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Abstract 

We show that all supersymmetric Type IIA D-branes can be con- 
structed as bound states of a certain number of unstable non-supersym- 
metric Type IIA D9-branes. This string-theoretical construction demon- 
strates that D-brane charges in Type IIA theory on spacetime manifold 
X are classified by the higher K-theory group K_1(X), as suggested 
recently by Witten. In particular, the system of N DO-branes can be 
obtained, for any iV, in terms of sixteen Type IIA D9-branes. This sug- 
gests that the dynamics of Matrix theory is contained in the physics of 
magnetic vortices on the worldvolume of sixteen unstable D9-branes, 
described at low energies by a £7(16) gauge theory. 
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1    Introduction 

When we consider individual D-branes in Type IIA or Type IIB string theory 
on R10, we usually require that the branes preserve half of the original su- 
persymmetry, and that they carry one unit of the corresponding RR charge. 
These requirements limit the D-brane spectrum to p-branes with all even 
values of p in Type IIA theory, and odd values of p in Type IIB theory. 

Once we relax these requirements, however, we can consider Dp-branes 
with all values of p. In Type IIA theory, we can consider p-branes with p 
odd, and in particular, a spacetime-filling 9-brane. All these states are non- 
supersymmetric unstable excitations in the corresponding supersymmetric 
string theory. Indeed, there is always a tachyon in the spectrum of the open 
string connecting one such Type IIA (2p — l)-brane to itself. Thus, such 
D-brane configurations (and their counterparts on spacetimes of non-trivial 
topology) are highly unstable, and one expects that they should rapidly 
decay to the supersymmetric vacuum, by a process that involves tachyon 
condensation on the worldvolume. This is of course in perfect agreement with 
the field content of the corresponding low-energy supergravity in spacetime 
- there are no RR fields that could couple to any conserved charges carried 
by such non-supersymmetric branes. 

This does not seem to leave much room for surprises, but in fact, the 
full story is much more interesting. Configurations of unstable D-branes can 
sometimes carry lower-dimensional D-brane charges, and therefore, when the 
tachyon rolls down to the minimum of its potential and the state decays, it 
can leave behind a supersymmetric state that differs from the vacuum by 
a lower-dimensional D-brane charge - in other words, the state decays into 
a supersymmetric D-brane configuration. Typically, one can then represent 
the supersymmetric D-brane state as a bound state of the original system of 
unstable D-branes. 

This setup generalizes a special case studied in [1, 2], where one starts 
with an unstable configuration of an equal number of stable p-branes and 
stable anti-p-branes (or p-branes for short), and finds lower-dimensional sta- 
ble D-brane states as bound states in this system. The p-brane p-brane 
system is unstable, and the instability manifests itself by the presence of a 
tachyon in the spectrum of the p-p open strings at brane separations shorter 
than the string scale [3]-[7]. In Type IIB or Type I string theory, one can 
use this construction to represent any stable D-brane state as a bound state 
of a certain number of 9-brane 9-brane pairs [1, 2]. 

In some cases, the unstable non-supersymmetric state decays into a stable 
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state that is not supersymmetric, but is protected from further decay by 
charge conservation. One typical example of such states is the 50(32) spinor 
of Type I theory [1], which is non-supersymmetric but stable, since it is the 
lowest spinor state in the theory. Such non-supersymmetric D-branes can 
be found using a direct boundary state construction [8] , or alternatively 
as bound states of p-brane p-brane pairs [1] . This remarkable bound-state 
construction was discovered by Sen [1] (following some earlier work in [9] ), 
and was further systematized by Witten [2] . It turns out that the proper 
setting for all conserved D-brane charges in general compactifications is, 
in fact, K-theory [10, 2]. (Some early indications of possible connections 
between D-branes and K-theory can be found in [11]-[18].) 

In this paper, we generalize the construction that uses unstable configura- 
tions of pairs of stable branes, and consider bound states in general unstable 
non-supersymmetric configurations of D-branes such as the unstable 9-brane 
discussed above, where the individual D-branes are no longer required to be 
stable. 

Our motivation for this generalization will be clear from the following 
example. We will be interested in stable D-branes in Type IIA string theory, 
for simplicity in R10. In Type IIB theory, we can in principle construct any 
stable D-brane state as a bound state of a certain number of 9-brane 9-brane 
pairs wrapping the whole spacetime. It is certainly desirable to have, on the 
Type IIA side, a similar construction that would enable us to study stable 
D-branes as bound states in unstable configurations of branes of maximal di- 
mension. However, there are no stable D9-branes in Type IIA string theory! 
While we can indeed represent any stable D-brane of Type IIA as a bound 
state of an 8-brane 8-brane system, this construction requires a preferred 
choice of a submanifold of codimension one in space-time, representing the 
worldvolume of the 8-brane 8-brane system. Therefore, it breaks some of 
the spacetime symmetries that we want to keep manifest in the theory, and 
limits the kinematics of branes that can be studied this way. One of the main 
points of this paper is to present a string-theoretical construction that keeps 
all spacetime symmetries manifest. This construction enables us to consider 
any stable D-brane of Type IIA theory as a bound state of a system of the 
unstable 9-branes discussed above. In fact, this construction turns out to be 
intimately related to the statement that D-brane charges in Type IIA string 
theory are classified by the higher K-theory group K~1(X) of the spacetime 
manifold X, suggested recently by Witten in [2] . 

This paper is organized as follows. 

In section 2 we briefly review the relation of Type IIB D-brane charges 
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and bound-state constructions to K-theory, and preview the Type IIA case. 

In section 3.1 we introduce the unstable 9-brane of Type IIA string the- 
ory. General 9-brane configurations wrapping spacetime manifold X are 
studied in section 3.2. We argue that inequivalent configurations of 9-branes 
- modulo 9-branes that can be created from or annihilated to the vacuum 
- are classified by the higher K-theory group K~1(X). In section 3.3 we 
show that any given stable D-brane configuration of Type IIA string the- 
ory can be represented as a bound state of a certain number of unstable 
Type IIA 9-branes. In the worldvolume of the 9-branes, the bound state 
appears as a stable vortex in the tachyon field, accompanied by a non-trivial 
gauge field carrying a generalized magnetic charge. In the particular case of 
bound states in codimension three, this precisely corresponds to the 't Hooft- 
Polyakov magnetic monopole. We generalize our discussion to the case of 
Type V theory in section 3.4, and argue that Type I' D-brane charges are 
similarly classified by the Real K-theory group KR_1(X). 

In section 4 we focus on possible implications of our construction to Ma- 
trix theory [19] . We use our 9-brane bound-state construction to study 
a general system of N DO-branes in Type IIA theory. First we show that 
a DO-brane can be constructed as a bound state of sixteen unstable D9- 
branes. The low-energy worldvolume theory on the 9-branes is a certain 
non-supersymmetric C/(16) gauge theory, with a tachyon in the adjoint repre- 
sentation of f7(16). In this worldvolume theory, the DO-brane is represented 
as a topologically stable vortex-monopole configuration of the tachyon and 
the gauge field. Multiple DO-brane configurations are in general also de- 
scribed by sixteen 9-branes, and appear as multi-vortex configurations in the 
?7(16) gauge theory on the spacetime-filling worldvolume. This construction 
thus leads to the intriguing possibility that the dynamics of Matrix theory - 
as described by a particular limit of the system of N DO-branes of Type IIA 
string theory - can be contained in the dynamics of vortices on the worldvol- 
ume of a fixed system of sixteen D9-branes, with the individual DO-branes 
represented by vortices in the worldvolume field theory. This construction 
exhibits some striking similarities with the holographic field theory of [20] . 

While this paper was being finished, another paper appeared [21] whose 
section 6 partially overlaps with some parts of our section 3.3. 
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2    K-Theory and Type IIA D-Branes 

In this section we first review some highlights of [2] (mostly in the context 
of Type IIB theory), which will give us the opportunity to present some 
background on K-theory [22]-[26] that will be useful later in the paper. In 
section 2.2 we set the stage for our further discussion of D-brane charges and 
bound states in Type IIA theory. 

2.1    Type IIB on X and K(X) 

Consider supersymmetric p-branes and p-branes of Type IIB (or Type IIA) 
string theory, wrapped on a spacetime manifold X of dimension p. The 
lowest states of the open strings connecting iV such p-branes give rise to 
a worldvolume U(N) gauge field on a Chan-Paton bundle E of complex 
dimension N. Similarly, N' p-branes will carry a Chan-Paton bundle E' of 
dimension N' and a U(N') gauge field. The open string connecting ap-brane 
to a p-brane will have the opposite GSO projection, and its lowest mode will 
be a tachyon field T in (iV, W) of the gauge group U(N) x U(N'). 

The D-brane charge of the configuration will be preserved in processes 
where p-brane p-brane pairs are created from or annihilated to the vacuum. 
Configurations that can be created or annihilated correspond to iV p-branes 
with bundle F and N p-branes with a bundle F' that is topologically equiva- 
lent to F. Thus, invariant D-brane charges correspond to equivalence classes 
of pairs of bundles (E^E1), where two pairs (Ei,^) and (i^,-^) are ecluiv" 
alent if {Ei @ F, £( 0 F) is isomorphic to {E2@G,E'2@ G) for some F and 
G. (If F corresponds to brane antibrane pairs being created from the vac- 
uum, G corresponds to pairs annihilated to the vacuum.) The set K(-X') of 
such equivalence classes of pairs of bundles on X forms a group, called the 
K-theory group of X. The image of (£7,0) in K(X) is sometimes denoted by 
[E]. Each element in K(X) can be written as [E] — [E1] for some bundles E 
and E'. 

