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Abstract 

We investigate Polyakov's proposal of constructing Yang-Mills theo- 
ries by using non critical type 0 strings. We break conformal invariance 
by putting the system at finite temperature and find that the entropy 
of the cosmological solutions for these theories matches that of a gas of 
weakly interacting Yang-Mills bosons, up to a numerical constant. The 
computation of the entropy using the effective action approach presents 
some novelties in that the whole contribution comes from the RR fields. 
We also find an area law and a mass gap in the theory and show that 
such behavior persists for p > 4. We comment on the possible physical 
meaning of this result. 
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1     Introduction 

The recent progress in string theory has unearthed deep connections between 
gravity and gauge theories. The conjecture [1, 2, 3] that J\f — 4 super Yang- 
Mills theory is dual to type IIB supergravity in AdS§ x 55 has led to the 
computation of many correlation functions of local observables and Wilson 
loops for this theory. An even more exciting possibility is the applicability 
of these techniques to non supersymmetric gauge theories. In this context, 
Witten [4] has proposed to compactify the 4 + 1 dim. theory of a D4-brane 
on a circle with supersymmetry breaking boundary conditions, leaving a 
3 + 1 dimensional pure Yang-Mills theory with an effective cut-off given by 
the radius of the circle. This proposal has enjoyed many successes, yielding 
qualitatively reasonable results for bare quantities such as an area law for the 
spatial Wilson loop and a mass gap [5, 6, 7, 8, 9, 10, 11, 12]. A very difficult 
unsolved problem in this approach is how to take the continuum limit, which 
corresponds to taking the curvature of the background to infinity. 

A different proposal, due to Polyakov [13], is to consider a string theory 
with RR fields and a diagonal GSO projection that removes all fermions from 
the spectrum while preserving modular invariance at one loop. Such theories 
are referred to as type 0A or OB, depending on the way one implements the 
projection [14, 15]. They have open string descendants that are of interest for 
the D-brane construction [16, 17, 18, 19, 20]. The bulk fields of these theories 
are the tachyon, the usual massless fields of the respective type II theories 
(with a doubling of the RR part of the spectrum) and an infinite tower 
of bosonic massive modes. If D-branes are included, the GSO projection 
in the open string sector removes the world-volume tachyon and all the 
fermionic partners of the gauge bosons, leaving, in the critical case, only a 
bosonic Yang-Mills-Higgs theory obtained by dimensional reduction of pure 
Yang-Mills in 9 + 1 dimensions to p + 1 dimensions. For p = 3 this theory 
is asymptotically free (recall that the additional presence of the fermions 
would make the theory exactly finite). 

Klebanov and Tseytlin [21] have recently made the important observation 
that a large background RR field provides a shift in the tachyon potential 
that effectively induces the tachyon to condense at a value of order one. The 
tachyon condensate has three effects: first it makes the theory well defined 
in spite of the naive instability, second it induces an effective central charge 
proportional to (T)2 even in d = 10, and third, it provides a mechanism for 
breaking conformal invariance in the world volume theory. 

Assuming that the tachyon condenses, it pays off to consider the theory 
off criticality, that is at arbitrary values of of, with an effective central charge 
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given by 

ceff^lO-d+^(T)2. (1) 

This has the advantage of eliminating some or all of the Higgs fields from 
the Yang-Mills theory under study, leaving in principle only the pure gauge 
theory if d = p + 2. Also, if d/2 -2<p<d-2 and d ^ p + 3 there ex- 
ist solutions to the Einstein equations having a constant dilaton, suggesting 
the existence of a conformal fixed point [13]. Compactifying the conformal 
theory provides an alternative way to break the conformal symmetry intro- 
ducing a deformation parameter proportional to the size of the compactified 
manifold. 

In this paper we study the simplest example of such mechanism — the 
compactification on an Euclidean time circle of period inversely proportional 
to Hawking's temperature. In section two we write down the tree level 
gravity equations under the assumption that the tachyon condenses and 
that there is only one RR field present. We solve these equations and show 
that it is possible to have arbitrary temperature while keeping the dilaton 
constant. 

In section three we compute the entropy for this solution and show that it 
agrees with what is expected from a gas of weakly interacting YM particles. 
We compute the entropy in two different ways, by evaluating the free energy 
(effective action) and the horizon area, finding the same results. In the 
effective action approach all the contribution comes from the RR fields. 

