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Abstract 

To define a consistent perturbative geometric heterotic compactifi- 
cation the bundle is required to satisfy a subtle constraint known as 
"stability," which depends upon the Kahler form. This dependence 
upon the Kahler form is highly nontrivial - the Kahler cone splits into 
subcones, with a distinct moduli space of bundles in each subcone - 
and has long been overlooked by physicists. In this article we describe 
this behavior and its physical manifestation. 

1    Introduction 

To specify a perturbative heterotic compactification, one must specify a bun- 
dle (or, more generally, a torsion-free sheaf) on the compact space. One can- 
not specify any bundle; rather, it must satisfy certain consistency conditions 
in order to get a supersymmetric low-energy theory. 

One of the consistency conditions is that the bundle must satisfy an 
equation known as the Donaldson-Uhlenbeck-Yau equation. This equation 
depends nontrivially upon the metric. This metric dependence has long been 
ignored among string theorists, but is in fact nontrivial and quite important. 

e-print archive: http://xxx.lanl.gov/abs/hep-th/9810064 
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In this paper we examine the metric dependence of this consistency con- 
straint on bundles in perturbative heterotic compactifications. In particular, 
on the Calabi-Yau manifolds appearing, the Kahler cone splits into subcones 
(or "chambers"), with a distinct moduli space of bundles associated to each 
sub cone. 

We begin in sections 2 and 3 by reviewing general constraints on geomet- 
ric heterotic compactifications, and Mumford-Takemoto stability in partic- 
ular. In section 4 we then review the relevant mathematical results concern- 
ing how the Kahler cone splits into subcones. Then in section 5 we examine 
the physical behavior that reproduces this mathematics. (Essentially, one 
gets a perturbative enhanced U(l) gauge symmetry on subcone walls, and 
the change in the moduli space is realized by examining D terms.) In sec- 
tion 6 we briefly consider the implications of these results for string duality. 
(For example, this behavior in heterotic K3 compactifications corresponds 
to previously unknown behavior of hyper plets in type IIA Calabi-Yau com- 
pactifications at intermediate type IIA string coupling.) Finally in section 7 
we work out a description of Kahler cone substructure on K3s that depends 
only on the Riemannian metric, not the precise complex structure, and also 
conjecture how this phenomenon generalizes when the Kahler cone is com- 
plexified by adding a B field. We also include a few appendices containing 
general background on moduli space problems and certain technical deriva- 
tions. 

Although in principle similar remarks hold in general, in this paper we 
will only consider bundles on surfaces (and typically only on K3s), not in 
other dimensions. We shall also only consider GL(n, C) bundles, not bundles 
with more general structure groups. Finally, for most of this paper we shall 
only explicitly refer to the classical Kahler cone, not the complexified Kahler 
cone. Only towards the end will we explicitly study the effect of adding a B 
field. 

In this article, when we speak of stability we shall always be referring to 
Mumford-Takemoto stability. 

2    Rapid review of heterotic compactifications 

For a consistent perturbative compactification of either the E$ x E$ or 
Spin(32)/Z2 heterotic strings, in addition to specifying a Calabi-Yau Z one 
must also specify a set of holomorphic vector bundles (or, more generally, 
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torsion-free sheaves1) Vi. These vector bundles must obey two constraints. 
For GL(n, C) bundles one constraint can be written as 

J^-c^Vi) = 0 (1) 

where n is the complex dimension of the Calabi-Yau and J is the Kahler 
form. Put another way, given a set of set of connections associated to local 
coordinate trivializations that are Hermitian (meaning, Fij = Fjj = 0), the 
constraint can be written as 

Q^Fij = o (2) 

or, equivalently, 
F A Jn-1 = 0 (3) 

This is known as the Donaldson-Uhlenbeck-Yau equation [31, section 15.6.2]. 

This constraint has a somewhat subtle implication. In general for any 
holomorphic bundle £, if there exists a Hermitian connection associated 
to £ such that, in every coordinate chart, the curvature F satisfies F A 
Jn_1 = cJ, where / is the identity matrix and c E R is a fixed chart- 
independent constant, then £ is either properly Mumford-Takemoto stable2, 
or Mumford-Takemoto semistable and split [4, 5, 6]. Thus, the constraint in 
equation (1) implies that (but is not equivalent to the statement) £ is either 
stable, or semistable and split. In fact we can slightly simplify this statement. 
Properly semistable sheaves are grouped3 in 5-equivalence classes, and each 
5-equivalence class contains a unique split representative [2, p. 23]. 

Thus, constraint (1) implies that £ is Mumford-Takemoto semistable. 
Moreover, the constraint implies that the representative of any 5-equivalence 
class that is relevant for physics is the unique split representative. 

The other constraint is an anomaly-cancellation condition which, if a 
single GL{r, C) bundle Vi is embedded in each Eg, is often written as 

£ (caW) - \ciiVif)  = c2(TZ) 

1We mention sheaves for completeness, though to aid readability in this paper we will 
only refer to bundles. 

