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1.    Introduction 

Two dimensional conformal field theories exhibit a very rich structure, and 
much can be said about their properties. One of the most striking features 
is the ability to control, not just the conformal theory itself, but also the 
nearby nonconformal theories obtained by adding certain specially-chosen 
relevant perturbations. These nonconformal theories exhibit a structure 
(exact-integrability) almost as rich as that of their conformal cousins. More- 
over, one can actually follow these perturbations and see how the theory 
flows from the ultraviolet fixed point CFT to a new fixed point (a different 
conformal field theory) in the infrared. 

Not so much is known about conformal field theories in higher dimen- 
sions. The richest information, to date, has only come for supersymmetric 
conformal field theories. 

Recently, however, a new avenue to understanding conformal field theo- 
ries (in various dimensions) has opened up. The CFT/AdS correspondence 
[1] gives a precise quantitative relation [2,3] between a conformal field theory 
in d dimensions, and a solution to string theory/M-theory on a background 
of the form AdSd+i x M, with M compact. At least for large N (and large 
QsN), the latter is computable, in that it is well-approximated by a classical 
supergravity calculation. 

In this paper, we would like to imitate the construction which was very 
successful in two dimensions, and construct new conformal field theories 
by taking known examples from the CFT/AdS correspondence, perturbing 
them by relevant operators, and flowing to the infrared. In favourable cir- 
cumstances, we will find that the perturbed theory indeed flows to a new 
conformal field theory in the infrared. 

In our examples, the perturbation breaks some or all of the supersymme- 
try. Hence, we will, in particular, be learning about new, non-supersymmetric 
conformal field theories. This is exciting, in itself, as there are not too many 
known examples of such for d > 3. We will find examples of these non- 
supersymmetric CFTs in d = 3,4 and discuss the case of d = 6. 

The downside of breaking supersymmetry is that self-consistency of the 
supergravity solution is no longer assured, even at the classical level. If a 
tachyonic scalar in anti-de Sitter space has a negative mass-squared which 
exceeds the Freedman-Breitenlohner stability bound [4,5,6], leads to an expo- 
nentially-growing mode, rendering the supergravity solution unstable. Super- 
symmetry ensures that there are no such unstable modes in a supersymmetry- 



J. DISTLER, F. ZAMORA 1407 

preserving solution to the supergravity equations. It, plausibly, also takes 
care that quantum corrections do not upset the classical solution. (We say, 
plausibly, as no one actually knows how to compute quantum corrections in 
these Ramond-Ramond backgrounds.) In the non-supersymmetric case, we 
will actually have to check the stability, even at the classical level by hand. 
We will also restrict ourselves to the large iV limit, where quantum correc- 
tions are parametrically small (being down by factors of 1/N2) and do not 
upset the large N solution. 

We will study in greatest detail the relevant deformations of the d = 4 
M = 4 SOFT. Those relevant operators are mapped to the scalars in super- 
gravity multiplet, whose dynamics is encoded in the five dimensional Af = 8 
5J7(4) gauged supergravity Lagrangian [7]. In particular, in §3, we follow 
the renormalization group flow of the J\f = 4 SYM with the addition of a 
mass term for one of the gluinos. Such a term breaks all the supersymme- 
tries and the 5^7(4)^ R-symmetry to 5C/(3). We will see the existence of 
a non-supersymmetric SU(3) invariant background AdS^ x S5 of type IIB 
string theory, smoothly connected (via the VEV of the scalar field in the 
supergravity corresponding to the gaugino mass) with the usual BPS 577(4) 
invariant AdS^ x S5 background. We will see the relation between the su- 
pergravity solution which interpolates between these asymptotic behaviours 
and RG flow in the field theory, perturbed by this S'?7(3)-invariant relevant 
operator. We compute the mass spectrum of the low-lying states in this 
5J7(3)-invariant supergravity solution (equivalently, we find the conformal 
dimension of the corresponding operators in the d = 4 CFT), and check that 
it is, indeed, a stable solution. 

In §4 we analyse another kind of relevant deformation of the Af = 4 
SYM: a quadratic term for one of the adjoint scalars. This term also breaks 
supersymmetry, and leaves an 50(5) subgroup of SU(4:)R unbroken. As 
before, its ultraviolet relevant coupling constant connects the maximally 
supersymmetric AdS^ x S*5 type IIB background to a non-supersymmetric 
AdSs x 'S'5 background (with now S5 being an squashed five-sphere in one 
direction, breaking the isometries 50(6) to 50(5)). Unfortunately, this 
supergravity background proves to be unstable. So, in this case, there is no 
corresponding 50(5)-invariant d = 4 CFT. 

§5 deals with d = 3 conformal field theories. We review some 5?7(3) 
invariant fixed points studied by Warner [8], and observe the existence of a 
non-supersymmetric 50(3) x 50(3) invariant fixed point, connected to the 
Af = 8 50(8) invariant fixed point by an appropriate renormalization group 
flow. 
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Finally, in §6, we discuss the relevant deformation of the d = 6 M = (2,0) 
SOFT, breaking supersymmetry and the SO(5) R-symmetry group to 50(4). 
As in the d = 4 50(5) invariant theory, this deformation ends up in an 
unstable supergravity background. We also check the stability of a non- 
supersymmetric M-theory background [9], which was recently proposed as 
leading to a non-supersymmetric, 50(4) invariant, CFT in d = 6. This 
theory, too, turn out to be unstable. 

After this work was completed, we received the preprint [10], which over- 
laps with material of §3,4. They also noted the existence of the 5?7(3) and 
50(5) invariant type IIB backgrounds and their connection to conformal 
field theories on the boundary. Unfortunately, they did not compute the 
spectrum of masses around these new critical points and so could not check 
the stability of these solutions. 

2.    Relevant Deformations of D = 4, Af = 4 SCFT 

The CFT/AdS correspondence can be extended to particular non-super- 
symmetric relevant directions of the Af = 4 SCFT. At large Nc and strong 't 
Hooft coupling, the deformed theory is given by the solution of the classical 
equations of motion of the Af = 8 5{7(4) gauged supergravity action in 5D, 
with boundary conditions determined by the relevant couplings. 

There are two type of relevant deformations: by A = 2 superconformal 
primaries 

Xu J dx4 (trtX'X-7) - ^-trX2), (2.1) 

with X1 being the six real scalars in the adjoint of SU(NC) and in the 6 of 
5?7(4); and by A = 3 superconformal primaries 

mAB [dx4ti(\A\B)  +h.c., (2.2) 

with XA being Weyl spinors in the adjoint of SU(NC) and in the 4 of 5C/(4). 
These deformations give, respectively, supersymmetry-breaking masses to 
the scalars and to the gluinos. 

