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1    Introduction 

The purpose of this note is to point out some very elementary examples 
of special Lagrangian tori in certain Calabi-Yau manifolds that occur as 
hypersurfaces in complex projective space. All of these are constructed as 
real slices of smooth hypersurfaces defined over the reals. This method 
of constructing special Lagrangian submanifolds is, of course, well known. 
What does not appear to be in the current mirror symmetry literature is 
an explicit description of such examples in which the special Lagrangian 
submanifold is a 3-torus. 

Some background. Let M be a Ricci-flat Kahler n-manifold, with Kahler 
form LJ E A+ (M) and a parallel holomorphic volume form fi G ^^(M), 
normalized so that 

_      2n (-i)n2 

n! 

The data (CJ,Q) will be said to constitute a Calabi-Yau structure on M. 
Given any oriented u-Lagrangian submanifold / : L ^ M with induced 
volume form dVi, there exists a smooth map A : L —> S'1 C C so that 
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r{Q.) = \dVL. 

The submanifold L is said to be special Lagrangian1 if A is identically 1. 

As Harvey and Lawson [HL] show, a compact special Lagrangian sub- 
manifold L C M has minimal CJ-volume in its homology class. In fact, the 
real part of $1 is a calibration on M and it calibrates the special Lagrangian 
submanifolds. Consequently, any smooth (or even C1) special Lagrangian 
submanifold is real analytic in M. 

McLean [Mc] showed that for a smooth special Lagrangian subman- 
ifold L C M, the moduli space of nearby special Lagrangian submani- 
folds is smooth and of dimension bi(L). He gave the following descrip- 
tion: Let 7il{L) C Al(L) denote the vector space of harmonic 1-forms 
on L (with respect to the induced metric). Then there exists an open 
neighborhood U of 0 G V}{L) and a smooth (in fact, real analytic) map- 
ping Q : U —)> Al(L) that vanishes to second order at 0 so that, in a C1- 
neighborhood of f : L <—)> M, any special Lagrangian normal graph is of the 
form ga : L —> M where 

ga{x) = expf{x){i f'((a+Q(a))l)), 

for a unique a e H1 {L). (Here, (3$ denotes the vector in TL dual to (3 G T*L 
and multiplication by i in TM carries vectors tangent to f(L) to vectors 
normal to f(L).) 

In particular, if L is an n-torus and the induced metric on L is such that 
there is a basis ai,..., an oilil{L) so that aiA • ■ • Aan is nowhere vanishing, 
then these normal graphs foliate a neighborhood of L in M. Such a special 
Lagrangian torus is said to be foliating. Every special Lagrangian n-torus 
is foliating when n = 1 or 2, but this is not known to be the case in higher 
dimensions.2 

Conversely, if an open set U C M has a foliation C by compact smooth 
special Lagrangian manifolds, then each leaf L of £ is diffeomorphic to the 
n-torus and has a basis ai,..., an of Hl{L) so that aiA • • • Aan is nowhere 
vanishing. 

In the last few years, these special Lagrangian foliations have become 
interesting in the theory of mirror symmetry, particularly after the paper 

^ome authors require only that A be constant. For simplicity, I will not consider this 
(slight) generalization, though it is important for some purposes. 

2 This is trivial for n = 1. For n = 2 this follows from the fact a basis for the harmonic 
forms on L is formed by the real and imaginary parts of a nonzero (and hence nonvanishing) 
holomorphic l-form on L (where L is regarded as a complex curve of genus 1 via the 
conformal structure and orientation induced on L by its inclusion into M as a special 
Lagrangian submanifold). 
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of Strominger, Yau, and Zaslow [SYZ]. Further work has been done on the 
geometry of moduli spaces of special Lagrangian tori and their augmenta- 
tions by Hitchin [Hil,2] and Lu [Lu], among others. For example, in [Hi2], 
one sees how special Lagrangian foliations can be constructed entirely in 
the holomorphic category in cases where n is even and (M, CJ, fi) is actually 
hyperKahler. 