2We shall explain stability momentarily. 
3More precisely, points on a moduli space of sheaves that are properly semistable do not 

necessarily correspond to unique semistable sheaves, but rather to "5-equivalence classes" 
of properly semistable sheaves. Points that are stable do correspond to unique stable 
sheaves - 5-equivalence classes are a phenomenon arising only for properly semistable 
objects. For more information, see appendix A. 
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It was noted [9] that the anomaly-cancellation conditions can be modified 
slightly by the presence of five-branes in the heterotic compactification. How- 
ever, we shall only be concerned with perturbative heterotic compactifica- 
tions in this paper. 

3    Mumford-Takemoto stability 

In the previous section we mentioned that for a consistent perturbative het- 
erotic compactification, the holomorphic bundle on the Calabi-Yau must be 
"Mumford-Takemoto semistable." What does this mean? 

For any torsion-free sheaf £, define the slope of £ to be 

ci{£) ■ J""1 

M£) = rank £ 

where J is the Kahler form. We will sometimes use the notation HJ{£) when 
there is ambiguity in the choice of Kahler form J. We say £ is Mumford- 
Takemoto (semi)stable if, for all proper coherent subsheaves T C £ such 
that 0 < rank J7 < rank £ and £/J: is torsion-free, we have 

M^) (<) < /*(*) 

Note that if £ is a torsion-free sheaf such that ci{£) = 0 and if £ has 
sections, then it can be at best semistable, not strictly stable. This is because 
the section defines a map O -> £, so we have a subsheaf F (namely, T = O) 
such that ^{F) — 0 = \x{£). 

In passing, we should make a technical remark concerning torsion-free 
sheaves that are not bundles. The stability constraint was originally de- 
rived from the low-energy supergravity for geometric compactifications in- 
volving bundles, not more general sheaves. Although one can certainly define 
Mumford-Takemoto (semi)stability for other sheaves (as we have done, in 
fact), there are other, inequivalent notions of stability (prominently, Gieseker 
stability), and it is not clear whether Mumford-Takemoto stability is the cor- 
rect notion of stability for heterotic compactifications involving sheaves that 
are not bundles. For nongeometric compactifications, even less is known - 
no one knows any analogue of the stability constraint. 
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4    Kahler cone substructure 

Note that Mumford-Takemoto stability depends implicitly upon the choice 
of Kahler form [2, 3, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. This choice is 
extremely important - sheaves that are stable with respect to one Kahler 
form may not be stable with respect to another. In general, for fixed Chern 
classes a moduli space of sheaves will not have the same form everywhere 
inside the Kahler cone, but rather will have walls along which extra sheaves 
become semistable. These walls stratify the Kahler cone into subcones (or 
"chambers"), inside any one of which the notion of stability is constant. 

We should take a moment to clarify these remarks slightly. In typical 
circumstances, a generic stable bundle will be stable for all choices of Kahler 
form. However, the stability of some nongeneric subset will depend non- 
trivially upon the Kahler form, and so the moduli space will change as one 
wanders around in the Kahler cone. More precisely, as the Kahler moduli 
are varied, some (typically nongeneric) stable bundles will become strictly 
semistable, then unstable, and vice-versa. 

In this section we shall describe, without proof, necessary (but not suffi- 
cient 4 if the rank is greater than 2) conditions for chamber walls inside the 
Kahler cone. (For the special case of moduli spaces of rank 2 sheaves, it is 
known that these conditions are both necessary and sufficient for the moduli 
space to change.) 

Define the discriminant of a coherent sheaf £ on an algebraic Kahler 
surface to be 

A(S) = 2rc2(S) - {r-lMS)2 

where r is the rank of £. It can be shown (see [2, section 3.4] or [3, 30]) that 
when £ is Mumford-Takemoto semistable, A(£) > 0. 

Walls inside the Kahler cone K are specified by divisors £ satisfying 
certain conditions. For a given divisor £, the corresponding wall is 

W( = {JeK\{-J = 0} 

(Note that by the Hodge index theorem, on an algebraic Kahler surface the 
positive definite part of if1,1 is one-dimensional, so the intersection form on 
jff1,1 has signature (+, —,•••, —)•) 

4More precisely, the conditions we shall state are necessary (but in general not sufficient) 
for the moduli space to change. For rank greater than two, sufficient conditions on chamber 
walls for the moduli space to change are not known. 
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Precisely which divisors £ can define chamber walls? The conditions 
[19, 20] are that, for some integer i, 0 < i < r, 

1) £ = rF — ici for some divisor F 

2) -t(r - t)A < C2 < 0 

We shall not attempt to completely prove this result here (but for a 
detailed examination, see appendix B). However, part of this result is rel- 
atively clear. Suppose £ is a rank r bundle that is stable in some parts 
of the Kahler cone and unstable in others. Let J7 be a potentially desta- 
bilizing subsheaf of £, in the sense that when £ becomes unstable as a 
function of the Kahler form J, fijiF) grows to become larger than HJ{£). 