The XJJ and mAB are in the 20' and 10c of 5C/(4), respectively. These, 
plus the two 5C/(4) singlet marginal couplings ti(F2) and tr(jP A F), are 
associated to the 42 scalars of the Af = 8 supergravity multiplet in D = 5. 
To study the field theory deformed by these relevant couplings, we need to 
study the dynamics of the supergravity theory with these scalars turned on. 
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The ungauged jV = 8, D = 5 supergravity Lagrangian has global sym- 
metry -©6(6) and local symmetry 5^(4), where Sp(A) is the maximal compact 
subgroup of -©6(6) • The previous 42 scalars are described by an element Wa^a& 
of the coset space E^/Sp^) which transforms in the 27 of EQ (acting on 
the EQ indices a, (3 = 1,..., 8 from the left) and 27 of Sp(4:) (acting on the 
5p(4) indices a, 6 = 1,..., 8 from the right) 1 After gauging the 517(4) sub- 
group of -©6(6)) a nontrivial scalar potential is generated. It is proportional 
to the square of the 5?7(4) gauge coupling, </, and breaks .©6(6) down to 
5tf(4) x 5L(2,R) [7]. We will use an 5!7(4) x U{1) C 5p(4) subgroup of 
-©6(6) as a basis to represent the 42 scalars into Uabcd (the .©6(6) indices are 
restricted to be 5p(4) indices a, 6, c, d = 1,... ,8) 2. In the 5f7(4) unitary 
gauge, only the 42 physical scalars remain in the 27 x 27 matrix $, with 

U = exp($).  The scalars transform in the irreducible 42, h, of 5p(4) The 

42 acts on the 27 of 5p(4) by Zab -+ Uab
cd Z

cd. The "517(4) gauge group 
and the U(l)x compact generator of 5L(2,R) are embedded in this 5p(4), 
with the following branching rules: 

8 = 41 + 4_i 

27 = 15o + 62 + 6_2 (2.3) 

42 = 2O0 + 10_2 + IO2 + I4 + 1-4 , 

where the subscript denotes the U(l)x charge. Ordering the 27 dimensional 
,       / 15o \ 

vector space by Za0 = I   62   1, the 42 can be written in block form 

/20'0     10_2    102\ 
$ =      IO2      20,

0      I4 (2.4) 
Vl0_2     1_4     20,

0/ 

where the 20' is the representation Ej of 5?7(4). 

The supergravity scalar potential is built from the quantities [7]: 

Wabcd = Pefgh Uef
ab U9h

cd (2.5a) 

Wab = Wacbdn
cd, (2.5b) 

where ficd is the 8x8 symplectic metric and Vefgh is the 5{7(4) x J7(l)x- 
/o 0  0 \ 

invariant, skew-symmetric, bilinear quadratic form ( 0 0 -n j acting on 

1The 27 (0) of *Sp(4) is the traceless, antisymmetric tensor representation, Zab = —Zba
y 

QabZ
ab = 0. 

2The reference [7] chose the 51/(6, R) x 5L(2, R) subgroup of EG as the basis to perform 
the gauging of SU(A) ~ 50(6). As we will see, the complex basis described here is more 
convenient for studying of the A = 3 deformations; and the real 51/(6,1R) x 51/(2, R) basis 
is more suited for the A = 2 deformations. 



1410 NON-SUPERSYMMETRIC CONFORMAL FIELD ... 

15o\ „ 
62   1. The final expression for the potential is 6 

6-2 / 

Vm = ^ (lwabcdWabcd - WabWab) . (2.6) 

Then, the scalar plus graviton sector of the gauged supergravity Euclidean 
Lagrangian (in appropriate 5D Planck units) is described by the following 
non-linear sigma model coupled to gravity: 

C = ^{-\R-±tr((V»U-1)(^U))+V($)} . (2.7) 

3.    The Non-Supersymmetric 5£7(3)-Invariant Theory 

As a first step in exploring the non-supersymmetric theories connected to 
the J\f = 4 fixed point, one can study the theory in the 5{7(3)-invariant 
direction given by the relevant deformation: 

Srei = m f d4x tr(A4A4) + h.c. (3.1) 

The relevant coupling m has UV scaling mass dimension one and it gives a 
mass term only to the gaugino A4. Supersymmetry is completely broken and 
the SU(4) R-symmetry is broken to a global SU(3) symmetry. It is useful 
to keep track of the U(l) factor, a linear combination of the U(l)m C 5{7(4) 
and the ?7(l)x, which is unbroken by this perturbation (but which is broken 
by the VEV of the dilaton). 

To study the theory along this SU(3) invariant direction, we decompose 
the SU(4:) representations discussed above under SU(3) x U(l)m C ££7(4): 

4 = 3i + 1_3 

6 = 3_2 + 82 

10 = 62 + 3_2 + l_6 

10 = 6_2 + 32 + 16 

15 = 8o + 34 + 3_4 + lo 

20' = 80 + 6-4 + 64 . 

Together with (2.3), we can identify all the operators in the different SU(3) x 
J7(l)m x U(l)x representations. They can also be derived from their mi- 
croscopic field content.    The four gluinos XA decompose as X1  G 3(i,-i) 

35p(4) indices axe raised and lowered with the symplectic metric na 
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(i = 1,2,3) and A4 G l(_3>_i). The six scalars X1 can be combined into 

complex combinations Zl,Zj, which transform as the 3(_2jo) + 3(2,o)- The 
relevant perturbation O44 = tr(A4A4) is in the 5f7(3) singlet representation 
l(_6,-2)) so ^at it is left invariant by the U{1) factor generated by the charge 

Now we turn to the supergravity description of this non-supersymmetric 
5(7(3) invariant theory. Only the two complex scalars corresponding to the 
SU(3) singlet representations have boundary conditions different from the 
trivial ones, as the only couplings which are turnecLon^m the field theory side 
are m, QYM ami OYM- The (complex) l(o,4) field, corresponding to the non- 
compact generators of 5L(2,R) (the dilaton and the axion), do not appear 
in the potential Vr($) because of the SX(2, E) invariance of the Wabcd tensor 
(2.5a). We write this complex field as a modulus times a phase, peia. The 
other complex scalar, crez^, is associated to the complex coupling m. The 
phase is eaten via the Higgs mechanism, and, in a unitary gauge, only the 
modulus enters in the coset element U. We order the SU(3) x U(l)m x U(l)x 

representations in the 27 by 

/ 1(o,o)  \ 
3(4,0) 

3(-4,o) 
8(o,o) 

3i-2,2) 
3(2,2) 

3i-2,-2) 
V 3(2,-2) / 

In this basis, it proves convenient to parametrize U as 

Uo(<T,p,a) =e — GXOQXI (3.3) 

where, 
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X0   = 

X,    = 

/O   0   0 0 0 0 0 0 \ 
0   0   0 0 0 0 0 0 
0   0   0 0 0 0 0 0 
0   0   0 0 0 0 0 0 
0   0   0 0 0 0 peia 0 
0   0   0 0 0 0 0 pete 

0   0   0 0 pe-ia 0 0 0 
\0   0   0 0 0 pe-ia 0 o / 
/O   0    0 0 0   0 0   0\ 

0   0   0 0 0   0 a   0 
0   0    0 0 0   a 0   0 
0   0   0 0 0   0 0   0 
0   0    0 0 0   0 0   0 J  • 

0   0   a 0 0   0 0   0 
0    a    0 0 0    0 0   0 

\0   0    0 0 0   0 0   0/ 

(3.4) 

Plugging this into the supergravity Lagrangian (2.7), one gets 

C = V9 (-f + IW2 + UW2 + I sinh2(p)(da)2 + V(a)) (3.5) 

where V(a) = gfs-.W^cr), and 

W(a) = cosh2 (2(7) - 4cosh(2<7) - 5. (3.6) 

The classical 5,C/(4) gauge coupling has been determined to be g2 = 4/3r2 in 
order to have anti-de Sitter radius r2 = (47r5yMA^c)

1/2Q:/ at the supersym- 
metric point a = 0. 