In section four we compute the spatial Wilson loop in the two limiting 
cases and show that it evolves from the behavior expected from a conformal 
field theory (1/L potential) to that of a confining theory (area law). How- 
ever, compared with the standard construction, the bare string tension scales 
differently with the bare coupling1. The fact that in this context one has 
one less free parameter than in the standard type II/M-theory construction 
presents a potentially serious problem in taking the continuum limit. We 
also present the equation for the mass gap as a straightforward generaliza- 
tion of the previous analysis [4]. It is puzzling that the area law and mass 
gap persist for p > 4. We comment on the possible physical meaning of such 
result. 

^or a discussion of the Wilson loop in relation to zig-zag symmetry see [22]. 
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2    The gravity equations 

Assuming that the tachyon condenses, the one loop cr-model /^-functions 
(tree level gravity equations) for the metric g, dilaton $ and RR p + 1 gauge 
potential C can be derived from the action2 

where Cg//. is given in (1), G = dC is the RR p + 2 field strength and 
d includes the Liouville direction r. For us r is just another coordinate 
representing the radial direction. 

The equations of motion are 

iV    =    -2IV^ + e2*^ (3) 
Ceff./2 + R   =   AD^D^-AD^D^ (4) 

D^G^...^    =   0, (5) 

where 

1^- (p + i)i ^^I-^P+I
0

"^ 2(p + 2)  ^     1':'l/p+2 / 
(6) 

is the stress energy tensor of the RR field. Note that (6) is traceless only if 
d = 2p + 4. 

We want to deform the solution found in [13] to allow for a non zero 
temperature. We thus consider the following ansatz: 

9rr = 1;   #oo = TV);   9ij = a2(r)(Jy;   gab = b2(r)gab, (7) 

where r is the Liouville direction, 0 is the Euclidean time, i,j = 1 • • -p the 
spatial coordinates and a, & = 1 ■ • • d—p—2 the (possible) internal coordinates 
of a sphere. The Greek indices in (3,4,5,6) are meant to run over the whole 
range JJ, = (r, 0, i, a) The metric £ is normalized to have 

^a&cd = (gacgbd - gadgbc)- (8) 

With the further ansatz that 

$ = $(r)    and    Con...^ = cMe^...^, (9) 

the equation of motion (5) gives the standard solution 

c' = N-l0-^ (10) 
bd-p-2 v     ^ 

2Throughout this paper we set a = 1. 



G. FERRETTI, D. MARTELLI 123 

that can be used to eliminate c from the other equations.   The remaining 
equations (3, 4) yield 

// // // o r+p_+(<<_p_2)_ = „ +S5i=^e» 
// /      / /     / / 9 

7 7 a ^x7 & ^7 ^z iVz       9^ 

7 7 a 76 7 oza  ^ 4 

II I I Icy II I 9 

—+ - + (p-l)-T + (d-p-2)—r =   2-$ + L9. ,    .e2*    (11) 

6"      7 6'        a 6'      , T oX fe'2      d - p - 3 rt 6' ^/ N2 

7+7»+,,7k+(''~,,"S)^ &- =   2 6 * - P=5^e • 

The advantage of working in a non critical theory is that (11) admit 
solutions with a constant dilaton even for p 7^ 3. Such solutions are those 
of interest to us, so let us specialize to this case by setting Ap+i = Ne® = 
const. (Ap+i is the 't Hooft coupling in the appropriate units oia1). We also 
search for solutions with constant 6, so that the equations reduce to 

" " \2 
7_  ,    ^_    =       A

P+I 
7      P a b2d-2P-* 

" '     ' \2 7     ,     7 a     _        -W 
+ P 7        ^ 7   a b2d-2p-4 

n 1    1 10 \2 

^+ii+(P_I)« = _^> (12) a       7 a      v a2 fr2d-2p-4 

\2 
d — p — 3 A 

fr2 l)2d-2p-4: 

Ceff.      (2p + 4-(i)A2
+1 

^2d-2p-4 0. 

The equations don't allow for d = p+3, that is, for the compact dimension 
to be a circle. When d > p -f 3, from the last two equations one can solve 
for the 't Hooft coupling and for 6, which are fixed to be (in units of a') 

\ ceff- J 

b2   =    2(2p + 4-d)(d-p-3)^ 
Ce//. 
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The zero temperature solution is that of [13] and is found by setting a = 
7 = exp(r/i?), where R is the radius of curvature. Eqs. (12) and (13) then 
give 

R2 = 2(p + l)(2p + 4-d) 
ce//. 

and the relation between the 't Hooft coupling and the radius of curvature 
reads 

\*        . .  ( T>2.\ A 
(0\a—p—6 
R2) . (15) 

Note that for d = 10, p — 3 we obtain Maldacena' s scaling. We emphasize 
that it is only in the case of critical type II theory that one is truly free to 
vary the parameters in (15) although it is tempting to hope that a better 
control of the tachyon field will allow to give a precise physical meaning to 
the type 0 construction as well. 