Define F = ci(^r), i = rank J7. Then the condition on J for the bun- 
dle £ to be strictly semistable is iij{T) = H>j{£), which we can rewrite as 
J'(rF — ici) = 0. Put another way, if £ is strictly semistable for some Kahler 
form J then there exists a divisor F and an integer i, such that £ = rF — ici 
and J - C = 0. 

Some examples might help the reader. Consider a generic elliptic K3 with 
section. Its Kahler cone has two generators, corresponding to the section 
S and the fiber F, obeying S2 = -2, F2 = 0, and S • F = 1. Write 
J = aS + bF, then the Kahler cone is defined by the inequalities a > 0 and 
b > 2a. Consider a moduli space of rank 2 bundles of ci = 0 and C2 = 4. In 
this case it is straightforward to show that the Kahler cone splits into two 
subcones, with the chamber wall located along Kahler forms proportional to 
S + ZF. For another example, consider a moduli space consisting of rank 
2 bundles of ci = 0 and C2 = 24 (the moduli space containing the tangent 
bundle), on the same K3. It is straightforward to check that the Kahler cone 
splits into 15 subcones in this case. 

In certain cases it is possible to see Kahler cone substructure explic- 
itly. For example, in moduli spaces of equivariant sheaves on toric varieties, 
this substructure is essentially manifest. We shall not work through such 
examples in this paper; see instead [25, 26]. 

Moduli spaces associated to distinct chambers of a Kahler cone are often, 
but not always, birational to each other. (If they are not birational, then 
it is because at least one is reducible, and in crossing the wall an entire 
component either appeared or disappeared.) We shall see explicitly how 
distinct moduli spaces are related in the next section. 

In passing, we should note that the behavior of Mumford-Takemoto sta- 
bility as the Kahler form changes is closely related to the behavior of GIT 
quotients under change of polarization [21, 22]. 
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We should also point out that this behavior is closely related to the be- 
havior of Donaldson polynomial invariants on manifolds of fcj" = 1 as the 
metric changes. There also, one finds walls in the space of metrics. (How- 
ever, in Donaldson theory this only happens on four-manifolds of b^ = 1, 
whereas the Kahler cone substructure described in this paper potentially oc- 
curs on any algebraic variety.) In the present discussion we fix Chern classes 
and examine the behavior of moduli spaces of bundles of those fixed Chern 
classes as the Kahler form changes, whereas in Donaldson theory one sums 
over contributions from different Chern classes. In essence, Donaldson the- 
ory is a "topological" version of the "algebro-geometric" phenomenon being 
discussed here. For more information on Donaldson theory on manifolds of 
&2~ = 1, see for example [23, 24]. 

5    Physics at chamber walls 

Suppose we have a heterotic compactification involving some bundle £, and 
we have varied the Kahler form until the bundle £ is no longer stable5, but 
rather properly semistable. What does this mean for the low-energy theory? 
The low-energy theory picks up an enhanced 17(1) gauge symmetry. The 
transformation of the moduli space of bundles is encoded in D terms. 

Why does the low-energy effective theory get an enhanced 17(1) gauge 
symmetry? Properly semistable bundles occur on a moduli space in in- 
equivalence classes (see appendix A), and each 5-equivalence class contains 
a unique split representative [2, p. 23]. Moreover, as discussed earlier, 
the representative of the 5-equivalence class relevant for physics is the split 
representative. Thus, if £ is a properly semistable bundle, then the physically 
relevant representative of the same 5-equivalence class can be written in the 
form £ = T © Q for semistable T, Q. Since the bundle splits, we have 
a perturbative enhanced 17(1) gauge symmetry. This is because the low- 
energy gauge theory is the largest subgroup of the ten-dimensional gauge 
group that commutes with the structure group of the bundle. When the 
bundle splits, its structure group can be reduced from SU(n) (where n is its 
rank) to S[U(ni) x U(n2)], where n = ni + 712. Everything that commuted 
with SU(n) also commutes with S[U(ni) x I7(n2)], and in addition there 
is an extra commuting U(l) factor, described explicitly by SU(n) matrices 
of the form diag(a;, #, • • •, x, y, i/, • • • y), with xniyn2 = 1. Thus, there is a 
perturbative enhanced (7(1) gauge symmetry6 in the low-energy effective 

5In typical cases, this can only happen for certain nongeneric S. 
6In fact, we are being slightly sloppy - one sometimes will also need to mod out by 

finite groups - but this will not affect our analysis. It is relatively straightforward to see 
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theory. 