In general, explicit examples of special Lagrangian tori seem to be dif- 
ficult to construct. In the first place, the construction of Ricci-flat Kahler 
metrics itself relies on the celebrated theorem of Yau [Ya], which uses tran- 
scendental methods from nonlinear partial differential equations to construct 
a unique Ricci-flat Kahler form u in the cohomology class of any Kahler 
form on a compact complex M that is endowed with a holomorphic volume 
form £2. (By a Bochner argument, Q is then parallel with respect to UJ.) 

Many examples of compact complex Kahler manifolds with a holomor- 
phic volume form are known, so Yau's theorem provides a rich source of ex- 
amples of Ricci-flat Kahler manifolds. Perhaps the simplest examples (other 
than complex tori) are the smooth hypersurfaces of degree n+1 in CP71. 

Given the data (M, CJ, fi) it is usually a highly nontrivial matter to con- 
struct a special Lagrangian submanifold in M. One simple case where this 
can be done is when (M, a;, £2) possesses a real structure c, i.e., an involu- 
tion c : M -> M, that satisfies c*(u) = -uo and c*fi = £2. If the locus Lc C M 
of fixed points of c is nonempty, then it is a smooth manifold of real dimen- 
sion n that can be oriented so as to be a special Lagrangian submanifold 
of M. Moreover, since c will necessarily preserve the underlying Kahler 
metric, Lc is totally geodesic in M with respect to this metric. 

Of particular interest is the case of hypersurfaces H C CP71 of degree n+1 
that are invariant under the anti-automorphism induced by a real struc- 
ture c : Cn+1 —>> Cn+1, i.e., a complex antilinear involution, with fixed sub- 
space En+1 C Cn+1. In this case, the holomorphic volume form £2 on H 
can be chosen to be antii'nvariant under the induced antiholomorphism c# : 
H -± H, i.e., so that c^(£2) = £2. If one chooses a class 7 G Hl>l(H) 
that is representable by a Kahler form that also is antii'nvariant under this 
conjugation,3 then the uniqueness part of Yau's theorem implies that the 
unique Ricci-flat Kahler form UJ on M representing the class 7 must also be 
antii'nvariant under c#. Consequently c# is a real structure on (if, a;, £2), 
implying that Lc = H fl MFn is a special Lagrangian submanifold. 

Thus, one method of exhibiting a special Lagrangian torus is to find a 
c-invariant smooth hypersurface H C CPn whose real locus HC]RFn contains 
an n-torus as one of its components. In the following sections, I will point out 

3These always exist.   For example, take 7 to be the class of the pullback to H of a 
c-invariant Fubini-Study metric on CPn. 
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some simple examples of this for n — 2, 3, and 4. Of course, the case n = 2 
is well-known and completely classical. Examples with n = 3 are almost 
as classical. In fact, the possible topology of the real locus of a quartic 
surface in projective 3-space was determined by Kharlamov [Kh], and there 
are several cases where this real locus contains a 2-torus component. Despite 
their simplicity, examples when n = 4 seem not to have been pointed out in 
the mirror symmetry literature before. Of course it is this case that is of the 
most interest. 

The construction. 

The basic idea is straightforward. For any polynomial function P : 
£n+i _^ £ ^Yi&t is homogeneous of degree d > 1, the equation P = 0 defines a 

cone Cp C C71"1"1 and the equations P = dP — 0 define a subcone Sp C Cp. 
Assume that Sp is a proper subset of Cp. Let TT : C77^1 \ {0} ->► CP71 be 
the usual projection. Then the image Hp = 7r(Cp \ {0}) is a hypersurface 
in CP71 that is smooth away from the singular locus Sp = 7T(SP \ {0}). 

Let V denote the vector space consisting of polynomial functions P : 
£n+i _^ £ ^Yi&t are homogeneous of degree n+1 and that satisfy P o c = P 

where c : Cn+1 -» C71"1"1 is the usual conjugation fixing Eri+1 C Cn+l. This 
is a real vector space of dimension ( n^ ). For P E V, the loci Hp and Sp 
are invariant under the induced conjugation on CP71. 

