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0. Introduction. 

Spencer cohomology of a Z-graded Lie algebra g — ®j>-i9j of depth 1 
is an important tool for the study of deformations of geometric structures 
on a manifold [S], [GS], [SS], [KN]. It works best, however, when the cor- 
responding transitive pseudogroup of transformations is irreducible, i.e. ad- 
mits no invariant differential systems, integrable or not. In the primitive 
(but reducible) case, i.e. when there are no integrable differential systems, 
it is natural to pick a minimal invariant (non-integrable) differential system, 
which leads to Z-graded Lie algebras of depth h>l [W]: g = ®j>-h9j' This 
brings us to the generalized Spencer cohomology (Section 1). 

The present paper is a part of the program of classification, up to formal 
equivalence, of simple infinite-dimensional Lie superalgebras of vector fields 
on a finite-dimensional supermanifold [K3]. Like in the Lie algebra case, 
an important ingredient in this classification is the description of all simple 
filtered deformations of a given graded Lie superalgebras cf. [SS], [KN], [W], 
[G]. 

Let L be a linearly compact Lie (super)algebra, that is a complete topo- 
logical Lie (super)algebra, which admits a fundamental system of neigh- 
borhoods of 0 consisting of subspaces of finite codimension. (The formal 
completion of a Lie (super)algebra o f vector fields on a finite-dimensional 
(super)manifold X at a neighborhood of a point of X is of this kind.) Pro- 
vided that L is simple (i.e. has no non-trivial closed ideals), one can construct 
a filtration of L by open (and hence closed) subspac es 

L = L-h D L-h+i D - • • D LQ D Li D - — , 

such that the associated graded Lie (super)algebra GrL = ®(j°=_hgj, Qj = 
Lj/Lj+ij of depth h has the properties [W]: 
(GO) dirngj < oo, 

(Gljfl.^fli^for^l, 
(G2) if a G Qj, j > 0, then [a, g^] = 0 implies that a = 0, 
(G3) the representation of 0O on g_1 is irreducible. 

In the Lie algebra case such a filtration is unique, provided that dimL = 
oo [G], and it is not too hard to classify all Z-graded Lie algebras satisfying 
properties (G0)-(G3) (see [Kl] or [G]). However, in the Lie superalgebra 
case there ar e many such filtrations and it is all but impossible to classify 
all Z-graded Lie superalgebras satisfying (G0)-(G3). The basic idea of [K3] 
is to choose a "maximally even" LQ] then the representation of gQ on g_1 

satisfies much more s evere restrictions than (G3) (cf. [G]), which makes it 
possible to classify such Z-graded Lie superalgebras. 
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The next step is to describe, for each Z-graded Lie (super)algebra g of 
the obtained list, all simple filtered deformations of 0, i.e. all simple linearly 
compact Lie (super)algebras L such that GrL = g. Of course, if g is a simple 
Z-graded Lie (super)algebra, then its completion g in topology defined by the 
fundamental system 0(fc) = @i>k%i<) k E Z+, is a simple filtered deformation, 
called the trivial filtered deformation. It is easy to show (cf. Corollary 2.2) 
that if 0O contains a non-zero central element, then g has only a trivial 
deformation. 

In the Lie algebra case the only remaining examples are the two series 
of Z-graded Lie algebras of depth 1, which consist of divergence free and 
Hamiltonian vector fields with polynomial coefficients. In these two cases 
one can either use the classi cal Spencer cohomology as in [SS], [KN], or 
some more "pedestrian" arguments, as in [W], [K2], [K3], to show that all 
filtered deformations are trivial. 

However, in the Lie superalgebra case there are many more cases of 
Z-graded Lie superalgebras, and only for some of them the "pedestrian" 
arguments work (cf. [K3]). Also, we do not have at our disposal a Serre 
type vanishing theorem for Spencer coho mology as in the Lie algebra case 
(cf. [KN]). Moreover, there are several series of Z-graded Lie superalgebras 
of depth ft > 2 to which the classical Spencer cohomology is not applicable. 

The aim of the present paper is to show how to resolve these difficulties. 
In Section 1 we introduce generalized Spencer cohomology, which is applica- 
ble to graded Lie superalgebras of arbitrary depth h. In Section 2 we show 
that filtered deforma tions are described by the invariant Spencer 2-cocycles, 
provided that g is an almost full prolongation. We introduce the latter notion 
since, unlike in the Lie algebra case, not all Z-graded algebras in question are 
full prolongations (mea ning that the first Spencer cohomology is trivial), 
but all, except for one of them, happen to be almost full prolongations. 

