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Abstract 

For supergravity solutions which are the product of an anti-de Sitter 
space with an Einstein space X, we study the relation between the amount 
of supersymmetry preserved and the geometry of X. Depending on the 
dimension and the amount of supersymmetry, the following geometries for 
X are possible, in addition to the maximally supersymmetric spherical ge- 
ometry: Einstein-Sasaki in dimension 2fc-hl, 3-Sasaki in dimension 4fc+3, 
7-dimensional manifolds of weak G2 holonomy and 6-dimensional nearly 
Kahler manifolds. Many new examples of such manifolds are presented 
which are not homogeneous and hence have escaped earlier classification 
efforts. String or M theory in these vacua are conjectured to be dual to 
superconformal field theories. The brane solutions interpolating between 
these anti-de Sitter near-horizon geometries and the product of Minkowski 
space with a cone over X lead to an interpretation of the dual superconfor- 
mal field theory as the world-volume theory for branes at a conical singu- 
larity (cone branes). We propose a description of those field theories whose 
associated cones are obtained by (hyper-)Kahler quotients. 
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1    Introduction and Motivation 

Maldacena [59] has conjectured that the 't Hooft large N limit of N=4 super- 
symmetric Yang-Mills with gauge group SU/v is dual to type IIB superstring 
theory on (adS5 x55) Ar, where the subscript indicates that the sizes of the 
spaces grow with N. A more precise version of the conjecture was formu- 
lated in [46, 71] where a simple recipe was given for relating gauge theory 
correlators to string theory S-matrix elements, and these are given in terms 
of classical supergravity in the large iV limit. 

This conjecture was motivated by considering iV parallel D3-branes for 
N large and taking a limit in which the gauge theory on the brane decouples 
from the physics of the bulk [59]. When gsN is small (with gs the string 
coupling), the system is well-described by 4-dimensional super Yang-Mills 
theory with SU/v gauge group, while if ^iV is large, the system is described 
by IIB string theory in the near-horizon geometry, which is adSs xS'5- These 
are then dual descriptions of the same system, leading to the conjectured 
equivalence. String loop corrections correspond to -^ corrections in the gauge 
theory so that in the large N limit, one can use classical supergravity theory 
in the adSs xS'5 background. 

This can be generalised to any p-brane of superstring theory or M theory 
and this leads to a relation between the worldvolume theory with SUw gauge 
symmetry and the string or M theory in the space-time which arises in the 
near-horizon limit of the p-brane spacetime [53]. Of particular interest are 
those cases—the D3-brane and the M2 and M5-branes—in which the near- 
horizon geometry is a supersymmetric anti-de Sitter space solution of the 
form adSp+2 x5d (d = D — p — 2) and the worldvolume theory is a super- 
conformal field theory. In these cases, there is a holographic duality between 
the string or M theory in anti-de Sitter space and the superconformal field 
theory (which may be thought of as being at the boundary of the anti-de Sit- 
ter space [59, 71]). The superconformal symmetry in p + 1 dimensions is 
identified with the anti-de Sitter supersymmetry in p + 2 dimensions. 

An interesting extension of these ideas is to explore p-branes which exhibit 
near-horizon geometries of the form adSp+2 x^d> where X is an Einstein 
manifold. If the geometry is supersymmetric, then the string or M theory in 
that background is expected to be holographically dual to a superconformal 
field theory. These vacua are not maximally supersymmetric unless X is a 
round sphere or the real projective space, which is the near-horizon geometry 
of branes on an orientifold [72], and as a result the dual field theories have less 
than maximal supersymmetry. Many such cases have been studied already, 
particularly in the context of type IIB superstring theory, but also in M 
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theory [1]. A simple modification is to let X = Sd/T be a finite quotient of 
the sphere [54, 58, 63, 6, 2, 36, 26]. Alternatively, if we recall that S2n+1 is a 
circle bundle over CPn, one can replace CP™ with other Kahler-Einstein n- 
folds. This was done in the type IIB context (i.e., n = 2) in [55], generalising 
[64]. Another generalisation is to replace Sd = SO^+i/SO^ with another 
homogeneous space G/H. Homogeneous vacua of supergravity theories were 
studied intensively in the early days of Kaluza-Klein supergravity (see, e.g., 
[24]). There is a complete classification in dimension seven [17] and a partial 
list in dimension five [65]. One such five-dimensional example is T1,1 = 
(SU2 x SU2)/Ui, whose dual conformal field theory was recently discussed 
by Klebanov and Witten [56] (see also [45]). They interpreted the vacuum 
in terms of the near-horizon geometry of parallel D3-branes at a conical 
singularity of a Calabi-Yau threefold. Similar ideas have been considered in 
[61]. 

The purpose of the present paper, which subsumes [27], is to study those 
M theory or superstring vacua of the form adSp-1-2 X-X'd that preserve some 
supersymmetry. Our aim will be to understand the constraints supersym- 
metry imposes on the geometry of the Einstein manifolds Xj, and then to 
use the geometry of these manifolds in order to identify the superconformal 
symmetries which are required under the adS/CFT correspondence. This is 
certainly likely to be useful in understanding generic features of this corre- 
spondence in supersymmetric cases. 

Any solution of the form adSp_j_2 xXj is the near-horizon geometry of 
a p-brane solution [23] which will be supersymmetric if the near-horizon 
geometry is, and which interpolates between adSp+2 xXj and a vacuum 
Mp+i x C(X)d+i where C(X)(i+i is a cone over X (defined below) and Mp+i 
is (p + l)-dimensional Minkowski space. The case in which Xj (with d=7) 
is a coset space was considered in [14], but we will consider general Ein- 
stein spaces Xd which in addition preserve some supersymmetries. The cone 
C(X) is Ricci-flat and the number of supersymmetries of the Mp+i x C(X)d-\-i 
vacuum depends on the number of covariantly constant spinors. This is de- 
termined by the holonomy group of C(X), and such holonomies have been 
classified (see, e.g., [70]). The number of supersymmetries on adSp+2 xX^ 
depends on the number of Killing spinors on X, but these all arise from 
covariantly constant spinors on C(X) [4], leading to a characterisation of 
supersymmetric anti-de Sitter solutions. 

We will show that for those vacua adSp-j-2 xX^ which are supersymmetric, 
the geometry of X is highly constrained. Depending on d = D—p—2, the 
possible geometries of X are as follows: nearly Kahler for d = 6, weak G2 
holonomy for d=7, Einstein-Sasaki for d=2k + 1, and 3-Sasaki for <i=4fc + 3; 
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this gives many supersymmetric compactifications of string and M theory 
which have not been considered previously. 

Given a p-brane solution of the above type, the interpolating solution 
argument [59] then leads to a conjectured duality between the string or M 
theory in a supersymmetric background of the form adSp+2 X-X'd and a (p+1)- 
dimensional superconformal field theory on the worldvolume of N coincident 
p-branes located at the conical singularity of the Mp+i x C{X)(i+i vacuum. 
The detailed description of the dual theories will be left to future investiga- 
tions, and in this paper we will focus instead on generic features of the field 
theories which follow from the common properties of each of the geometries 
listed above. 

This paper is organised as follows. In Section 2 we set the notation 
concerning the supersymmetric branes which we will study in this paper and 
we review the simple solutions with spherical near-horizon geometries. In 
Section 3 we discuss the solutions which can be interpreted as branes sitting 
at a conical singularity in a Ricci-flat manifold C, and we characterise the 
supersymmetric solutions in terms of the holonomy of C. In Section 4 we 
discuss their near-horizon geometries in detail. Section 5 contains many 
examples including those in the early Kaluza-Klein literature as well as some 
more recent ones which have hereto not been considered in relation with 
supergravity. As an application of our results, in Section 6 we describe how 
the near-horizon geometry induces the superconformal symmetry of the dual 
theory. Finally in Section 7 we offer some conclusions. 

2    Supersymmetric Branes and their Near-Horizon 
Geometries 

In this section we review the near-horizon geometries of the elementary brane 
solutions of string and M theory. This section serves mostly to establish the 
notation. 

2.1    M-branes 

Eleven-dimensional supergravity consists of the following fields [62, 19]: a 
Lorentzian metric g, a closed 4-form F with a quantised flux and a gravitino 
*. By a supersymmetric vacuum we will mean any solution of the equa- 
tions of motion with ^ = 0 for which the supersymmetry variation J£* = 0, 
regarded as a linear equation on the spinor parameter e, has nontrivial so- 
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lutions. The eleven-dimensional spinorial representation is 32-dimensional 
and real, so there at most 32 linearly independent solutions. An important 
physical invariant of a supersymmetric vacuum is the fraction v = -^n of 
the supersymmetry that the solution preserves. For example, F = 0 and g 
the flat metric on eleven-dimensional Minkowski spacetime is a supersym- 
metric vacuum with u = 1; that is, it is maximally supersymmetric. Other 
maximally supersymmetric vacua are adS4 xS7 and adSr x54 with *JF and 
F having quantised flux on the S7 and S4, respectively. 