Let O C V be the dense open subset consisting of those P for which Sp 
is empty. For P E (9, endow Hp with the unique Ricci-flat Kahler form cup 
whose Kahler class is dual to a hyperplane section. Then up is antimvariant 
under conjugation and the holomorphic volume form ftp can be chosen so 
that c*(fip) = Clp and so that it satisfies the volume normalization needed 
to make its real part have comass one. This determines fip up to a sign. 

Let T C V denote the open subset consisting of those P E V for which 
the real slice HpnUFn contains an (n-l)-torus L C ifpflEP71 that is disjoint 
from Sp. In the following sections, I will show that T is nonempty for n — 2, 
3, and 4 by producing explicit examples. I do not know whether or not T is 
nonempty for higher n. 

When T is nonempty, it follows that OnT is nonempty (and open). For 
P E O fl T, the smooth hypersurface Hp C CP77 contains an (n-l)-torus as 
a component of its real locus. Such an (n—l)-torus is special Lagrangian in 
the Calabi-Yau structure (Hp,(jjp,VLp). 



R. L. BRYANT 87 

2    Cubic Curves in CP
2 

This section is included for the sake of completeness and for comparison 
with the cases where n — 3 and 4. Any smooth cubic curve defined over E 
is projectively equivalent to Hp where 

P - Xo3 + Xi3 + X2
3 - 3a XoXiXs 

for some real number a ^ 1. The curve Hp has two real components 
when a > 1 and one real component when a < 1. In either case, there is 
always exactly one odd component4 and it contains the three real flexes /i = 
[0,1, -1], h = [-1,0,1], and /a = [1, -1,0]. 

When a = 1, the curve Hp is singular, being the union of three lines, 
one of which is real, namely Hi, where L = XQ + Xi + X2. Note that the 
singular locus Ep consists of three points, one of which is real, but which 
does not lie on HL. 

Thus, P lies in T for any finite a. (When a = 00, the real locus consists 
of three real non-concurrent lines and hence has no smooth component.) 
Note also that O D T has two components. 

3      Quartic Surfaces in CP
3 

The topology of the real locus of a quartic surface in projective 3-space was 
determined in the 1970s. For a survey of these results, see Kharlamov [Kh]. 
However, it is easy to construct elements of T directly. Here are a few simple 
examples, generalizing both the 'odd component' and the 'even component' 
case of curves. 

As a first example, consider 

P = X0
i + X,4 - X2

4 - X34. 

This is a nonsingular Fermat-type quartic. The real locus is 

Hp H RIP3 = {[a, 6, u, v] G EP3 | a4 + b4 = uA + vA = 1}. 

Since the curve C C M2 defined by x4 + y4 = 1 is diffeomorphic to the 
circle, Hp fl MP3 is diffeomorphic to (C x C)/~ where ((a, 6), (u, v)) ~ 
((—a, —6), (—tz, —v)). This is manifestly a 2-torus. Consequently, P lies 
in T. 

4A simple closed curve in EP2 is odd if it generates ifi(EP2,Z2) ~ Z2, otherwise it is 
even. 
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Note that MIP3niJp is like the odd component of an elliptic curve: It is not 
contractible in EP3 because its inverse image under the double cover S3 -> 
EP3 is a nontrivial double cover. 

As a second example, take 

R = (XQ
2
 + Xi2 - rl(X2

2 + X3
2))(X0

2 + Xx2 - r2(X2
2 + X32)) 

where 0 < ri < r2- In this case, the real locus EP3 D HR consists of two 
disjoint 2-tori, neither of which is contractible in EP3. The singular locus £# 
consists of the four lines 

Lm,n = { [a,{-\)mia,b,{-\)nib]\[a,b]eCFl },        m,ne{0,l}. 

and these have no real points. 