Note that the metric for p and a is SX(2,M) invariant, as it should be. 
Weak string coupling corresponds to p —> oo. 

As already mentioned, the phase of a is eaten by the Higgs mechanism. 
It is not a modulus. On the field theory side, this corresponds to the fact 
that the phase of m can be removed by a chiral rotation of the gluinos 
(i.e.   absorbed by a shift in the 0YM angle). 
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Figure 1: The scalar potential Vsu^)^) in r units. 

3.1.    The equations of motion 

Now, we just have to solve the equations of motion for {gmn^ cr, p, a} subject 
to the boundary conditions as z —» 0: 

9mn -> 
^2 

a -> mz 

P-> PO 

a -> ao- 

(3.7) 

The boundary conditions are translationally invariant along the four dimen- 
sional Euclidean space x^. Therefore, we consider the ansatz 

a = cr(z,m) 

ds2 = r-^{e9^mUz2 + eh^m^dx2), 
(3.8) 

with a = g = h = 0 for m = 0. In fact, the equations of motion and the 
boundary conditions only depend of the dimensionless combination t = mz, 
therefore the field solutions only depend on this parameter t. Furthermore, 
one can show that the equations of motion do not admit a zero of e9 (which 
would yield a singularity of the metric). Hence we can redefine the coordinate 
z such that 3 = 0 and the boundary conditions (3.7) are still satisfied. Finally 
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one ends up with the equations (prime means derivative with respect to t): 

a  +l[2h--t)a-w-j— = 0 (3.9a) 

h" + ^ + U'2 = 0 (3.9b) 

h,2-4T + ^- ^ + ^2 W^) = 0 (3.9c) 

p" + (W - ^ p' = 0 (3.9d) 

a77 + 12/i7 - - + 2// coth p J a7 = 0. (3.9e) 

The dilaton and axion equations are homogeneous, and are easily solved 
by taking p = const = po> OL — const = ao- There remain three equations for 
two unknown functions, h{t) and cr(£). But one can prove that one of them 
is a consequence of the others two, and the system admits a solution. 

Solving the equations of motion (3.9a)-(3.9e) for any t gives the behavior 
of the deformed field theory for any value of m. In general, the spacetime 
metric gmn{z>'rn) will not be anti-de Sitter, and the boundary theory is not 
conformally invariant for finite m. 

But there is an interesting phenomenon in the asymptotic behavior t —> 
oo of the spacetime metric. This behavior is quite easy to obtain from the 
equations of motion. For t —> oo, the solution becomes 

h(t) ~ (2 - 6)ln(t) + ^ + • • • '        ^ 
«x_c * (3-10) 

a ~ ao + — + ... 

where UQ = — 5arcosh(2), c = b(\/3 — 1) and 

bl-YM-9->1 (3ii) 
4 -  V(0)  -8>1- {6-U) 

This result requires some explanation. 

The scalar potential V(a) has two critical points where dV/da = 0 (see 
fig. 1). One is at a = 0 and it is a maximum of the potential. It gives an 
AdS*, space, with radius r, coming from the compactification of type IIB on 
55, which preserves all the supersymmetries of type IIB. On the 4D field 
theory side, it corresponds to the 577(4) invariant M = 4 superconformal 
field theory. 
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jV = 4,      5*7(4) 

M = 0,    £17(3) 
A/A = 2 + 2\/3 

Figure 2: The RG flow along the 5C7(3) invariant direction. A is the con- 
formal dimension of the perturbation at the fixed points. 

The other critical point is located at cosh(2<To) = 2 and it is where the 
solution for t —t oo ends up. One can see that for a ^ 0, the theory does not 
have invariant Killing spinors [7], so supersymmetry is completely broken. 
We can look at the infinitesimal t -» 0 solution (3.7) and the asymptotic 
t —¥ oo solution (3.10) as the solution driven for m —> 0 and m —> oo, respec- 
tively, and general coordinate z. Keeping the external probe energies fixed, 
these limits correspond to the ultraviolet and infrared limits, respectively. 
Then, the 5(7(3) critical point at a = ao is associated to an infrared fixed 
point of the A/* = 4 SYM deformed theory by the 5f7(3)-invariant relevant 
deformation (3.1). 

By performing the coordinate transformation 

,     2 (3-12) 
x   — Tx 

0 

the asymptotic solution of the metric becomes 

2 4 

ds* ^^(dj2+Y,te?) (3-13) 
2=1 

with 

riR = j>r] (3.14) 

i.e., anti-de Sitter space, but with a smaller radius than the one in the 
ultraviolet, ruv — r-   The proportionality factor is given by the ratio of 
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the two corresponding cosmological constants (3.11). As the bulk theory is 
again (Euclidean) anti-de Sitter, just with smaller radius, we have 50(1,5) 
isometry for that metric, yielding conformal invariance for the boundary field 
theory in the infrared. 

The SU(Z) critical point corresponds to a type IIB background AdSs x 

M5, with M5 a stretched five-sphere [11], and the anti-de Sitter radius being 
rm = §r. This background breaks all the supersymmetries and the compact 
manifold M5 has the isometry group 5C/(3). 

3.2.    The Wilson loop 

For general m ^ 0, we have a deformed metric of the type 

d52 = ^(^2 + cA(*,m) £ ^2) (3<15) 

Z i=l 

Now consider a Nambu-Goto string action propagating in that deformed 
5D space, with the world-sheet boundary attached at z = 0. This computes 
the expectation value of a Wilson loop in the boundary theory [12,13]. We 
will consider the static and symmetric Wilson loop 

xi = X2 — const 

#3 = a,     #4 = r 

z = z(a), 

with 

z(0) = z(L) = 0 

z(L — a) = z(a) 

such that ZM is the maximum distance reached by the string. 

This gives the quark and anti-quark energy potential 

2     nL/2 h/2 2      PL/Z h/2      i  

E(L) = -JQ      dv^^ + z*) (3.16) 

evaluated through the geodesic. Observe that we are dealing with a classical 
mechanics problem: the movement of a particle in one dimension with initial 
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point at (r^, Zi) = (0,0) and end point at (ry, Zf) = (L/2, ZM)- The conserved 
"particle energy" is 

s=—r,, 0=-!-v-. (3-17) 
where /ijvf — ^(^M)• 

If we move the end point Srf = 5L/2, Szf = SZM, the quark and anti- 
quark energy changes as 

1L-2^-   • (3-18) 

So, the force between the quark and the anti-quark is given by the "particle 
energy". We want to read this force for L —> oo. In order do it, we need the 
relation between L and ZM- Prom (3.17) one gets 

L P1 v2e-hl2 

?-'»]. *7&*r?- (319) 

where y = Z/ZM- 

The major contribution to the integral is at y ~ 1. One can evaluate the 
integral in that region, taking ZM -* oo? such that h(y) ~ (2 — 6)(ln(m^M) + 
Iny). The result is 

!-c-fc"/2*MJ, (3.20) 

with 

Jo 

36/2-1 

dy      R 26- (3-21) 

V1 - 2/26 

This gives the relation, for mL -» oo, 

mL ~ {rnzMf12 . (3.22) 

For mL » 1, the force between electric sources becomes 

SE _     m2 1 

(SL ~ (mzM)b ~ L2 ' 
(3.23) 

It is a nontrivial result that the asymptotic behavior of the deformed metric 
gives a Coulomb potential. This is another indication that the infrared 
theory is conformally-invariant. However, at this stage, it might well turn 
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out to be a free theory. One indication that it is not free is that the Peskin 
exponent 4 77 at the SU(3) theory: 

VSU(S) =     IZ^2]    (2 + tePffl) " 2 - 0M28r,su{A) - 0.1144,      (3.24) 

with I[b] given by the integral (3.21), does not vanish, as one expects for a 
free theory. 