Consider configurations of 9-branes and 9-branes in Type IIB string the- 
ory, wrapping a spacetime manifold X. Tadpole cancellation requires an 
equal number of branes and antibranes. In K-theory, one can show - for X a 
connected compact manifold - that K(X) canonically factorizes as K(-X*)©Z, 
where the integer in Z is simply N — N', the difference between the number 
of p-branes and the number of p-branes. For a non-compact manifold y, 
one defines K(Y) = K(Y'), where Y is a compactification of Y by adding a 
point at infinity. Thus, on a general spacetime manifold X, D-brane charges 
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of tadpole cancelling Type IIB 9-brane 9-brane configurations are classified 
by the reduced K-theory group K(-X'). 

Each class in K(-X') is represented by a system with an equal number 
of 9-branes and 9-branes wrapping X, with the class in K(X) given by 
the difference of the Chan-Pat on bundles on 9-branes and 9-branes, [E] — 
[E']. Open strings ending on all possible pairs of these branes will give 
rise to a U(N) x U(N) gauge field, and the tachyon field T in the (N,N) 
representation of the gauge group. Together, these bosonic fields form an 
object 

A    T 
T   A , i , (2.1) 

known in the mathematical literature as a "superconnection" on X [27] . 

The tachyon has the tendency to roll down to the minimum of its poten- 
tial located at some T = TQ. We do not know the exact form of the tachyon 
potential, but it was argued in [2] that at the minimum of the potential, 
all eigenvalues of TQ are equal, and therefore TQ breaks the gauge symmetry 
from U(N) x U(N) to the diagonal U(N). 

Any lower-dimensional stable D-brane of Type IIB theory, wrapping a 
submanifold Y in spacetime, can be constructed as a bound state in a system 
of iV 9-branes and N 9-branes, which locally near Y looks like a topologically 
stable vortex of the tachyon field. 1 This can be seen as follows. Stable values 
of TQ correspond to the vacuum manifold 

Vo(N) = (U(N) x U(N))/U(N), (2.2) 

which is topologically equivalent to U(N). Thus, the tachyon will support 
stable defects in codimension 2fc, classified by the non-zero homotopy groups 
of the vacuum manifold, 7r2k-i(Vo(N)) = Z (for stable values oiN). In order 
for these defects to carry finite energy, the vortex of winding number n in the 
tachyon field must be accompanied by a non-trivial gauge field configuration 
carrying n units of the corresponding topological charge. In the simplest 
case of one p-brane jp-brane pair, a vortex of codimension two with vorticity 
n carries n units of the magnetic flux in one of the £7(1) groups. 

The core of the vortex lies along a submanifold Y of codimension 2k 
in X. Outside a small core around the submanifold Y in X, the tachyon 
condenses to its vacuum value. It is believed [1, 9] that the negative energy 
density corresponding to the vacuum condensate of the tachyon field is equal 

1For the purposes of this paper, it will be sufficient to consider only branes stretching 
along submanifolds Rm of the flat spacetime R10. The general case of Type IIB D-branes 
wrapping general submanifolds Y in general spacetime X is discussed in [2] . 
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in magnitude to the positive energy density due to the non-zero tension of 
the p-brane p-brane system wrapping X. Consequently, the total energy 
density away from the core of the bound state rapidly approaches zero, and 
the configuration is very close to the supersymmetric vacuum. Thus, the 
process of tachyon condensation leaves behind an object wrapped on Y that 
carries the charge of a supersymmetric D-brane wrapping Y [1] . 

In terms of K-theory, this construction corresponds to the embedding of 
a non-trivial class in K(Y) - describing a D-brane wrapping Y - into K(-X'), 
where it corresponds to the bound state of a 9-brane 9-brane configuration 
wrapping X. This embedding is realized by a classic K-theory construction 
[25] , which selects - for a Y of codimension 2k in X - a preferred value of 
the number of 9-brane 9-brane pairs iV = 2*-1, and which also leads to a 
particularly natural representative of the tachyon vortex configuration. The 
tachyon vortex that (at least locally in X) represents the D-brane wrapping 
a manifold Y of codimension 2k in X is constructed as follows. The group of 
rotations SO(2k) in the dimensions normal to Y in X has two inequivalent 
spinor representations, which give rise to two spinor bundles <S+ and S- 
on Y. These bundles can be extended to a neighborhood of Y in X, and 
therefore they define (modulo possible global obstructions that can typically 
be eliminated by pair creating extra 9-branes and 9-branes) a K-theory class 
[5+] — [<S-]. In the construction of the bound state, we identify <S+ with the 
Chan-Paton bundle carried by 9-branes, and <S_ with the bundle supported 
by 9-branes. The gauge symmetry on the 9-brane worldvolume is U(2k~1) x 
U(2k~1). The tachyon is a map from <S+ to 5_, and its vortex configuration 
of vorticity one around Y can be written in a very simple form using T 
matrices of SO(2k) (which represent maps from 5+ © 5_ to itself), as 

T = rmzm, (2.3) 

where a;m, m = 1,... 2k are coordinates in the directions transverse to Y in 
a small neigborhood of Y in spacetime. We have omitted a multiplicative 
convergence factor in 2.3 , which approaches one in the small vicinity of Y 
and goes to zero as we approach infinity, ensuring that far away from the core 
of the vortex, T takes values in the vacuum manifold 2.2 , with N = 2k~1. 2 

As an example, let us consider the case of codimension two. The gauge 
symmetry is (7(1) x 17(1), and the tachyon vortex of vorticity one can be 
written as 

2Our discussion has been local in X; when global topology is taken into account, one 
sometimes has to "stabilize" (in the K-theory sense) the configuration of 9-branes and 
9-branes by pair creating extra 9-branes and 9-branes, thus leading to a configuration of 
9-brane 9-brane pairs described by (<S+ 0 H,S- ® H)] for more details, see [2] . 
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where we have used a particular convenient representation of the two F- 
matrices ai^ in two transverse dimensions x1,2. 

This bound-state construction defines a map K(Y") —> K(X) for any 
submanifold Y of X that admits a Spinc structure [2] . Some other details of 
this construction, together with more details about its relation to the Thorn 
isomorphism, the Gysin map, and the Atiyah-Bott-Shapiro construction in 
K-theory, can be found in [2] . For some general K-theory background, see 
[22]-[26]. 

2.2    Type IIA on X and K"1^) 

It has been suggested in [2] that D-brane charges in Type IIA theory should 
be similarly classified by a certain higher K-theory group K~1(X). This 
conjecture is supported by the following argument. Consider the reduced 
K-theory groups of spheres, 1^(8"). These groups classify possible (9 — n)- 
branes in Type IIB theory on R10 [2] . Using Bott periodicity, one can show 
that K(S2n) = Z and K(S2n+1) = 0. The higher K-theory group K"1^) 
will be defined precisely below, but now we only invoke the fact that 

K-1(Sn) = K(Sn+1). (2.5) 

Hence, K-^S2"4"1) = Z and K-^S2") = 0. This is in accord with the fact 
that Type IIB theory contains supersymmetric p-branes for p odd, while 
Type IIA theory has p-branes with p even. 

Thus, the higher K-theory group K~1(X) of spacetime X is a natural 
candidate for the K-theory group that classifies D-brane charges in Type IIA 
theory. For a manifold X of dimension d, the higher K-theory group K~1(X) 
is usually defined using the ordinary K-theory group of a d + 1 dimensional 
extension X1 of X. If X is a spacetime manifold of string theory, X' will 
be eleven-dimensional, and we may suspect a connection to M-theory. The 
definition of K~1(X) that is most suggestive of M-theory sets X' = X x S1, 
and defines K~1(X) using the K-theory group K(X x S1). More precisely, 
K~1(X) is defined as the subgroup in K(X x S1) that maps to the trivial 
class in K(X), by the map induced from the embedding of X as X x point 
in X x S1.3 This definition of K'^-X") that uses X' = X x S1 is somewhat 
awkward, and we can define K~1(X) more directly by choosing a slightly 

3The purpose of this extra condition is to eliminate elements in K(X x S1) that corre- 
spond to K(X). In the string theory language, since K"1^ x S1) = K"1^) eK(A"), the 
restriction of K(X x S1) to its subgroup K"1(A") eliminates charges that would correspond 
in Type IIA string theory to stable p-branes with p odd. 
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different X1 as follows. Consider first the product of X with a unit interval, 
X x I, and define the so-called "suspension" S'(X) of X by identifying 
all points in each boundary component of X x /. Thus, for example, the 
suspension of the m-sphere Sm is the (m + l)-dimensional sphere, S"(Sm) = 
Sm+1. One can define K"1^) by starting with X7 = S"(X), and setting 

K-1(-X')=K(5/(-Y)). (2.6) 

In the particular case of X = Sm, we obtain 2.5 . 