Since the low-energy theory has picked up a [/(I), we now have to worry 
about D terms, and indeed these will explicitly realize the moduli space 
behavior mentioned earlier. In order to see this behavior explicitly, let us 
examine the chiral fields of the low-energy theory which will be charged 
under the U{1). 

Write £ = T © £, then deformations of £, (classified by elements of7 

^(EndS) = Hl{Hom{£,£))) have contributions from four sources: 

Hl{Hom{G,G)) 
H1 (Hom^g)) 
H^Homlg.T)) 

The first two contributions - namely, deformations of F and G individually 
- are neutral under the U(l). The second pair of contributions, which mix 
JF into G and vice-versa - have equal and opposite charges under the U(l). 

In order to make notation more concise, let us define 

ai   e   Hl(Hom{F,g)) 

Pi    E   Hl(Hom(g,T)) 

and identify a*, fy with the corresponding chiral superfields. 

We can now write the D term8 of the low-energy effective action associ- 

these factors. Suppose that we have embedded 5C/(3) in an E*. The group E% contains a 
subgroup [10] 

EQ x 5(7(3) 

Zs 

and so this is the reason why the largest group commuting with 5t/(3) is EQ rather than 
EQ x Z(SU(2)) (Z(SU(3)) = Z3) - the center of SU{3) is identified with a Z3 subgroup 
of EG. If SU(3) is reduced to S[U(2) x C/(l)], then the low-energy gauge group is actually 

E6 x 17(1) 

We would like to thank A. Knutson for an explanation of this detail. 
7Infinitesimal deformations of an arbitrary torsion-free sheaf 6 are classified by elements 

of Ex.t1(SiS) [7, 8], however for the purposes of making this paper more readable, we 
usually restrict to bundles, and for 6 a bundle, Ext1(^,5) = ^(EndS). 

8In this paper we concentrate on K3 compactifications, and so we will get a triplet of D 
terms, not a single D term. However, to simplify the presentation, we shall momentarily 
forget this point and only consider a single D term. 
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ated to the enhanced i7(l) in the form 

n 77i 

D = £N2 - El&l2 - r 

where r is some function of the Kahler moduli, and 

n   =   dim H1 (Hom^g)) 
m   =   dim^iHomig^)) 

The analysis of these D terms is now essentially identical to that presented 
in [27]. Depending upon the values of n and m, there are essentially three 
distinct cases to consider: 

1) n = m = 0 

This trivial case occurs when locally all deformations of the bundle pre- 
serve its splitness. We shall not speak to this case further. 

2) n > 0, m = 0 

In this case, when r > 0 the moduli space is locally P71, yet when r < 0 
the moduli space is empty. This is precisely the description of a component 
of a reducible moduli space appearing or disappearing at a chamber wall. 

In the special case of bundles on K3s, however, n = m by Serre duality, 
so case (2) cannot arise. (For a discussion of irreducibility of moduli spaces 
of bundles on K3s, a sufficient but not necessary condition for case (2) not 
to arise, see [34, 35].) 

3) n > 0, m > 0 

In this case, by varying r we recover a birational transformation. 

Recall from the previous section that moduli spaces of bundles associated 
to distinct chambers are either related by a birational transformation, or one 
is reducible and an entire component appears or disappears at a chamber 
wall. We have explicitly recovered these possibilities9 in terms of D terms 
associated to the enhanced U(l). 

Now let us specialize to the case of a heterotic K3 compactification. In 
this case in the low energy supergravity the moduli are in hyperplets, and 
D terms come in triplets. How does the above story specialize? First, recall 
that a charged hyperplet can be thought of as a pair of oppositely charged 

9We would like to thank E. Witten for a useful discussion of this matter. 
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chiral plets. In the present case, using Serre duality we have 

H^HomiFiQ)) ^ H1(Hom(G,F))v 

so clearly the moduli that become charged under the U(l) at the subcone 
boundary fill out hyperplets. 

We should clarify a few additional points. A deformation by an element 
of ^(Hom^jQ)) or H1(Hom(Q)!F)) will define a distinct bundle only up 
to an overall scale factor (see appendix C), so we get a total of 2 complex 
bosons (one hyperplet) more than we would have gotten from Hl{End £) for 
generic £. Indeed, one expects10 light vectors to be paired with light hyper 
plets, and as we have an enhanced ?7(1), we should not be surprised to find 
an extra hyper plet. 

In addition, matter charged under the rest of the low-energy gauge group 
can also become charged under the U{1). Recall from [37] that H1^) counts 
complex bosons charged under part of the (generic) low-energy gauge group 
(phrased differently, (l/2)/i1(5) is the number of charged hyper plets). In the 
case that £ = FtSQ, these will split into h1^) charged complex scalars and 
/i1(^) charged complex scalars, each charged oppositely under the enhanced 
17(1). 