We can make additional checks of the Coulomb behavior. We should also 
see the same kind of potential for magnetic sources. We can test that, com- 
puting the minimal area expanded by a Dl brane attached to the boundary 
z = 0, which gives a 't Hooft loop. The Dl action is 

SDi = ^l d2a e-* y/detigijdaXidpXi) (3.25) 

where $ is the dilaton. It gives the same force between magnetic sources, 
up to an additional dilaton dependent factor, 

Tf-isr- (3-26) 

For h and a being the unique solution of (3.9a)-(3.9e), with the asymptotic 
behavior (3.10), $(z) = $0 is an exact solution of the equations of motion 
with the appropriate boundary conditions. Then, the force between two 
monopoles becomes 

6Em _ (^g2
YMe-2*°)^ehM 

6L 27rz2
M 

(3.27) 

Taking into account that <7yM = e$0 > one Se^s exactly the same force as 
the one between electric sources, but with the Yang-Mills coupling inverted: 
9YM -> 1/9YM- This result is consistent with the electric-magnetic duality 
of the Coulomb phase. 

As an additional check, we can compute the normalized solutions of the 
dilaton equation for $ = f(z)elkx. The eigenvalues — k2 give the masses of 
the intermediate states in the two point correlation function of the operator 
tr(F2) [15]. The equation is 

/" + Uh' - -] /' - k2e-hf = 0. (3.28) 

4At a second order phase transition for a gauge theory in d dimensions, E(L) = 2ir(d- 
4 + 77)/L[14]. 
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For z ~ 0, one chooses the normalizable solution f ~ z4. For z -> oo, the 
normalizable asymptotic behavior is f ~ l/za, with a > 0. The equation 
(3.28) gives 

6-2 

^-^=0 (3-29) 

with unique solution for k2 = 0 and a = 0. As the smooth deformation by 
m does not change the topology of the five-dimensional spacetime, there are 
no non-zero square-integrable solutions in the deformed metric. 

3.3.    The nontrivial fixed point and the stability of supergravity 
solution 

The Coulombic behaviour of the Wilson loop that we found in the previous 
subsection is indicative of the conformal invariance of the infrared theory. 
But it is compatible with the infrared theory being a free conformal theory. 
More exciting would be a nontrivial interacting conformal theory. In the 
presence of supersymmetry, a wealth of such four dimensional conformal 
field theories are known, e.g. the Argyres-Douglas points of M = 2 QCD 
[16], the Af = 1 QCD in the conformal window 3Nc/2 < Nf < 3iVc [17] and, 
of course, the Af = 4 SYM, both at the origin of the moduli space. More 
recently, non-supersymmetric conformal field theories have been proposed 
as orbifolds of these in the CFT/AdS point of view [18]. We will presently 
see that the solution we found in the previous subsections is a nontrivial 
interacting fixed point without supersymmetry. 

At m = 0 we are at the A/" = 4 fixed point. As we increase m, we go 
away from that fixed point. For m —> oo we will end up on a new fixed 
point. Sending m -> oo can be seen as going to the infrared, as we saw by 
introducing the dimensionless variable t = mz. 

In §3.1 we derived, for t —} oo 

ds2 = (mr)2 f \dz2 + \ ]r dx? ) (3.30a) 

a - CTQ (3.30b) 

mL ~ tb/2 . (3.30c) 

There are two ways to look at this: 

1) for m fixed, it gives the infrared behavior z -» oo (that sends L —> oo); 
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2) for m —> oo, it is the solution of the equations of motion for any z ^ 0 
(and also for any L ^ 0 in the field theory side). 

Taking the second point of view, it is better to work in terms of the coor- 
dinates {^'jx'} defined in (3.12). The 4D field theory lives at the boundary 
z' = 0. Following the standard procedure as in [2], one gets that for an scalar 
field (j) with mass m^ at the SU^) point, its behavior for z1 -> 0 is 

(j> -> z'^fo , (3.31) 

with A+ the larger root of the equation 

A(A + 4) = m}rSl. (3.32) 

The boundary field value 0o couples to a conformal operator which has the 
scaling mass dimension 

A = 4 + A+ = 2-f- ^4 + mffin . (3.33) 

In general this gives anomalous dimensions, a sure sign that the fixed 
point is nontrivial. If b were equal to 2, we would get the same formulae as 
in the M = 4 fixed point. But b = -4= for this SU(3) invariant fixed point. 
The scaling dimensions of the operators will be different than they were 
in the SU(4:) supersymmetric point - first because the masses at the new 
extremum of the supergravity potential are different, and second because 
b is different. We have already seen that the mass of a has changed. At 
the supersymmetric point, it was tachyonic (the corresponding operator in 
the 4-dimensional SOFT is relevant). At the 517(3) point, a has positive 
mass-squared, and the corresponding operator is irrelevant (see fig. 2). 

In fact, we will commonly obtain irrational anomalous dimensions (see 
tables 1 and 2 below). As we are dealing with a non-supersymmetric CFT, 
the erstwhile chiral primaries (whose scaling dimensions were protected in 
the supersymmetric theory, and equal to their free field values) are no longer 
protected. Observe also that we need m2 > —b2/r2 to have real solutions for 
(3.32). This is also the bound for vacuum stability in a five-dimensional AdS 
background with radius rjR = 2r/b [2,4]. An unstable supergravity solution 
does not correspond to a sensible CFT on the boundary, as the scaling 
dimensions corresponding to the unstable modes are complex. So, both 
from the point of view of checking the stability of the non-supersymmetric 
solution to the 5D supergravity equations, and to extract the physics of 
the purported new fixed point, we need to compute the complete quadratic 
dependence of the supergravity potential in all the scalars fields. 
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For the parametrization of the coset space E^/Sp^), it is convenient 
to choose one that gives canonical kinetic terms. We take 

U = l(o(a,p,a)ex , (3.34) 

with ZYo(cr, p, a) given by (3.3). The 27 x 27 hermitian matrix X con- 
tains the fluctuations of the remaining tachyonic (at a = 0) scalars. We 
parametrize them by the following fields: a hermitian and traceless 3x3 
matrix W for the 8(9,0) representation; symmetric and complex 3x3 matri- 
ces tfi and su for the 6(-4,o) and 6(2,-2) representations, respectively; and 
a complex three vector vl for the 3(_2)_2)- The vectors v*, are eaten by the 
Higgs mechanism (along with the phase of a). So, in a unitary gauge, they 
are absent from the scalar potential. The rest of the fields appear in X as 

x = 

/o 0 0 0 0 0 0 0 
0 h 0 V2r 0 VQs 0 0 
0 0 h V2tr 

0 0 VQS 0 
0 V2tr V2tr 

Kdj 0 0 0 0 
0 0 0 0 h V2t 0 0 
0 V6s 0 0 V2t h 0 0 
0 0 V65 0 0 0 h y/2t 

Vo 0 0 0 0 0 y/2t h 

(3.35) 

where the bar means complex conjugation and {tr)^ = e13 £/&. 

