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1    Introduction 

An interesting feature of soliton solutions of brane worldvolume theories is 
that they contain their own spacetime interpretation [1, 2, 3]. A simple 
example is the self-dual string soliton of [3] which has the spacetime inter- 
pretation of a membrane ending on a fivebrane. Since the corresponding 
supergravity solutions are typically not fully localised (see [4] for a review) 
the worldvolume theory provides a sensitive tool to study the properties of 
brane intersections. In particular they have a number of applications within 
string theory and also Yang-Mills theory. 

In [5] a study was initiated of interpreting general static spacetime con- 
figurations of intersecting branes (e.g., supergravity solutions) in terms of 
solitons on the worldvolume. In that paper we only considered configurations 
of intersecting fivebranes which correspond to solitons on the worldvolume 
with vanishing self-dual three-form. These configurations can be interpreted 
as a single static fivebrane with a non-planar worldvolume. Furthermore 
one finds that the supersymmetric worldvolume solitons correspond to five- 
branes whose spatial worldvolumes form calibrated surfaces [6, 7, 5]1. In 
particular we showed that the differential equations for calibrated surfaces 
derived in [13] are equivalent to the preservation of some of the worldvolume 
supersymmetries. 

In this paper we continue the study of supersymmetric fivebrane solitons 
by considering configurations with non-vanishing three-form. From a math- 
ematical point of view this is a natural generalisation of calibrations. From a 
physical point of view, one expects to find supersymmetric solitons that in- 
clude configurations corresponding to intersecting fivebranes and membranes 
and M-waves in spacetime. Here we shall explore several interesting cases, 
all in D=ll Minkowski space, leaving further analysis and applications to 
future work. 

The solitons constructed here may be thought of as arising from three 
"building blocks". The first of these has the spacetime interpretation as a 
membrane intersecting a fivebrane which we may denote as 

M5 :    1    2    3    4    5 ( , 
M2 : 5    6 U 

On the worldvolume of the fivebrane this solution has a single scalar X6 

active, depending on the four coordinates am = {a1,^2,^3,^4}.   It also 

^or another connection between calibrations and intersecting branes, see [8, 9, 10, 11, 
12]. 
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has non-vanishing i?05ra and, as a consequence of the self-duality constraint 
imposed on iif, Hmnp. The resulting configuration on the worldvolume is a 
self-dual string soliton parallel to the cr5 direction [3]. 

A second building block solution which we will use can be thought of as 
an M-wave intersecting a fivebrane 

M5:     1    2    3    4    5 () 

MW : 5 ^ 

This solution has no scalars active. We will see below that the three-form for 
this configuration has non-vanishing i/omn and i^smn, where m — 1,2,3,4. 
In fact H^mn is self-dual as a two-form and gives rise to a string-like soliton in 
the a5 direction. By dimensional reduction we simply obtain an instanton 
in the worldvolume Dirac-Born-Infeld (DBI) theory of a D4-brane. This 
corresponds to a DO-brane in a D4-brane [14] which is the configuration 
that is obtained by reducing (2) along the 5 direction. In contrast to the 
self-dual string above, these strings do not carry any charge with respect to 
the field H and we therefore also refer to these instanton solutions as neutral 
strings. 

The final basic building block solutions which we will use are the cali- 
brated surfaces corresponding to intersecting fivebranes. The simplest ex- 
ample is provided by two intersecting fivebranes 

M5:    1    2    3    4    5 
M5: 3    4    5        7    8 ^ 

The corresponding worldvolume solution has two scalars X7\XS active that 
depend on the two worldvolume coordinates a1, a2. The general solution can 
be viewed as a single fivebrane wrapped around a calibrated surface. In this 
case the relevant calibration is Kahler so that the embedding X7(cr1,cr2), 
X8(<71,(j2) defines a Riemann surface.   However our analysis will include 
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considerably more complicated intersections such as 

M5 1 2 3 4 5 
M5 3 4 5 7 8 
M5 2 4 5 7 9 
M5 1 2 5 7 8 
M5 1 3 5 7 9 
M5 2 3 5 8 9 
M5 1 4 5 8 9 
M5 5 7 8 9 10 
M5 2 3 5 7 10 
M5 3 4 5 9 10 
M5 2 4 5 8 10 
M5 1 3 5 8 10 
M5 1 4 5 7 10 
M5 1 2 5 9 10 

(4) 

The corresponding worldvolume solitons have four scalars active depending 
on four worldvolume coordinates and it can be viewed as a single fivebrane 
wrapped on a Cayley four-fold of R8 [5]. 

In [5] we used orthogonal configurations of fivebranes to motivate the 
search for supersymmetric solitons. This point of view suggests which scalar 
fields should be active and which projections to impose on the spinor pa- 
rameters. The logic in this paper is similar. In particular we note that the 
orthogonal configurations above can be combined (usually breaking more su- 
persymmetry) and this suggests that the corresponding worldvolume solitons 
can similarly be "superposed". Adding a membrane in the 5,6 directions to 
(3) and (4) and other configurations in [5] suggests that we can add a self- 
dual string to the corresponding calibrated surface. Similarly adding a wave 
in the 5 direction suggests that we can add instantons to the calibrated 
surfaces. We shall see that this is indeed the case and that moreover it is 
possible to combine all three. 

With this in mind here we will only consider calibrated surfaces M of 
dimension n with n < 4. i.e., the fivebrane worldvolume has the form R6_n x 
M. These have the feature that there is at least one common flat direction 
that is an isometry (e.g., 5 in (4)) and one overall transverse direction (e.g., 
6 in (4)) (of the cases considered in [5] only the five-dimensional special 
Lagrangian manifolds are excluded). 

To help illustrate this point let us list the spacetime configurations for 
the simplest example of a calibration in this class (3).    For this case the 
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corresponding soliton solutions that we discuss can be pictured as 

M5 
M5 
M2 

12    3    4    5 
3    4    5 7    8 (5) 

5    6 

where we have added a membrane, 

M5 :     12    3    4    5 
M5 : 3   4   5       7   8 (6) 
MW : 5 

where we have added an M-wave, and finally 

M5 
M5 
M2 

12    3    4    5 
3    4    5 7    8 

5    6 (7) 

MW : 5 

where both have been added. 

Another type of solution which we will consider, consists of adding mem- 
branes intersecting at a point to a fivebrane 

M5 
M2 
M2 

2    3    4    5 
5    6 (8) 

4 7 

which corresponds to two intersecting self-dual strings. 