Eleven-dimensional supergravity has four types of elementary solutions 
with u = ^: the M-wave [51] and the Kaluza-Klein monopole [43, 68, 52], 
and the elementary brane solutions: the M2-brane [25] and the M5-brane 
[47], There should also be an M9-brane solution [52, 5]. In what follows we 
will focus on the M2- and M5-branes. 

2.1.1    The M2-brane 

The following background describes a number of parallel M2-branes [25]: 

5 = if-i g2+i+H*gs (1) 

F = ± dvob+i AdH"1 , 

where 52+1 and dvol2+i are the metric and volume form on the three-dimen- 
sional Minkowskian worldvolume E2,1 of the branes; gs is the metric on the 
eight-dimensional euclidean space E8 transverse to the branes; and H is a 
harmonic function on E8. For example, if we demand that H depend only 
on the transverse radial coordinate r on E8, we then find that 

H(r) = 1 + ^ 5        a6 = 257r2iV4 (2) 

is the only solution with limr_>00 ^(r) = 1. This corresponds to N coincident 
membranes at r = 0. Here £p is the eleven-dimensional Planck length. 

Other choices of H are possible. For example one can consider multicentre 
generalisations, where H(x) is an arbitrary harmonic function on E8 with 
pointlike singularities and suitable asymptotic behaviour H(x) -> 1, say, as 
|x| —> 00. This corresponds to parallel branes localised at the singularities of 
H. More generally, we can take H to be invariant under some subgroup G of 
isometrics of g$. These solutions correspond to branes which are 'delocalised' 
or smeared on the G-orbits. 

We can easily determine the fraction u of the supersymmetry which the 
above solution preserves [25]. The supersymmetry variation of the gravitino 
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in a bosonic background (g, F) is given by 

Se*M = VM£ - ^8 ^M
PQRS

 - SSM^*
8
) FPQRs e , (3) 

where VM = du + \^M
PQ

^PQ is the spin connection.   In the M2-brane 
Ansatz given by (1) and (2), equation (3) is solved by 

e = H~6 Soo , 

where, choosing x0, x1^2 to be the directions tangent to the worldvolume of 
the brane, SOQ obeys ' 

roi2 s. oo — coo • 

Because roi2 squares to the identity and is traceless, we see that u = |. Nev- 
ertheless, the M2-brane interpolates between two maximally supersymmetric 
solutions: flat Minkowski space E10'1 infinitely far away from the brane, and 
adS4 x57 near the brane horizon [35, 21]. 

Indeed, notice that the metric on the transverse space is given by 

#8 = dr2 + r2 gs , (4) 

where #5 is the metric on the unit sphere S7 C E8. In the near-horizon region 
r < a, 

H(r) ~ ^ , 

so that the membrane metric becomes 

9 = a~4r4#2+i + a2r~2dr2 + a2gs . 

The last term is the metric on a round S7 of radius a = (257r2A/')6^p; whereas 
the first two combine to produce the metric on 4-dimensional anti-de Sitter 
spacetime with "radius" iZadS — |a: 

S'adS = #adS 
du2      f   u   \    92+1 

u2 +Uads; Rlds 
(5) 

with u = |r2/i?ads- 
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2.1.2    The M5-brane 

The M5-brane is the magnetic dual to the M2-brane. The background de- 
scribing a number of parallel M5-branes is given by [47]: 

1 2 
g = H-sg5+1+Hsg5 (6) 

F = ±3 *5 dH , 

where gs+i and dvols+i are the metric and volume form on the six-dimensional 
Minkowskian worldvolume E5,1 of the branes; 55 and •s are the metric and 
Hodge operator on the five-dimensional euclidean space E5 transverse to the 
branes; and His a harmonic function on E5. For example, if we demand that 
H depend only on the transverse radial coordinate r on E5, we then find that 

a3 

H(r) = 1 + -3 ; ^ = TTJWJ (7) 

is the only solution with lim^oo H(r) = 1. This corresponds to N coincident 
fivebranes at r = 0. 

As for the membrane solution, multicentre and 'delocalised' fivebrane 
solutions also exist. 

The fraction 1/ of the supersymmetry which is preserved can be computed 
before [47]. The gravitino shift equation in the bosonic background given 

by (g, F) above is solved by 

e = H~i2 Soo , 

where, choosing #0, a;1,... , x5 to be the directions tangent to the worldvol- 
ume of the fivebrane, £00 obeys 

roi2345 £00 = £00 • 

roi2345 squares to the identity and is traceless, so that again v = \. Nev- 
ertheless, as for the M2-brane, the M5-brane also interpolates between two 
maximally supersymmetric solutions: flat Minkowski space E10'1 infinitely 
far away from the brane, and adSy xS4 near the brane horizon [35, 21]. 

Indeed, 

g5 = dr2 + r2gs , (8) 

where gs is now the metric on the unit sphere S4 C E5. In the near-horizon 
region r <C a, 

H(r) ~ £ , 

as 
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so that the fivebrane metric becomes 

g ~ a"1rp5+i + a2r~2dr2 + a2gs . 

The last term is the metric on a round 54 of radius a = {-KN)*^, whereas 
the first two combine to produce the metric on 7-dimensional anti-de Sitter 
spacetime with "radius" i?a(is = 2a, analogous to (5), 

ffadS — #adS 
du2       (    U    \2 ^5+1 

U2 V^ads/    Rl ^adS 

with now vr = 2i?ads r. 

2.2    String Branes 

The near-horizon geometries of p-branes in type II string theory are not of 
the form 

adSp+2x5D-p-2 , (9) 

with the exception of the D3-brane of type IIB string theory, for which the 
near-horizon geometry is adSs x55. For other Dp-branes (p ^ 3) the near- 
horizon geometry is conformal to (9), the conformal factor being nontrivial, 
and either singular for p < 3 or zero for p > 3 as r —> 0. 

Geometries of the form 

adSp+2x5dxMD_p_2 (10) 

for some space M also arise, and compactifying on M leads to a adSp+2 ^Sd 

geometry. For example, adSs x53 arises from a Dl-brane lying inside a 
D5-brane [59], while adS2 x52 is the near-horizon geometry for the extreme 
Reissner-Nordstrom black hole. 

2.2.1    The D3-brane in Type IIB 

The metric for the D3-brane of type IIB is given by [50], 

5 = H-2g3+1+H2g6 , (11) 

where #3+1 is the metric on the Minkowski worldvolume of the brane E3,1 

and #6 is the euclidean metric on the transverse E6.   The self-dual 5-form 
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F has (quantised) flux on the unit transverse five-sphere 55 C E6 and the 
dilaton is constant. H is again harmonic in E6 and the unique spherically 
symmetric solution with linv-^oo -ff(r) = 1 is 

H{r) = \ + -i-        a^AvgNl* 

where g is the string coupling constant, given by the exponential of the 
constant dilaton, and ts = y/a* is the string length. The solution corresponds 
to N parallel D3-branes at r = 0.   The ten-dimensional Planck length is 

i 
£p = g4ls, so that a can be rewritten as 

a4 = AnNt* . (12) 

The near-horizon analysis is similar to that for the M2 and M5 branes 
above, and the near-horizon geometry is 

adSsxS5 , 

where the anti-de Sitter and sphere radii are now equal, R^as = a — (47riV) * £p. 

3    Branes at Conical Singularities 

All the branes considered in the previous section interpolate between flat 
Minkowski spacetime asymptotically far away from the brane and adSp+2 x Sd 

near the brane horizon. Both of these vacua are maximally supersymmetric 
and the branes themselves preserve v = 5 of the supersymmetry. In this 
section we discuss the brane solutions of [23] that interpolate between near- 
horizon geometries of the form adSp+2 XX and an asymptotic geometry of 
the form Mp+i x C(X), where X is a d-dimensional Einstein manifold and 
C(X) is the cone over X. This can be interpreted as a set of coincident 
branes at a conical singularity in a Ricci-flat manifold. These brane solu- 
tions interpolate between vacua which are not maximally supersymmetric 
and the brane solutions themselves will preserve a smaller fraction is < | of 
the supersymmetry. In this section we will characterise those branes with 
1/ j£ 0 in terms of the holonomy group of the transverse space. 