The case with no compact dimensions {d — p+2) should describe a theory 
without any scalar. In this case the quantity b drops out of the equations 
(11), whose solution is then 

2       _ p+l  _      Ce//. 
Ap+1-   R2   -2(p + 2)- (16) 

Notice the peculiar behavior of R that scales in a way inversely proportional 
to the 't Hooft coupling, contrary to the standard situation. Again, this 
dependence should be interpreted with a grain of salt because at this stage 
both values are fixed in terms of Cg/j. and, barring a novel mechanism that 
allows to vary the effective central charge, we cannot take the limit A^+i —>■ 0. 

The thermal deformation of this solution is more easily obtained by going 
to the gauge 

ds2 = ^^dt2 + ^dxl + -^dp2 + &W. (17) 
R R p j{p) 

Substituting into (12) yields 

(p + l)f(p)+p^-=p + l, (18) 

whose solution is 

Notice that in the extremal limit there exist solutions with AdSp+2 x Sd~v~~2 

geometry for generic values of p and d. The Hawking temperature for this 
solution is easily computed to be 

_P + lpr r9nx TH--^-W (20) 
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3    Thermodynamics of non-critical p-branes 

In this section we investigate the thermodynamic properties of the system 
and find evidence in favor of the conjectured string theory/ gauge theory 
correspondence. We compute the entropy [23, 4] of the non-critical, non- 
extremal p-brane solution using two different methods and give an interpre- 
tation of the results in terms of the light degrees of freedom living on the 
brane, namely Yang-Mills theory [24]. A similar analysis is performed in [10] 
for the type II D-branes. 

For Yang-Mills theory in the weak coupling limit, one can neglect inter- 
actions between gluons and compute microscopically thermodynamic quan- 
tities using a free Bose gas approximation. In the case of SU(N) gauge 
theory in p + 1 dimensions the energy and entropy per unit volume read 

E.^N2Tp+1 ^~N2Tp (21) 

which are, up to a numerical coefficient, dictated just by dimensional argu- 
ments, N2 being the number of degrees of freedom. 

Let us follow [4] and [23] and identify the free energy F of the black- 
brane as the (subtracted) Euclidean action (c.f.r. (2)) times the Hawking 
temperature ((3 = ^), 

PF = IE[g^,$,G;TH}- lE[g^,$,G;0} (22) 

where as usual we subtract the zero temperature action to get a finite result. 
Notice that by virtue of equation of motion (4) the Einstein and cosmological 
terms drop out for constant dilaton and the action gets contribution only 
from the RR field. In fact, 

//—       1 1        A/"2 f i— 

^WTw^'^W^h**^       <23) 

After putting a cutoff in the "radial" integration, one has to evaluate two 
invariant volumes, where in the black-brane configuration the integration is 
to be performed in the physical region outside the horizon, 

V(p00) = l  dt |P00 dp I <Fx^ IV-^dSV,^ (24) 

and 

VoiPoo) = J^ dt jPJ dp JdPx^j Rd-r-2dad_p_2 (25) 
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and let p^ -> oo after subtracting them. Here the radius of compactification 
(3' has to be matched with /? for the hyper-spheres in the two geometries to 
be comparable, i.e. 

nl Poo   _  ft Poo 

* R ~^\ 
(26) 

The result is 

iV2 1 
^ = ^^n p^JV - Vo) ~ ~R^-^d^2NXWp (27) 

where £ld-p-2 is the volume of the (d - p - 2)-sphere and Vp is the total 
volume of the p-space. Now recall from (14) that R ~ 1 so that we finally 
get the energy 

and the entropy 

E = -UptfF) - N2VpT
p

H
+l (28) 

S = P(E-F)~ N2VPT
P

H. (29) 

One can also compute the Bekenstein-Hawking entropy. In fact, going 
to the Einstein frame3 

ds2
E = e~^2^ds2 (30) 

the area of the horizon is easily found to be (recall that b ~ R) 

A - n^^R^P^^VpTfj, (31) 

also in agreement with (29). So we find that the Hawking relation is repro- 
duced and the entropy has the ideal gas scaling behavior. 

This result is in agreement with the conclusions of [25] for critical black p- 
branes, where it is pointed out that constant dilaton is a sufficient condition 
for such a scaling. Nevertheless, off criticality allows for more general values 
of p. 

Thus, we argue that there should be a correspondence between the grav- 
ity approximation of type 0 string theory and a non supersymmetric Yang- 
Mills theory of iV2 degrees of freedom, finding support for Polyakov's con- 
jecture. 