The analysis in this paper is divided into two parts. The first part ob- 
tains static soliton solutions using the Hamiltonian formalism. The general 
procedure for finding supersymmetric states in this formalism is described in 
the next section. In section 2.1 we go on to consider adding self-dual strings 
to calibrated surfaces. In section 2.2 we discuss instanton configurations 
and discuss their interpretation as neutral strings. Next in section 2.3 we 
consider instantons on calibrated surfaces. In section 2.4 we then consider 
superpositions of neutral strings and self-dual strings on a calibrated surface. 
In section 2.5 we will describe the case of two orthogonally intersecting self- 
dual strings (8), although in this case we will not include the dependence of 
the fields on the 4,5 directions in (8). 

The second part of the paper focuses on obtaining soliton solutions using 
the manifestly covariant formalism. The general supersymmetry conditions 
for this formalism are derived in section 3. In section 3.1 we consider time- 
dependent supersymmetric states corresponding to travelling waves along a 
fivebrane wrapped on a calibrated surface. These states simply correspond 
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to a ripple in the "shape" of the calibrated surface, travelling along a flat 
direction i.e., the string intersection such as 5 in (4). In section 3.2 we re- 
peat the construction of instantons on a calibrated surface to obtain neutral 
strings, including a generalisation to non-static instantons. Section 3.3 con- 
siders self-dual and neutral strings together on a flat fivebrane. In section 
3.4 we reconsider two intersecting self-dual strings, this time including the 
dependence on the 4,5 transverse directions in (8). Lastly we conclude in 
section 4 with some comments. 

2    Supersymmetry in the Hamiltonian Formalism 

Let us begin by describing the Lagrangian formulation of the fivebrane in 
D=ll Minkowski space [15]. The bosonic variables are scalars X^, // = 
0,1,2,..., 10, a closed three-form Hijk, i — 0,1,2,..., 5, and an auxiliary 
scalar field a. The role of a is to impose a non-trivial self-duality constraint 
on H. The supersymmetry and ^-symmetry transformations of the fermions 
are given by 

<y0 = i(l + I> + £ (9) 

where e is a constant 32 component D—ll spinor. The matrix Y is given by 

r =  ,     1     . [      ^^(aiar)ri,..i8e
i'-^aia + ^aPry 

'-9 
2{-{daf) 

TdiaTiYjkHJk} , (10) 

where 

gn = diX^djX^, 

Hij   = r(*H)ijkdka , 
H&O2)* 

**   =   s{kji^lj2kl'*l*ilj*6klk>d,a' 
Ti   =   diX^. (11) 

Here gij is the pull back of the eleven-dimensional flat metric, *iJ is the 
Hodge dual of H with respect to g and 7^ are flat Z?=ll gamma-matrices. 
Note that F2 = 1 and hence |(l±r) are projection operators. For a bosonic 
configuration the corresponding variation of the bosonic fields X*1 and H 
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automatically vanish. Thus bosonic configurations will preserve some super- 
symmetry if and only if (9) vanishes. This is equivalent to the condition2 

(l-r)e = 0. (12) 

For most of this paper we will study static configurations for which the 
Hamiltonian formalism is most convenient. We will work in static gauge, 
X1 = a1 and in addition choose the gauge a = t. In this case t0 — H0a = 0, 
where a = 1,...,5 is a spatial index. Furthermore, one can check that 
Ft = F. Using this we have 

ll(i-r)e||-et(i-rt)(i-r)6 >o 

et(l-r)e   >0     . (13) 

Choosing a spinor satisfying e^e = 1 we thus deduce the BogomoPnyi bound 
on any static configuration 

1 > e^e , (14) 

with equality for supersymmetric configurations. The bound can be rewrit- 
ten in the form 

(15) ^det{g + H) >^T0 rat
G 

2   LabJ^       + g,iai...a5€ 

where 

Hab    = 
3! v/               C1C2C3 ' 

tf = a c effabcffdef ? (16) 

and we use the convention that £12345 = 1 (and hence 612345 = detg). 

One expects that this condition should provide a bound on the energy. 
The energy functional of static configurations in static gauge are given by [17, 
18] 

S2 = det{gab + Hab) + tatbm
ab , (17) 

where 

mab =: gaa>gbb>[dafX . g^ + ^^ . ^^((^X - ddX)]  . (18) 

Noting that mab = 9aX • dcXg^ we see that mab is a positive definite ma- 
trix and hence we deduce that the energy for all static configurations of the 

2 This form for the preservation of super symmetry of was first discussed in [6] and was 
subsequently considered in [7, 16, 5, 8]. 
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fivebrane is also bounded by the right hand side of (15). For configurations 
where ta^ma6 = 0, the condition for the bound on the energy being satu- 
rated is the same as the condition for preservation of supersymmetry {i.e., 
saturation of (15)). In the rest of the paper we will mainly consider this 
case. However, since the preservation of some supersymmetry generally im- 
plies that the energy is minimised it should be possible to derive a better 
bound on the energy such that when it is saturated it is equivalent to preser- 
vation of supersymmetry even when tat^m^ ^ 0, but we shall not pursue 
this here. 

2.1     Self-Dual Strings on Calibrated Surfaces 

Let us now begin our construction of supersymmetric solutions by superim- 
posing a self-dual string on a calibrated surface. First consider a configu- 
ration of fivebranes only with at least one overall string intersection, e.g., 
(3) or (4). On the first fivebrane worldvolume these correspond to config- 
urations with the scalars X1,! = 7,..., 10 being non-trivial functions of 
the world-volume coordinates aa,a = 1,... ,4. It was shown in [5] that 
configurations which preserve supersymmetry correspond to calibrated five- 
brane world-volumes, the calibration depending on the particular case being 
considered. Note that if all of the scalars are excited then the calibrated 
surface M is four dimensional and the spatial part of the fivebrane world- 
volume takes the form R x M. In general if not all of the four scalars are 
excited then this becomes R ~n x M where the calibrated surface M is now 
n dimensional with n = 2,3,4. 

Since we can add a membrane to these fivebrane intersections while pre- 
serving supersymmetry, we expect to find supersymmetric self dual strings 
superposed on the corresponding calibrated fivebrane worldvolume. A con- 
crete example is given by adding a membrane to (3) as pictured in (5). The 
two fivebranes correspond to a spatial worldvolume of the fivebrane given 
by R3 x E where E is a two dimensional Riemann surface lying in the a3, cr4 

directions. We then expect to be able to add a self-dual string along the a5 

direction. 

