glueball masses. From eq. (50) one sees that this requires 
the condition 

TH » -, • (52) 

Using (32) and (42) this becomes 

UH Ul Wi U2 
K(k)^(l-^)(l-^)   '   »1, (53) 

3/4 
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where k is given by (42). K(k) cannot be too large, otherwise the WKB 
approximation breaks down (see (51)). Therefore eq. (53) implies that in 
order to decouple the r Kaluza-Klein modes one needs that UH ^> UQ. With 
no loss of generality we can assume that ai > 0,2 > as. It is clear from 
the equation for the horizon that one has UH >> UQ if and only if UH ~ af. 
Thus the region where these Kaluza-Klein particles decouple is of 3> UQ. TO 

ensure at the same time the validity of the WKB approximation (51) one 
needs that UH be not too close to ^i, which for UH ^ ^0 amounts to saying 
that of should not be too close to a^. 

4.3    Kaluza-Klein modes of S5 

The isometry group of the metric with ai = 0,2 = 0*3 = 0 contains a factor 
SO(6). We will investigate the problem of decoupling for the / = 1 Kaluza- 
Klein modes - corresponding to the 6 representation of 50(6) -, as modes 
with larger value for / are expected to be heavier. The three angular mo- 
menta break the symmetry down to the Cartan subgroup SO(2) x 50(2) x 
£0(2). With respect to the Cartan subgroup, the representation 6 decom- 
poses into three doublets of S'0(2), i.e. 6 -^ (2,1,1) 0 (1, 2,1) © (1,1, 2). 
These give rise to three equations, which must be related by cyclic permu- 
tations of (01,02,03). For the first doublet, we make the ansatz 

V = (l>(U)etk'xsmO I       ^     , (54) 

and insert it into the Laplace equation (37). One then obtains for </>(£/) the 
differential equation 

+ lu3 (A2(cot2 0 - 4) - jR2Ai/2G^1¥>1j _ 2(a2 _ a2)Ucoa 2^ U = 0 , 

(55) 

where M2 = —k2. After changing variable u = C/2, and a somewhat lengthy 
computation, we see that all 8 and ip dependence cancels out, and we obtain 
an equation of the form (12) with 

R4 

f = u3 - a2u2 + (b2 - ul)u - c , h = — , 

1  -bu4 + C3U3 + C2U2 + ciu + Co ,_, p — _  ^ (5^ 
4     u3 — cPu2 + (b2 — ul)u — c 

where 

C3    -    4(2a2 - af)   =  4(af + 2a| + 2a^) , 
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c2    =    -3((a2)2-af + 2^)+5C/o4 

=     -6a2al - 3al - 6a2a2 - 12alal - Sag + 5ul , 

Cl    =    8c+(462-3^2)(a2-a2) + 2a2((a2)2-2?-af) 

=    2a?a| + 8a?a^a^ + 4a^a^ + 2a?a| + 4a2a^ - 3(a^ + a|)^ , 

Co    =    -62(26? - bf - ul)  =  -a\a\{2a\a\ + 2a?a\ + a^a^ - iz§) . (57) 

When a2 = ag = 0, the differential equation reduces to eq. (3.15) of [7] (with 
u -> tr2). For ai = as = 0, it reduces to eq. (3.16) of [7], which corresponds 
to the other doublet (this is because interchanging doublets is equivalent to 
permuting a\,a2,Q>z)> For the various constants of Sect. 3 we find 

5i = 1  ,       52 = 0 ,       53 = -1  ,       n = 3  ,       T2 = 0 ,       Ts = 1  , 
aKuH-affiuH-al)2 

fl = {UH - UI){UH - U2)  ,     /2 = 1 ,    Pi = — 
^UHfl 

P2 = -4  ,«! = !,      02 =  -=r  ,      A-l, 

iSa = 3 . (58) 

Hence, using (28), we find the mass 

M2 = gmfm + 2+    ^g " ^ " ^ ^   +0(^1°), m>l, 

(59) 
^2 \ y/UH{uH - UI){UH - U2) j 

where £ is given by (42). 

Let us examine if these states may have a large mass in the same region 
a2 > no where the Kaluza-Klein modes with r dependence decouple. In 
this limit one has UR = a2, ui = a|, ^2 = ai, and the mass formula (59) 
takes the form 

2 

M2 ~ ^ m(m + 3)  + O{m0) ,        m > 1 , (60) 

where £ is again given by (42). This shows that for a2 » ^o the mass of 
these Kaluza-Klein states is of the same order as the glueball masses (41). 
More generally, one can show that in every region of the parameter space the 
Kaluza-Klein masses (59) are of order M = 0(1/0- Indeed, it could only 
be otherwise in a region where UH — ^ij where the third term of (59) has 
a potential singularity, but this happens only in the region a2 > UQ, which 
leads to (60). 

For the ansatz 

V = (l)(U)eik'x cos 0 simp (C0SipA (6i) 
^v   / V sin992/ 
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and for 

* = (j){U)eik'x cos 6 cos ^ f C0S ^ \  , (62) 
V sm ^3 / 

corresponding to the other two doublets, we obtain the cyclic permutation in 
(ai, a2, as) of (56), as expected. Note that the constants CQ, ..., C3 in (57) are 
not invariant under such permutations. The constants of (58) are obtained 
by cyclic permutation in (ai, 02, ^3) of (58). For completeness we include the 
corresponding mass spectra.  For the Kaluza-Klein doublet (61) it is given 

by 

M2 = ^mfm + 2+   ^H - al){uH - a\)   \   + 0 m 

(63) 

and for the Kaluza-Klein doublet (62) it is given by 

C2        V VUH{UH - Ui){uH -U2)l 
(64) 

where £ is given by (42) in both mass formulae. In the region af 2> UQ where 
the circle Kaluza-Klein states decouple, eqs. (63) and (64) take the form 

2 ^ *2 „,„  , o^    ,   snr^o Ml ~ — m(m + 2)  + C)(mu) ,        m > 1 . (65) 
£2 

These are essentially the same mass formulae as in the case of the O4""^ 
glueballs, so that the corresponding mass scales are the same. 