In passing, we should also point out that in heterotic compactifications 
on K3, D terms come in triplets, a fact we have essentially ignored so far in 
this section. One implication of this fact is that Kahler cone substructure 
on K3s can be understood in a complex-structure-invariant fashion; this will 
be discussed in section 7. 

We have also glossed over anomaly cancellation so far in this section. 
In fact, the enhanced U(l) appearing at chamber walls is anomalous, and 
gets a mass through a six-dimensional version of the Dine-Seiberg-Witten 
mechanism [32], as explained in [33]. The three real scalars forming the 
triplet of Fayet-Iliopoulos terms in our discussion above form three-fourths 
of a hyper plet. The fourth real scalar of this hyper plet gains a translation 
symmetry, gauged by the Z7(l), an artifact of Green-Schwarz anomaly can- 
cellation in ten dimensions. (This fourth scalar descends from the two-form 
tensor field in ten dimensions, and its translation symmetry is a relic of the 
anomalous transformation of the ten-dimensional tensor as assigned in the 
Green-Schwarz mechanism.) Because of this gauged translation symmetry, 

10If the 1/(1) were nonanomalous, then this would follow immediately from anomaly 
factorization - if nu is the number of hyper plets and nv the number of vectors, then one 
needs nn — nv = 244 [36]. However, we shall see shortly that the U(l) receives a mass 
through the Dine-Seiberg-Witten mechanism, so an anomaly factorization argument is not 
really appropriate. 
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the U(l) vector field is actually massive. In particular, when checking six- 
dimensional Green-Schwarz anomaly factorization, the U(l) should not be 
counted. 

6    String duality 

What can we learn by applying string duality to Kahler cone substructure? 

First, the attentive reader might be very concerned about F-theory duals 
to heterotic K3 compactifications. The Kahler cone substructure described 
in this paper has not been seen in F-theory to date; why not? 

Suppose we have compactified the heterotic theory on an elliptic K3 
with section. Then, loosely speaking, it turns out [11] that there is a unique 
chamber corresponding to the case that the section is much larger than the 
fiber. This particular chamber is the one that has been sensed by F-theory 
arguments to date. 

For example, in the recent past a description of bundles on elliptic Calabi- 
Yaus was worked out by Friedman, Morgan, Witten [38]. They explicitly 
assume that the Kahler form lies in the distinguished chamber described 
above, namely, that the elliptic fiber is much smaller than all other Kahler 
moduli. (Having made this assumption in the beginning, the rest of their 
paper is written without any reference to Kahler forms.) 

Precisely what does the chamber structure dualize to? For technical sim- 
plicity, consider a heterotic theory compactified on K3 x T2, dual to type 
IIA on some Calabi-Yau threefold. Assume for simplicity that the K3 is el- 
liptic with section. Then the weakly coupled IIA string is dual to a heterotic 
theory with a big section [39]. Put another way, the weakly coupled IIA 
string is dual to the heterotic theory in the distinguished chamber described 
above. As we move to the boundary of the chamber, the IIA string stops 
being weakly coupled. Thus, it appears (somewhat loosely) that the cham- 
ber structure of the perturbative heterotic string dualizes to new behavior 
in the hyperplet moduli space at intermediate IIA string coupling. 

Since the IIA dual to Kahler cone substructure occurs at intermediate 
string coupling, one probably cannot hope to find a geometric explanation in 
terms of the IIA Calabi-Yau. However, if one considered M theory compact- 
ifications on a Calabi-Yau threefold, dual to the heterotic string on K3 x S1, 
then it might be possible to see heterotic Kahler cone substructure in terms 
of the geometry of the Calabi-Yau. We shall not pursue this direction here, 



1452 KAHLER CONE SUBSTRUCTURE 

however. 

7    Complex structure ambiguity on K3s 

In most of this paper we have referred to bundles that are holomorphic 
with respect to a specific complex structure. On K3s we should really be 
slightly more careful. As K3s are hyperKahler manifolds, they possess Ricci- 
flat metrics that are Hermitian with respect to multiple complex structures. 
The choice of complex structure is not physically meaningful, and in heterotic 
compactifications on K3 this ambiguity is reflected in the SU{2) R-symmetry 
of the six dimensional supergravity. 

As the low-energy supergravity possesses an SU(2) R-symmetry that re- 
flects a physical invariance under rotation of complex structure, one expects 
that there should exist a complex-structure-invariant description of Kahler 
cone substructure. More precisely, there should exist a description of Kahler 
cone substructure that refers only to the metric and Chern classes, not to 
any particular complex structure. 

There is another reason to believe that there should exist a complex- 
structure-invariant formulation of Kahler cone substructure on K3s. By 
following the arguments of [31, section 15.6], one finds that the metric and 
connection must satisfy the Donaldson-Uhlenbeck-Yau equation (2) for not 
just one complex structure, but for each complex structure on the K3. Put 
another way, one has a triplet of constraints of the form 

F A Jij = 0 

where J^ is a triplet of Kahler forms, transforming under the symmetric 
representation of SU(2)R. 