The broken 5C/(4) generators give rise to massive W bosons in the 3 + 
3 + 1 of SU{Z). The masses are easily computed as a function of <J: 

2 
m\ 

9r2 (cosh(a) — 1) 

ml = ^2(COSh(2c7)-l). 

(3.36) 

(3.37) 

The aforementioned 7 scalars from the 42 become the longitudinal compo- 
nents of these massive W bosons. 

With the parametrization (3.34) 5, the kinetic terms for the remaining 
scalars become: 

-±-M{dU-x)dU) =l-{daf + Udpf + ismh2(p)(da)2 

24 

+ tx{{&s){ds)) +tv((dt)(dt)) + ^ti{(dh)2) 
(3.38) 

5We work to quadratic order in the fluctuations of h, 5 and t, but to all orders in cr, p 
and a. 
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Then, we can read directly the masses from the quadratic terms in the 
potential. We have (p = cosh(2(j)): 

F(quadr) = ^^2 _ 4p _ g) _ 3 ^(^ 

+ ^(7p2 - lOp - 13) tr(tt) + i(4p2 - 5p - 5) tr(fe2)) . 

(3.39) 

We observe that all the fields satisfy the stability bound m\ > —^/r^R = 
—9/2r2 of the 517(3) critical point p = 2 (see table 1 for their corresponding 
conformal dimensions). So the non-supersymmetric type IIB background 
AdSs x M5 is a stable solution (at least at large iVc and ^yMiVc). It defines 
a non-supersymmetric interacting infrared fixed point of the SU(3) invariant 
theory. 

To close this discussion of the 517(3) infrared fixed point, in table 2 we 
give the conformal dimensions of the scaling operators corresponding to the 
remaining modes in the 5D supergravity multiplet (their mass terms are 
given in [7]). The graviton is mapped to the energy-momentum tensor T^ 
of the 5*7(3) invariant CFT. The eight gravitini (in the 4i of 5*7(4) x *7(l)x) 
map to the four complex supersymmetry currents 5^ . The twelve 'self-dual' 
2-forms (in the 6-2) correspond to the operators [19] 

Bf? = A'VA* + 2 i tT(ZABF^). (3.40) 

The 5*7(4) global currents are J^B. At the 5*7(3) point, the currents J^4 

and J^4 are not conserved, and pick up anomalous dimensions. 

Finally, there are the spin-1/2 scaling operators: 

XA = a^tr(F-A-4) 

XABc = \tABDE(ZDE\c + -ZCEXD) (3'41) 

in the 4_3 and 20i of 5*7(4) x *7(l)x, respectively. These correspond to the 
48 symplectic Majorana spinors of the five-dimensional supergravity mul- 
tiplet. At the non-supersymmetric point, eight of them are eaten by the 
gravitini. This phenomenon is manifested in the 5*7(3) CFT by the anoma- 
lous dimensions of the broken supersymmetry currents 5^ (see table 2) 

4.    The 50(5) Invariant Theory 

Having succeeded in finding a new nontrivial critical point when the A = 3 
relevant perturbation is turned on, we now try turning on, instead, the A = 2 
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CFT operator Supergravity field SU{Z) x U{1) A[/y 

|tr(A4A4)| 
tr(A*A^) 

lo 
68 

3 
3 

tr(ZlZ^) 

tr(Z%- - S-^ZZ) 

6-4 

8o 

2 

2 

CFT operator AIR 

|tr(A4A4)| 
^(AU^) 

2 + 2VZ = 5.4641 • • • 
2+ 2/v/3 = 3.1547-•• 

\x{ZxZ>) 

ti(Z% - Qzz) 

2 + V26/Z = 3.6997 • • • 

2 + 1^31/3 = 4.1430- •• 

Table 1: Conformal dimensions of the spinless scaling operators correspond- 
ing to the physical scalars in the 5D supergravity multiplet at the SU(3) 
point. 

relevant perturbation, 

Srel = t*2 fd4x (ti{X6X6) - |trX2) . (4.1) 

This gives a positive mass-squared to X6, and formal negative mass-squared 
to the scalars X1,..., X5. Supersymmetry is completely broken and 317(4) 
is broken to 50(5). 

Decomposing the scalars in the supergravity under 50(5) C 5?7(4), 

20' = 1 + 5 + 14 , (4.2) 

and the 10 and TO of 517(4) both become the 10 (B) of 50(5). The pertur- 
bation we are describing corresponds to turning on the 50(5) singlet scalar, 
which we will call ip, in the 20'. 

Since all of the representations of 50(5) that we encounter are reoZ, it 
behooves us to choose a real basis in which to parametrize the coset matrix 
W 6 £6(6)/Sp(4). The 27 of EQ decomposes as (15, l) + (6, 2) under 50(6) x 
5L(2,R). In a real basis, the compact U(l)x C 5L(2,R) is generated by 
(i "Q

1
 )> and a general matrix in the coset 5L(2,M)/[7(1) takes the form 

T = e* Y = p 
cos a 
sin a 

sma 
-cos a 

(4.3) 
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The 207 of 50(6) is represented by a traceless symmetric matrix, X1j. 
Let S = ex. If we do not also turn on any of the scalars in the 10, then the 
i£6(6) coset element is block diagonal, 

where 

U
IJ

KL = 2SV[KSJ1L] 

UIaj0 = S1^^. 

Using the general expression (2.6), the potential reads 

2 

F(5) = "32((trM)2_2tr(M2)) (45) 

with the symmetric matrix M = SST.  Observe that T does not appear in 
the potential, as expected. 

The 50(5) singlet scalar associated to the relevant perturbation (4.1) 
enters in S as 

S = diag(^/^,..., e*/^5, e"5^/^). 

The normalization is chosen to have mass mi = —4/r2 at the supersymmet- 
ric point '0 = 0. The Lagrangian (2.7) simplifies to: 

£ = y/g{-lR+\(dp)a + isinh2(p)(0a)2 + i(cty>)2 - ^W^)} 

(4.6) 

Now, as in the SU(3) case, we have to solve the equations of motion of 
{sWi, ^, P, ^} subject to the boundary conditions for z —> 0: 

9mn ~~^    o Omn 
Zz 

P -* Po (4.7) 
a —> CXQ 

ip -> -fi2z2. 

The sign convention in (4.7) is to end up at the SO(5) critical point of the 
scalar potential (see fig. 3). 
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CFT operator Supergravity field 5(7(3) x [7(1) A[/v 
T Graviton lo 4 

Gravitini 
Gravitino 

3-2 
1-6 

7/2 
7/2 

B% 

2-form,s 
2-forins 

3-8 
3-4 

3 
3 

Jw4 

Gauge bosons 
W bosons 
W boson 

8o 
34 
lo 

3 
3 
3 

xl Spinors 3io 7/2 

4 
Spinors 
Spinors 
Spinors 

86 
6-2 
3-2 

5/2 
5/2 
5/2 

CFT operator A/tf 
-L fiJ/ 4 

32/9 
4 

oi4 26/9 
34/9 

1'' 
•^4 

3 

1 + !\/77 + 4^ = 3.0358- • • 
1 + |v/7/3 = 3.0376- •• 

x1 110/27 

xlJ
4 2 

26/27 + f\/2 = 2.8486- • • 
34/27 + f\/2 = 3.1449- •• 

Table 2:  Conformal dimensions of the scaling operators corresponding to the re- 
maining physical fields in the 5D supergravity multiplet at the SU(S) point. 