In Type IIB theory, the fact that K(X) classifies D-brane charges leads 
to the construction of all possible D-branes as bound states of spacetime- 
filling 9-brane 9-brane pairs, reviewed briefly in the previous section. When 
we try to extend this construction of K(X) from Type IIB theory to an 
analogous construction of the K~l(X) groups on the Type IIA side, we 
encounter the following difficulty. As we have seen, K~1(X) is defined as the 
usual K-theory group of an extended manifold S'(X). In string theory, X 
is a spacetime manifold of dimension ten, and therefore its extension S'(X) 
used in the definition of K~1(-X*) is eleven-dimensional. This indeed suggests 
a possible relation to M-theory (as pointed out in [2]), but since we do not 
have a hierarchy of D-branes in M-theory (and in particular there are no 
10-branes), it is unclear how to interpret the K~1(X) group that should 
classify D-brane charges of Type IIA string theory but is defined using an 
eleven-dimensional extension of X. 

In the next section we will present a string theory construction (as op- 
posed to an M-theory construction) of all supersymmetric D-branes of Type 
IIA string theory, similar in spirit to that of [1, 2]. The unstable 9-branes 
of Type IIA theory, introduced in section 1, will provide the crucial ingre- 
dient for our construction. We will see that this stringy construction is a 
translation of one possible definition of K~1(X) in K-theory. Hence, our 
construction proves that the D-brane charges of Type IIA string theory are 
indeed classified by K~1(X), as suggested by Witten in [2] . The argument 
can be easily generalized to see that D-branes in Type I' theory are similarly 
classified by KR-^X). 
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3    Type IIA D-Branes as Bound States of Unstable 
9-Branes 

3.1    Unstable 9-Branes in Type IIA Theory 

We have pointed out in section 1 that once we relax the condition that 
D-branes be supersymmetric and carry a RR charge, we can construct Dp- 
branes of any p < 9, at the cost of sometimes obtaining unstable configura- 
tions. In particular, in Type IIA theory we can construct a spacetime-filling 
9-brane. Its structure can be easily understood from the form of its bound- 
ary state [i?), which - as a particular coherent state in the Hilbert space 
of the Type IIA closed string - represents the boundary conditions on the 
closed string annihilated into the 9-brane. The D9-brane boundary state 
(we will only consider the 9-brane of Type IIA theory, generalizations to 
(2k — l)-branes of lower dimensions are obvious) is thus given by 

\B) = I-BJ +)NSNS ~ \Bi ~)NSNS • C3-1) 

Here |#,±)NSNS represents the two possible implementations of the Neu- 
mann boundary conditions on all spacetime coordinates, [31]-[33]. 

There is no RR component in the boundary state, as none is invariant 
under the Type IIA GSO projection in the closed string channel. Indeed, 
there are two RR states |2?, ±)RR that implement Neumann boundary con- 
ditions on all coordinates. These states transform into each other under the 
worldsheet fermion number operators (—l)^^, as follows (see e.g. [8] ): 

(-1)^ IB, ±)RR = \B, T)RR,        (-1)F* |S, ±)RR = |B, T)RR ■      (3.2) 

However, the GSO projection in Type IIA theory chooses opposite chirali- 
ties in the left-moving and the right-moving sector, and no combination of 
|5,±)RR is invariant under the Type IIA GSO operator (1 - (-1)

FL
)(1 + 

(—l)Fj*).4 The absence of a RR boundary state means that no RR tadpole 
is associated with our 9-brane, and therefore, no spacetime anomalies re- 
lated to RR tadpoles can arise. Unlike in Type IIB theory, where tadpole 
cancellation requires an equal number of 9-branes and 9-branes, we do not 
get a restriction on the number of 9-branes from tadpole cancellation. These 
9-branes carry no conserved charge, and there is no distinction between a 
9-brane and an anti-9-brane. 

Since there is no RR component in the boundary state, there is no GSO 
projection in the dual, open-string channel of the toroidal amplitude (B\B}. 

4I am grateful to Oren Bergman for discussions on this subject. 
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Therefore, the open string connecting one such 9-brane to itself will contain 
- in the NS sector - both the U(l) gauge field that a supersymmetric brane 
would carry, and the tachyon field T that would, in the case of supersymmet- 
ric branes, be projected out by the GSO projection. In the Ramond sector 
of the open string, both spacetime chiralities of the ground state spinor are 
retained, again due to the absence of any GSO projection. 

A more precise way of implementing this boundary-state construction 
of unstable D-branes in a way compatible with the general Type IIA GSO 
projections on higher-genus worldsheets has been proposed in a similar case 
of unstable Type IIB DO-branes by Witten in [2] . In this procedure, one 
introduces an extra fermion 7/ at each boundary component that corresponds 
to the string worldsheet ending on the 9-brane. (Similar boundary fermions 
were introduced some time ago in a different context in [28] ). This extra 
fermion is described by the Lagrangian / r](dri/dt)dt^ with t a periodic co- 
ordinate along the worldsheet boundary component. Quantization of this 
fermion gives an extra factor of y/2 in the sector with antiperiodic boundary 
conditions, and the zero mode of 77 kills the contribution to the worldsheet 
path integral from the R sector with periodic boundary conditions. In terms 
of boundary states, this indeed reproduces our boundary state |J5), but now 
not because there would be no GSO projection. Instead, there is a GSO 
projection, the Ramond boundary state \B,R) vanishes identically, and the 
total boundary state can be rewritten as 

\B) = ^=(V2\B) + \B,R)). (3.3) 

The extra factor of y/2 comes from the extra Chan-Paton factor associated 
with the extra boundary fermion 77. 

In the presence of Type IIA 2p-branes carrying RR charges, there would 
be a sector of open strings connecting the 2p-brane to the 9-brane. As in 
the case of Type IIB DO-branes studied in [2] , the worldsheet rules for 
calculating amplitudes in such cases also require the presence of the extra 
boundary fermion 77. 

More generally, consider N coincident 9-branes. The free open-string 
spectrum of massless and tachyonic states gives rise to the following low- 
energy field content on the spacetime-filling worldvolume, 

A^ T, x, and *', (3.4) 

where A^ is a U(N) gauge field, T is a tachyon field in the adjoint of U(N), 
and the two chiral fermions x> x' ~ also m the adjoint of U(N) - carry oppo- 
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site spacetime chiralities.5 This should be contrasted with the worldvolume 
field content of the Type IIB system of N pairs of 9-branes and 9-branes, 
where the bosonic sector 2.1 consists of a U(N) x U(N) gauge field and a 
tachyon in (N,N). 

Notice the intriguing fact that this field content 3.4 on N 9-branes of 
Type IIA theory coincides with the ten-dimensional decomposition of a 
system in eleven dimensions, consisting of a U(N) gauge field AM and a 
32-component spinor * in the adjoint of U(N). In particular, the adjoint 
tachyon plays the role of an eleventh component of the U(N) gauge field, 
and the ten-dimensional decomposition gives 3.4 as 

AM = (AIX,TJ;       # = (X,X')- (3.5) 

Of course, this hidden eleven-dimensional symmetry of the lowest open-string 
states is broken already at the level of free fields by the tachyon mass. 

3.2    9-Brane Configurations and K 1(X) 

In analogy with our understanding of Type IIB D-branes in K-theory, we 
want to achieve two separate things: (1) classification of branes in Type IIA 
theory on general X, (2) construction of branes in terms of bound states of 
higher-dimensional branes. 

First, we will consider possible configurations of N 9-branes in Type IIA 
string theory, up to possible creation and annihilation of 9-branes from and 
to the vacuum. 

Recalling our discussion in Section 1 of a system of such unstable 9- 
branes in Type IIA theory, we expect that the system will rapidly decay to 
the supersymmetric vacuum, whenever it does not carry lower-dimensional 
D-brane charges. We will call such 9-brane configurations "elementary." Any 
such "elementary" configuration of N' branes wrapping X will give rise to a 
UtN') bundle JP, together with a {/(iV') gauge field on F and a tachyon T 
in the adjoint representation of f7(iV'). The bound-state construction that 
we discuss below indicates that the presence or absence of lower D-brane 
charges can be measured by the tachyon condensate T. 

Thus, we will assume (cf. [1, 2]) that a bundle E with tachyon field T 
can be deformed - by processes that involve only creation and annihilation 

5In the simplest case of just one 9-brane, the gauge group is U(l), and the tachyon is 
a real scalar field. We will see below that this case is somewhat degenerate, and one may 
want to "stabilize" it - in the sense of K-theory - by embedding this system into a larger 
system with more than one 9-brane. 
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of "elementary" 9-branes - into a bundle isomorphic to E © F, with F the 
Chan-Paton bundle of an elementary 9-brane configuration. 

This definition of equivalence classes of 9-branes with tachyon conden- 
sate, up to creation or annihilation of "elementary" 9-brane configurations 
from and to the vacuum, corresponds to the following construction in K- 
theory. 

It turns out [22] that in K-theory, one can define the higher K-theory 
group K_1(X) without using an eleven-dimensional extension of X. Instead, 
one starts with pairs (£7, a), where E is a U(N) bundle for some JNT, and a 
is an automorphism on E. (In fact, we do not lose generality if we consider 
only trivial bundles E on X.) A pair (.F,/3) is called "elementary" if the 
automorphism /3 can be continuously deformed to the identity automorphism 
on F, within automorphisms of F. One defines an equivalence relation on 
pairs (F,a), as follows. Two pairs (Ei,ai) and (^2,0:2) are equivalent if 
there are two elementary pairs (Fi,/?i) and (i^Aa) such that 

{Ex © Fi, ai © ft) £ (J5?2 © F2, a2 © /32). (3.6) 

The set of all such equivalence classes of pairs (F, a) on X is a group: the 
inverse element to the class of (F,a) is the class of (E,a~l). This group 
of classes of pairs (F, a) on X is precisely K~1(X) (as defined e.g. in [22] , 
Section 11.3). This "string theory" definition of K~1(-X') - which uses bun- 
dles with automorphisms on the ten-dimensional spacetime X - is equiva- 
lent to the definition of K~1(X) reminiscent of M-theory (and reviewed in 
section 2.2) which uses pairs of bundles on the eleven-dimensional extension 
X x S1. This rather non-trivial fact can be found e.g. in [22] , Theorem II.4.8. 