Such a complex-structure-invariant description does exist, and we shall 
describe it here, following the notation and conventions of [28, 29]. 

First, we shall consider how Kahler cone substructure is specified on the 
space of Ricci-flat metrics on K3, namely the Grassmannian of spacelike 3- 
planes in R3,19. Suppose we are studying moduli spaces of bundles of rank 
r and Chern classes ci, C2. We shall make the (simplifying) assumption 
that ci = 0. (Note that if ci were nonzero, then it would implicitly fix a 
complex structure, namely that in which ci € H2(K3, Z) fl iJ1'1(i;C3,R).) 
Let £ G F3,19 such that for some integer i, 0 < i < r, 

-i (r - i) (2rc2) < r2C2 < 0 
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then in the space of Riemannian metrics (defined by spacelike 3-planes S C 
F3,19) there is a wall defined by £, as 

W^ = {S 6 Grassmannian(spacelike 3-planes in R3,19) | S • C = 0 } 

and along this wall, for certain nongeneric bundles, one will get enhanced 
U(i) gauge symmetries in the low-energy theory. 

Specific complex structures are then assigned to a Riemannian metric 
S by picking a specific spacelike 2-plane ft C XJ, and the Kahler form J, 
modulo rescalings, is simply the orthogonal complement of ft in S. For 
any given choice of ft, this description correctly reproduces the Kahler cone 
substructure described earlier, and so this is clearly the desired complex- 
structure-invariant formulation. 

If one is somewhat braver, one can make a natural conjecture concerning 
how this situation changes when one adds a B field. In this case, let £ E F4,20 

be such that, for some integer i, 0 < i < r, 

-i(r-t) (2rc2) < r2C2 < 0 

Metrics and B fields are combined into a spacelike 4-plane 11 C R4,20. It 
then seems quite reasonable that walls in the space of spacelike 4-planes are 
defined by 

W^ = {11 G Grassmannian(spacelike 4-planes in R4,20) 111 • £ = 0 } 

How do we then break down 11 into a specific choice of metric and B field ? 
Pick w e F4'20 such that w2 = 0 and w • C = 0. Define £' = 11 fl w1, then 
a metric is defined by a spacelike 3-plane E which is simply the image of S' 
in w^-fw. In order to find a corresponding value of B, pick w* G F4,20 such 
that (w*)2 = 0, w - w* = 1, w* ± wL, and w* • ( = 0. Let B' E R4'20 such 
that B' • S' = 0 and B' • w = 1, then project B' into w^/w to get B. 

Note that this condition on the conformal field theory is very closely 
related to the condition for an enhanced nonabelian gauge symmetry in 
type IIA compactifications on K3 [29]. 

8    Conclusions 

In this paper we have studied the "stability" of bundles, a necessary condi- 
tion for a consistent perturbative heterotic compactification, and in particu- 
lar examined the dependence of stability upon the Kahler form. The Kahler 
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cone splits into subcones, which is reflected physically in the appearance of 
an enhanced U(l) gauge symmetry at a subcone wall (for a compactifica- 
tion involving a (nongeneric) bundle whose stability changes at the wall). 
In particular, we have outlined known mathematical results concerning the 
positions of these walls, and also examined how their appearance is reflected 
physically. 

There are several directions that remain to be pursued. For example, 
we have not studied Kahler cone substructure on Calabi-Yaus of dimension 
greater than two. To our knowledge, mathematical results on stability for al- 
gebraic varieties of dimension greater than two are extremely limited (though 
it may be possible to empirically derive some conjectures by using equivari- 
ant sheaves [25, 26] on toric varieties, for which Kahler cone substructure 
appears manifestly.) 

We also have not studied bundles with structure group other than 
GL(n, C).   Presumably related phenomena appear in spaces of bundles of 
other structure groups; it would be interesting to determine precisely what 
phenomena occur. 
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A    Notes on moduli spaces of bundles 

In order to get a well-behaved moduli space, one needs some notion of "sta- 
bility." For example, consider the analogous (and much simpler) problem of 
constructing P1 as a quotient of C2 by Cx: 

! =  C2 - {0} 
Cx 

In order to get a well-behaved result, one first removes the point 0 from C2 

before quotienting by Cx. Technically this construction of P1 is known as 
a Geometric Invariant Theory (GIT) quotient, and the point 0 G C2 is an 
example of an unstable point. 
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Alternatively, one can construct P1 as 

S3 

U(l) 

In this construction, we do not need to remove a point before quotienting; 
rather, we first restrict to a cross-section of C2, and then quotient by a 
smaller group. This construction is known formally as a symplectic quotient, 
and as is well-known, GIT quotients give the same results as symplectic 
quotients. In symplectic quotients one does not define a notion of "stability" 
- one picks out a slice at the beginning that never intersects any "unstable" 
points. 