3.1     Cone Branes 

The p-brane solutions above all have metrics of the form 

g = H-a9p+1+H%gE, (13) 
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where 

tf(r) = l+(^)\ (14) 

gp+i is the Minkowski metric on the worldvolume of the p-brane, and where 
QE is the flat Euclidean metric on E^-^-1. For the l\/l2-brane, M5-brane, and 
D3-brane, /? = 6,3,4 respectively, and a = 1 — i. The Euclidean metric QE 

can be written as 

QE = dr2 + r2gs (15) 

where gs is the round metric on the unit sphere Sd C Ed and r is a radial 
coordinate. In the near-horizon limit in which the constant term in H can 
be dropped, the metric (13) becomes 

/r\<*P 2-272 2 
9 ~ {-)      9p+i + a r    dr   + a 55 , 

which is the metric on adSp+2 xSd
J as can be seen by changing variables to 

a/3 

u — ^ads (a) 2 ? where the anti-de Sitter radius is Rads = ^§. 

Replacing the sphere 5d by any other d-dimensional Einstein manifold 
Xd with the same cosmological constant A = d — 1 gives another solution of 
the field equations on adSp-1-2 xX^, and we will be interested in those choices 
of X that give spontaneous compactifications to anti-de Sitter space that 
preserve some nonzero fraction u of the super symmetry. Note that as X is 
a complete Einstein space with positive cosmological constant, it follows by 
Myer's Theorem that it is compact (see, e.g., [18]). There is a brane solution 
of the form [23] 

g = H-agp+1 + H%gc, (16) 

where H(r) is again given by (14) and the metric gc is given by replacing 
the spherical metric gs with the metric of Xd in (15) to give 

gc = dr2 + r2gx . 

The transverse space to the brane is now the metric cone C = C(X) over 
X with topology C = IR+ x X, with IR+ the open half-line 0 < r < 00 and 
metric gc- Since X is Einstein with A = dimX — 1, it follows that C is 
Ricci-flat; however unlike the case of the sphere, where C is actually flat, C 
is now metrically singular at the apex of the cone r — 0. 

In the near-horizon region r <^ a, the constant term in H can be dropped 
and the metric becomes approximately 

/a\(xP 2-272 2 
9 ~ [-)     9P+I + a r    dr  + a gc , 
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which is the metric on adSp+2 xXd. For large r, H ~ 1 and the metric 
becomes 

9 ~ #P+I + 9c , 

on the product Mp+i x C{X) of (p + l)-dimensional Minkowski space with 
the cone C(X). We interpret these solutions as describing coincident branes 
located at the conical singularity of C(X), or cone branes for short. Note 
that whereas the solution M^+i x C(X) has a conical singularity at r = 0, 
the brane metric (16) approaches the metric of adSp+2 xX^ as r -> 0, which 
is non-singular at r = 0. However r = 0 is a horizon for the brane and the 
solution can be continued through the horizon. In general there will be a 
singularity inside the horizon. 

These solutions can in principle be generalised by replacing H with more 
general harmonic functions on the cone C(X). 

3.2    Supersymmetry and Holonomy 

In this subsection we wish to describe the amount of supersymmetry pre- 
served by the solutions adSp+2 xXd and Mp+i x C(X), and the brane solu- 
tion (16) that interpolates between them. In each case, the number of su- 
persymmetries is the number of linearly independent spinors e such that the 
supersymmetry variation of the gravitini vanish in this background: 5e^ = 0. 
On adSp+2 xXd, such spinors are of the form x®^ where x is a Killing spinor 
on adSp+2 and rp is a Killing spinor on X, satisfying 

VSJ^ = elrM*P (17) 

where e is either +1 or -1, depending on the field F. For simplicity, and also 
for ease of comparison with the mathematical literature on Killing spinors, 
we have rescaled the metric on the Einstein manifold in such a way that 
the coefficient on the right-hand side of equation (17) is e^. The number 
of supersymmetries of the adSp+2 xXj solution is given by Nn^n^ where 

n^ is the number of Killing spinors on X with e = ±1, n^ = 2L 2 J is the 
number of Killing spinors on adSp+2 and N = 1 for M theory and N = 2 for 
Type II strings. 

If the dimension of X is even, then there are as many solutions with 
e = 1 as with e = -1, whereas if dimX is odd, then changing the sign of e 
corresponds to reversing the orientation of X. Thus for odd-dimensional X, 
the number of solutions depends on the orientation. For example, for d = 7, 
if there are nx > 0 Killing spinors with one choice of orientation of X, there 
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will be no Killing spinors with the opposite choice of orientation, unless X 
is the round 7-sphere, in which case nx = 8 with either choice of orientation 
[24]. We will see below that this is very easy to understand in terms of the 
holonomy of the cone C{X). 

On Mp+i x C{X)) the supersymmetries are of the form x ® ^ where % 
and -0 are covariantly constant spinors on Minkowski space Mp+i and the 
cone C(X), respectively. In particular, ij) satisfies 

V(c)</> = 0 . (18) 

The number of supersymmetries of the Mp+i x C{X) solution is then 
given by NTIM nc where nc is the number of covariantly constant spinors on 
the cone C{X) and UM = 2'- 2 J is the number of parallel spinors on Mp+i. 

As shown in [4], there is a one to one correspondence between Killing 
spinors on X satisfying (17) and covariantly constant spinors on C{X) sat- 
isfying (18). Each covariantly constant spinor on C(X) restricts to a Killing 
spinor on X satisfying (17) for a particular orientation e of X. If dimX is 
odd, so that dimC(-X') is even, then the sign of e is also correlated to the 
chirality of the parallel spinor on C. If d = dimX is even, so that dimC(-X') 
is odd, then the sign of e depends on which one of the two irreducible repre- 
sentations of the Clifford algebra C£d+i we use to embed the unique spinor 
representation of Spind+1. 

In the round 7-sphere compactification of M theory, there are 8 solutions 
of (17) with e = l and 8 solutions with e = — 1, of which only 8 have 
the right sign to be Killing spinors, while C(S7) = E8 has 16 covariantly 
constant spinors. In this case, n^ = 8, nc = 16, UA = 4 and UM = 2, so 
there are 32 supersymmetries on both M x C = E10'1 and adS4 xS'7. For 
other X7, there are only solutions of (17) with one particular orientation 
e, and parallel spinors on C(X) restrict to spinors satisfying (17) with that 
choice of orientation. This is because the spinors left invariant by any of the 
possible holonomy groups which act irreducibly in eight dimensions all have 
the same chirality. On the other hand, as will be seen shortly, when X is 
an Einstein manifold admitting Killing spinors and has dimension 4fc + 1, 
both orientations give the same numbers of supersymmetries. For Type IIB 
compactifications on 5-manifolds, this conflicts with a claim made in [22]. At 
any rate, we are interested in the supersymmetric cases, so we choose e = +1. 

For M2-, D3- and M5-branes, n^ = 4,4,8 respectively, whereas TIM = 
2,4,8. Using our result for the numbers of asymptotic and near-horizon 
supersymmetries we find that for M2- and D3-branes the number of super- 
symmetries of the near-horizon geometry adSp+2 x^d is twice the number of 
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supersymmetries for the asymptotic conical geometry Mp+i x C(X), unless 
X is a round sphere, in which case the number of supersymmetries is the 
same in both cases. Applying this to the M5-brane gives the same number 
of supersymmetries asymptotically and near the horizon, but in this case, 
as we shall see, the only smooth spaces X that admit Killing spinors are 
54 and IRP4. In each of these cases, the number of supersymmetries can be 
further reduced by orbifolding. In particular, for the M5-brane with non- 
spherical near-horizon geometry, the asymptotic space is actually an orbifold 
Me x [R5/r and in this case the near-horizon limit has twice the number of 
supersymmetries as the asymptotic region. 

As an example, consider the squashed 7-sphere of [23], which has nj = 1, 
and n^ = 0, so that v = | or u = 0 for the squashed 7-sphere compactifi- 
cation, depending on the orientation. The cone has one parallel spinor, so 
the near-horizon geometry has u = | or u = 0, while the asymptotic conical 
geometry has u = ^. 

In summary, the amount of supersymmetry on the brane and in the near- 
horizon geometry is determined by the number of parallel spinors on the cone 
C(X), and this can now be analysed group-theoretically. 

Assume that the base of the cone, X, is simply-connected. Its cone 
C will be simply-connected also, since X and C are homotopy equivalent. 
Simply-connected manifolds admitting parallel spinors are classified by their 
holonomy group [70]. Because C is Ricci-flat, we know that it cannot be a 
locally symmetric space. Moreover, by a theorem of Gallot [33], the holonomy 
group acts on C irreducibly unless C is flat, in which case X is the round 
sphere. Therefore, we need only consider irreducible holonomy groups of 
manifolds which are not locally symmetric. In other words, those in Berger's 
table (see, e.g., [7, 66]). 