All the same remarks on the equations of motion in the previous section 
apply in this case. It is consistent to take constant solutions for p, a. The 
same kind of asymptotic behavior for the metric and the scalar X/J as fiz —>» oo 
is found, but with the conformal exponent being now b = 21/231/3. The 
reason is the same: the scalar potential 

VS0(5)W = -"a WM 

has two critical points where dVso{h)l^ = 0 (see fig. 3). 



1426 NON-SUPERSYMMETRIC CONFORMAL FIELD ... 

One critical point is at ^ = 0 and it is a maximum of the potential. 
It gives an AdSs space, with radius r, coming from the compactification of 
type IIB on AS

5
. On the 4D field theory side, it corresponds to the 50(6)- 

invariant M = 4 superconformal vacuum. The 10 dimensional geometry is 
the familiar one: 

ds2 = r2 j-2 (dz2 + ]£ da:?) + da2 + sin2 a dn{4) \ . (4.8) 
2=1 

The anti-de Sitter space and the five sphere have the same radius r. The 
five-form in the internal space is 

F5 = - dVolS5 = r4 sin4 a da A dn{4) . (4.9) 

The integral of F5 over S5 is quantized. In appropriate units, it gives the 
number of D3-branes in the stack, whose near-horizon geometry is given by 
(4.8). 

The other critical point is at ip = ipo- It breaks 50(6) -» 50(5) and all 
the supersymmetries. It was conjectured in [7] that it corresponds to the 
compactification of type IIB on the inhomogeneously squashed five sphere 
[20,21]: 

-g-(dz2 + X>f) + ^(*(a)2da2 + *(ar2an* a dtfrf 

(4.10) 

where 

(7(a) = (1-I sin2a)1/4; (4.11) 

and the 5-form field strength in the internal space is 

F = la(a)-5 dVolS5 = f412-^2a-8 sin4 a da A dty^ . (4.12) 

The relation between the scale f, which characterizes the 50(5)-invariant 
solution (4.10), (4.12), and the scale r, which characterizes the 50(6)- 
symmetric solution, is determined by noting that the five-form flux, being 
quantized, must be preserved along the RG flow. Equating the integrals of 
(4.9) and (4.12) over 55, we find 

f = 2.33/8r. (4.13) 



J. DISTLER, F. ZAMORA 1427 

\ 
-180 

\ 
-185 

\ 
-190 

\ v / -195 "^X 
v_^ -200 \ 

-205 

^ 
\... 

-0.6 -0.4 -0.2 0.2 v« 

Figure 3: The scalar potential VSQ^(^) in r units. 

Note, however, that this is not the same as the radius rjR = 2r/6, the ra- 
dius of the infrared AdSs in the Einstein frame of the effective 5-dimensional 
theory. That is determined by normalizing the Einstein-Hilbert term in 
the 5-dimensional effective action. One takes the 10-dimensional Einstein- 
Hilbert term in the background metric (4.10), and integrates it over 55, and 
compares the result with the 5-dimensional Einstein Hilbert term for the 

2 , 

background metric ds2 = -JT-(dz2 + J2i=i(^x'i) (but with the 5-dimensional 
Mpi determined from the original round metric (4.8)). The integrals over 55 

which appear are identical (all powers of the warp factor <j(a) disappear), 
and one has the relation 

r3   r5 rIRr 

xio 

(6-12)5/2 r2 (4.14) 

Plugging in (4.13), we recover rIR = ^^. 

This all sounds very promising, but we need to check the stability of this 
supergravity solution before we can draw any conclusions. As in the SU(3) 
case, this requires that we compute the mass-squared of the scalars about 
the new extremum of the potential. Since we have already computed the 
potential for the scalars in the 20' of 50(6), let us compute their masses 
first. As we saw, 20' = 1 + 5 + 14. The singlet is the field tp that we turned 
on. Clearly, its mass-squared is positive at the new extremum (fig. 3). The 5 
are eaten by the Higgs mechanism in the breaking of 50(6) -> 50(5). They 
also have positive mass-squared, as they are the longitudinal components 
of the massive vector bosons. So we need to worry about the 14. Unfor- 
tunately, that is where trouble looms. The mass-squared of the 14 can be 
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straightforwardly computed from the potential (4.5) and one finds 

2 8 2-35    / 4 \ .A,c. 

i.e., they violate the stability bound. Put another way, if we assumed that 
this solution corresponded to a CFT on the boundary, and attempted to 
compute the conformal dimension of the operator corresponding to the 14, 
via 

A(A-4) = m2r?fl> 

we would find A14 to be complex. 

Prom the supergravity side, there is nothing mysterious here. The 50(5) 
invariant supergravity simply does not provide a stable ground state for the 
theory. Fluctuations, no matter how small, cause it to decay. And, by 
the same token, a classical solution with the asymptotics (4.7) is similarly 
destabilized. 

With the benefit of hindsight, we should have expected this instability 
from the form of the perturbation (4.1). Formally, it gives a negative mass- 
squared to the scalars X1,...,^5 in the boundary theory The naivest 
expectation for the resulting physics of the boundary theory is that it runs 
off to infinity in field space and has no stable vacuum. This expectation 
appears to be confirmed by the supergravity analysis. 

5.    Three Dimensional Conformal Field Theories 

The d = 3 Af = 8 SU(NC) gauge theory living on the world volume of Nc 

coincident M2 branes has an interacting infrared fixed point that preserves 
all the supersymmetries [22]. The near horizon geometry of this BPS brane 
configuration is AdS4 x S7. At large iVc, the CFT/AdS correspondence 
solves the three dimensional SOFT through the mapping of its generating 
functional to the one of D = 4 Af = 8 50(8) gauged supergravity [23] at 
the 50(8) invariant background. The local operators of the field theory 
are conveniently mapped to the Kaluza-Klein spectrum of the supergravity 
theory [24,25,26,27]. 

The 'massless' supermultiplet that includes the graviton has 70 physical 
scalars arranged in the 35v©35c of 50(8) [28,29]. They parametrize the coset 
space E'7(7)/SU(8) via a matrix U in the 56 dimensional representation of 
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E-j. In the 5t/(8) unitary gauge, it is given by 

where ^jt/ are 35 complex self-dual four-forms (i, j, fe, Z = 1,..., 8 are 50(8) 
indices). 

At the supersymmetric 50(8) invariant point fajki = 0, these 70 scalars 
are tachyonic. In the SCFT, they are mapped to relevant primary operators. 
The 35v scalars (the real part of fajki) correspond to the A = 1 conformal 
primaries: 

<^)=tr(X>X')-Ttr(X2), (5.2) 

and the 35c pseudo-scalars (the imaginary part of fajki) correspond to the 
A = 2 conformal primaries: 

C?;J2)=tr(AlA^)-^-tr(AA), (5.3) 

where X1 and X1 are the microscopic (real) scalars 6 and (Majorana) gaug- 
inos, in the irreps 8v and 8C of 50(8) respectively, of the d = 3 M = 8 
SU(NC) gauge theory. 