The third example is more like the even component of a real elliptic 
curve. In E3, consider the circle C defined by the equations 

xi2 +X22 - 1 = £3 = 0. 

This is the minimum locus of the quartic polynomial go defined by 

40 = (Z12+Z22-1)2+X34. 

The critical locus of go in E3 is the circle C plus the origin O = (0,0,0). 
Consequently, the regular values of qo are all real numbers other than 0 
and 1. 

Let 6 be a real number satisfying 0 < e < 1 and consider the quartic 
polynomial qe = qo — e. Its zero locus in E3 is smooth and is the boundary of 
the region Re = qo~l{[0,e])i which retracts onto the circle C. Consequently, 
the zero locus of qe is diffeomorphic to a torus. 

Now consider the homogeneous quartic Q defined by 

Q   =    (X1
2+X2

2-Xo2r + X34-eXo4 

=    XQ   qe (Xi /XQ , X2 /XQ , X3 /XQ ). 

The singular locus Eg consists of two nonreal points [0,1, ±i, 0]. 

Since Q = XQ = 0 on E4 only at the origin, the real slice HQ n EP3 is 
just 

T = {[l,XuX2,X3]\q€(XuX2,X3)=0} 
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and hence is diffeomorphic to a torus. Thus Q lies in T. 

Note that T misses a linear EP2 in EP3 and consequently is contractible 
in EF3. Since HQ n EF3 is not homotopic to Hp D EP3, it follows that P 
and Q lie in different components of T. By these three examples, it follows 

that O fl T has at least three components. 

4    Quintic 3-folds in CP
4 

In E4, consider the locus T defined by the equations 

Xi2 + X22     =     1, 

Xz2 + X42     =     1. 

This is a 2-torus (it is the Clifford torus, up to scale). Because it is cut 
out by two independent equations, the normal bundle N of T in E4 is trivial, 
implying that its unit circle bundle L C N is diffeomorphic to the 3-torus. 

Consider the quartic function 

q = (x!2 + X22 - I)2 + {x3
2 + xA

2 - I)2. 

Then q(x) > 0, with equality if and only if x lies in T.  The critical values 
of q are 0, 1, and 2. 

Thus, for e satisfying 0 < e < 1, the hypersurface Te C E4 defined 
by q(x) — e2 = 0 is the boundary of a compact domain that has T as a 
deformation retract. In fact, by Morse theory, Te is diffeomorphic to L C N, 
which, as has been remarked, is a 3-torus. 

Now consider the (reducible) quintic polynomial P defined by 

P   =   Xo5(9(X1/X0,X2/Xo,X3/Xo,X4/Xo)-e2) 

=   Xo [(Xx2 + X2
2 - V)2 + (X32 + X4

2 - Xo2)2 - 62 Xo4] 

=   XQ Q, (Q is irreducible). 

The quintic hypersurface Hp C CP4 is the union of the hyperplane HXQ 

and the quartic hypersurface HQ. 

The singular locus Eg is a union of four lines 

£m,n = { [0,0, (-l)mia, 6, (-l)nz6]|[a,6]GCP1 }, m,ne{0,l}. 
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None of these lines have real points. 

The intersection Hx^ H HQ is a union of two quadric surfaces 

S± = { [0,X1,X2;X3,X4]|(X1
2 + X2

2)±z(X32 + X42)-0}. 

Neither of these surfaces has any real points. Note that 5+ D S- consists of 
the four lines Lrn^n. Consequently, Sp = 5+ U 5_. 

Thus, the real slice ffpflMF4 is smooth and is the disjoint union of HxQ H 
EP4 ~ EP3 and ifg n MIP4 ~ Te, which is diffeomorphic to the 3-torus. 

Thus, P lies in T, which is thereby shown to be nonempty. Conse- 
quently, O fl T is nonempty, thus proving that there are smooth (and hence 
irreducible) quintic hypersurfaces in CP4 whose real locus contains a torus 
as a component. 
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