Of those, the ones which admit parallel spinors are given in the following 
table, which also lists the number n (or (n^, n#) in even dimension) of linearly 
independent parallel spinors. 

If X, and hence C, were not simply-connected, then we could still use 
part of the above analysis. Gallot's theorem still applies and the existence 
of parallel spinors constrains the restricted holonomy group of the manifold 
to be contained in the above Table. However a spinor which is invariant 
under the restricted holonomy group need not be parallel, because it may 
still transform nontrivially under parallel transport along noncontractible 
loops. Therefore the number of parallel spinors in C will be at most the 
number shown in Table 1. 
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dim Holonomy Geometry n 

4k + 2 SU2fc+i Calabi-Yau (i,i) 
4k su2fe Calabi-Yau (2,0) 

4k Spfe hyperkahler (ft+ 1,0) 

7 G2 exceptional 1 

8 Spin7 exceptional (1,0) 

Table 1: Manifolds admitting parallel spinors 

4    Near-horizon Geometries of Cone Branes 

In this section we will discuss the relation between the geometry of X and 
the holonomy of its cone C. We will do this in some generality, and give 
the relation between the geometry of X and the number of super symmetries 
preserved by a adS xX solution, when one exists, and this characterises the 
near-horizon geometries of the supersymmetric cone branes discussed in the 
previous section. 

On every cone there is a privileged vector field £ = r<9r, called the Eu- 
ler vector, which generates the rescaling diffeomorphisms. Moreover on any 
manifold of reduced holonomy, the holonomy principle guarantees the ex- 
istence of certain parallel tensors, corresponding to the singlets under the 
holonomy group in the tensor products of the holonomy representation. 
Therefore on a cone of reduced holonomy we will be able to build interesting 
geometric structures out of these parallel tensors and the Euler vector. These 
structures will in turn induce interesting geometric structures on X, which 
we identify with {1} x X C C. These geometric structures are summarised in 
the following table, which also lists the numbers (n+,n_) of Killing spinors; 
that is, solutions of equation (17), with n± the number of solutions with 
€ = ±1. 

We now proceed to describe these geometries in detail. 

4.1     Cones with Spin7 Holonomy 

Any eight-dimensional manifold with Spin7 holonomy possesses a parallel 
self-dual 4-form fi, known as the Cayley form. Contracting the Euler vector 
£ into the Cayley form gives a 3-form on C which restricts to a 3-form 0 on 
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dimX Holonomy of C Geometry of X (n+,n_) 

d {1} round sphere (2Ld/2j)2L<i/2j) 

4/fe-l Spfc 3-Sasaki (fc + 1,0) 

4fc-l su2& Sasaki-Einstein (2,0) 

Ak + l SU2fe+l Sasaki-Einstein (1,1) 
6 G2 nearly Kahler (1,1) 
7 Spin7 weak G2 holonomy (1,0) 

X: 

Table 2: Manifolds admitting real Killing spinors 

(l)(u,v,w) =Ct(^u,v,w) , 

for any vectors u,v,w tangent to X. In fact, one can write the Cayley form 
restricted to X C C as 

ft = dr A 0 4- *</> , 

with • the Hodge operator on X. Notice that dr is a 1-form on C, and by 
its restriction to X we simply mean evaluating it at X C C on vector fields 
tangent to C. In other words, dr acts both on vectors tangent and normal 
to X. Prom the fact that ft is parallel in C, it follows that, in X, 0 obeys 

V0 = *</> . 

This condition says that X has weak G2 holonomy [39], and we say that </> 
defines a nearly parallel G2 structure. In fact, as proven in [4] a manifold has 
weak G2 holonomy if and only if its metric cone has holonomy contained in 
Spin7. In the early Kaluza-Klein literature it would have been said that X 
has G2 Weyl holonomy, but we will not follow this nomenclature. 

4.2    Cones with G2 holonomy 

On any seven-dimensional manifold with G2 holonomy there is a parallel 3- 
form $, known as the associative form. Contracting the Euler vector into 
the associative form yields a 2-form on C which restricts to a 2-form u on 
X: 

UJ{U,V) = $(t,u,v) , 



1264      BRANES AT CONICAL SINGULARITIES AND HOLOGRAPHY 

for any vectors u,v tangent to X. We can define a (1, l)-tensor J on X as 
follows: 

{J(u),v) =u(u,v) . 

It is possible to show [4] that J is an orthogonal almost complex structure: 

J2 = -1        and        (J{u), J(v)) = {u,v) , 

whence X is an almost hermitian manifold. Prom the fact that $ is parallel 
on C, it follows that on X, 

VvJ(v) = 0        for any v] 

although VJ 7^ 0. Moreover J is not integrable. This means that X is a 
non-Kahler nearly Kdhler manifold [38]. 

In fact, the converse is also true and a six-dimensional manifold is non- 
Kahler nearly Kahler if and only if its cone has holonomy contained in C?2 
[4]. A different proof that a six-dimensional manifold admits Killing spinors 
if and only if it is non-Kahler nearly Kahler appeared earlier in [44]. 

Nearly Kahler 6-manifolds share many properties with Calabi-Yau 3- 
folds. For example, there is a natural 3-form defined by contracting the 
Euler vector f with the coassociative 4-form *<i> on the cone. In particular, 
nearly Kahler 6-manifolds have vanishing first Chern class [41]. For example, 
S6 = G2/SU3 is nearly Kahler, but cannot be Kahler because H2(S6) is 
trivial. 

4.2.1    Scholium on Almost Hermitian Manifolds 

The notion of nearly Kahler manifolds should not be confused with the no- 
tion of an almost Kdhler manifold, which simply means an almost hermitian 
manifold whose associated 2-form u> is closed; or in other words, a symplectic 
manifold with a compatible almost complex structure. Unfortunately, given 
the many different generalisations of the notion of Kahler manifolds, there 
is a large possibility for confusion, so we digress momentarily to settle the 
notation once and for all. As shown in [42], there are 16 classes of almost 
hermitian manifolds, the class of Kahler manifolds being but one of them. 
The classes are defined in the following way. 

One can define almost hermitian geometry in terms of G-structures. Just 
like a Riemannian metric g on an 2n-dimensional manifold X allows us to 
reduce the structure group of the tangent bundle from GL^R to 02n, an 
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almost hermitian structure (g, J) allows us to reduce the group further to 
Un. This means that tensor bundles can be consistently decomposed into 
Un-irreducible sub-bundles. Let u be the associated 2-form. Its covariant 
derivative Vu is a section through a sub-bundle W C T* ® f\ T*, with 
T* the cotangent bundle of X. W is not irreducible under Un, but rather 
decomposes into four irreducible components W = 0i=iWi. There are 
therefore sixteen Un-invariant sub-bundles (not necessarily irreducible) in 
W: {0}, Wj, Wi © Wj (i y^ j)j ... , W. The sixteen classes of hermitian 
manifolds correspond to these sixteen sub-bundles: a manifold X belonging 
to the class corresponding to the sub-bundle of W to which Vu; belongs. 

Clearly Va; = 0 corresponds to the class of Kahler manifolds; but there 
are other classes of manifolds which are close to Kahler in some sense. The 
class of non-Kahler nearly Kahler manifolds can be shown to be the one for 
which Vu; = ^du ^ 0. The class of almost Kahler manifolds consists of 
those for which duj = 0. To make matters even more confusing there exist 
also semi-Kdhler manifolds for which d * co = 0 and quasi-Kdhler manifolds 
which have a more complicated definition which we will not need. For details 
the reader is referred to [42]. 

4.3    Calabi-Yau Cones 

The class of Calabi-Yau n-folds is the class of compact Ricci-flat Kahler 
n-folds. Let us concentrate first on the Kahler condition. Any Kahler mani- 
fold has a parallel 2-form, the Kahler form, and a corresponding orthogonal 
complex structure / which is also parallel. Together with the Euler vector, 
we can therefore build two objects: a 1-form obtained by contracting the 
Euler vector into the Kahler form, and a vector obtained by acting with the 
complex structure on the Euler vector. The vector is clearly tangent to X 
and restricts there to a vector x, whereas the 1-form restricts to a 1-form 9 
on X which is naturally dual to %: 

X = m        and       0=<x,->. 