Let us now consider the conditions required for the self-dual string to 
preserve supersymmetry and solve the equations of motion. We first write 
the scalar coordinate not appearing in the calibrated surface as 

X6 = X , (19) 

and we will demand do^X = do^X1 — 0. The induced spatial worldvolume 
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metric can be written as 

Qap = (jap + daXdpX ,      ga5 = 0 ,      055 = 1 , (20) 

where 
Sctf = 8a0 + daX^pX'Su . (21) 

Our ansatz for a supersymmetric solution will include taking taking g to be 
the induced metric on R^~n x M where M is an n dimensional calibrated 
surface. As discussed in detail in [5] this by itself leads to a supersymmetric 
solution where both the number of supersymmetries preserved and the type 
of calibration are determined by certain projections on the supersymmetry 
parameters. These projections are the same as those for the corresponding 
spacetime configurations of orthogonally intersecting fivebranes. Here we 
will need that the condition for supersymmetry to be preserved is given by 

70f 123475^ = Vgt , (22) 

where f Q = ja + 9aX
/7/. By multiplying both sides by e^ and imposing the 

relevant projection operators we obtain the calibration fi via 

^aia^aaCM = ^ 7 ■*■ ai0:20:30:4756 • v^j 

The ansatz for including a membrane is obtained by "superposing" this 
with the ansatz for the self dual string. Specifically, we take 

Hab = ±^Lga(3dpX , (24) 

or equivalently 
H = ±*dX , (25) 

where * is the Hodge dual with respect to the metric g. Since H is closed, 
X must be a harmonic function3 on the geometry specified by g. Note that 
in general this is not quite the same as saying that it is harmonic on the 
calibrated surface M. Recall that if not all of the scalars X1 are excited 
then the geometry determined by g is actually M ~n x M. 

To further illustrate this point consider the configuration (5), i.e., n—2. If 
we let g specify the metric of the calibrated surface, in this case the Riemann 
surface E, and if we let i = 1, 2 and a = 3,4 (for here only), then X satisfies 

dadaX + -jzdiiyfigVdJX = 0 . (26) 

[8]. 

3We note that related solutions were argued to solve the DBI equations of motion in 
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If daX = 0 then this is equivalent to X being harmonic on the calibrated 
surface g. Solutions are provided by the real parts of holomorphic functions, 
but it should be noted that the string is then delocalised in the 3,4 directions. 
A localised string is obtained by solving the more general equation (26). 

To analyse the conditions for preserved supersymmetry we first observe 

that ta = 0 and hence from (17) that £ = ydet(gai) + Hat). Noting that 

det^ = det^(l + (aZ)2) , (27) 

where we have introduced the notation (dX)2 = gaPdaXd(3X, we can use 
the the expansion 

det(gab + Hab) = det g(l + ±H2) + t2 (28) 

to show that £2 is a perfect square with 

£ = ^det(gab + Hab) - y/§(l + (dX)2) . (29) 

This should be compared to the right-hand side of (15). Using the fact that 
Fa = f a + daXj6, we have 

ri2345 = ri23475 + daXga0Tpt 1234756  , (30) 

and 

-^rabHab = TV99a0d0X (<9QX7675 + ^75) • (31) 

If in addition to demanding (22) we also insist that 

70566 = ±6 , (32) 

which is the supersymmetry condition for a self-dual string without the cali- 
brated surface, then the right side of the supersymmetry condition precisely 
becomes (29). Thus the ansatz preserves supersymmetry. To determine the 
amount of supersymmetry one needs to consider the specific calibration. In 
general one expects that the addition of the membrane should break a fur- 
ther half of the supersymmetry. However, in some cases the projection is 
a consequence of the projections imposed by the surface being calibrated. 
From a spacetime point of view, this corresponds to configurations of five- 
branes where the membrane can be "added for free" (see section 2 of [5] 
for examples). To fully specify the solution, one needs to find harmonic 
functions on calibrated surfaces (or solve the analogue of (26). 
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2.2    Instantons and Neutral Strings 

It is well known that a DO-brane bound to a D4-brane manifests itself as an 
instanton in the D4-brane world volume theory [14]. For a single D4-brane it 
was shown in [18] that Abelian instantons saturate a Bogomornyi bound in 
the full DBI theory. It was further argued in [18] that the bound should also 
hold in the non-Abelian theory, corresponding to a collection of coincident 
D4-branes, and this was confirmed in [19]. 

As a spacetime configuration a DO-brane intersecting a D4-brane uplifts 
to eleven dimensions as a gravitational pp-wave or M-wave intersecting a 
fivebrane according to the pattern (2). We thus expect this configuration to 
be realised on the fivebrane worldvolume theory as an "instanton string". We 
shall confirm this and then show that it can be superposed with calibrated 
surfaces and self-dual strings in the following subsections. 

To construct the instanton string, we set all of the scalar fields to zero, 
and hence the induced metric is flat, g^ = 5^. The ansatz for the i7-field 
is taken to be 

HsaP = Fap , (33) 

where F = dA with F an (anti-) self-dual field strength. We then have 

ta = 0 ,        ig = ±\F
2
 , (34) 

and hence tat^m^ = 0. As in [18] det(<5 + F) is a perfect square and the 
energy is given by 

£ - 7det(ff + ^) = l + \F2 ' (35) 

For this configuration to preserve supersymmetry, this should be equal to 
the right hand side of (15). Substituting the ansatz, the latter is given by 

eVbsts + 712345 =F lrPFa0}e ■ (36) 

If we impose the projectors 

705e = ±6 ,        7012345e = e , (37) 

we see that the last term in (36) vanishes and the Bogomornyi bound is 
saturated. The configuration breaks one half of the world-volume supersym- 
metry corresponding to one quarter of the spacetime supersymmetry. 
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Thus we find this configuration corresponds to (anti-) self-dual U(l) 
gauge fields on the space transverse to the string. Explicit solutions can 
be constructed using a complex structure J on R4 via 

Aa = Ja%</> (38) 

where 0 is a harmonic function on i?4 [8]. If the Kahler-form is anti-self dual 
the field strength is self dual and vice-versa. Note that, unlike the D4-brane, 
there is no known non-Abelian extension of the classical fivebrane theory 
and thus the classical BPS solutions are restricted to Abelian instantons. 

It is worth emphasising that these instanton strings differ from the self- 
dual strings of [3] in that they have vanishing i7-charge 

Q = [  H - 0 , (39) 
Js3 

where S3 is the sphere at transverse spatial infinity. Thus we will also refer 
to these instanton strings as "neutral strings »4 

Note that the instanton can have an arbitrary dependence on cr5, while 
still maintaining dH = 0. In other words the cr5 direction specifies a one- 
dimensional path in the moduli space of instantons. For example in the 
solutions (38), we can take 

ha(a5 * = :-„      L/5,|2 (40) 

where |cr|2 = ]Ca=i cra^a' In other words the instanton is free to change its 
location, /i, and also its "amplitude", /, along the length of the string. 