3This is the same as doing the calculation in the string frame and remembering that 
now the Newton constant depends on the dilaton and behaves like \2

p+ilN2. 
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4    The spatial Wilson loop and the mass gap 

We are now in the position of computing the Wilson loop for the theory 
described by the metric in section two using the techniques exposed in [26, 27] 
and further developed in [11, 10]. 

Let us parameterize the world sheet of the string as xl = cr, x2 = cr, 
p = p(a) where -L/2 < a < L/2, -L/2 < a < L/2 and L « L. The 
action to be minimized is 

271" J- 

L/2 

L/2 ^ \ 1 - p^'/pP+l        R* 

The conserved quantity derived from this action is 

p'2 P4 

1 o'2 p4 1 P + 4 = ^sr, (33) 

where p(0) = po and p (0) = 0 for symmetry reasons, po measures how close 
the world sheet approaches the horizon at px and the behavior of the Wilson 
loop is governed by the ratio e = pr/po- For e —> 0 we recover the conformal 
fixed point, whereas for e —>> 1 we should approach the p dimensional theory. 

The minimum action is given by the integral (after subtracting the infi- 
nite energy of the string) 

-^.-i+f* 
y(P+5)/2 

(34) y(y4_l)(yP+l_eP+l) 

where po is expressed in terms of i?, L and pr by the implicit function 

- = ^ ["d y{P~3)/2 nv 
2     POJI    

y V(y4-i)(yp+1-€P+1)" l  j 

In the regime e -> 0 we obtain the results of [26, 27]: S^n ~ i?2 x (L/L). 
Note that this is the same behavior as in [26, 27] only if expressed in terms 
of R. The relation between R and the 't Hooft coupling being different (c.f.r. 
(15)) if not in the critical dimension. 

The interesting regime is when e —> 1. In this case, both integrals in (34), 
(35) scale like | log(l — e)| and we must eliminate the divergence by taking 
the ratio of the two quantities. This leaves a dependence on po but this is 
easily fixed by realizing that as e —> 1, po —> pr? yielding 

Smin — ^    ^2  X (^) 
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Eq. (36) represents the area law for the p dimensional gauge theory, from 
which one can read off the bare string tension (always in units of a1) 

TYM = § - Tl (37) 

We immediately see a potentially serious problem with this construction. In 
the most optimistic scenario, one would like to compute the renormalized 
string tension by taking the limit T# -> oo while the p dimensional coupling 
Xp goes to zero as l/log(TH/^QCD)- So far, this computation has been out 
of reach even for the standard construction. At least in that case, however, 
one has two truly independent bare parameters to vary, namely T# and A^. 
Here instead, the relation A^ = Xp+iTn and the fact that \p+i is fixed to 
be of order one by the equations of motion forces A^ ~ TH- We are thus led 
back to the issue raised in section two on whether it is possible to relax eqs. 
(13). This issue remains open. 

Finally, we address the question of whether a mass gap will emerge in 
the p dimensional theory (at zero temperature), consistently with the area 
law found above. 

As explained in [3, 4] it will be sufficient to study the equation of mo- 
tion of a quantum field propagating in the background given by (17) and 
determine its spectrum in the p-dimensional sense. So, let us consider the 
dilaton equation of motion (4). In spite of the presence of the cosmologi- 
cal constant, the constant dilaton background renders the fluctuation field 
effectively massless (in d dimensions), so that we must still solve for 

dtl(y/\i\9^dv69)=0 (38) 

and we search for solution of the form 8$ = x(p)elkXi x £ RP- 

After defining y = -2- the equation of motion for x following from (38) 

yp+2 - y)dyx] + PT2R4M2y^2x = 0, (39) 

PT 
is 

dy[(l 

M2 — —k2 being the mass squared of the glueball. M ~ TH as it should, 
since the bare mass scales with the UV cutoff, the Hawking temperature in 
this case. 

Thus, it is straightforward to repeat the arguments of section 3.3 in [4] 
and conclude that the eigenvalue problem (39) has normalizable solutions 
only for discrete and strictly positive values of M2. In fact (39) actually 
reduces to the equation appearing in [4] for p = 3, while for p = 4 we also 
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obtain a mass gap for four dimensional gauge theory, in accordance with the 
area law. 

It is puzzling that we find a mass gap and an area law even for p > 4. 
This could be an artifact of the approximation but could also have a field 
theoretical explanation. Yang-Mills theory in more than four dimensions is 
perturbatively non-renormalizable — however, seen from the point of view 
of the e-expansion, the 4 + e theory has a phase transition at a finite value 
of the bare coupling constant. In the strong coupling phase, the theory 
behaves, at low energies, in a way similar to four dimensional Yang-Mills. It 
may happen that this is the phase relevant to the string theory description. 
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