It follows from the definition that x has unit norm and is a Killing vector. 
Furthermore, the covariant derivative of x defines a (1, l)-tensor T = Vx in 
x, 

T(v) = V„x , (19) 

which, because / is parallel in C, satisfies the following identity: 

VuT(v) = 9(v)u-(u,v)x. (20) 
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The triple (x, 9,T) defines a Sasaki structure on X. More precisely, a triple 
(x,0,T) on an odd-dimensional Riemannian manifold X, where x is a unit 
norm Killing vector, 9 its dual 1-form, and T — Vx obeys equation (20), is 
called a Sasaki structure on X [67], and X is called Sasakian. Equivalently 
[4], a manifold X is Sasakian if and only if its metric cone C(X) is Kahler. 

If in addition C(X) is Ricci-flat (hence Calabi-Yau), then X is Einstein. 
We say that X is Sasaki-Einstein. Therefore a manifold is Sasaki-Einstein 
if and only if its metric cone is Calabi-Yau [29, 30, 4]. 

This means, in particular, that a Sasaki-Einstein manifold X of dimen- 
sion 2n + 1 also possesses two distinguished n-forms obtained by contracting 
the Euler vector £ into the real and imaginary parts of the complex volume 
(n+l)-form on C(X). 

The Killing vector x in a (^n + l)-dimensional Sasakian manifold X 
defines a foliation whose leaves are the integral curves of %. The manifold is 
called regular if these curves are closed and have the same length. If this is 
the case, x defines a Ui action on X and X can be understood as a circle 
bundle over the orbit space, a 2n-dimensional manifold M, which can be 
shown to be Kahler. Moreover if X is Sasaki-Einstein then M is Kahler- 
Einstein. Regularity is a very stringent condition which is not satisfied by 
most Sasaki (-Einstein) manifolds. When the integral curves of x are closed 
but of different lengths, the orbit space is an orbifold which is everywhere 
smooth except at a finite number of points [29, 10]. 

4.4    Hyperkahler Cones 

In a hyperkahler manifold we have a parallel quaternionic structure consist- 
ing of three orthogonal complex structures /, J, K satisfying the quaternion 
algebra, as well as their corresponding Kahler forms: COJ^UJJJOJK- From the 
discussion above, on a cone C(X) each complex structure gives rise to one 
Sasaki structure on X. Moreover the fact that the three complex structures 
on C(X) satisfy the quaternion algebra means that the Killing vectors in the 
three Sasaki structures are orthonormal and obey an SU2 Lie algebra. Three 
Sasaki structures satisfying these conditions define a 3-Sasaki structure on 
X (see [10] for the latest word on 3-Sasakian manifolds). Equivalently, one 
can prove the converse and show that a manifold is 3-Sasakian if and only if 
its cone is hyperkahler [30, 4, 11]. 

The three Killing vectors define a foliation of the 3-Sasakian manifold 
X.  We say that X is regular if the foliation fibres.  This means that X is 
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an SU2 or SO3 bundle over a quaternionic Kahler space Q. Equivalently, X 
is a circle bundle over the twistor space Z of Q. If X is not regular, but 
the Killing vectors are complete, then the orbit space defines a quaternionic 
Kahler orbifold [10]. 

5    Examples 

In this section we list the known near-horizon geometries for different types 
of cone branes. The homogeneous examples are all known from the early 
days of Kaluza-Klein supergravity, but we do list some non-homogeneous 
examples as well. For each type of cone brane we discuss the possible smooth 
near-horizon geometries and where applicable we discuss orbifolds. 

5.1    M2 Cone Branes 

The transverse space to an M 2 cone brane is the metric cone Cg over a 
7-dimensional manifold X7. From Table 2 one can read off the following 
possibilities for simply-connected X^ which are listed in Table 3. In the 
non-simply-connected case the number of Killing spinors is at most the one 
shown in the table. 

Geometry of Cg Geometry of Xj (n+,n_) 

flat round S'7 (8,8) 

hyperkahler 3-Sasaki (3,0) 

Calabi-Yau Sasaki-Einstein (2,0) 

Spin7 holonomy weak G2 holonomy (1,0) 

Table 3: Seven-dimensional near-horizon geometries 

Besides the sphere and its quotients, we have the following types of near- 
horizon geometries. 

5.1.1    X7 is 3-Sasakian 

We must distinguish between regular and non-regular 3-Sasakian 7-manifolds. 
The regular manifolds were classified in [30, 11] and they all happen to be 
homogeneous spaces. Therefore they have been known since the early days 
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of Kaluza-Klein supergravity [17]. In the present context they have been 
discussed in [14]. Apart from Sp^Spi = S7 and Sp2/ (Spx x Z2) = RP7, the 
only other homogeneous regular example is (SU3 x Ui) / (Ui x Ui), which is 
called iV010 in [14] and N{1,1) in [24]. 

On the other hand there are an infinite number of different non-regular 
3-Sasakian 7-manifolds. The topology of a seven-dimensional 3-Sasakian 
manifold X7 is highly constrained. First of all, Bochner's theorem implies 
that the first Betti number of a 3-Sasakian manifold vanishes: hi = 0. In 
seven dimensions, BQ = 0 by^Eoincare duality. Furthermore, as shown in 
[32, 31], 63 = 64 = 0, so that the only nonzero Betti numbers are 62 = 
65. Recently an infinite family with arbitrary 62 has been constructed in 
[13, 9]. This implies that there exist 3-Sasakian 7-manifolds of every possible 
rational homotopy type allowed. These examples are toric; that is, they 
admit an action of a torus T2 preserving the 3-Sasakian structure. They are 
constructed via a 3-Sasakian quotient [12] akin to the hyperkahler quotient 
[49]. Indeed, the two quotients are related via the cone construction. In other 
words, suppose X7 is a 3-Sasakian manifold and C$ is its hyperkahler cone. 
Then if C$ admits a triholomorphic action commuting with the Euler vector, 
then the hyperkahler quotient of Cs is a cone over the 3-Sasaki quotient of X7. 
The cones over the toric 3-Sasakian manifolds in [13, 9] form a subclass of the 
toric hyperkahler manifolds studied in [8] and which have been considered in 
the context of intersecting branes in [34]. 

All 3-Sasakian manifolds have an infinitesimal $112 = 503 isometry. If the 
Killing vectors are complete, they integrate to an action of SU2 or SO3. In 
the regular case, the orbit space is smooth; otherwise not. In any case, the 
infinitesimal isometry is a generic feature of these manifolds and one which 
will play a role in Section 6, when we discuss the dual field theories. 

5.1.2    X7 is Sasaki-Einstein 

There are many known Sasaki-Einstein 7-manifolds. The regular examples 
can be understood as Ui bundles over Kahler-Einstein 3-folds [64]. They 
have not been classified. The known results are summarised in the following 
table [31]. 

The first four examples are homogeneous and have therefore appeared 
in the early Kaluza-Klein literature. The first three are listed using the 
nomenclature of [17]. In [24, 31] these spaces are called iV(l,l), Q(l,l, 1) 
and M(3,2), respectively. Here V(2|5) is the Stiefel manifold of orthonormal 
oriented 2-frames in R5 and G(2|5) is the Grassmannian of oriented 2-planes 
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K, X7 

F(l,2|3) 
CP1 x CP1 x CP1 

CP2 x CP1 

G(2|5) 
Pk x CP1 

iV010 ^ (SU3 x SU2) / (SU2 x Ui) 
gin ^ ((su2)

3 x Ui) / ((Ux)3 x Ui) 

Miio s (SU3 x SU2 x Ui) / (SU2 x Ui x Ui) 

n2|5)^(S06xUi)/(S03xUi) 
Ml (3 < k < 8) 

Table 4: Known regular Sasaki-Einstein 7-manifolds X7, as Ui bundles X7 -> 
K§ over Kahler-Einstein 3-folds 

in R5. F(l,2|3) is the complex flag manifold in C3 consisting of pairs (£, TT) 

where TT is a complex plane in C3 and £ C TT is a complex line. The last class 
of examples does not consist of homogeneous manifolds: Pk are the del Pezzo 
surfaces consisting of blowing up k points in general position on CP2. 

In addition, there are two infinite families of homogeneous non-regular 
Sasaki-Einstein 7-manifolds: the Mppr of [73, 15] and the Qppp of [20]. Of 
course they are mentioned in [17]. 