In string theory, the role of the iV-dimensional bundle E is played by 
the Chan-Paton bundle carried by a system of N unstable Type IIA 9- 
branes. The automorphism a is a little harder to see directly in the 9- 
brane. However, we will see below that in the bound-state construction of 
super symmetric D-branes as bound states in a system of 9-branes, the role 
of a is played by 

U = -e7^, (3.7) 

where T is the adjoint U(N) tachyon on the 9-brane worldvolume. Elemen- 
tary pairs (F, a) correspond to elementary brane configurations that do not 
carry any lower-dimensional D-brane charge, and therefore can be created 
from and annihilated to the vacuum. Thus, possible 9-brane configurations 
up to creation and annihilation of "elementary" 9-branes are classified by 
K~1(-X'). This, together with our explicit bound-state construction below, 
demonstrates that K~1(X) indeed classifies D-brane charges in Type IIA 
theory. 
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In contrast to Type IIB theory, where one is supposed to consider tadpole 
cancelling configuration of an equal number of 9-branes and 9-branes, in 
Type IIA theory there is no such restriction on the number of 9-branes. This 
statement has a nice interpretation in K-theory. In Type IIB theory, tadpole 
cancelling configurations of 9-brane 9-brane pairs correspond to the reduced 
K-theory group, K{X), related to the full KpO by K(X) = ZeK(X). One 
can define a "reduced" higher K-theory group K~1(X) [22, 26], but it turns 
out that (for the class of spacetime manifolds that one encounters in string 
theory) K~1(X) is always equal to K~1{X). 

3.3    Type IIA D-Branes as Bound States of 9-Branes 

So far, we have suggested a classification of all configurations of 9-branes up 
to creation or annihilation of "elementary" 9-branes that do not carry any 
lower D-brane charge. Here we present a construction that allows one to 
embed any lower-dimensional branes into a system of 9-branes in Type IIA 
theory: thus, just as in Type IIB theory [2] , whatever can be done with 
stable lower-dimensional branes can be done with unstable 9-branes of Type 
IIA theory. 

Even though we will mostly focus on bound states of unstable 9-branes, 
one could also start with any lower-dimensional unstable {2k—l)-branes, and 
construct stable 2p-branes for p < k — 1 as their bound states. In turn, each 
such lower-dimensional unstable (2k — l)-brane can be viewed as an unstable 
bound state of a 2fc-brane 2fc-brane pair, and we obtain a whole hierarchy 
of bound-state constructions, corresponding to a hierarchy of K-theory iso- 
morphisms. However, the only truly interesting case is that of 9-branes, for 
the following reason. Using the techniques of [2] , each individual lower- 
dimensional stable Dp-brane of Type IIA theory can already be constructed 
as a bound state of a certain number of 8-brane 8-brane pairs. There seems 
to be no gain in representing this Dp-brane for example as a bound state 
of unstable 7-branes. However, while not every configuration of stable D- 
branes of Type IIA fits into the worldvolume of a given 8-brane 8-brane 
system, it clearly fits into the worldvolume of a system of spacetime-filling 
9-branes. This embedding will enable us to keep all spacetime symmetries 
manifest, and will not lead to any kinematical restrictions on configurations 
of lower-dimensional stable Dp-branes that can be studied this way. 

Consider first a single unstable 9-brane in Type IIA theory. The gauge 
group is f7(l), and the tachyon is just a real scalar field of charge zero. We do 
not know the exact form of the tachyon potential V(T), but we can assume 
that V(T) = V(—T), and that T will condense into one of two vacuum 
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values, T = ±TQ. 

We will assume - in close analogy with a similar assumption made in [1] 
in the related case of pairs of stable p-branes and p-branes - that when the 
tachyon condenses into either TQ or —To, the negative energy density associ- 
ated with the condensate will cancel the positive energy density associated 
with the 9-brane tension, and the 9-brane will completely annihilate into the 
supersymmetric vacuum. This 9-brane is an example of what we called an 
"elementary" 9-brane in the previous section. 

Since the vacuum manifold of the tachyon field consists of two points 
±To, the tachyon can form a kink of codimension one in spacetime. Near 
the core of the kink, the tachyon field will be (up to a convergence factor, 
assuring that T -> ±To asymptotically at infinity) 

T = ±x9, (3.8) 

where x9 is the coordinate normal to the core of the kink. Thus, the core 
of this kink represents a domain wall in spacetime, which we will interpret 
as the supersymmetric 8-brane or 8-brane, depending on the sign in 3.8 (or, 
in other words, the sign of the difference between the asymptotic vacuum 
values of the tachyon T(—oo) — T(+oo) on the two sides of the domain wall). 
Notice that only one 8-brane or one 8-brane can be constructed from one 
9-brane. 

Consider now N unstable 9-branes. The gauge symmetry is U(N)J and 
the tachyon is in the adjoint of the gauge group. The tachyon will again 
have the tendency to roll down to a certain value To at a minimum of its 
potential, possibly breaking a part of the U(N) gauge symmetry. The precise 
pattern of symmetry breaking depends on the structure of eigenvalues of To, 
which in turn depends on the precise form of the tachyon potential, which of 
course is not known. It is natural to expect that V(T) = V(—T), and that 
all eigenvalues of TQ are equal to a certain Tv, possibly up to a sign. It is 
easy to see that this structure of eigenvalues would be obtained for example 
from even potentials of the form 

V(T) = -m2tr(T2) + AV(T4) + ..., (3.9) 

and with each term containing only a single trace. Such terms in the poten- 
tial are expected from the disc amplitudes, i.e. at tree level in open-string 
perturbation theory. 

When the tachyon on the worldvolume of iV 9-branes condenses into the 
vacuum value with N — k positive eigenvalues and k negative ones, 

T0 = Tv(
lN-k    jjj, (3.10) 
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the U{N) gauge symmetry is broken to U{N — k) x U{k). Just as in the 
case of a single 9-brane, the tachyon field can form kinks of codimension one. 
One particularly interesting case corresponds to the kink in all eigenvalues 
of T, localized at a common domain wall Y of codimension one in spacetime, 
which near Y can be written (again, up to a convergence factor), as 

z9 • lN_k 0 
0 -x9 • lfc 

9   ,    /• (3.11) 

We conjecture that this configuration should be interpreted as N—k 8-branes 
and k 8-branes with coinciding wordvolumes wrapping y.6 More general 
configurations of separated 8-branes and 8-branes can be constructed by 
letting each eigenvalue vanish along a separate manifold of codimension one 
in spacetime. 

Thus, any number of 8-branes and 8-branes can be constructed from 9- 
branes, but one cannot represent more than N of them as a bound state of 
N 9-branes: if we want to add an extra 8-brane, the construction has to be 
"stabilized" in the sense of K-theory, by adding an extra 9-brane. 

In general, worldsheets with more than one boundaries could give rise to 
corrections to the tachyon potential 3.9 , of the form 

A2(*r(T2))2 + ... (3.12) 

with more than one trace in each individual term. Using the analysis of 
section III.D. and Appendix B of [29] , one can show that even in the case 
of a generic potential 3.9 and 3.12 with A2 > 0, A2 > 0, the minimum To 
of the tachyon potential still has only two eigenvalues, ±To, and the vacua 
with different values of k stay degenerate.7 

One could now combine the construction 3.11 of 8-branes and 8-branes 
from 9-branes with the construction discussed in [2, 1], and construct all 
lower-dimensional D-2p-branes as bound states of a sufficient number of 8- 
brane 8-brane pairs prepared from 9-branes. 

This two-step procedure has several significant drawbacks. First of all, 
we have to select a preferred submanifold of codimension one in spacetime, 

6The interpretation of this multiple kink configuration as a set of 8-branes and 8-branes 
suggests the existence of a coupling 

L Cg A tr(dT) 

between the spacetime RR 9-form C9 and the U(N) tachyon T on the 9-brane worldvolume 
X. 

71 wish to thank John Preskill for bringing Ref. [29] to my attention. 
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which represents the worldvolume of the 8-brane 8-brane system. This 
breaks some of the manifest spacetime symmetries. Perhaps more impor- 
tantly, configurations of lower-dimensional branes that cannot be embedded 
into the worldvolume of a single system of coincident 8-brane 8-brane pairs 
may require - when realized via the two-step construction involving 8-branes 
- that extra 9-branes be introduced, due to the fact that each 8-brane or 
8-brane needs its own 9-brane. This would make the number of 9-branes 
used in the bound-state construction artificially dependent on the number 
and precise configuration of the lower-dimensional bound state. 

These shortcomings will be resolved in a one-step procedure, in which we 
construct arbitrary lower-dimensional D-2p-brane directly as a bound state 
of a system of 9-branes. This one-step procedure avoids the intermediate 
step involving 8-branes and 8-branes, and therefore avoids the degeneracy of 
the codimension-one bound-state construction, leading to a more powerful 
description of lower-dimensional D-branes as bound states. Along the way, 
we will discover many intriguing connections to K-theory. 