After describing in Section 3 all examples of Z-graded Lie superalgebras 
determination of whose filtered deformations was left out in [K3], we apply to 
them in Section 4 the techniques developed in Section 2. We find that, unlike 
in the Lie algebra ca se, there are three series of Z-graded Lie superalgebras 
that do admit a (unique) non-trivial filtered deformation (Theorems 5.1 and 
5.2), and the rest do not (Theorems 4.1-4.4). Note that one of these filtered 
deformations was discovered by Kotchetk off [Ko], and that the two filtered 
deformations discovered in this paper are isomorphic. 

We would like to thank Yuri Kotchetkoff for very useful correspondence. 

All vector spaces, algebras and tensor products in this paper are consid- 
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ered over the field C of complex numbers. 

1.  Generalized Spencer cohomology. 

Let 0 = ®(jL_hQj be a Lie superalgebra with a Z-gradation (compatible 
with its Z2-gradation) of finite depth ft, where h is a positive integer. We 
have [0j,flj] C g;+j, and we shall always assume that dim Gj < oo for all 
3 > -h. 

Set g_ = ®J=_hQj. Obviously g_ is a (finite-dimensional) subalgebra of 
Q and hence g_ acts on g via the adjoint representation, so that we may 
consider H*(g_]g), the cohomology groups of g_ with coefficients in it s 
adjoint representation in g. Recall (see e.g. [F]) that the space of cochains is 

C*(0_;0)=A*(0_)®0, 

where the exterior product A* is understood in the usual super sense. The 
space of the j-cochains (j G Z+) is then 

CJ(g_]g) = e-i>*1>i2>...>ii>-/i(g*1 A • • • Ag*.) ® g, 

on which the coboundary operator d acts as (p + q = j + 1) 

(dc)(xir-,xpiyir-,yq) = 

53    (-l)^*"1^^, xt], xlr-,xsr-,xtr-Jxp,y1,--,yq) 
l<s<t<p 

P     Q 

+ 53 ]L(~1)5~lc(a;i> -''>x3,--,xp, [x8,yt], yi, • • •, fa, • • •, %)) 
5 = 1 *=i 

+  53  c([^'2/*]'^i' * * ■ >xp>yi>'''»&> * * •»&> • • •»yg) 
l<s<t<q 

P 

+ 53(~1)S[:C5' ^i' * * *' ^> * * ■' XP> yi>''''^)] 
5=1 

+(_l)p-i 53[z/5, c(xi, • • • ,xp, yi, - • •, y8, • • •, j/g)], 
5=1 

where a^i, • • •, xp G {$-)§ and yi, • • •, yq € (fl_)j. We have then fZ"*(g_; g) = 
Kerd/Imd. 

Note that ^(g.;^) is Z-graded by letting degg^ = -degg* = i.   This 
gradation induces a Z-gradation on HJ(g_]g)'. 
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where HlJ(g_)g) denotes the Z-th graded component of W(g_]g). 

We will call the vector space Hl^(g^)g) the (l,j)-th (generalized) Spencer 
cohomology group of the Z-graded Lie superalgebra g and we will call ele- 
ments in Kerd (respectively Imd) Spencer cocycles (respectivel y Spencer 
coboundaries). In this paper only those Hl^(g_] g), for which I > 0 will play 
a role. This definition is a generalization of the classical Spencer cohomology 
defined for h = 1. We would like to point out that the classical Sp encer 
cohomology Hp>q (cf. [Sp]) would in our definition correspond to Hp+q~l>q. 

Prom the definition it is obvious that if*'0 is the subspace of 
0_-invariants in g so that we have 

i?M(0-;fl) = (flfe)
0-- 

The Lie superalgebra g is called transitive if Hky0(g_]g) = 0 for all k > 0, 
i.e. g is transitive if the conditions [g_,a] = 0 and a G ®j>QQj imply that 
a = 0. 

Remark 1.1. The transitivity property is equivalent to (G2), provided that 
(Gl) holds (see Introduction). 