5.1.3    X7 has Weak G2 Holonomy 

The canonical example of a weak G2 holonomy manifold which is not Sasaki- 
Einstein is the squashed 7-sphere, which is a homogenous space (Sp2 x SpjJ 
/(Sp! x Spx). It turns out that this generalises, and every 3-Sasakian 7- 
manifold can be squashed to a manifold with weak G2 holonomy [32, 31]. 
The squashing is done as follows. A 3-Sasakian manifold X7 is foliated by 
the action of the Sasakian Killing vectors. At any point p G X7, the Killing 
vectors are tangent to the unique leaf 3^ of the foliation passing through 
p. The tangent space to X at p has an orthogonal decomposition TpX = 
3p © (Jp) . The squashing of the metric is done by introducing a parameter 
t and rescaling the metric on the leaves of the foliation by t. We can then 
compute the Ricci tensor as a function of t and notice that there are two 
values for which it is Einstein: one is the original 3-Sasakian metric, and the 
other gives rise to a weak G2 holonomy structure. 

By squashing the infinite toric family of [13, 9] in this way, one obtains a 
huge number of weak G2 holonomy manifolds which are not Sasaki-Einstein. 
These spaces are not homogeneous and hence have not been considered before 
in the Kaluza-Klein supergravity context. There are examples with arbitrary 
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&2 = &5 and all other Betti numbers vanishing, since squashing does not 
change the topology. 

Another infinite dimensional family of weak G2 holonomy manifolds con- 
sists of the Aloff-Wallach spaces [3] iV(M) = SU3/U1, with Ui C SU3 
defined by 

feikO 

eie «-► I em 

e-i{k+i)e 

This family is remarkable because it contains an infinite number of distinct 
homotopy types and even exotic pairs, i.e., homeomorphic non-diffeomorphic 
pairs [57]. For k ^ 1 or i ^ 1 these spaces admit metrics with weak G2 holon- 
omy. The Aloff-Wallach spaces N(ki£) agree, allowing for some redundancy 
in the notation, with the Npqr spaces of [16]. Finally, the other weak G2 
holonomy manifold from the early Kaluza-Klein literature is the homoge- 
neous space SOs/SO^ of [17]. 

In summary, all known examples are homogeneous, hence previously 
known in the Kaluza-Klein context, except for the squashed toric 3-Sasakian 
manifolds. 

5.2    M5 Cone Branes 

The transverse space to an M 5 cone brane is a five-dimensional cone C5 over 
a four-dimensional manifold X4. As proven in [28], any complete connected 
n-dimensional spin manifold, with n < 4, admitting real Killing spinors is 
locally isometric to the round n-sphere. Therefore the only possible smooth 
near-horizon geometry for an M5 cone brane is either spherical 54 or elliptical 
[RP4; these describe the near-horizon geometry of M5 branes at a point in 
IR5 or on the orientifold [R5/Z2. More generally we can consider orbifolds of 
R5 = R x C2 which are of the form Rx C2/T. Such an orbifold will preserve 
supersymmetry if T is an ADE subgroup of the hyperkahler SU2 which acts 
on C2. This clearly induces a near-horizon geometry of the form 54/r which 
has two singular points induced from the orbifold fixed points of F acting on 
R x C2. These orbifolds preserve half of the supersymmetries obtained in the 
maximally super symmetric case. 
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5.3    D3 Cone Branes 

The transverse space to a D3 cone brane is a six-dimensional cone Ce over a 
five-dimensional manifold X5. Prom Table 2 we see that there are two simply- 
connected possibilities. This means X5 is a sphere or a Sasaki-Einstein 
manifold. Non-simply connected examples, e.g., RP5 or more generally 55/r, 
can be obtained by taking quotients. There are an infinite number of smooth 
quotients 55/r of the sphere which possess Killing spinors. These can be 
determined as follows [69]. 

In his solution of the spherical space problem, Wolf classified all the 
discrete subgroups F C SOe, for which 55/r is smooth [74]. Given one 
such subgroup, the spin structures on 55/r are in one-to-one correspondence 
with the lifts of F to an isomorphic subgroup F C Spin6 = SU4; that is, to 
a F C Spin6 which is mapped to F isomorphically under the covering map 
Spin6 -> SOe- Finally, for 55/r with spin structure given by F, the Killing 
spinors in 55/r are precisely the F-invariant spinors in 55. The results are 
as follows. 

There are two families of subgroups of SOe for which Sr5/r is smooth: 
r(n, a, 6) and r(m, r; n, s) described below. 

Let r(n, a, 6), where n, a, 6 G N be the cyclic subgroup of SOe of order n 
generated by the following element: 

'ii(")    «(.) \ with        (».») = ('.") = 1, 

where R(6) denotes the rotation matrix 

cos 27r0    sin 27r0 
R^      i-sin27r0    cos27r0 

and (p, q) denotes the greatest common divisor, so that (p, q) = 1 means that 
p and q are coprime. 

Similarly let r(m, r; n, 5), with m, n, r, 5 G N and n = 0 (mod 3), denote 
the subgroup of SOe generated by elements A and B subject to the relations: 
Am = Bn = t and B AB'1 = yT. The generators can be written as 

0        t   0N 

,4=1 u l^J and       5 = |      0        0   1 
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where 1 is a 2 x 2 identity matrix, and where ((r - l)n, m) = (5, |) = 1 and 
r =/k r3 = 1 (mod m) and 1 is the identity matrix of order 2. This subgroup 
has order nm. 

It is not hard to show that 55/r(n, a, 6) has precisely one spin structure 
when n is odd, and none for n even. Similarly 55/T(ra,r;n, 5) has precisely 
one spin structure when both n and m are odd, and none otherwise. 

Computing the F-invariant spinors for each of the cases above is an easy 
matter. One sees that 55/r(n, a, b) is of type (n+,n_) = (1,1) whenever 
any one of the following equalities is satisfied: 

a + 6±1 = n or ■6 = ±1 

and has no Killing spinors otherwise. Similarly, 5'5/r(m,r;n, 5) has no 
Killing spinors for n > 3; and S5/r(m, r; 3,5), m odd, is of type (n+, n_) = 
(1,1) whenever r2 + r +1 = 0 (mod m) and has no Killing spinors otherwise. 

Notice that most of these spaces 55/r are not homogeneous. It is likely 
that, as in the case of orbifolds [54], the spectrum of the dual gauge theory 
associated with a near-horizon geometry of the form adSs xS5/r agrees with 
the f-invariant spectrum of N=4 super symmetric Yang-Mills. 

Geometry of CQ Geometry of X5 (n+Jn_) 

flat 

Calabi-Yau 

round S5 

Sasaki-Einstein 

(4,4) 

(lil) 

Table 5: Five-dimensional near-horizon geometries 

5.3.1    X5 is Sasaki—Einstein 

Again we distinguish between regular and non-regular Sasaki-Einstein man- 
ifolds. The regular manifolds were classified in [29]. Regularity implies that 
X5 is the total space of a Ui bundle over a four-dimensional manifold Kj, 
which inherits a Kahler-Einstein structure. The results are summarised in 
Table 6 below, where as in Table 4 above, P& denotes the del Pezzo surfaces 
and V(2|4) denotes the Stiefel manifold of orthonormal oriented 2-frames in 
R4. In the table # denotes the operation of connected sum. For complete- 
ness the non-simply-connected cases have also been included. There are no 
known examples of Sasaki-Einstein 5-manifolds which are not regular. (See 
Problem 8.1 in [10].) 
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K, x. 
CP2 S5 

CP2 S5/ls 
CP1 x CP1 V{2\A) ^S2xS3 

CP1 x CP1 vm/z2 
Pk , 3 < k < 8 Sk ^ #k (S2 x 53) 

Table 6: Regular Sasaki-Einstein 5-manifolds X5, as Ui bundles X5 
over Kahler-Einstein surfaces 

K4 

The homogeneous cases were known from the early Kaluza-Klein liter- 
ature. In particular, V(2|4) = (SU2 x SU2)/Ui is called T1'1 in [65]. This 
solution 1^(214) has also been discussed recently in [22] where it was denoted 
Q(l, 1) and claimed as new. These authors moreover claim that Q(l, 1) has 
type (n+,n_) = (2,0). Since this space is simply-connected, its cone is also 
simply connected. If (n+,n_) = (2,0) the cone would have to possess two 
covariantly constant spinors of one chirality and none of the other. Since the 
cone is six-dimensional the only possible holonomy group is SU3 which has 
two parallel spinors, one of each chirality, in contradiction with the claim in 
[22]. This claim seems to have propagated to [55], where the dual SOFT is 
claimed to have N=2 supersymmetry. However, as pointed out correctly in 
[56], the theory has only N=l supersymmetry as expected from our geometric 
considerations. 

5.4    Six Dimensions 

The remaining case to consider is that of a seven-dimensional cone C7 over 
a six-dimensional manifold XQ. In this case, there is no known maximally 
supersymmetric compactification on S6 to an anti-de Sitter space, so the 
relevance of this case is unclear. Prom Table 2 we see that there are again 
two possibilities: the sphere 56 and the nearly Kahler non-Kahler manifolds. 