Strictly speaking string theory uses a description of moduli spaces closely 
analogous to a symplectic quotient - solutions of the Donaldson-Uhlenbeck- 
Yau equation. However, this analogue of a symplectic quotient has an equiv- 
alent formulation in terms of an analogue of a GIT quotient, and it is the 
GIT quotient formulation that most people refer to. 

So far we have considered the gross features of moduli spaces, however for 
this paper we shall need a little more information. It is possible for a point to 
be stable, but only just barely - this is often referred to as being semistable. 
Semistable objects do not map one-to-one into the moduli space; rather, to 
get well-behaved results, several semistable objects are typically identified 
with a single point on the moduli space. In the context of moduli spaces 
of bundles, such classes of semistable holomorphic bundles are known as S- 
equivalence classes. (In the context of symplectic quotients, this corresponds 
to a symplectic reduction at a nonregular value of the moment map.) 

Now let us see how ^-equivalence classes arise a little more explicitly. 
Consider deforming £ = TQQ by an element of ^{Hom^, Q)) only - do not 
turn on any elements of H1 {Hom(Q, T)). Then it turns out (see appendix C) 
that the overall scale does not matter - elements of ^(Hom^T^Q)) which 
differ only by a scale define isomorphic bundles. 

Now, by scaling an element of Hl{Hom{F, Q)) down to zero, we recover 
a one-parameter family of bundles, of the form 

f   =  I £' * ^ 0 
*    \ T@g t = o 

If we define a moduli space of bundles in such a way that £' and £$ = J7 © Q 
are distinct, then as £Q is the limit of a one-parameter family describing £', 
the moduli space cannot be Hausdorff11. It is therefore much more natural 

11 Technical experts would no doubt prefer we use the term "separable" rather than 
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to associate £' and £o with the same point on the moduli space, thereby 
getting a much better behaved moduli space. The pair consisting of £' and 
So is an example of an 5-equivalence class, and this example has hopefully- 
demonstrated why one uses 5-equivalence classes to define moduli spaces. 

In the text, we have discussed how stability depends upon the Kahler 
form. What happens to 5-equivalence classes as the Kahler form is varied? 
Let £ be a bundle that is stable with respect to some Kahler forms and 
unstable with respect to others, so that along some wall in the Kahler cone 
it is strictly semistable. As we have just discussed, along that wall in the 
Kahler cone, £ will lie in a nontrivial 5-equivalence class of bundles. What 
typically happens is that the other elements of the 5-equivalence class are 
strictly semistable only for Kahler forms along that wall, and are unstable 
for other Kahler forms. So, if the Kahler form is moved off the wall in such 
a way that £ becomes stable, then the other elements of the 5-equivalence 
class become unstable and so drop out of the picture, leaving one with a 
unique representative. 

B    Derivation of chamber walls 

In this section we shall derive the necessity conditions for a chamber wall in 
the Kahler cone, in a special case. This derivation is already known (see for 
example [19]); however, as the methods are unfamiliar to most physicists, 
we repeat it here. 

Before working through the derivation, we need a few standard results. 
Given a torsion-free coherent sheaf, there exists a filtration oi £ [2, 3] 

0 = £Q c £i C • • • C £n = £ 

(where C indicates proper subsheaf) known as the Harder-Narasimhan fil- 
tration, with the properties 

(1) £i/£i-i is semistable for 1 < i < n 

(2) n(£i/£i-i)> ii(£i+i/£i) for l<i<n-l 

For every torsion-free coherent sheaf £, a Harder-Narasimhan filtration exists 
and, for fixed Kahler form, is unique. 

Note that the Harder-Narasimhan filtration is trivial (meaning, of the 
form 0 = £o C £i = £) precisely when £ is semistable. Intuitively, the 
Harder-Narasimhan filtration gives information about the "instability" oi£. 

"Hausdorff," however we have decided to forgo a small amount of technical accuracy in 
exchange for improved readability. 
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Now, suppose £ is a torsion-free coherent sheaf on an algebraic surface 
that is stable with respect to Kahler form Ji and unstable with respect to 
Kahler form J2. Suppose £ has Harder-Narasimhan filtration (with respect 
to J2) of the form 

0 C £1 C S 

This need not always be the case; however, we shall only study this case 
in this appendix. (The general case follows similarly [19, 20].) We have an 
exact sequence 

0 -> £1 -> £ -► £/£i -> 0 

Define the discriminant A(£) = 2rc2(£) — {r—l)ci(£)2, where r = rank £. 
By Bogomolov's inequality [2, 3, 30], we have that A(£) > 0 if £ is Mumford- 
Takemoto semistable. 