2.3    Instantons on Calibrated Surfaces 

We now discuss an interesting generalisation by considering instantons on 
calibrated surfaces. As in the last section we let XI((ja), I = 7,8,9,10, 
a = 1, 2, 3,4 specify a calibrated surface with induced metric g. The spatial 
worldvolume metric therefore takes the form 

gap = 9a(3 ,      555 = 1 ,      95a = 0 . (41) 

For a neutral string along the 5 direction, the only non-zero component of 
Habc is as in (33) 

Hsap = Fap , (42) 
4Neutral strings were discussed in the context of the linearised approximation to the 

fivebrane theory compactified on a torus in   [20]. 
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and we take F^ to be (anti-) self-dual on the calibrated surface specified by 

9 

27^7*^' = ±F°fi ' (43) 

This leads to 

Hap = ±FaP,    tb = ±±y/jjF2,    ta = 0. (44) 

Since tati)m
ab = 0 and using (28) we have 

S = ^det(g + H) = ^§(1 + ^F2) . (45) 

To see that the solution preserves supersymmetry we want to compare 
this to the right hand side of (15). We will impose the projections for both 
the calibration and the instanton: 

7°? 1234756 - V^e ,     7056 = ±€ . (46) 

In [5] examples of calibrations were given for which (46) followed from the in- 
tersecting fivebranes alone, i.e., one could add an M-wave 'for free'. However 
one could always consider imposing (46) as an addition constraint breaking 
another half of the supersymmetry. A little algebra now shows that these 
conditions imply 

1 -  x - 
2\/^a/Mr7 e = ^ape - (47) 

Substituting the ansatz into the right-hand side of (15) we get 

1 [ ± h + ±y/hora(iHa0 + V?] e . (48) eL—  2 
Upon imposing the projectors on e we note that the second term vanishes 
by the self-duality of F and we obtain ±£5 + y^ which is the same as (45). 

The number of smooth instanton strings is thus given by the number 
of (anti-) self-dual two forms on the calibrated submanifold. An interesting 
case is for a Cayley 4-fold M. It was shown in [13] that the Kahler two- 
forms Loe associated to each of the complex structures of i?8, Je, e G S6, are 
anti-self dual when restricted to M. 

By dimensional reduction, the construction we have presented implies 
that instantons on D4-brane worldvolumes wrapped around calibrated sur- 
faces are also supersymmetric. It seems likely that this will remain true for 
the U(N) non-Abelian extension of the DBI theory corresponding to N co- 
incident D4-branes. It was shown in [13] that any Cayley four-fold naturally 
admits anti-self dual 517(2) Yang-Mills fields. Such instantons correspond to 
DO-branes on two superposed D4-branes wrapped around the Cayley four- 
fold. It would be interesting to investigate this in more detail. 
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2.4    Self-Dual Strings and Neutral Strings on Calibrated Sur- 
faces 

We now generalise the above cases by considering the addition of both self- 
dual and neutral strings (instantons) along the direction cr5, to a calibrated 
surface with metric g^ in the (cr1, cr2, cr3, cr4, X7, X8, X9, X10) plane. We will 
see that generically raa^a£6 ^ 0 and the resulting energy expression exhibits 
new features. 

The ansatz consists of superposing a neutral string with the self-dual 
string on a calibrated surfaces considered in section three. Thus the metric 
is given by 

QaP = 9a(3 + daXdpX ,      ^5 = 0 ,      055 = 1 , (49) 

and the three-form is specified by 

H"*   =   A^Q%X, (50) 

where K, A are signs and again F is (anti-) self-dual in the ga{3 metric: 

1    1     a/M^ = Kpafi ) (51) 

and the bar on F denotes that we have raised the indices using the metric g 
(note that we again have (42)).  This leads to the following expressions for 
ta 

t5 = ^F2,    ta = KX^g^dpXFon. (52) 

and the bar on F2 indicates we have contracted the indices here with g rather 
than g. Using (28) and (27) and the lemma 

Fapg^F,s = -\gaSF
2 (53) 

we obtain 

y/det(g + H) = V§(1 + (dX)2 + \(F2)) (54) 

To check the preservation of supersymmetry we will impose the projec- 
tions 

70ri23475e = Vie ,     705e = «e ,     7
056e = \e , (55) 
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As before the F-matrices are given by ra = f a + daX^, where f a are the 
F-matrices for the calibrated surface. Using YapHa^e = 0 and the facts 
daXta — 0, ta = \^/gdpXHal3', it is straightforward to show that the right 
hand side of the supersymmetry condition (15) is the same as (54). 

For the generic case the energy is no longer given by Jdet{g + H) since 
tatbmab ^ 0. Instead we find 

£2   =   det(g + H) + tatbm
ab 

1 
4 

=   detS[l + (dX)2 + V2)]2 + detg(5aP - g^XdsXF^Fp6 

(56) 

Thus the energy contains a non-linear term arising from the interaction of the 
self-dual string, neutral string and calibration. In the solutions constructed 
before we saw that the strings behaved very much like additional fields living 
on the calibrated surface. In those cases the energy was precisely what one 
would expect for a scalar field or Maxwell field living on the calibrated 
submanifold. However here we see that the energy of the combined self-dual 
string, neutral string and calibration configuration is greater than simply 
the sum of the two string energies on a background calibrated surface. 

2.5    Two Intersecting Self-Dual Strings 

Consider two membranes orthogonally intersecting a fivebrane according to 
the pattern (8). We expect that this should manifest itself as two intersecting 
self-dual strings in the fivebrane worldvolume theory. Here we will construct 
such supersymmetric solutions. It should be pointed out in advance that 
the two self-dual strings will be delocalised in the directions tangent to the 
other string, i.e., in the 4,5 directions on the fivebrane. In section 3.4 we 
will consider the most general solution using the covariant formalism. 