Geometry of C7 Geometry of XQ (n+,n_) 

flat 

G2 holonomy 

round S6 

nearly Kahler 

(8,8) 

(1,1) 

Table 7: Six-dimensional near-horizon geometries 
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5.4.1    X Is Nearly Kahler 

As we mentioned above 56 = G2/SU3 is nearly Kahler non-Kahler. There are 
other examples. First we have CP3. Although CP3 possesses a Kahler metric, 
the S05-invariant one it inherits from the isomorphism CP3 = SO5/U2 is non- 
Kahler nearly Kahler. The same occurs for the complex flag space .F(l, 2|3) 
and the Ua-invariant metric coming from F(l,2|3) = U3/(Ui x Ui x Ui) 
[40]. The Lie group Spin4 = 53 x 53 is nearly Kahler with the metric 
inherited from a 3-symmetric structure [44]. It cannot be Kahler because 
H2(S3 x S3) — 0. Similarly the homogeneous spaces S05/(Ui x SO3), 
SOe/Us and SP2/U2 with their natural homogeneous metrics are nearly Kah- 
ler non-Kahler [37]. 

6    Near-Horizon Geometry And Superconformal 
Symmetry 

According to the conjecture in [59] superstring or M theory compactified on 
the near-horizon geometry adSp+2 X-Xd of (a large number of) parallel p- 
branes, is dual to (the 't Hooft limit of) a superconformal field theory on the 
worldvolume of the brane, which is the boundary of the anti-de Sitter space. 
The symmetry algebras of the conformal field theory and the anti-de Sitter 
string theory must be the same superalgebra. The anti-de Sitter symmetry 
algebra is the super-isometry algebra of the background; it has a bosonic 
subalgebra which is the isometry algebra sOp+1,2 x0 of adSp+2 X-X'dj where g is 
the isometry algebra of X^ and there is a fermionic generator for each Killing 
spinor, generating the corresponding supersymmetry transformation. The 
same superalgebra acts as the superconformal algebra for the worldvolume 
theory in Mp+i, where 50^+1,2 is the conformal algebra in p + 1 dimensions, 
0 is a global symmetry which is the R-symmetry, or the product of the R- 
symmetry with an algebra that does not act on the fermionic generators, and 
the fermionic generators consist of the usual supercharges inp+1 dimensions, 
together with the special supersymmetry generators. 

In the dimensions of interest here, these algebras were classified by Nahm 
[62], although the case p = 3 had been considered previously in [48]. Each 
such superalgebra is characterised by its bosonic subalgebra together with 
the representation that the supercharges are in. This means that for the 
anti-de Sitter vacua of interest here, the bosonic subalgebra should contain 
50^+1,2 x 0, where g is the isometry algebra of X&. This information, together 
with Nahm's classification, is enough to identify the superconformal algebra 
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of the dual theory, provided that the supercharges transform correctly. In this 
section we will show that the geometric structures we have listed previously 
are precisely enough to identify the correct superconformal algebra in all 
cases. We do this by identifying the generic isometries of the near-horizon 
geometries and by investigating how the Killing spinors transform under 
them. 

6.1    (J=3 SCFTs Dual To M2-Branes 

The superconformal algebra corresponding to an N-extended three-dimen- 
sional superconformal theory is osp^ which has bosonic subalgebra 

503,2 x 50^- , 

with the supercharges transforming according to the (4,N) [62]. Notice that 
for Ji = 8, there are three possible eight-dimensional representations: by 8 
we mean one of the spinorial irreducible representations. 

These theories are dual to M2-branes at a conical singularity of a Ricci- 
flat space with holonomy contained in Spin7. We should therefore identify 
the bosonic subalgebra as isometries of the near-horizon geometry. The 503,2 
factor is the isometry of adS4, while the 50^ factor is a subalgebra of the 
isometry algebra of X7. For a supersymmetric brane configuration, the cone 
can have holonomy {1}, Sp2, SU4 and Spm7, corresponding to near-horizon 
geometries preserving 32, 12, 8 and 4 supercharges respectively. In terms 
of three-dimensional superconformal symmetries, each of which having four 
real components, these cases thus correspond to 3Sf=8,3,2,1, respectively. 
We now treat each case separately. 

6.1.1 N=8 

This is the maximally supersymmetric case, in which the near-horizon geom- 
etry is spherical. The isometry algebra of the round 7-sphere is indeed 503. 
It is clear that the Killing spinors are in the 85 or 8^ of 503. Therefore one 
recovers, as was done originally in [59], the correct superconformal algebra. 

6.1.2 N=3 

The corresponding near-horizon geometry in this case has a cone base which 
is a 3-Sasakian 7-manifold X7. As we saw above, such a manifold possesses 
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three orthonormal Killing vectors which generate an action of SU2 = SO3. 
We need to check that the Killing spinors transform as the 3 of this 503. 
This is proven in Theorem 3.1 in [60]. Alternatively, we can see this in the 
hyperkahler cone. Each Killing spinor in the base corresponds to a parallel 
spinor in the cone. Prom the explicit construction of the Killing vectors in 
the 3-Sasaki structure at the base of the cone, we see that their Lie algebra 
is isomorphic to the spl factor in the maximal subalgebra B\i1 x sp2 C sog. 
Under this subalgebra, the spinor representation 85 decomposes as 

8,-^(3,1)0(1,5). 

Thus we see that the three parallel spinors transform as the 3 of sp1 = 503. 

6.1.3 N=2 

In this case the base of the cone is a Sasaki-Einstein 7-manifold X7, and as 
we saw above it has a unit norm Killing spinor %. According to Theorem 2.2 
in [60], the Killing spinors transform according to the real two-dimensional 
irreducible representation 2 of the BO2 action of %. Alternatively we can 
again work in the cone. We notice that the abelian algebra generated by % 
corresponds to the Ui factor of the maximal subalgebra Ui x 5U4 = U4 C 503. 
Under sog D Ui x 5U4, the spinor representation 8V breaks up as 

85-> (2,1) 0(1,6), 

so that the parallel spinors do indeed transform as the 2 of Ui = 502. 

6.1.4 N=l 

This case corresponds to the cones whose base is a 7-manifold with weak G2 
holonomy. Generically the nearly parallel G2 structure admits no infinitesi- 
mal automorphisms, although of course we gave plenty of examples above of 
such manifolds with a large isometry group. The Lie algebra of this group 
acts trivially on the Killing spinor, however. The automorphism groups of 
nearly parallel G2 structures have been studied in [31]. As an example, if X7 
is the squashed 7-sphere with isometry 5p2 x spx, the symmetry algebra is 
05P4|i x 5P2 x 5Pi> with trivial R-symmetry and a symmetry $p2 x 5Pi under 
which the supercharges are singlets. 
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6.2    d=4 SCFTs Dual To D3-Branes 

From the existence of supersymmetric solutions of IIB theory describing par- 
allel D3-branes sitting at conical singularities in Ricci-flat six-dimensional 
cones with holonomy contained in SU3, we expect a correspondence be- 
tween d=4 SCFTs and IIB theory in adSs XX5 with X5 a Sasaki-Einstein 
5-manifold. The super algebras governing the super conformal field theories 
[48, 62] have bosonic subalgebras 

{504,2 x 1^    for 3sf ^ 4 

$04,2 x 5U4    for N=4, 

with the fermions in the representation [(4,N)], where we are using the 
notation [i?] to mean the underlying real representation in R © R*\ in other 
words, [iJ] ®R C = R © R*. The 504,2 factor is the isometry algebra of the 
anti-de Sitter space, and the u^ (or 5U4) factor should coincide with the 
isometries of X$. Moreover the isometries should act on the Killing spinors 
according to the above representation. 

6.2.1    N=4 

This corresponds to the maximally supersymmetric case in four dimensions, 
where X5 is the round sphere. The isometry group of the sphere has Lie 
algebra so§ = 5U4, which was identified in [59] with the R-symmetry group 
of the N=4 SOFT. 

6.2.2    N=2 

This case corresponds to X5 = 55/r where Y is any of the ADE subgroups of 
the 'hyperkahler' Spx subgroup of Spx • Spi = SO4 C SO4 x SO2 C SOe- The 
centraliser of its Lie algebra sp! in 505 is therefore Bp! x 502 — 5U2 x ui — U2, 
as expected. We need to verify that the action on the Killing spinors is the 
right one. For the sphere, all spinors are Killing, so that they transform 
under soe = 5U4 as [4]. Under the maximal 5U2 x 5U2 x 502 C BOQ subgroup, 
we have the following branchings 

4 -> (1, 2)+i © (2, l)_i        and       4* -> (1, 2)^ © (2,1)+1 . 