The General Bound State Construction 

Prom now on, we will consider 9-brane systems whose tachyon condensate 
To has an equal number of positive and negative eigenvalues. Thus, the 
number of 9-branes is 2N for some AT, and the gauge group U(2N) is broken 
to U(N) x U{N). The vacuum manifold is 

Vi(2A0 = U(2N)/(U(N) x U{N)) (3.13) 

We are interested in stable, vortex-like configurations in the tachyon field. 
Away from the core of such a stable vortex, the tachyon field (almost) as- 
sumes its vacuum values. This defines a map of the sphere Sm surrounding 
the core of a vortex of codimension m +1 into the vacuum manifold Vi(2iV). 
Possible candidates for stable tachyon vortices in this codimension are thus 
classified by elements of the homotopy group 7rm(Vi(2iV)). It turns out that 
homotopy groups of the vacuum manifold 3.13 are non-trivial in even di- 
mensions, '7r2jfe(Vi(2iV)) = Z, and trivial in all odd dimensions. (Here we are 
assuming that iV is large enough, so that it belongs to the "stable" range.) 
This should be contrasted with the case of Type IIB 9-brane 9-brane pairs, 
reviewed in section 2.1: in the case of Type IIB 9-branes, the vacuum man- 
ifold Vo(iV) = U(N) has non-zero homotopy groups only in odd dimensions, 
7r2fc-i(Vo(iV)) = Z. Therefore, while the Type IIB system of 9-brane 9-brane 
pairs supports bound states of codimension 2fc, our Type IIA 9-brane system 
will exhibit bound states in codimensions 2k + 1. 
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This structure of homotopy groups is not coincidental, and in fact reflects 
a deep connection of our construction to K-theory. Our vacuum manifold 
Vi^iV) can be thought of as a Grassmannian manifold whose points are 
iV-dimensional complex subspaces in C2N. This Grassmannian plays an 
important role in K-theory, as it represents a standard finite-dimensional 
approximation to the "universal classifying space" BU (see e.g. [23]). The 
importance of BU in K-theory stems from the fact that the K-theory group 
K(X) is canonically isomorphic, for any (reasonable) X, to the set of homo- 
topy classes of maps from X to this universal classifying space, 

K(X) = [X,BU]. (3.14) 

Similarly, the higher K-theory group K""1(-X') is related to the set of homo- 
topy classes of maps from X to the infinite unitary group U, 

K"1(X) = [X,C7]. (3.15) 

Thus, the vacuum manifold Vi(iV) of the tachyon on Type IIA 9-branes 
is a finite-dimensional approximation to the classifying space BU, and the 
vacuum manifold VQ(N) = U(N) of the tachyon in the Type IIB 9-brane 
9-brane system is a finite-dimensional approximation to the infinite unitary 
group U. 

The structure of homotopy groups of the tachyon vacuum manifold 
Vi (2N) indicates the possibility of bound states in all odd codimensions on 
the worldvolume of Type IIA 9-branes on R10. These bound states will 
appear as tachyon vortices, and will be interpreted as supersymmetric D- 
2p-branes of Type IIA theory. Just like in the case of Type IIB theory 
[2] , K-theory suggests the number of Type IIA 9-branes that is particularly 
natural for the bound state construction. Bound states of codimension 2&-I-1 
are most efficiently described by 2N = 2k 9-branes. Stable tachyon vortices 
in this codimension are classified by the 2k-th homotopy group of the vacuum 
manifold, ^(Vi^)) = Z. In fact, homotopy groups of Vi are related to 
the homotopy groups of U(N), via8 

... = n2k+1(U(2k))   =   n2k(U(2k)/U(2k-1)xU(2k-1)) 

=   7r2fe_1(C7(2fc-1)) = .... (3.16) 

The tachyon vortex corresponding to the generator of ^(Vi) can be ex- 
plicitly constructed as follows. The worldvolume of 2k 9-branes supports a 

8This is precisely one half of the statement of Bott periodicity [22, 26, 30]. The other 
half of Bott periodicity similarly relates odd homotopy groups of Vi and even homotopy 
groups of VQ. Using these relations, together with 3.14 and 3.15 , one can for example 
derive all K-theory groups of spheres, used in section 2.2 to classify supersymmetric Type 
II D-branes in R10. 
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U{2k) Chan-Paton bundle, which we identify with the spinor bundle S of 
the group 50(2fc + l) of rotations in the transverse dimensions. The tachyon 
condensate is then given by the vortex configuration 

T{x) = rmxm. (3.17) 

As in the Type IIB case [2] , Tm are the T-matrices of the group of rotations 
in transverse dimensions £m, m = l,...,2fe + 1. 3.17 describes a stable 
vortex in codimension 2k + 1, which we interpret as the supersymmetric 
(8 - 2fc)-brane of Type IIA theory. 

Even though the expression for the tachyon vortex 3.17 on Type IIA 
9-branes looks formally identical to the tachyon vortex 2.3 on the system 
of 9-brane 9-brane pairs of Type IIB theory, there is a significant difference 
between 3.17 and 2.3 . Asymptotically away from the vortex of the tachyon, 
3.17 takes values in the vacuum manifold U{2k)/{U{2k-1) x U{2k-1)). On 
the other hand, the Type IIB vortex 2.3 takes asymptotically values in 
(U(2k-1) x U{2k-1))/U{2k-1). One can see this distinction clearly in It- 
theory, where the two tachyon condensates represent generators of disctinct 
K-theory groups; 2.3 generates the relative group K(B2A;, S2^-1) (with B2k a 
ball \x\2 < 1 in R2*), and 3.17 represents the generator of K-1(B2A;+1, S2k) 
[22, 24, 25]. 

The tachyon vortex 3.17 is accompanied by a non-trivial U(2k) gauge 
field, due to the finite energy condition imposed on the whole configura- 
tion. The non-triviality of the unbroken part of the gauge field is measured 
by the element in 7r2k-i{U(2k~1)) that maps to the element of ^(Vi^)) 
corresponding to the tachyon condensate 3.17 , under the isomorphism of 
homotopy groups 3.16 . In the construction of the gauge field, one starts 
with topologically trivial gauge fields on the upper and lower hemisphere 
of S2A;, and the element of 7r2k-i{U(2k~1)) corresponds to a large gauge 
transformation along the equator of S2k that allows one to patch the gauge 
fields on the two coordinate systems into a gauge field carrying the corre- 
sponding topological charge on S2k. This is a standard construction known 
from the physics of magnetic monopoles [34] , and the unbroken long-range 
gauge field of U(N) x U(N) indeed corresponds to that of a generalized 
magnetic monopole. The corresponding magnetic charge is measured by the 
fe-th Chern class of the gauge bundle on S2k (Some relevant background on 
magnetic monopoles can be found in [35, 36].) 

The other side of the isomorphism 3.16 , which relates 7r2k{Vi{2k)) to 
^fc+i{U(2k))J is also important: it allows us to relate our bound-state 
construction to the definition of K~1(X).   Given the tachyon condensate 



1392 TYPE IIA D-BRANES, K-THEORY, AND MATRIX THEORY 

T = F • x, we can construct an element of n2k+i{U(2k)) as follows. Consider 

U = -e*iT. (3.18) 

Since the tachyon is in the adjoint of ^7(2^), U defines a map from the 
unit ball \x\ < 1 to U(2k). The group U(2k) as well as its Lie algebra 
can be represented by 2k x 2k matrices which are unitary and hermitian, 
respectively. We will use a particularly useful description of the coset 3.13 
, as the set of all 2k x 2k matrices that are simultaneously hermitian and 
unitary [30] . In particular, all such matrices square to one, as elements 
in U(2k). (Incidentally, this proves that far from the core of the vortex, 
for an appropriate convergence factor /(|a;|) omitted in 3.17 , the tachyon 
condensate 3.17 indeed takes values in the vacuum manifold Vi(2k).) 

We can now apply this understanding to the tachyon vortex 3.17 . Using 
T2 = |x|2, one can show that U of 3.18 maps the origin x = 0 to —1 in U{2k), 
and each point with x2 = 1 to the identity in U(2k). Thus, 3.18 indeed 
defines a map from S2k+1 to U(2k)J and hence an element of 7r2k+i{U(2k)). 
This element in /K2k-{-i(U(2k)) maps under 3.16 to the element in ^(Vi^)) 
that corresponds to the tachyon vortex 3.17 . (For details on this K-theory 
construction, see [30] .) 

In terms of K-theory, this proves that our tachyon condensate actually 
represents the generator of the relative K-theory group K~1(B2fc+1, S2k), and 
our bound-state construction is precisely the analog of the ABS construc- 
tion [25] , now mapping classes in K(Y) to classes in K-1(X) for Y of odd 
codimension in the spacetime manifold X wrapped by the ustable 9-branes 
of Type IIA theory.9 

This one-step construction of Type IIA D-branes as bound states of codi- 
mension 2k + 1 in a system of unstable 9-branes suggests the following hi- 
erarchy of bound state constructions. Consider a supersymmetric Dp-brane 
in Type IIA or Type IIB theory. This D-brane can be constructed as a 
bound state (tachyon kink) in the worldvolume of an unstable D-(p + 1)- 
brane. Alternatively, it can be constructed [1, 2] as a bound state of a 
(p + 2)-brane (p + 2)-brane pair. It can also be constructed as a bound state 
of two unstable (p + 3)-branes, etc. This hierarchy of brane systems of in- 
creasing dimensions supports worldvolume gauge groups that form a natural 

9The relative K-theory group K~1(B2A:+1,S2A:) is defined as the group of equivalence 
classes of bundles with automorphisms (E,a) on B2fc+1, with a = 1 when restricted to 
the boundary S2fc (see e.g. [22] , section 11.3.25.). In our string theory construction, E is 
the Chan-Paton bundle, and as we have just seen, U of 3.18 has just the right properties 
to be identified with a. 