In these solutions two scalars in the fivebrane worldvolume theory are 
active, X6, X7, which we will denote by X and Y respectively. These scalars 
are functions of the worldvolume coordinates cra, a — 1, 2, 3. We first observe 
that 

dets = 1 + [dXf + {dYf + {dXf{dYf - (dX • dY)2 , (57) 

where e.g., (dX)2 = dX • dX = daXdaX. The ansatz for the three-form is 
given by 

H** - ^-daX,        Ha4 - -4=aay . (58) 
y/9 Vd 



106 SUPERSYMMETRIC FIVEBRANE SOLITONS 

where K, A are again signs. Closure of the three-form implies that X and Y 

d2X = <92y = 0 . (59) 
are harmonic on M 

This ansatz implies that the only non-zero component of ta is given by 

ta = {OX x dY)a , (60) 

where we are using the usual vector cross product {dXxdY)a = eapjdpXdjY. 
This implies that tati)m

ab vanishes and from (18),(28) we find that 

£ = ^dette + H) - [l + {dX)2 + (dY)2]  . (61) 

The condition for preserved supersymmetry (15) now reads 

j&et{g + H) = etr0 [(dx x dY)ara + daxra5 - daYra4 + r12345] e . 
(62) 

The right hand side can be recast in the form 

eVpX X dY)ji(l + 7456?) + 9iX7i(7i23456 - A75) + 9^72(7123457 - ^74) 

+712345 - A(<9X)2765 - K(ay)2774 " (dX • ay)(A775 + ^764)]6 . (63) 

If we now impose the supersymmetry projections 

7056
e = Ae ,        7047e = «e ,        7012345e = e , (64) 

then we find the first three terms in (63) vanish and that the remaining terms 

combine precisely to give Jdet(g + H). Thus the configuration preserves 1/4 
of the worldvolume supersymmetry which is what one expects for spacetime 
configurations that preserves 1/8 of the supersymmetry. Again we note that 
the projections are exactly the same as in the spacetime configurations. 

It is very likely that the solution can be generalised to include more 
membranes. For example, if we added a membrane in the 3,8 directions and 
demanded that the active scalars are only dependent on the a1, a2 directions, 
we expect the solution to be determined by three harmonic functions. Note 
that in this case, such functions have logarithmic divergences. 

3    Supersymmetry in the Covariant Formalism 

Let us now turn our attention to obtaining supersymmetric solitons using 
the covariant formalism [21]. We will first present some details of the general 
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formalism, analogous to those in section two, before using it to discuss some 
of the previous solutions, including some generalisations to include time- 
dependence. 

It is convenient to use a different choice of notation. We now let a, 6, c,.. = 
0,1,2, 3,4,5 refer to tangent indices and m, n,p,... = 0,1,2, 3,4, 5 be world 
indices of the fivebrane worldvolume. In this formalism one first introduces 
a self-dual three-form /ia&c and then constructs from it another three-form 

Habc = (m-l)a
dhdbc , (65) 

where 
ma

b = 8a
b-2ka

b ,    ka
b = hacdh

bcd . (66) 

Note that, as a consequence of self-duality, he^h6^ — 5r[cfcbi . From this 
one can see that H is indeed totally anti-symmetric; ifa6C = H^A. The 
importance of the three-form Habc is that its equation of motion simply 
states that H is closed. It is useful to note that, because of the self-duality 
of /i, one has the formula [21] 

{m-\b = Q-\8b + 2kb), (67) 

where Q — 1 — ^ka
bkb

a. Because the self-dual three-form h is not closed it 
is not a convenient field for discussing the physics. Instead one is primarily 
interested in the closed, but not self-dual, three-form H. However H does 
split up into its self-dual and anti-self-dual parts as [21] 

H+bc = Q-'habc ,    H;bc = 2Q-lka
dhbcd . (68) 

Thus to obtain a formula for h in terms of H we need only evaluate the 
function Q in terms of H. To this end we write H = H+ + H~ and note 
that since H+2 = H'2 = 0 

H2    = 2H+bcH-abc 

= 4Q-2habck
a

dh
dbc 

= AQ-2ka
dka

d 

= 6Q-2(1 - Q) . (69) 

The unique non-singular solution to this quadratic equation is 

3 
Q=  & l-\ll + ^H

2 (70) 

Note that if H is self-dual then Q = 1. Thus whenever we see the three-form 
h we may replace it by the identity 

habc — 2H2 1 - yJl + jH*   (Habc + yabcdefHdef) . (71) 
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where e012345 = 1. The supersymmetry projector in this formalism has been 
described in [21] and takes the form 

P  mi.-.mep .   _umim2mzT^ 1      — ^i     / e -L mi...rriQ   *   Q mimzmz 
11 1 
-*- X 7711...7716p _l_ _] 
Q\^e im1...m6 + 3^ 

= r(0) + r(h), (72) 

where g is the determinant of the induced metric on the fivebrane and, as be- 
fore, rm = dmX^Y-. Here F-, a = 0,1, 2,..., 10, are flat eleven-dimensional 
F-matrices. Clearly when the three-form is zero and we consider only static 
solutions, F is the same for both formalisms. One can show the following 
properties of F 

T (o) = i (o) 

However F^, and hence F also, is not Hermitian. As before we may derive 
a bound from the inequality5 

r2 = i,   rt  =rfo). (73) 

||e(i-r)||2 = e(i-r)(i-rt)et>o 

^(i + ^rffc))^  ^  e(r(o) + r(fc) + r{fc))6t. (74) 

Unfortunately, although the left hand side is manifestly positive definite, it is 
not clear what its interpretation is. Physically one expects that l + ^F^r* 
is related to the energy but we cannot check this as the Hamiltonian has 
not yet been constructed in the covariant formalism variables. In any case 
supersymmetric configurations satisfy e(l — F) = 0 and so saturate this 
bound. 

To use this formalism to construct supersymmetric solutions we will 
gauge fix the fivebrane. The procedure for how to do this was discussed 
in detail in [5] for the purely scalar case. Now we need to repeat this anal- 
ysis including the field hate- Firstly we gauge fix the fivebrane by choos- 
ing its worldvolume coordinates to be equal to the spacetime coordinates 
a0 = X0, ...,cr5 = X5. This leaves the remaining five spacetime coordinates 
as scalar zero modes on the fivebrane worldvolume Xa , af = 6, 7, 8, 9,10. 
The induced metric gmn on the fivebrane then takes the form 

9mn     —     Vmn + ^m^-    UnX 

=   Vabe^eJ. (75) 

Next we need to consider the spinors. The thirty-two component eleven- 
dimensional spinor indices a naturally split up into two sixteen component 
indices a = 1,2, 3,..., 16 and a' = 1, 2, 3,..., 16.   The M-fivebrane preserves 

5Note that the spinor notation is that of [5] and differs from section 2. 