A linear map a : g_ -> g is called a derivation of g_ into g if for all 
x,y G g- we have a([x,y\) = [a(x),y] + (—l)p^p^[x,a(y)]. Evidently, 
the space of all derivations der(c(s_,0) is Z-graded so that we may write 
derc(£|_,0) = ©/ezderc(G->0)/- Furthermore every element of g itself defines 
a derivation of g_ into g. It follows from the definition that i?*'1(5_;g) = 
der(c(0_,0)/s so that 

iy',1(fl-;fl)=derc(fl-Jfl)i/fl|. 

Let 0<o denote the subalgebra g_ © g0 of g. We will say that g is a full 
prolongation of g<o of degree ky if g contains all derivations of g__ into g of 
degree > k. This is equivalent to saying that Hlil(g_; g) = 0, for / > k. Note 
that a full prolongation of g<o of degree 1 is uniquely determined (since in 
this case gj is just derc(g_,0)j, for j > 1); in this case we shall call g the 
full prolongation  of g<0. 

Remark 1.2. For most cases the notion of full prolongation is adequate for 
the study of filtered deformations. However, in some cases, full prolongation 
is too strong an assumption, and should be replaced by a weaker notion, 
which we shall call an almost full prolongation. We shall take this up in the 
next section after introducing filtered deformations, which turn out to be 
closely related to H*i2(g_]g). 
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2. Preliminaries on filtered deformations. 

Let L be a filtered Lie superalgebra of finite depth h, where h is a positive 
integer. This means that L is a Lie superalgebra with a sequence of subspaces 
(compatible with the ^-gradation of L) 

L = L-h D L-/J+1 D • • • L-i D LQ D Li- • • D LnD - — , 

such that [Lj, Lj] C Li+j. We shall assume in this paper that dimcLj/Lj+i < 
oo, for all j. The filtration in a natural way induces a topology on L. The 
condition [L^Lj] C Li+j makes L into a topological Lie superalgebra. We 
will say that L is complete^ if L is complete with respect to this topology. 
In this paper we shall always deal with complete filtered Lie super algebras. 
Let g = ®<jZ:_hQjJ where Qj = Lj/Lj+i, be i ts associated graded Lie super- 
algebra. We let flyj = ©2>;02'. This defines a filtration on g. The completion 
of g with respect to the topology induced by this filtration will be denoted 
by g. 

For each j > —hwe may choose a subspace Vj oiLj so that Vj®Lj+i = Lj 
as vector spaces. We may identify Vj with Qj SO that in the vector space 
g — Hj Qj = YljVj = L we may define two Lie brackets. Namely, [•,•], 
which is the Lie bracket of the Lie superalgebra g, and [•, -ji, which is the 
Lie bracket of the Lie superalgebra L. We have for x, y G g = ®jQj' 

[z,y]i = foyl + X^fos')' (2-1) 

where ^ : g A g -> g is an even super-skewsymmetric bilinear map such that 

A**(flj A ^5) c %+5+z for each z = I?2)' * '• Note ^at for each e G C* the map 
^e : 5 -> 5) d efined by ^(a;) = e^'rc, if a; G g^, is a continuous automorphism 
of the Lie superalgebra g, provided that e 7^ 0. Applying ^c, with e 7^ 0, 
to both sides of (2.1) and dividing by an appropriate power of e, we obtain, 
letting [x,y]e = <Pe([x,y]i): 

[a;, j/]c = [x, y] + '52 Vii*, VV' (2-2) 
Z>1 

The bracket [x,y\e defines a Lie superalgebra structure on the space g. If 
e ^ 0, the obtained Lie superalgebra, which we denote by ge, is isomorphic 
to 0!- If e = 0, it is isomorphic tog. We will sometimes call [vie the 
deformed bracket of [•,•], and ge with a deformed bracket (or L) a filtered 
deformation of g. A filtered deformation is said to be a trivial deformat ion, 
if it is isomorphic to g. 

We have associated to a filtered deformation ge = L of g a sequence 
of bilinear maps m : g A g -^ g, i = 1,2, • • •. We shall call the sequence 
{Mi>/^2, • • •} a defining sequence of this filtered d eformation. 
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Remark 2.1. Of course, a different choice of the subspaces Vj gives rise to a 
different defining sequence in general. Hence a filtered deformation may be 
represented by different defining sequences. Thus we may study a filtered 
deformation by analyzing the effect of a different choice of the subspaces Vj 
on the resulting defining sequence. Clearly, a filtered deformation is trivial if 
and only if we may choose the subspaces Vj in such a way that the resulting 
defining sequence cons ists of zero maps. 