Following the same philosophy as in the d = 4 J\f = 4 SYM case, in this 
section we will discuss the relevant perturbations of the d = 3 J\f = 8 fixed 
point via the addition of the operators (5.2) and (5.3) to the supersymmetric 
Lagrangian. The deformation of the theory through these relevant operators 
is driven by the solution of the classical equations of motion, subject to 
appropriate boundary conditions for their associated supergravity modes 

fajki- 

As we have already learned in this paper, the renormalization group tra- 
jectories of the relevant operators will connect the A/* = 8 50(8) fixed point 
to other new fixed points, if the supergravity potential admits additional 
stable critical points, besides the 50(8) invariant point at fajM = 0. 

5.1.     51/(3) invariant conformal field theories 

In [8], Warner performed an exhaustive study of the extrema of the J\f = 8 
gauged 50(8) supergravity potential along 517(3) C 50(8) invariant direc- 
tions. He found five additional critical points, displayed in table one of [8]. 

They include the dualized vector field. 
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At the level of eleven dimensional supergravity, they correspond to com- 
pactifications AdS^ x My. The four dimensional anti-de Sitter space ensures 
conformal invariance for the field theory living at its boundary. The com- 
pact seven dimensional manifold My depends on the chosen critical point, 
such that for each one, it breaks a different number of supersymmetries and 
isometries. 

There are three points where all the supersymmetries are broken and the 
remaining isometries are 50(7)+, SO(7)~ and 5?7(4)~. The stability of the 
50(7)± invariant points was checked in [30] and the answer was negative. 
We do not know if the S77(4)~ point is stable or not. 

The other two points keep some unbroken supersymmetries, which en- 
sures vacuum stability [4,31]. Applying the CFT/AdS correspondence for 
these points, they describe Af = 1 G2 and Af = 2 SU(3) x U(l), invari- 
ant three-dimensional superconformal field theories, where the correlation 
functions are given by the supergravity partition function evaluated at the 
appropriate AdSi x My background. 

5.2.    The 50(3) X 50(3) interacting fixed point 

In [31], an 50(3) invariant critical point was found for the D = 4 Af = 5 
50(5) gauged supergravity theory. The interesting thing about this particu- 
lar point is that it is a non-supersymmetric stable anti-de Sitter background 
[32], which can be embedded in the Af = 8 theory 7 [33], where the unbroken 
isometries are 50(3) x 50(3). On the field theory side, it corresponds to 
a new non-supersymmetric interacting fixed point connected to the Af = 8 
through some direction in the space of 50(3) x 50(3) invariant renormal- 
ization group trajectories. 

Decomposing the 35^ © 35c representation, first under 50(5) x 50(3), 
and thence under 50(3) C 50(5), one obtains: 

35t; + 35c = 2((5,l) + (10,3)) 

- 2((3,1) + 2(1,1) + 3(3,3) + (1,3)) . 

In particular, the 50(3) singlets transform as a complex scalar in the 5 
of 50(5). The truncation to the Af = 5 theory consists in setting to zero 
the scalars in the (10,3). Two complex scalars in the (5,1) can be turned 
on, breaking 50(5) to 50(3).   In the full theory, this breaks 50(8) to 

7Iii [32] the stability is only proved for the Af = 5 theory, but it was argued that the 
result should generalize to the full Af = 8 theory. 
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50(3) x 50(3). In the process, 22 of the 70 scalars, the (3,3) + 2(1,3) + 
2(3,1) + (1,1), are eaten by the Higgs mechanism. The remaining scalars 
are three singlets and five copies of the (3,3). 

Let us denote the two complex scalars, which are turned on, by </?a, 
a = 1,2. The N = 8 supergravity potential reads [33] 

Vip) = -e2 2 + 4/(M)-i/2(W)(|v|4-|^ + ¥'i|2) (5.5) 

with /(l^l) = 1/(1 — |<£|2) and e2 the square of the 50(8) gauge coupling, 
which is proportional to the scalar curvature of the anti-de Sitter background 
at the 50(8) invariant point ^pa = 0. 

The kinetic terms for these scalars take the form [33]: 

^a = f(\<p\)3/2\A\\ (5-6) 

where 

The scalar potential (5.5) has an additional extremum at 

M2=4/5,    v>i + <P2 = 0. (5.8) 

The methodology is the same as we learned in the four-dimensional con- 
formal field theories. The conformal structure exponent b at the 50(3) x 
50(3) fixed point is different from the one at the 50(8) SOFT {b ^ 2). This 
exponent is given by the ratio of the corresponding cosmological constants 
of the dual supergravity backgrounds at these two critical points. For this 
case 

^ = A(5Q(3)x5Q(3))  = 7 ^ ^ 
4 A(so(8)) 3 

In fig. 4 we plot the scalar potential along two 50(3) x 50(3) singlet field 
directions, near the critical point (5.8). As usual, it is a saddle point. In CFT 
language, the directions with negative (positive) mass-squared are mapped 
to relevant (irrelevant) operators of the 50(3) x 50(3) fixed point. From 
the potential (5.5) and kinetic terms (5.6), we can read off the masses of 
the scalars at this point. From these, we derive the corresponding scaling 
dimensions using the formula 

A(A - 3) = m2r2
IR . (5.10) 
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Figure 4: The scalar potential (5.5) near the 50(3) x 50(3) critical point. 

At the 50(3) x 50(3) CFT, we have 

A=2 + - + -mzrz 

4     7 
(5.11) 

where r = (Tr2^)1/6/^ is the AdS^ radius at the supersymmetric 50(8) 
invariant point and m2 is the mass-squared at the 50(3) x 50(3) point. 

The primary operator that drives the theory from the 50(8) SOFT to 
the 50(3) x 50(3) CFT is associated to the common radial fluctuation 
\^Pa\ -> l^ol + Sp an(l has scaling dimension 

A(p) = 8.146184-•• (5.12) 

Its partner, the common phase of the two complex scalars, ipa —> ezay>a, is 
eaten by the Higgs mechanism. 

The other two 50(3) x 50(3) singlet operators continue to be tachyonic 
at this non-supersymmetric conformal field theory. One is associated to the 
opposite radial fluctuations \<pi\ —> |y>i| +77, \<p2\ -^ 1^21 — 77, and has scaling 
dimension 

A(f/) = 2.712887- •• 

The other corresponds to the relative phase fluctuation tpi 
e~lP(p2 and has scaling dimension 

A(/3) = 2.231925 • • • 

(5.13) 

ei/3^i5 ^2 -► 

(5.14) 
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6.    Six Dimensional Conformal Field Theories 

The six dimensional (2,0) SOFT living on the world volume of N coincident 
M5 branes is described (at large N) by 11D supergravity in the background 
AdSy x S4. The R-symmetry groups is 5pm(5). As in 4 dimensions, one 
has chiral primary fields, $&, consisting of kth order symmetrized traceless 
products of the scalars in the iV tensor multiplets (for k = 2,3,...). These 
have scaling dimension A*. = 2k. $2 is a relevant operator (A = 4) in the 
14 of 5pm(5). As in 4 dimensions, we can imagine perturbing the theory 
by adding this relevant operator to the action, in such a way as to break 
Spin(5) to 5pm(4). 