The F-invariant spinors then transform according to [2+1], which is precisely 
the [2] ofua. 
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6.2.3    N=l 

In this case the cone base X5 is a Sasaki-Einstein 5-manifold. These mani- 
folds possess a Killing spinor which generates a Ui subalgebra of the isometry 
algebra. To see how the Ui acts on the supersymmetries it is again convenient 
to work in the cone. The Sasakian Killing vector generates the Ui subalgebra 
of the maximal subalgebra Ui x 5U3 = U3 C BOQ. Under this subgroup the 
spinor representation [4] of BOQ = 5U4 breaks up as 

[4] -> [3+1] © [1_3] . 

Therefore the parallel spinors on the cone transform under ui as a real two- 
dimensional representation [(+3) © (—3)], in agreement with the trasnfor- 
mation properties of the supercharges. 

6.3    d=6 SCFTs Dual To M5-Branes 

If we consider an M5 cone brane, we might obtain d=6 chiral SCFTs dual 
to M theory compactified on Einstein 4-manifolds admitting Killing spinors. 
There are only two cases: 3Sf=l, 2, although strictly speaking for N=l we will 
have to consider orbifolds. The corresponding superconformal algebras [62] 
have bosonic subalgebra 

506,2 X 5p^ , 

with the fermions in the real representation [(8,2N)], where we have in- 
troduced the notation [R] to mean the underlying real representation of a 
complex representation R with a real structure; in other words, [R](S)RC = R. 
In this case (8, 2N) has a real structure by virtue of both 8 and ZN being 
quaternionic representations of 506,2 and 5p^, respectively. We recognise the 
506,2 factor as the isometry algebra of anti-de Sitter space. Now we discuss 
the other factor. 

6.3.1    N=2 

In this case, the 4-manifold is the round sphere 54. The Killing spinors 
transform as spinors of 505 == 5p2, in agreement with the structure of the 
superconformal algebra. 
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6.3.2    N=l 

This case is obtained by considering orbifolds of the previous case. Hence 
X4 = SAIT where Y is an ADE subgroup of the 'hyperkahler' Spx C SO4 C 
SO5. Since the centraliser of its Lie algebra Bp^ in 505 is precisely the other 
spi in the decomposition SO4 = spx x spi, the resulting theory has an sp1 

factor in its bosonic subalgebra just as expected. To see how this acts on 
the spinors, we must decompose the spinor representation 4 of 505 = 5p2 in 

terms of its maximal s)p1 x Bpi subalgebra. We find 

4-^(2,1)0(1,2); 

whence the T-invariant spinors transform according to the 2 of sp^ in agree- 
ment with the structure of the superconformal algebra. (Notice that the 2 
of Bp! is indeed quaternionic.) 

7    Conclusions 

We have discussed spaces of the form adSp+2 xJ^Q and given a classification 
of the geometries of Xd that admit any given number of Killing spinors. The 
geometries admitting Killing spinors are, up to quotients: spherical, Einstein- 
Sasaki in dimension 2fc+l, 3-Sasaki in dimension 4&+3, 7-dimensional mani- 
folds of weak G2 holonomy and 6-dimensional nearly Kahler manifolds. When 
the space adSp+2 xX^ is a solution of a supergravity theory, our analysis 
gives the amount of supersymmetry the solution preserves. Our approach was 
based on considering the corresponding brane solution which interpolates be- 
tween an adSp+2 xX^ near-horizon geometry and the solution Mp+i x C{X) 
which is a product of p + 1-dimensional Minkowski space and the cone C(X) 
over X. The Killing spinors on X are related to parallel spinors on C(X), 
and the number of these depends only on the holonomy of C(X). In this way, 
we are able to relate the number of supersymmetries of the two asymptotic 
regions to each other and to the number of supersymmetries of the brane 
solution that interpolates between them. We have found the anti-de Sitter 
supergroup of symmetries that emerges for each supergravity solution. 

The brane picture leads to a conjectured duality between the string or M 
theory on adSp-1-2 xX^ and a superconformal field theory with the same su- 
pergroup, which we propose arises as the world-volume theory of p + 1 branes 
located at the conical singularity of Mp+i x C(X). The geometry then gives 
rise to some interesting predictions for the properties of the superconformal 
field theory duals. We finish with some speculations concerning these dual 
field theories. 
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In [56], the IIB theory on adSs xX^ was considered, where X5 is a coset 
space whose cone C{X§) is a conically singular Calabi-Yau threefold, and 
a dual super Yang-Mills theory was proposed, representing D3-branes at 
the conical singularity. Since this Calabi-Yau space has a description as a 
Kahler quotient, the quantum field theory was defined as one whose moduli 
space is this quotient. In other words the Calabi-Yau space is identified as 
the Higgs branch of the Yang-Mills theory. In particular, since the Calabi- 
Yau space is Kahler, the Yang-Mills theory must have four-dimensional N=l 
supersymmetry. 

Many of the conical geometries we have considered also arise from quo- 
tient constructions, and this suggests a similar structure in the field theory 
duals. For example, for the M2-branes, the cones C(X) are eight-dimensional 
spaces with Sp2, SU4 or Spin7 holonomy. Of the examples discussed in sec- 
tion five, all the cones of Sp2 holonomy have a description as hyperkahler 
quotients [49] and at least some (perhaps all) of those with SU4 holonomy 
have descriptions as Kahler quotients. Similarly, most of the cones with SU3 
holonomy are Kahler quotients. 

We propose, in the cases in which C{X) is obtained via a quotient con- 
struction in which a space M is 'dividedt' by a group G, that the correspond- 
ing superconformal field theories have scalars taking values in M, and that 
there is a scalar potential whose space of minima, i.e., the moduli space of 
the theory, is precisely the cone C{X). It is natural to identify G as the 
gauge group of the theory. In the (hyper-)Kahler quotient, M is essentially 
the zero level set of the moment map defined by G. This generalises the 
construction of [56]. 

For example, consider the 3-dimensional case. Recall that the M2-brane 
theory arises as an infrared fixed point of the d=3 super Yang-Mills the- 
ory that is the world-volume theory of the D2-brane. Consider those (non- 
maximally supersymmetric) 3-dimensional superconformal field theories that 
arise as infrared fixed points of d=3 super Yang-Mills theories, and which 
are also the world-volume theories for M2-branes on cones with Sp2 or SU4 
holonomy. The quotients are hyperkahler or Kahler, and the d=3 Yang-Mills 
theories will have 3sf=4 or N=2 supersymmetry, respectively. We can choose 
a potential whose zeroes define a moduli space which is precisely the cone 
C(X), and a natural proposal is that these Yang-Mills theories flow in the 
infrared to superconformal field theories which are holographically dual to M 
theory on adS4 XX7. 

The geometries we have found point to a number of situations in which 
the superconformal field theory dual would be particularly interesting to un- 
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derstand. For the M2-branes with X7 3-Sasakian, the dual theory should be 
some theory with Jsf=3 superconformal symmetry, which would be interesting 
to construct directly. 

We saw in section 5 that any 3-Sasakian 7-manifold may be squashed met- 
rically to give a second Einstein metric with weak G2 holonomy. Let g be the 
3-Sasakian metric and g the associated squashed metric on the 7-manifold 
X7. Then M theory compactified on (Xj^g) has 3Nf=3 supersymmetry in 
four dimensions (or N=8 supersymmetry for the round sphere), while it has 
N=l when compactified on (X?,g). When g is the round metric on the 7- 
sphere, the phenomenon of squashing was interpreted in the Kaluza-Klein 
literature [24] as spontaneous (super)symmetry breaking. One can of course 
give a similar interpretation for any X7 which admits a 3-Sasakian metric. 
From the two M theory compactifications specified by g and g the adS/CFT 
correspondence gives rise to two corresponding superconformal field theories 
in three dimensions. It is natural to expect a relation between this pair of 
SCFTs. The squashing of the 3-Sasakian metric to the weak G2 holonomy 
metric is a continuous deformation, but the resulting one-parameter family 
of metrics is Einstein only at two points. Of this one-dimensional family of 
metrics, only two are solutions to M theory. This suggests a corresponding 
one-parameter family of supersymmetric field theories which is supercon- 
formal at only two special values of the parameter, with X=3 (or N=8) 
superconformal symmetry at one point and 3Sf=l superconformal symmetry 
at the other. Understanding the precise relation between this pair of super- 
conformal field theories should also prove interesting mathematically, since 
the moduli space of the N=l theory apparently has Spin7 holonomy. 
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