Let a;, y and z be homogeneous (both in the Z- and Z2-grading) elements 
of g. The Jacobi identity in 0e gives 

[a:,[y,z]c]c = ^y)€,z]e+p{x,y)[y,[x,z]t]t,    where p{x,y) = (-1)^)^). 

Substituting (2.2) into this expression gives an identity in power series in e 
with coefficients in Q. We collect the coefficient of ek and obtain the following 
identity in g: 

[x, ixk(y, z)] + /ijb(a?, [y, z]) +    ^   mfa ^-(y, z)) 
l<i,j<k 

= v>k{[xiylz) + \M>k{x,y),z] +  S  PiMu'V)'*) +p(x^y)[y^k{xJz)} 
l<i,j<k 

+   Pfay)nk(y,[x,z])+p(x,y)    ^   IAi(y,l*j(x,z)). (2.3) 
i<hj<k 

Proposition 2.1. The first non-zero term fi^ in (2.2) is an even 2-cocycle 
of g with coefficients in the adjoint representation. 

Proof.    Since /^ = 0 for all i < fc, from (2.3) we get 

[x, iik(y, z)] + ^(x, [y, z\)    =   ^([a:, y],z) + [^(a;, y), z] 

+ pfoyMy^jfefa,*)] 

+ p(^y)Mfc(yi[^^])- (2-4) 

But this precisely means that /i& is a 2-cocycle.     n 

We rewrite (2.4) as 

Wfe(z, [y> z\) - [^(x, y), z] - p(x, y)[y, ^(x, z)] = 

w([^, y], ^) + p(a?, yW(y, [x, ^]) - [x,^(y, z)]. 

The right hand side above is precisely 

x-PkiViz)) 
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while the left hand side is -df%{y,z), where /* : Q -► $ is given by /£(y) = 
^ife(^) 2/) and d is the coboundary operator. Thus it follows from the proof of 
Proposition 2.1 that (2.3) may be rewritten as 

vHk(y,z)+dfx(y,z)   =   -   J2   Ms,Mi(0,*))+    £   ^ifosOi*) 
l<ij<k l<i,j<k 

l<ij<A; 

Of course (2.3) can also be rewritten as 

diik{x,y,z)    =   -    ^   iii{x^j{y,z))+    ^   ^{^{x.y)^) 
l<i,j<k l<ij<k 

+   p(a?,y)    5Z    l*i(y>l*i(x>z))- (2-6) 
1<ZJ<A; 

Here is the key observation (due to Kobayashi and Nagano [KN] in the 
case h = 1): 

Proposition 2.2. The first non-zero term //*. in (2.2,) restricted to g_ defines 
an even gQ-invariant element in Hk>2(g_]g). 

Proof. By Proposition 2.1 lJ>k\g_xg_ is a 2-cocycle. Now (2.5) with x e g0 

and y,z G g_ means precisely that it is 0O-invariant in H*(g_]g) (since its 
right-hand side is zero).     □ 

Remark 2.2. Proposition 2.2 also follows from Proposition 2.1 as follows: 
lik defines a g-invariant element of H*{g_',g), hence it is 0O-invariant in 
frXfl-jg), when restricted to g_. 

Proposition 2.3. Let g€ and g'€ be two Altered deformations given by- 
defining sequences {/zi, /X2, • • •} and {//i, /4, • • •}, respecfciveiy. Suppose that 
(fjik — /4)l0_x0_ is a Spencer coboundary for some k > 1. Then g^ has a 
defining sequence {///, ^> * * *} suci that n" = /x^, for i < k, and ^}z\g_ xg_ — 
A^lg. x^. • (In other words, one can c hange the defining sequence ofg'e such 
that its first k — 1 terms are unchanged, and its k-th term becomes the k-th 
term of the defining sequence ofge when restricted to g_.) 

Proof.    We have for x,y € g_ 

[a?, y]€ = [a?, y] + Y, mfa vV,    [x, y\'e = [x, y] + Y^ ^(x, y)el. 
i>l i>l 
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By assumption /^ — /^ is a Spencer coboundary, hence there exists an / : 
0_ —)• g such that df = ^^ — /x^. We define an injective map p^ : g_ —>• g via 

/9fc(a?) = a; + /(»)€*,    Vx € 0_. 