J. P. GAUNTLETT, N. D. LAMBERT, P. C. WEST 109 

half of the thirty-two spacetime supersymmetries, which leaves sixteen su- 
persymmetries eQ in the worldvolume theory. The sixteen spinor modes Ga 

become fermionic Goldstone fields in the worldvolume theory. Furthermore 
these indices can be reduced into Spin(l,5) and 5p(4) = SO(5) indices 
which we denote as (a,i) with a,i — 1,2,3,4. In particular superscript in- 
dices decompose as a —> m and af -+ J and subscript indices decompose 
as a —> ai and af -> a

i. For example the worldvolume supersymmetries ea 

and fermions 0a are written as eai and 6J respectively. One can always 
tell in which sense we mean a particular index, depending on whether or not 
there are i, j indices present. For the sake of clarity we will try to use as few 
spinor indices as possible without being ambiguous. For a more complete 
discussion of the spinors we refer the reader to [5]. 

Finally we must split up the eleven-dimensional F-matrices into a six- 
dimensional form. For these we take 

<r"')/ = (7°V(f  4),   (n.M^V  <7oW)-   (76) 

Here j0, are a set of five-dimensional Euclidean 7-matrices. The 7-matrices 
are simply related to the 7-matrices by j0, = 7a for a ^ 0 and 70 = —70. 
The matrices 7a must be chosen so that the Ta satisfy a six-dimensional 
Clifford algebra. A convenient choice of representation [5] consists of taking 
7a to be five-dimensional 7-matrices for a 7^ 0 and 70 — 1. Note also that 
since they act on different indices, (7a )i

J and {ja)a(3 commute with each 
other. 

It was shown in [5] that to preserve supersymmetry we need only look 
for zero modes of 

597' = -leT/ , (77) 

i.e., we need to consider the off diagonal components of F. After some 
algebra one then arrives at the following expression 

J Sej =       ^ai{det(e-1)9mXc,(7m)^(7c')i 

+-Ldet(e-
1)dmiX

ci... 5m5X
c'5(7mi-m5)Q/3(7c'1...c'5)/ 

J-hrmmims^^^s.J} , (78) 

where 7-matrices always appear in tangent frame (i.e., jm = ^7a) and we 
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use the definition 

aia2a3...a2n _ ^[ai^^s_/ya2n]  _ ^g^ 

Clearly this agrees with the expression given in [5] when h — 0. It is also 
easy to see, using the self-duality of /i, that this expression agrees with the 
one given in [3] when only one scalar is active. 

3.1    Travelling-waves on Calibrated Surfaces 

Before reconsidering some of the solutions discussed in section 2, we shall 
first discuss supersymmetric travelling wave solutions. In the simplest set- 
ting of a flat fivebrane we expect either purely left-moving or right-moving 
transverse oscillations moving at the speed of light to preserve supersym- 
metry. This is simply the fivebrane analogue of the string travelling waves 
discussed in detail in [22]. In fact we will be more general and show that 
such travelling waves exist on calibrated fivebrane worldvolumes. Specifi- 
cally, the waves propagate along a flat direction a5 of the fivebrane and are 
simply fluctuations in the "shape" of the calibrated surface. 

We again suppose that we have a calibrated surface in the cr1,..., cr4, X7, 
..., X10 plane with no dependence on the coordinate a5 and some spinor zero 
modes e of (78). Let us suppose that we can introduce the projector 

e7
0
7

5 = ±e , (80) 

and still preserve some supersymmetry. Some examples of intersecting five- 
brane configurations for which this projector automatically follows from the 
calibration are given in [5]. To describe these waves it is helpful introduce 
the light-cone coordinates 

u = -^(a5Ta0),    « = -^(<75±«70), (81) 

and from now on we assume that a, 6, c,... and 7n,n,p,... take the values 
1,2,3,4 only. The flat metric then has the following non-zero components 

In these coordinates the projector is just eju = 0. 

Next we turn on a dependence on the coordinate u only. To be more 
specific we now allow for all of the scalars, including the scalar X6, to be 
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functions of u but not v, i.e., dvX
a = 0. The supersymmetry condition (78) 

is now, recalling that our spinors e are zero modes when duX
a = 0, 

80 -       ^{det(e-1)auX
a,7^ 

+i.det(e-i)^xciam2x
c,2...am5x

c57"m2-m57c;..4} (83) 

It is not hard to see that, on account of (76) and (79), juaia2 = ^^^ and 
^uaiaaaacu = ^^a^a^A _   Thus tlie projector ^u = Q clearly implies that 

56 = 0 and supersymmetry is again preserved for any dependence on u. 

Lastly one can check that the equation of motion, i.e., the Laplacian 
with respect to the induced metric, continues to vanish. In addition the 
six-volume of the fivebrane is unaffected 

det# = -dettf , (84) 

where gmn is the metric of the calibrated surface with duX
a — 0. Thus 

these configurations are area minimising in the sense that their six-volume 
is constant and is the same as the static calibrated surface, although the 
spatial part of the volume form is not constant. 

3.2    Neutral Strings on Calibrated Surfaces 

Let us now see how one can describe neutral strings on a calibrated surface 
of section 2 in the covariant formalism. In the ix, v coordinates defined above 
h takes on the form 

huva = Va ?      ""uab = -^ab i      ^vab ~ ^ab • V°<-V 

Self-duality then implies that h^c = TCabcdV** and also that F^ = ±^eai)cdEcd 

and Gab — T^abcdGcd and again a,b,c... = 1,2,3,4.   The matrix m takes 
the form 

/ 1 + W2       -2F2 8VcF
bc \ 

m =        -2G2       1 + AV2 -8VcG
bc . (86) 

V -8VcGac    8VcFac    (1 - W2)5a
b + SVaVb J 

To describe neutral strings we will set Va — 0. If we assume that e is a 
preserved supersymmetry for a calibrated surface then from (78) we now 
have 

8Q   =   -\€[Fmn'1vmn + Gmn'1umn + Fmn'1vdmXIdnX
J'1Ij 

+Grnn^udmXIdnX
J^j] . (87) 
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Again we suppose that we may consider the additional projector 6'~)u — 0 
without breaking all the supersymmetries. Just as with (83) the contribution 
of the Fmn terms vanishes automatically. However, since e^u ^ 0, we see 
that we must set Gmn = 0 to preserve supersymmetry. 