PETR HORAVA 1393 

hierarchy, 

(7(1)  C U{l)xU{l)  C U{2)  C U(2)xU(2)  C C/(4)  C (7(4) x (7(4) ... 
(3.19) 

In this hierarchy, the bound state construction of [1, 2] in terms of pairs 
of stable branes alternates with the bound state construction in terms of 
ustable branes presented in this section. This procedure can be iterated until 
we reach the spacetime-filling dimension, thus ending up with a construction 
in terms of 9-branes where all spacetime symmetries are manifest. 

Codimension Three: The 't Hooft-Polyakov Monopole 

It is instructive to look more closely at the construction of bound states 
of codimension 2k + 1 = 3. The gauge group suggested by K-theory is ?7(2), 
acting on a pair of unstable branes whose Chan-Paton bundle in 2 of U(2) 
is identified with the two-dimensional spinor bundle S of the 50(3) group 
of rotations in the transverse spacetime dimensions. The tachyon is a map 
from the two-dimensional spinor bundle S back to S. Using the F-matrices 
<Ji of 50(3), the vortex of vorticity one can be written (up to an overall 
normalization factor) as 

*"U-* xl-+/)'        <3'2o) 
The finite-energy condition ties 3.20 to a non-trivial gauge field, which takes 
the form 

Ai = fdxDTijxi, (3.21) 

where /(|a;|) is a known convergence factor [34] , and F^ is the antisym- 
metrized product of the 50(3) F-matrices ai and CTJ. Up to the trivial lift 
from SU(2) to U(2) gauge theory, this is precisely the 't Hooft-Polyakov mag- 
netic monopole in 3 +1 dimensions [34] ! In our construction, this monopole 
represents the supersymmetric stable D-2p-brane of Type HA theory as a 
bound state of two unstable D-(2p + 3)-branes. 

On the off-diagonal in 3.20 we recognize the tachyon condensate 2.4 that 
appeared in the construction [1, 2] of the D-2p-brane as a bound state of a 
(2p + 2)-brane (2p + 2)-brane pair. Similarly, on the diagonal in 3.20 we find 
the tachyon kink 3.11 that corresponds to the construction of one (2p + 2)- 
brane and one (2p + 2)-brane from a pair of (2p+3)-branes. Thus, we can see 
that our one-step bound state construction can also be interpreted as a two- 
step construction, whereby we first prepare a (2p + 2)-brane (2p + 2)-brane 
pair, which then forms a 2p-brane bound state. In this two-step construction, 
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however, we lose some of the manifest symmetries of 3.20 by choosing an 
embedding of the 2p-brane worldvolume into a worldvolume of the (2p + 2)- 
brane (2p + 2)-brane pair. 

Comments on Codimension One 

In codimension one, i.e. for k = 0, the suggested value 2k of the number 
of unstable Type IIA branes is one. Thus, there is no symmetry breaking 
of the U(l) gauge symmetry, and we are left with a U(l) gauge theory 
and a tachyon that can condense into either one of the two vacuum values, 
±To. This case was discussed at the beginning of this section, in the case 
of 8-branes and 8-branes as tachyon kinks on 9-brane worldvolumes. The 
symmetry restored at the core of the kink is the Z2 symmetry T —>- —T. 

We can now see from the K-theory perspective why this case of codimen- 
sion-one bound states is rather degenerate. Indeed, the relation between 
homotopy groups of the vacuum manifold and those of the unitary groups, 
as given for k > 1 in 3.16 , becomes degenerate for k = 0. The relevant ho- 
motopy group of the vacuum manifold for one 9-brane is 7ro(±To) = Z2, and 
there is not enough room for the anticipated conserved 8-brane charge that 
should be classified by Z. Thus, each individual 8-brane or 8-brane requires 
an extra 9-brane; the smallest 9-brane system that would accomodate the 
full K~1(S1) = Z group of 8-brane charges would contain an infinite number 
of 9-branes. 

This also sheds some light on the two-step construction of the bound 
state. Consider a bound state of codimension 2k + 1, as described in 3.17 
. Choose Y of codimension one, such that the worldvolume of our bound 
state lies in Y. Split the transverse dimensions as 2k plus one, where the 
2k dimensions are within Y, and the last dimension is normal to Y. The 
tachyon vortex 3.17 can be written as 

{/.. -*»)• (3-22) 

where x9 parametrizes the dimension transverse to Y, and F are the F- 
matrices of SO{2k) along Y. 3.22 has a nice intuitive interpretation: the 
terms on the diagonal look precisely like 2k~1 8-branes and 2k~1 8-branes, 
and the off-diagonal terms correspond precisely to the bound state in the 
sense of [2] , which represents our brane as a bound state of codimension 2k 
in a system of 2k~1 8-brane 8-brane pairs. 

However, it is clear that such a two-step construction is artificial.  Not 
only does it break manifest SO(2k + 1) rotation invariance in the 2fc + 1 
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dimensions transverse to the worldvolume of our brane; it also artificially 
relates the non-degenerate case of k > 1 to the degenerate case of bound 
states of codimension one. 

Comparison to Bound States of Codimension One in Type I Theory 

Superficially, the construction presented above appears somewhat rem- 
iniscent of a construction [1, 2] in orientifolds of Type IIB theory, where 
certain stable non-supersymmetric Dp-branes carrying Z2 charges are re- 
alized as bound states of a number of pairs of stable (p + l)-branes and 
(p + l)-branes. (Sen considers p = 0 [1] , while p = 8 is discussed in [2] .) 
The following remark is intended to clarify the distinction between the two 
constructions. 

We have seen that the tachyon condensate 3.17 on the worldvolume of 
unstable 9-branes of Type IIA theory represents a generator of the relative 
K-theory group K~1(B2fc+1, S2k) = Z, and the bound state construction of 
a D-brane wrapping a submanifold Y of codimension 2k + 1 in spacetime 
X represents a map from K(Y) to K_1(X). More precisely, this embedding 
of a lower-dimensional brane into the 9-brane system corresponds to the 
isomorphism 

K(y) ® K-^B^+SS
2
*) ^ K-^y x B2fc+1,y x s2*), (3.23) 

where Y x B2A:+1 is a small neighborhood of Y in spacetime. The tachyon 
3.17 is a convenient representation of the generator of K~1(B2fc+1, S2/j), and 
the isomorphism between K(y) and K~1(y x B2k+1, Y x S2k) is realized by 
the cup product with this generator. 

In contrast, the tachyon kink used in [1] to describe the stable Z2-charged 
DO-brane of Type I theory as a bound state of a 1-brane 1-brane pair, repre- 
sents the generator of KO(B1, S0) = Z2. The cup product with this genera- 
tor maps Z2 classes in KO-theory on Y (representing the DO-brane carrying 
a Z2 charge) to Z2 classes in KO(y x B1^ x S0). 

3.4    Type I' Theory and KRr^X) 

One can generalize the construction to the Type I' orientifold of Type IIA 
theory. The generalization is relatively straightforward, and we will be very 
brief. 

Consider the orientifold of Type IIA theory on R10, with the orientifold 
group Z2 that changes the orientation of one spacetime dimension. This the- 
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ory contains unstable spacetime-filling 9-branes, whose configurations up to 
creation and annihilation of elementary 9-branes classify all possible D-brane 
charges. In terms of K-theory, this corresponds to a group called KR~1(X) 
[37, 24, 2], which can be defined as the group of equivalence classes of pairs 
(£7, a), where E is a bundle with an antilinear involution that commutes 
with the orientifold group, and a is an automorphism on E that also pre- 
serves the orientifold group action. In terms of Type I7 string theory, E again 
corresponds to the Chan-Paton bundle on the worldvolume of the spacetime- 
filling 9-branes. At the orientifold planes, the gauge group is reduced from 
the unitary group to its orthogonal subgroup. 

Each individual lower-dimensional D-brane can be represented as a bound 
state of a certain number of Type I7 9-branes. The tachyon condensate is 
required to respect the orientifold Z2 symmetry, and therefore corresponds 
to what might be called a "Z2-equivariant monopole." (Similar equivariant 
solitons and instantons were studied in [12] .) 

Far away from the orientifold planes, we can think of the spacetime man- 
ifold X as being represented by a double cover X of X with the orientifold 
group mapping the two disconnected components of X to each other. Using 
a standard result of K-theory [37, 24] 

KR-l{X)^K-l{X), (3.24) 

we can see that far away from the orientifold planes, we recover the Type 
IIA construction that occupied most of this section. 

4    K-Theory and Matrix Theory 

Consider iV DO-branes in Type IIA theory on R10, or a toroidal compacti- 
fication thereof. (This restriction is mostly for simplicity; the construction 
can be straightforwardly extended to more complicated compactifications 
as well.) Using the general bound-state construction of section 3, each D0- 
brane can be described as a bound state of sixteen unstable spacetime-filling 
9-branes. 