Define F = ci(£i), i = rank £1, and £ = rF — ici(£). Use the identity 

A(£) - -A^x) - -L^A(£/£i) = -- ^ 
i r — i i(r — i) 

Now,  as £1 and £/£i are J2-semistable (from the definition of Harder- 
Narasimhan filtration), we have that 

C2 

i(r — i) 

We now merely need to show that (2 < 0. Prom the definition of Harder- 
Narasimhan filtration, we have fij2(£i) > ^j2(£/£i), which implies J2 • C > 
0. As £ is Ji-stable, we know that HJ^I) < jUj^f), which implies that 
Ji ' C < 0- Thus, there exists J such that J • £ = 0, and so from the Hodge 
index theorem we have £2 < 0. 

Thus, if £ is Ji-stable but ^-unstable, then there exists a divisor ( such 
that, for some integer i, 0 < i < r, 

(1) ( = rF — ici(£) for some divisor F 

(2) -i{r - i)A(£) < C2 < 0 

and moreover £ becomes strictly semistable for a Kahler form J such that 
J • £ = 0. It should be clear that these conditions are necessary for a moduli 
space to change, but not necessarily sufficient. 



1458 KAHLER CONE SUBSTRUCTURE 

C    Notes on H^Hom^, Q)) 

Suppose J7 and Q are both bundles. Then we can define a bundle £ as an 
extension of J7 by Q 

and extensions of this form are well-known to be classified by elements of 
Ext1^, g) = ^(HomiJ7, g)). 

There is, however, a subtlety: distinct extensions are not necessarily the 
same thing as distinct bundles. In fact, elements of ^{Hom^J7^)) which 
differ only by an overall scale define isomorphic bundles. 

Thus, isomorphism classes of non-split bundles are actually classified by 
PExt1^,^) = VH^HomiT.g)). 

How can we see this fact explicitly? Construct the bundles J7, £, and 
£ in terms of transition functions on overlaps of coordinate charts. The 
transition functions for £ can be written in the form 

0        *£ 

where *F and *£ are transition functions for J7
1 £, respectively, and the 

J4'S on each overlap determine an element of ^(Hom^^g)). Note that 
if A = 0 on each coordinate overlap, then they define the zero element of 
^(Hom^J7, g)), and in particular the bundle £ splits: £ = T © g. 

Suppose we multiply the element of H^iRom^T, £/)) by a scalar £, then 
the effect is to multiply the A in each transition function by t. We claim 
that the resulting bundle, call it £$, is isomorphic to the original bundle £. 
To see this, simply change the local trivializations by multiplication by 

1   0 
0    t 

then the transition functions for £t become those of £\ 

' 1   0 " *?     tA ' 1     0 *F A ' 
0   t 0      *g o t-1 0 *Q _ 

In other words, £t = £ for t ^ 0, precisely as claimed. 

Similar results hold when J7 and g are more general coherent sheaves, 
namely, elements of Ext1^, g) that differ only by an overall scale define 
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isomorphic sheaves. The argument is somewhat different than was used 
above in the special case of bundles; for completeness, we outline it here12. 

First, consider an injective resolution of Q: 

0 —> G —yl0 A Ix A ••• 

Now, calculate Ext1^, Q) as a right derived functor of Hom^, —), namely, 
as the cohomology of the complex 

Hom(^,Xo) -^ Hom(^,Ji) -% Hom(^X2) -% ... 

In other words, represent an element of Ext1(Jr, Q) by an element h G 
Hom^Ii) such that d'^h) = 0, modulo im dg. 

More concretely, given h G Hom(^r,Xi) such that ^(/i) = 0, we have the 
following diagram 

0—+   g   —^    £    —*    T    —^0 
II I 1^ 

0   —>   ^    —+   To   A    Xi    —^   ••• 

where the extension £ is defined as follows. Local sections of E are given 
by pairs (/, i\ where / is a local section of T and % is a local section of 
Xo obeying the constraint /i(/) = cfo^). The maps £ -> T and £ -> XQ cir^ 
the obvious projections. Verification that the diagram above is commutative 
and of related details is left as an exercise for the reader. 

We can now check that multiplying h by a scalar t yields an isomorphic 
sheaf. Define h! — th, and £t the new extension. If (/, i) is a local section of 
£, then (//t,i) is a local section of £*> because h(f) = h'(f/t). 

Thus for t y^ 0, £ and £t are isomorphic as sheaves, the isomorphism 
sending (/,i) to (//t,i). 

Finally, we should perhaps clarify why two sheaves that are isomorphic 
as sheaves need not be isomorphic as extensions. For two sheaves £i and £2 
to be isomorphic as extensions of F by Q means that the following diagram 
must commute: 

0—>   G    —>    £1    —>   F   —>0 

II iP II 
0—> g -^  £2  —* T —>o 

We would like to thank T. Gomez for a useful discussion of this matter. 
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where p : £i —> £2 is the isomorphism in question. It is easy to check that 
the isomorphism given above between £ and £t as sheaves does not yield a 
commutative diagram of the above form, thus they cannot be isomorphic as 
extensions. 
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