Finally we need to find the form H. In this case using (65) one simply 
finds that the only non-zero component is 

■H-umn = -Fmn • l**J 

Clearly the closure of H asserts that F is an arbitrary function of u and sat- 
isfies the standard Bianchi identity. Note that in the Hamiltonian formalism 
F was an arbitrary function of a5. From the covariant picture, we see that 
this can be achieved by taking a time slice of a non-static configuration. The 
most general configuration corresponds to an abelian instanton in the trans- 
verse space which can change its "moduli" along the length of the string 
as in equations (38) and (40), with a5 replaced by u. Thus the left- and 
right-moving supersymmetric modes of the string live in the moduli space 
of abelian instantons. This resonates with the description of the non-critical 
six-dimensional string as a sigma model on the moduli space of non-abelian 
instantons [23]. 

3.3    Self-Dual Strings and Neutral Strings 

It is insightful to also consider the case of self-dual and neutral strings in 
the covariant formalism. (We shall not consider the most general case of 
adding a calibrated surface here). In the u^v coordinates defined above h 
takes on the form (85) and we now consider Va ^ 0. As above we must set 
Gob — 0 in order to preserve any supersymmetry. However the appearance of 
the self-dual string requires that one of the fivebrane scalars are active, say 
X — X6, and we assume that du^X — 0. The condition for supersymmetry 
to be preserved by this configuration is then 

0 = € ^det(e-1)7m5mX76 - 7^(^m7m + dette"1)^™) - ^V^mn] . 

(89) 
Just as was the case for a single self-dual string [3], we restrict to spinors 
which satisfy 

e7UJ;76 = e , (90) 

and set 

V4 = 5ITi*WWf- (91) 
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To include the neutral strings we further impose the supersymmetry projec- 
tor 67" = 0. 

Our next step is to calculate the three-form Hnmp and demand that it is 
closed. In the tangent frame we find 

Huva = {\+W2)-xVa, 

Habc = T(l - W2)-leabcdV
d , 

Huab = (1 - 4F2)-1Fa6 + 8(1 - lQV4)-l(VaV
cFbc - VbV

cFac) , 

Hvab = 0. (92) 

However things simplify considerably when we construct H in the world 
frame and substitute (91). We find 

flmnp     —       r . tmnpqV     OrJv   , 
i 

:4( 

Hvmn     —    0 , (93) 

where Kmn — (1 — 4V2)<5^(^.Fa6. Thus the closure of H leads to the simple 
equations 

SmndmdnX = 0 ,    dvKmn = 0 ,    d[mKnp] - 0 . (94) 

Thus X is harmonic on the flat transverse space and Kmn can be inter- 
preted as a (anti-) self-dual field strength of a (possibly ^-dependent) vector 
potential. 

3.4    Two Intersecting Self-Dual Strings 

As a final solution in the covariant formalism we now reconsider two inter- 
acting self-dual strings. In particular we will consider the dependence of each 
string on the relative transverse coordinates. The dynamics of this solution 
and its relation to the Seiberg-Witten effective action is discussed in [24]. 

The configuration that we are interested in may be written as 

(95) 

M5 12    3   4    5 
M2 4         6 
M2 5         7 
M5 12    3               6    7 
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for which (8) is a special case (after relabelling) with only one fivebrane 
present. The super symmetry projectors for the two membranes are 

e70577 = rye ,     e^ls = -^ , (96) 

where 77 = ±1. Note that as a result of these two projectors we may add 
another fivebrane in "for free" 

e745767 = -e, (97) 

which we have already included in (95). Thus we expect to obtain two 
self-dual strings (or a single non-trivial string) on a Riemann surface corre- 
sponding to (3). 

Rather than use the light cone coordinates of the previous sections it is 
helpful instead to introduce complex notation 

z = a4 + ia5 ,     s = X6 + iX7 , (98) 

with the derivatives d — dz, 8 = dz- The projectors can then simply be 
written as 

Hoz = mis ,     Hz7s = 0 . (99) 

In total this configuration preserves one quarter of the fivebrane's world- 
volume supersymmetry. In this section the indices a, 6, c,... = 0,1,2,3 are 
in tangent frame, the indices /i,... = 0,1,2,3 are in world frame and we 
also take i,j,k,... = 1,2,3 in the world frame. For simplicity we will only 
consider the solution to second order in the spatial derivatives <%. This will 
simplify our calculations, however it is reasonable to hope that the end result 
is valid to all orders. 

Our next step is to decompose h into a four-dimensional vector Va and 
anti-symmetric tensor J7^ as follows (all indices are in the tangent frame) 

habz = Fab 5      habz = !Fab ,      haZz — iVa . (100) 

Self-duality implies that hate = 2£abcdVd and Tab = ^abcdFcd. For the 
convenience of the reader we list the components of the vielbein e^ for the 
geometry resulting from s 

e*    =    V-^(d^)   {dsdsdflsd
as + dsdsdtlsd

as)  , 

z   _    (X2 - \ds\2)dsd^s + (X2 - \ds\2)dsd^s 
efi    " Xdete 
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e„     = 

e,     = 

e,     = 

(X2 - Idsl^dsdf.s + (X2 - Idsl^dsd^s 

dsds 

IT ' 
e** = X 

e-z = 

Xdet e 
dsds 
X 

(101) 

where 

X2    =    i[(l + |5s|2 + |55|2) + dete 

dete   =    ^/(l + |9s|2 + |as|2)2-4|55|2|55|2 

(102) 

Note that det e denotes the part of the determinant of the vielbein that is 
independent of spatial derivatives. Next we note that the projectors (99) 
imply that there are four independent terms appearing in supersymmetry 
condition 5® = 0 proportional to 

HOiz Hoz Hi: HO  , (103) 

and their complex conjugates. Thus we may obtain the Bogomol'nyi equa- 
tions by setting the corresponding coefficients to zero. Using the decompo- 
sition (100) this yields 

i  fi + \ds\2-\ds\2 

v,  =  +Tr? 

X2 - |ds|2     ) \ 

l + |^l2-|g5|2' 
(X2 - |<9s|2)2 

X2diS + dsdsdiS 
X det e 

(1 + |ds|2 + \ds 2   ,   i5   |•2^^s^^s^^s 

. s ,9 (dsdisdls — dsdidls) 
+ ias|  ^F^  
/l + |dsp-|<9s|2\ eijkdjsdk 

(dete)' 

ds  

4''X2-|96f^ + 7^ 

^    ~    IG^V   (X2~\ds\2)2 

ds    =    —ds , 

dete 

(104) 

respectively. Here all indices are raised and lowered with the flat metric. 