The worldvolume field theory of sixteen 9-branes contains a C/(16) gauge 
field, a tachyon T in the adjoint of {7(16), and a pair of chiral fermions x 
and x7 of opposite chiralities, also in the adjoint of U(l§). In addition, we 
have the usual hierarchy of massive string states, and this system will couple 
to the Type IIA closed string sector. 

We start with a configuration of sixteen 9-branes, in which the tachyon 
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rolls down to a minimum To, with eight positive and eight negative eigen- 
values ±TV. This condensate breaks £7(16) to U(8) x {7(8), and the vacuum 
manifold is V = U{16)/{U(8) x [7(8)). Since 7r8(V) = Z, the tachyon can 
develop a stable point-like vortex, whose form near the core can be described 
by 

T = Tmxm. (4.1) 

Here, again, rm are the F-matrices of 50(9), the group of rotations in the 
dimensions transverse to the core of the vortex. This configuration carries 
vorticity one. In order to keep the energy of this localized object finite, the 
long-range gauge field will also be non-trivial, and will in fact give rise to a 
non-zero "magnetic charge" of the object. (More precisely, the corresponding 
4-th Chern class as measured by the gauge field on the 8-sphere surrounding 
the core of the vortex will be equal to one.) 

The sixteen 9-branes are in the 16 of the gauge group ?7(16). In the 
background of the generalized magnetic monopole/vortex representing the 
DO-brane, this 16 is identified with the spinor 16 of the 50(9) spacetime 
rotation symmetry in the dimensions transverse to the worldvolume of the 
DO-brane. This represents a higher-dimensional generalization of the well- 
known phenomenon in three space dimensions, where the background of the 
SU(2) 't Hooft-Polyakov monopole identifies the 3 of the gauge group with 
the 3 of the space rotation group 50(3). 

A scaling argument [36] clearly suggests that the configuration will lower 
its energy by shrinking its core, and our description in terms of low-energy 
field theory on the 9-brane worldvolume will cease to be adequate. However, 
purely on topological grounds, one will be left with a stable soliton in string 
theory. The K-theory origin of this construction indicates that the soliton 
carries one unit of DO-brane charge, and therefore represents a DO-brane as 
a bound state of sixteen unstable 9-branes. 

So far we have found the bound state that describes one DO-brane. Imag- 
ine now that we are interested in a system of N DO-branes. There is no reason 
why we should use a new set of sixteen 9-branes for each individual DO-brane. 
(In terms of K-theory, the trivial topology of the DO-brane worldlines in flat 
spacetime does not require "stabilization" of the configuration by adding 
extra 9-branes.) Thus, in order to describe JV DO-branes, we do not have 
to add sixteen extra 9-branes each time we add a DO-brane - they can all 
be represented as bound states in a fixed system of sixteen spacetime-filling 
9-branes. 

Since we can construct a multi-DO-brane state using just sixteen Type 
IIA 9-branes, we can follow this 9-brane configuration as we take the scaling 
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limit [19],[38]-[40] that defines Matrix theory. This suggests the intriguing 
possibility that we can formulate Matrix theory as a theory of stable solitons 
on the space-time filling worldvolume of sixteen unstable 9-branes! We can 
also add higher-dimensional D-branes to the system of DO-branes on R10, as 
vortices of codimension 2k + 1 in the 9-brane worldvolume. These vortices 
are stable, since 

7r2fe(C/(16)/(C/(8) x C7(8))) = Z (4.2) 

(while all odd homotopy groups vanish). They are naturally formed as bound 
states of a number of 9-branes that is typically smaller than sixteen (in fact, 
the results of section 3 suggest that the number of 9-branes involved in a 
bound state of codimension 2k + 1 is 2fc), while the rest of the sixteen 9- 
branes are spectators in this construction. We can also use the bound state 
construction to study the full system of stable branes of various dimension- 
alities on a general spacetime manifold X. However, due to the non-trivial 
topology, this general case may require that extra 9-branes be added to the 
sixteen 9-branes that we have used in the description of DO-branes. The gen- 
eral construction would require the full K-theory construction as discussed 
in the case of Type IIB theory in [2] . The "stabilization" by addition of 
9-branes can be avoided for the system of N DO-branes in flat spacetime, 
due to the trivial topology of the DO-brane worldlines. 

This possible reinterpretation of Matrix theory in terms of vortices in 
a gauge theory with fixed gauge group is intriguing, since it allows us to 
change the number od DO-branes in the system without changing the rank 
of the gauge group. In Matrix theory, we would like to understand how 
systems with different values of N are related to each other, possibly via some 
RG-like relation. This problem is notoriously difficult in the conventional 
formulation of Matrix theory, as it requires relating theories with gauge 
groups of different ranks. In contrast, the K-theory construction of DO- 
branes as magnetic vortices keeps the gauge group fixed for arbitrary values 
oiN. 

The non-supersymmetric 17(16) gauge theory on the worldvolume of six- 
teen 9-branes is defined through its embedding into the supersymmetric 
Type IIA string theory. In particular, it is unclear whether there are any 
useful limits in which supergravity decouples and leaves behind a system 
defined purely in terms of 9-brane degrees of freedom. Nevertheless, one 
might expect that at least for compactifications down to four dimensions or 
lower, interesting decoupling limits might exist, whereby DO-branes appear 
as magnetic vortices in a decoupled non-supersymmetric gauge theory. 

It would be interesting to see directly in the bound-state construction how 
the system of N DO-branes effectively decompactifies the eleventh dimension 
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of Matrix theory [41, 42], and forms a "bubble" of the eleven-dimensional 
spacetime. Recall from section 2.2 that K_1(X) is usually defined by starting 
with the K-theory of X x S1, and imposing an extra condition that restricts 
the Type IIA D-brane charges to a subgroup K~1(X) C K(X x S1). In 
other words, one can define K~1(X) as K-theory of an eleven-dimensional 
extension of X, which is however not X x S1 but rather S'PO, defined as X x 
/ with each boundary component "pinched" into a point. The replacement 
of X x S1 by S^X) is necessary to eliminate classes in K(X x S1) that 
are not in K~1(X). For example, the one-point compactification of the ten- 
dimensional spacetime R10 is S10, but its suspension S^R10) is an eleven- 
sphere. In combination with Matrix theory, the string theory construction 
of K~l{X) in terms of bound states in 9-branes may perhaps alleviate some 
of the mystery related to the "M-theory" definition of K~1(-X') in terms of 
K^xS1). 

The construction of multi-DO-brane systems from a fixed system of 9- 
branes, relevant to Matrix theory, has an analog in the case of D-strings 
of Type I theory [2] . It was pointed out in [2] that the Fock space of 
perturbative heterotic string theory should be contained in the system of 
eight 9-brane 9-brane pairs. Thus, the construction of [2] should have similar 
implications in heterotic Matrix string theory [43] . 

Comparison to Holographic Field Theory 

There is a number of intriguing similarities between this K-theory-inspired 
construction of a system of DO-branes in terms of vortices in a ?7(16) gauge 
theory on the worldvolume of unstable 9-branes of Type IIA theory, and the 
ideas of holographic field theory suggested in the context of non-perturbative 
M-theory in [20] . Whether they are indicative of some closer relation re- 
mains to be seen. 

Here is a list of some of them: 

(1) In K-theory, DO-branes appear as vortices (or generalized magnetic 
monopoles) in a gauge theory with fixed rank. Similarly, in holographic field 
theory, the partons (to be compared to DO-branes of Matrix theory) appear 
as vortices in a fixed-rank gauge group. Thus, in both cases, the limit to be 
compared to matrix theory requires one to look at multi-particle systems of 
vortices in a fixed-rank gauge group. DO-branes would appear as solitonic 
excitations in a medium not dissimilar to some condensed matter systems. 

(2) The gauge group of holographic field theory is 

g = OSp (1|32) x OSp (1|32). (4.3) 
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For many topological purposes, this group can be considered equivalent to 
its maximal compact subgroup. The maximal compact subgroup of this 
non-compact version of 05p(l|32) is, in fact, U{1§). When extended be- 
yond ten dimensions, the natural hierarchy of gauge groups 3.19 suggests 
[/(16) x C/(16) as the group relevant to eleven dimensions. £7(16) x /7(16) is 
the maximal compact subgroup of the gauge group 4.3 of holographic field 
theory. 

(3) The gauge group Q can be interpreted as the minimal extension of 
AdS group in eleven dimensions compatible with supersymmetry and parity 
invariance. Perhaps more interestingly, it can also be viewed as a non- 
chiral Lorentz group in (10,2) dimensions [20] . This leads to a convenient 
representation of the bosonic subgroup Sp (32, R) x Sp (32, R) in terms of 
64 x 64 T-matrices acting on the spinor bundle S = <S+ © <S_ whose sections 
are 64-component non-chiral spinors in (10,2) dimensions. Each 5p(32,R) 
acts on one of the two factors in <S+ © S-. This is again very reminiscent of 
structures appearing in K-theory. 