Finally, we note that the conditions for the validity of the WKB approx- 
imation in the case of the 55 Kaluza-Klein modes are roughly the same as 
the corresponding ones for the O"1""^ glueballs we have already discussed. In 
all cases the WKB approximation can be applied everywhere, except in the 
region a\ = a^ ^> ^o- 

5    Conclusions 

In this paper we have considered non-supersymmetric QCD models in 2+1 
dimensions based on an asymptotically AdS§ x S'5 static geometry con- 
structed from the rotating D3-brane with maximum number of rotation pa- 
rameters. Within the WKB approximation, closed analytic formulas have 
been obtained for the mass spectra of 0++ scalar glueballs and of states corre- 
sponding to excitations in the internal parts (circle and sphere) of the space. 
The various mass spectra were found to depend, for every model and to 
the first two leading orders in the WKB approximation, in a universal man- 
ner on the rotation parameters: modulo slight fluctuations (such as the one 
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produced by the third term in (59)), only two mass scales appear, denoted 
l/£ and T#, the latter characterizing the masses of Kaluza-Klein particles 
associated with the r direction, the former dictating the masses of all other 
scalar modes with vanishing charge in the r direction. This is a bit surpris- 

ing, and it implies that, despite the large number of parameters, the sphere 
Kaluza-Klein modes - unlike the ones corresponding to the circle - do not 
decouple in any region of parameter space. The sphere Kaluza-Klein states 
have no analogue at the weakly coupled finite-iV pure SU(N) Yang-Mills 
theories. Masses computed in the supergravity approximation can in princi- 
ple get important corrections upon extrapolating from the strong-coupling 
regime A 3> 1 to the weak-coupling regime A <S 1. Comparison with lattice 
results [4, 7] suggests that singlet particles should only be slightly changed 
in the extrapolation process, whereas non-singlet particles should get large 
corrections. 

The extremal solution with UQ = 0 saturates the BogomoPnyi bound 
and has unbroken supersymmetries. The near-supersymmetric case of ^> UQ 

is precisely the interesting case where the radius of the extra brane direc- 
tion shrinks to zero, so that the associated Kaluza-Klein particles decouple 
and the system becomes effectively (2 + l)-dimensionaL It would be very 
interesting to establish what are the states whose masses are protected by 
supersymmetry in the rotating system with UQ = 0. This might explain why 
glueball masses have values close to the values obtained by lattice calcula- 
tions [7, 15]. 

Acknowledgements 

We have benefited from discussions with C. Csaki and J. Terning on 
closely related matters. J.R. would like to thank Fundacion Antorchas for 
financial support (project A-13681/1). 



146 ROTA TING D3-BRANES... 

References 

[I] J.    M.    Maldacena,    Adv.    Theor.    Math.    Phys.    2    (1998)    231, 
hep-th/9711200. 

[2] E. Witten, Adv. Theor. Math. Phys. 2 (1998) 505, hep-th/9803131. 

[3] D.   J.   Gross   and   H.   Ooguri,    Phys.   Rev.   D58   (1998)    106002, 
hep-th/9805129. 

[4] C. Csaki, H. Ooguri, Y. Oz and J. Terning, Glueball mass spectrum from 
supergravity, JHEP 9901 (1999) 017, hep-th/9806021. 

[5] J.G. Russo, New compactifications of supergravities and large N QCD, 
Nucl. Phys. B543 (1999) 183, hep-th/9808117. 

[6] A.  Hashimoto and Y. Oz, Aspects of QCD dynamics from string theory, 
hep-th/'9809106. 

[7] C. Csaki, Y. Oz, J.G. Russo and J. Terning, Large-N QCD from rotating 
branes, Phys.. Rev. D59 (1999) 065008, hep-th/9810186. 

[8] H. Ooguri, H. Robins and J. Tannenhauser, Phys. Lett. B437 (1998) 77, 
hep-th/9806171. 

[9] P. Kraus, F. Larsen and S.P. Trivedi,  The Coulomb branch of gauge 
theory from rotating branes, JHEP 9903 (1999) 003, hep-th/9811120. 

[10] M.    Cvetic    and    D.    Youm,     Nucl.    Phys.    B477    (1996)    449, 
hep-th/9605051. 

[II] S.      S.      Gubser,        Thermodynamics      of     spinning     D3-branes, 
hep-th/'9810225. 

[12] R.G.  Cai and K.S Soh,   Critical behavior in the rotating D-branes, 
hep-th/9812121. 

[13] K. Sfetsos, Branes for Higgs phases and exact conformal field theories, 
JHEP 9901 (1999) 015, hep-th/9811167. 

[14] J.A. Minahan, Glueball mass spectra and other issues for supergravity 
duals of QCD models, JHEP 9901 (1999) 020, hep-th/9811156. 

[15] M.J. Teper, Phys. Rev. D59 (1999) 014512, hep-lat/9804008. 