The next step is to calculate the physical three-form H defined in (65) 
which most naturally appears in the equations of motion. To help the reader 
we give here the matrix m_1 = Q_1(l + 2k) 

SJ + 2k ^     32mv0^
0    -32iKUo^u

0' 
m"1 = Q-1 | -leiKWoJ7"0     1 - 16t;§ 4K

2F2 

mavoT1'0 4R2T2 1 16«§ 
(105) 
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where 

V   =   BugV + 1Qv^vU + 4|«|2^M^l/A + 4|«|2^A^
A , 

Q   =   l-256v%(v%-2\K\2FoiP
}i) . 

(106) 

Despite the complicated form of these Bogomol'nyi equations one finds after 
a lengthy calculation that the three-form H takes on a relatively simple form. 
In particular, in the world frame 

Hizz     —     U , 

Hoij   =   0 , 
1 1 

Hoiz    =    -rjdis ,        Hoiz°= -rjdiS , 

Hijz    =    -r]eijkd
ks ,        ffy^ = --r]eijkdks , 

z f Ads + 2dsdisdls + dsdisdls — dsdisdls\ 
Hnk = -g^fc ^ i + |aa|2 _ |as|2 J • 

(107) 

Note that 5 is not holomorphic but instead satisfies ds — —ds. Indeed 
one sees that the complete dependence of fields on the relative transverse 
coordinates of the two self-dual strings is given by the non-holomorphicity 
of s. The equation of motion for s can then be found by demanding that 
dH = 0. If we set ds = ds = 0 we then arrive at the solution in section five, 
with the equation of motion dldiS = 0 resulting from d^Hjkz^ = 0. 

4    Conclusion 

In this paper we have examined the conditions for the preservation of the 
non-linear supersymmetry of the fivebrane for any bosonic configuration in 
both the Hamiltonian and covariant formalisms. Furthermore we formulated 
the conditions and field equations for several supersymmetric solitons with a 
non-zero three-form field. In particular we found that self-dual and neutral 
strings correspond to harmonic functions and instantons on calibrated sur- 
faces, respectively. To produce a specific solution one typically needs to solve 
the field equations, i.e., construct harmonic functions or instantons on cal- 
ibrated surfaces, and it would be interesting to consider some specific cases 
in more detail. All of the cases we have considered (perhaps setting 8$ = 0) 
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may be dimensionally reduced along a5 to obtain solutions of the D4-brane 
worldvolume theory. We expect that they have a natural generalisation to 
the non-Abelian DBI theory and this would be worth checking. 

We have by no means produced an exhaustive list of solutions however it 
is hoped that the reader will have gained some insight into the general form 
of the solutions by means of these examples. In addition we hope that the 
reader will have gained some further understanding of the complicated non- 
linear theory on the fivebrane worldvolume in both the formalisms discussed. 

Acknowledgements: JPG is supported in part by the EPSRC and thanks 
Jeff Harvey and the Enrico Fermi Institute, University of Chicago for hospi- 
tality during the completion of this work. 

References 

[1] C.G. Callan Jr. and J.M. Maldacena, Nucl. Phys. B513 (1998) 198, 
hep-th/9708147. 

[2] G.W. Gibbons, Nucl. Phys. B514 (1998) 603, hep-th/9709027. 

[3] P.S. Howe, N.D. Lambert and P.C. West, Nucl. Phys. B515 (1998) 203, 
hep-th/9709014. 

[4] J.P. Gauntlett, Intersecting Branes, hep-th/9705011 

[5] J.P. Gauntlett, N.D. Lambert and P.C. West, Branes and Calibrated 
Geometries, hep-th/9803216, to appear in Comm. Math. Phys. 

[6] K. Becker, M. Becker and A. Strominger, Nucl. Phys. B456 (1995) 130. 

[7] K. Becker, M. Becker, D. Morrison, H. Ooguri, Y. Oz and Z. Yin, Nucl. 
Phys. B480 (1996) 225, hep-th/9608116. 

[8] G.W.  Gibbons and G. Papadopoulos,   Calibrations and Intersecting 
Branes, hep-th/9803163. 

[9] B.S. Acharya, J.M. Figueroa-O'Farrill and B. Spence, J.High Energy 
Phys. 04 (1998) 012, hep-th/9803260. 

[10] B.S. Acharya, J.M. Figueroa-O'Farrill, B. Spence, J.High Energy Phys. 
07 (1998) 004, hep-th/9805073. 



118 SUPERSYMMETRIC FIVEBRANE SOLITONS 

[11] B.S. Acharya, J.M. Figueroa-O'Farrill, B. Spence, S. Stanciu, J. High 
Energy Phys. 07 (1998) 005, hep-th/9805176. 

[12] J.M. Figueroa-O'Farrill, Intersecting brane geometries, hep-th/9806040. 

[13] R. Harvey and H.B. Lawson Jr., Calibrated Geometries, Acta Math. 
148 (1982) 47. 

[14] M.R. Douglas, Branes Within Branes, hep-th/9512077 

[15] I. Bandos, K. Lechner, A. Nurmagambetov, P. Pasti, D. Sorokin and 
M. Tonin, Phys. Lett. B408 (1997) 135, hep-th/9703127. 

[16] E. Bergshoeff, R. Kallosh, T. Ortin and G. Papadopoulos, Nucl. Phys. 
B502 (1997) 149, hep-th/9705040. 

[17] E. Bergshoeff, D. Sorokin, P.K. Townsend, The M5-brane Hamiltonian, 
hep-th/9805065. 

[18] J.P. Gauntlett, J. Gomis and P.K. Townsend, J. High Energy Phys. 01 
(1998) 003, hep-th/9711205. 

[19] D. Brecher, BPS States of the Non-Abelian Born-Infeld Action, hep- 
th/9804180. 

[20] R. Dijkgraaf, E. Verlinde and H. Verlinde, Nucl.Phys. B486 (1997) 89, 
hep-th/9604055. 

[21] P.S. Howe and E. Sezgin, Phys. Lett. B394 (1997) 62, hep-th/9611008; 
P.S. Howe, E. Sezgin and P.C. West, Phys. Lett. B399 (1997) 49, hep- 
th/9702008. 

[22] A. Dabholkar, J.P. Gauntlett, J.A. Harvey, D. Waldram, Nucl.Phys. 
B474 (1996) 85, hep-th/9511053. 

[23] R. Dijkgraaf, E. Verlinde and H. Verlinde, Nucl. Phys. B506 (1997) 121, 
hep-th/9704018; O. Aharony, M. Berkooz, S. Kachru, N. Seiberg and E. 
Silverstein, Adv. Theor. Math. Phys. 1 (1998) 148-157, hep-th/9707079. 

[24] N.D. Lambert and P.C. West, Monopole Dynamics from the M- 
fivebrane, hep-th/9811025. 