(4) The previous point can be extended even further. The construc- 
tion that embeds lower-dimensional branes as bound states into systems of 
higher-dimensional branes is of course a known K-theory construction [25] . 
The precise mathematical form of this map is realized via the Euler class of 
the normal bundle of the embedding of the lower-dimensional brane into the 
worldvolume of the higher-dimensional branes (see, e.g., [22] , sect. IV. 1). 
The Lagrangian of holographic field theory [20] is intimately related to the 
Euler class. More exactly, the Lagrangian can be interpreted as the Eu- 
ler class of the tangent space to the twelve-dimensional manifold that has 
the eleven-dimensional spacetime as its boundary: the exterior derivative of 
the Chern-Simons Lagrangian of [20] is a supersymmetrization of the Euler 
density in (10,2) dimensions. 

It is a pleasure to thank Oren Bergman, Eric Gimon, Djordje Minic, Michael 
Peskin, John Preskill, John Schwarz, Steve Shenker, Eva Silverstein, Lenny 
Susskind and Edward Witten for valuable discussions. I wish to thank the 
Stanford Institute of Theoretical Physics for hospitality during some parts 
of this work. This work has been supported by Sherman Fairchild Prize 
Fellowship and by DOE Grant DE-FG03-92-ER 40701. 



PETR HORAVA 1401 

References 

[1] A. Sen, "Stable Non-BPS States in String Theory," J. High En- 
ergy Phys. 06 (1998) 007, hep-th/9803194; "Stable Non-BPS Bound 
States of BPS D-Branes," J. High Energy Phys. 08 (1998) 010, hep- 
th/9805019;"Tachyon Condensation on the Brane Antibrane System," 
J. High Energy Phys. 08 (1998) 012, hep-th/9805170; "50(32) Spinors 
of Type I and Other Solitons on Brane-Antibrane Pair," J. High En- 
ergy Phys. 09 (1998) 023, hep-th/9808141; "Type I D-Particle and its 
Interactions," J. High Energy Phys. 10 (1998) 021, hep-th/9809111. 

[2] E. Witten, "D-Branes and K-Theory," hep-th/9810188. 

[3] T. Banks and L. Susskind, "Brane - Antibrane Forces," hep- 
th/9511194. 

[4] G. Lifschytz, "Comparing D-Branes to Black-branes," Phys. Lett. B388 
(1996) 720, hep-th/9604156. 

[5] V. Periwal, "Antibranes and Crossing Symmetry," hep-th/9612215. 

[6] M.B. Green and M. Gutperle, "Light-Cone Supersymmetry and D- 
Branes," Nucl. Phys. B476 (1996) 484, hep-th/9604091. 

[7] M. Srednicki, "IIB or not IIB," J. High Energy Phys. 08 (1998) 005, 
hep-th/9807138. 

[8] O. Bergman and M.R. Gaberdiel, "Stable Non-BPS D-Particles," hep- 
th/9806155 

[9] E. Gava, K.S. Narain and M.H. Sarmadi, "On the Bound States of p- 
and {p + 2)-Branes," Nucl. Phys. B504 (1997) 214, hep-th/9704006. 

[10] R. Minasian and G. Moore, "K-Theory and Ramond-Ramond Charge," 
J. High Energy Phys. 11 (1997) 002, hep-th/9710230. 

[11] P. Hofava, "Orbifold Approach to Open String Theory," PhD. Thesis 
(Institute of Physics, Czech. Acad. Sci., Prague, 1991) 

[12] P. Hofava, "Equivariant Topological Sigma Models," Nucl. Phys. B418 
(1994) 571, hep-th/9309124. 

[13] M. Bershadsky, V. Sadov and C. Vafa, "D-Branes and Topological Field 
Theories," Nucl. Phys. B463 (1996) 420, hep-th/9511222. 

[14] A. Strominger, "Open P-Branes," Phys. Lett. B383 (1996) 44, hep- 
th/9512059. 



1402 TYPE IIA D-BRANES, K-THEORY, AND MATRIX THEORY 

[15] M.R. Douglas, "Branes within Branes," hep-th/9512077. 

[16] M.R. Douglas and G. Moore,  "D-Branes, Quivers, and ALE Instan- 
tons," liep-th/9603167. 

[17] M.B. Green, J.A. Harvey and G. Moore, 'I-Brane Inflow and Anomalous 
Couplings on D-Branes," Class. Q. Grav. 14 (1997) 47, hep-th/9605033. 

[18] Y.-K. E. Cheung and Z. Yin, "Anomalies, Branes, and Currents," Nucl. 
Phys. B517 (1998) 69, hep-th/9710206. 

[19] T. Banks, W. Fischler, S.H. Shenker and L. Susskind, "M Theory as a 
Matrix Model," Phys. Rev. D55 (1997) 5112, hep-th/9610043. 

[20] P. Hofava, "M-Theory as a Holographic Field Theory," hep-th/9712130, 
to appear in Phys. Rev. D. 

[21] A.   Sen,    "BPS   D-Branes   on   Non-supersymmetric   Cycles,"    hep- 
th/9812031. 

[22] M. Karoubi, K-Theory. An Introduction (Springer, 1978). 

[23] D. Husemoller, Fibre Bundles (1st ed., Mc Graw-Hill, 1966; 3rd ed., 
Springer, 1994). 

[24] H. B. Lawson, Jr. and M.-L. Michelsohn, Spin Geometry (Princeton, 
1989). 

[25] M.F. Atiyah, R. Bott and A. Shapiro, "Clifford Modules," Topology 3 
Suppl. 1 (1964) 3. 

[26] M.F. Atiyah, K-Theory (Benjamin, 1964). 

[27] D. Quillen, "Superconnections and the Chern Character," Topology 24 
(1985) 89 
N. Berline, E. Getzler and M. Vergne, Heat Kernels and Dirac Operators 
(Springer, 1992). 

[28] N. Marcus and A. Sagnotti, "Group Theory from 'Quarks' at the Ends 
of Strings," Phys. Lett. B188 (1987) 58. 

[29] L.-F. Li, "Group Theory of the Spontaneously Broken Gauge Symme- 
tries," Phys. Rev. D9 (1974) 1723. 

[30] B.A. Dubrovin, A.T. Fomenko and S.P. Novikov, Modern Geometry - 
Methods and Applications, pt. ///(Springer, 1990), section III.25.1. 

[31] J. Polchinski and Y. Cai, "Consistency of Open Superstring Theories," 
Nucl. Phys. B296 (1988) 91. 



PETR HORAVA 1403 

[32] C.G. Callan, C. Lovelace, C.R. Nappi and S.A. Yost, "Adding Holes 
and Crosscaps to the Superstring," Nucl. Phys. B293 (1987) 83. 

[33] P. Hofava, "Strings on World-Sheet Orbifolds," Nucl. Phys. B327 
(1989) 461. 

[34] G. 't Hooft, "Magnetic Monopoles in Unified Gauge Theories," Nucl. 
Phys. B79 (1974) 276 
A.M. Polyakov, "Particle Spectrum in Quantum Field Theory," JETP 
Lett. 20 (1974) 194, 
reprinted in C. Rebbi and G. Soliani, Solitons and Particles (World 
Scientific, 1984). 

[35] S. Coleman, "Classical Lumps and Their Quantum Descendants," 1975 
Erice lectures, reprinted in: S. Coleman, Aspects of Symmetry (Cam- 
bridge, 1985) 
P. Goddard and D.I. Olive, "Magnetic Monopoles in Gauge Field The- 
ories," Re-p. Prog. Phys. 41 (1978) 1357 
J. Preskill, "Vortices and Monopoles," 1985 Les Houches lectures, in: 
Architecture of Fundamental Interactions at Short Distances, eds. P. 
Ramond and R. Stora (Elsevier, 1987) 
J.A. Harvey, "Magnetic Monopoles, Duality and Supersymmetry," hep- 
th/9603086. 

[36] S. Weinberg, The Quantum Theory of Fields, Vol. II (Cambridge, 1996), 
sect. 23.1. 

[37] M.F. Atiyah,   "K-Theory and Reality,"   Quart.  J. Math.  Oxford 17 
(1966) 367; 
reprinted in [26] . 

[38] M.R. Douglas, D. Kabat, P. Pouliot and S.H. Shenker, "D-Branes and 
Short Distances in String Theory," Nucl. Phys. B485 (1997) 85, hep- 
th/9608024. 

[39] A. Sen, "DO Branes on Tn and Matrix Theory," Adv. Theor. Math. 
Phys. 2 (1998) 51, hep-th/9709220. 

[40] N. Seiberg, "Why is the Matrix Model Correct?," Phys. Rev. Lett. 79 
(1997) 3577, hep-th/9710009. 

[41] K. Becker, M. Becker, J. Polchinski and A. Tseytlin, "Higher Order 
Graviton Scattering in M(atrix) Theory," Phys. Rev. D56 (1997) 3174, 
hep-th/9706072. 



1404 TYPE IIA D-BRANES, K-THEORY, AND MATRIX THEORY 

[42] V. Balasubramanian, R. Gopakumar and F. Larsen, "Gauge Theory, 
Geometry and the Large N Limit," Nucl. Phys. B526 (1998) 415, hep- 
th/9712077. 

[43] T. Banks and L. Motl, "Heterotic Strings from Matrices," J. High En- 
ergy Phys. 12 (1997) 004, hep-th/9703218 
D. Lowe, "Heterotic Matrix String Theory," Phys. Lett. B403 (1997) 
243, hep-th/9704041 
S.-J. Rey, Heterotic M(atrix) Strings and Their Interactions," Nucl. 
Phys. B502 (1997) 170, hep-th/9704158 
P. Hofava, "Matrix Theory and Heterotic Strings on Tori," Nucl. Phys. 
B505 (1997) 84. 