On the supergravity side, this corresponds to giving a non-trivial bound- 
ary conditions for an 50(4)-singlet scalar in the D = 7 Af = 4 gauged 
supergravity multiplet. The construction of the 50(5) gauged D = 7 J\f = 4 
supergravity Lagrangian, up to two derivatives, was done in [34]. The su- 
pergravity potential turns out to be equivalent to (4.5), but now with the 
matrices S valued in 5L(5,M) instead of 5L(6,E). As in the AdSs case, 
one finds an additional critical point with 50(4) symmetry, corresponding 
to a compactification on a squashed 54. But, as in the AdSs case, this 
background is unstable [35]. The scalars in the supergravity multiplet in 14 
break up into a 5pm(4) singlet, which we are turning on, the (2,2), which 
is higgsed, and the (3,3), which violates the stability bound. Indeed, in 
analogy with what we found in §4, one could have expected that this back- 
ground would prove unstable. In the boundary theory, the 50(4)-invariant 
perturbation gives a positive mass-squared to one of the scalars in the tensor 
multiplet, and a negative mass-squared to the other four. So one expects 
this perturbation to cause the boundary theory to run off to infinity in field 
space, with no stable vacuum. 

The other possible four dimensional compact manifold with 50(4) isome- 
trics is M4 = Spin(4)/[U(1) x 17(1)] = 52 x 52. In fact, recently it has 
been proposed to be a non-supersymmetric stable vacuum of M-theory [9]. 
Here we perform an explicit check of that statement, computing part of the 
Kaluza-Klein (KK) mass spectrum that results from that compactification. 

For signature (—h ...+) and standard Ricci, the D = 11 Einstein equa- 
tions of motion are 8 

RAB = I (FAPQRFB
PQR

 - ^9ABFA . (6.1) 

A,B,... = 0, ...,10 refer to eleven dimensional indices; /i, 1/,... = 1,...,4 are internal 
indices of S2 x S2 and a, 6,... = 0, ...6 correspond to indices in AdSr- 
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We work in the Preund-Rubin ansatz: 

Fnupa = ee^pcr 

Fabcd = 0 , 

where e is a constant proportional to the four-form flux of field strength, 
created by the presence of N M5-branes, through the compact manifold 
M4. As it was noted in [9], there is a particular solution with the topology 
AdS? x S2 x S2. We choose physical units where rAdS7 = 1- Then, the 
equations (6.1) determine e = 3\/2 and the radius-squared of the two S2 to 
be r2 = 1/12. 

There are three kinds of scalar fields. Two of them come from the fluc- 
tuations of the eleven dimensional spacetime metric 9 

Sgwi**) = E^X^) (6.3a) 

S9%(xA) = ^^(^y V), (6.3b) 

and the third from the eleven dimensional three-form potential 

6A^p(xA) = J2 X(/)(z0)wAr^V) • (6-4) 

As usual, the internal space dependence is expanded in a basis of tensor 
harmonics Y, Y^ and Y^ of M4, with their coefficients being the seven 
dimensional scalar fields. For the case of M4 = S2 x S2, these harmonics are 
a product, Y = Y1Y2, of the 52 harmonics Y^ , i = 1,2. The index / refer to 
the 50(4) - SU(2) x 5*7(2) irreducible representations (2ki + 1, 2k2 + 1), 
for integer values of ki and A^- The masses of the scalar fields <^J),7r(/) 
and x^ are read from their linearized equations of motion obtained from 
the variation of (6.1), taking into account expressions (6.3) and (6.4). Since 
the scalar fluctuations (6.3b) change the volume of M4, this needs to be 
compensated by a change in the three-form (6.4) in order to keep the four- 
form field strength flux constant. The consequence is that the scalars TP

7
) 

and x^ have mixed mass terms and one should go to an appropiate basis 
which diagonalize them [36]. 

On the other hand, the traceless metric fluctuations (6.3a) keep the vol- 
ume of M4 fixed. Then, it is consistent to consider F^pa and F2 constant. 
Applying this kind of fluctuations to (6.1) for the case of internal indices 

9£<7% {&9(tiv)) means the trace(less) metric fluctuation. 
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A = [i and B — v, one gets 

8Rlu, = \2&g{in,). (6.5) 

For a general metric fluctuation SQAB, in a general background, the fluc- 
tuation of the Ricci is (indices are raised and lowered with the background 
metric) 

SRAB = -^D2SgAB - -DBDA5gPp + -DADpSgBp + -DBDpSgAp 

1 1 
+-RAP6gBP + 2

R
B

P6
9AP + RpABQSgPQ . 

(6.6) 

Plugging this in (6.5), it gives the equation (in de Bonder gauge, D^Sg^^ = 

0) 

—DnSg^) + Rp^aSg^ = 0, (6.7) 

with Dn the ordinary Laplacian for the D = 11 metric gAB. Denoting the 
coordinate indices of the first S2 by letters from the beginning of the Greek 
alphabet, and the coordinate indices of the second 52 by letters from the 
end of the Greek alphabet, the curvature tensor of 52 x 52 is 

RapjS = 12(gaygpS - 9aSg{3j) ^ ^ 

with all of the mixed components vanishing. This is different from all of the 
other cases treated in [36], where the curvature tensor takes the form 

RK\IAV = {gniigxv - gKvgxii) (6.9) 

In an earlier version of this paper, we naively applied the subsequent formulae 
of [36], which implicitly assume the form (6.9). In some cases, these gives 
results which agree with (6.8), but in the crucial case of the breather mode, 
which we discuss below, they do not10. 

Since we are dealing with a product space, there are two kind of scalar 
modes from the traceless fluctuations (6.3a). One kind correspond to the 
'jiggling' modes <^, for each of the two-spheres; i.e., with Y^^ being traceless 
for each of the 52. Their equation of motion are 

(□Ad57-m2)^ = 0, (6.10) 

10We would like to acknowledge conversations with Berkooz and Rey, which helped us 
track down the source of our previous error. 
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where the mass-squared is 

m2 = _n4 + 24. (6.11) 

□4 are the eigenvalues of the ordinary Laplace operator on the manifold 
52 x S2 acting on a symmetric and traceless two-tensor harmonic Y^: 

□4^1,fe2) = -12 [*!(*! + 1) + ^2(^2 + 1) - 2}Y^ (6.12) 

with ki + k2 > 2 because it is a two-tensor harmonic. 

The other kind of modes are the 'breathing' modes </>&, which are pure- 
trace from the point of view of each of the two-spheres. They come from 
the terms in the expansion (6.3a) where Y^ = Ygap and Y^ = —Yg^u, 

with Y = Yj ^Y^ being a product of scalar harmonics on each S2. The 
mass-squared of this breathing mode is 

m2 = _n4_24, (6.13) 

with now 04 = 12 [fci(fci +1)4-^2(^2 + !)], and ki,k2 = 0,1,.... In particular, 
the lowest mode, corresponding to fci = £2 = 0, has the squared mass 
m2 = —24, which violates the stability bound m2 > —9. Therefore, the 
non-supersymmetric background AdS? x S2 x S2 is unstable. 
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