A simple calculation shows that 

But now obviously PA;(0_) + g(o) = Q- Thus replacing g_ by Pkfa-) in gg, 
which correspond to a new choice of Vj, for j < 0, we obtain a defining 
sequence with the desired property.     □ 

Combining Propositions 2.2 and 2.3 we obtain 

Corollary 2.1. Let g€ be a filtered deformation of a graded Lie superalgebra 
Q with defining sequence {/xi) M2> * * *}• Suppose that H^

2
(Q_) Q) has no non- 

trivial even Q0-invariant vectors for any j > 1. Then 0€ has a defining 
sequence {/xi,^, • • •} such that ^j|g_xg_ is identically zero for all j > 1. 

Proof. Since A6i|g_x0_ is a Spencer coboundary by Proposition 2.1, the 
filtered deformation Q€ has a defining sequence such that {A^,^, * * •}> where 
i^ilg-xg. = 0 by Proposition 2.3. Now mu/2|g_xg_ is a Spencer cobound- 
ary, hence ge has a defining sequence {/xi,^, • * •}, such that M2/|g_xg_ = 0. 
Repeating this procedure, we may make j^slg.xg. — 0 as well, etc. Since g( 

is complete, we may take the limit.     □ 
e 

Let Q = ®<jl._hQj be a Z-graded Lie superalgebra. Suppose that ge is 
a filtered deformation of g with defining sequence {0, • • •, 0, fjikjP'k+ii • * *}• 
Let a be a maximal reductive subalgebra of ^Q and suppose that either a is 
semisimple or has a 1-dimensional center Cc, where adc acts on Qj as the 
scalar j for each j € Z. By Proposition 2.1, Hklaxa is a 2-cocycle of a with 
coefficients in the a-module Qk. Due to our assumptions on a, by Whitehead's 
second lemma /x&|axa is a coboundary. As in the proof of Corollary 2.1 we 
may find a defining sequence {0, • • •, 0, fi'^ /xjb+1, • • •} for gn such that j^laxa 
is identically zero for all j. Thus we may assume that 

[a, 6]€ = [a, 6],    Va, b G a. 

Note that ^ : go ® Qj -> 9j+k induces a map vk\a : a -> g^ ® gj+A.. 
It is easy to show, using the Jacobi identity and the fact that /x^laxa is 
identically zero, that ^|a is a 1- cocycle of a with coefficients in g| ®gj+k. If 
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a is semisimple, then by Whitehead's first lemma i/k\a is a coboundary. If a 
has a non-zero center, then it acts non-trivially on g^gj+k and hence uk\ A 

is a coboundary as well. Arguing as before, we may assume that for all j 

[a, x]€ = [a, a?],    Va 6 a, Vx G Qj. 

Now let x e QS and y € 0Z. Taking bracket in ge of an element a G a with 
[a?, y]€ we obtain 

oo 

[a,[a:,y]e]e    =    [a, [x,y]]e + JJa, liifay)]^' 
i=k 
oo 

i=k 

On the other hand, by Jacobi identity in ge the same quantity is equal 
to 

=    [kz],2/]£ + [z,[a,y]]e 
oo oo 

i=k i-k 

Comparing the coefficients of e1 we obtain 

[a,m(x,y)] =Mi([a,a;]Jy)+/ii(a?,[aJy]), 

which means precisely that the map lJii\gsxgt ' 55 ® Vt -* fl*+t+i is a homo- 
morphism of a-modules for every i > k and s.t > -h. We thus have proved 
the following proposition: 

Proposition 2.4. Let g = e^L/^ be a Z-graded Lie superalgebra and let 
a C gQ be a maximal reductive subalgebra of g^. Suppose that either a is 
semisimple or the center of a is Cc, where adc acts on ^ as j, for every j e Z. 
Then every filtered deformation ofg has a defining sequence {^i, ^2, • • •} such 
that fii(a, g) = 0 and ^ : gs <g> gt -> g8+t+i is a homomorphism of a-modules 
j for i = 1,2, • • •. 

In other words, Proposition 2.4 says that in every filtered deformation L 
of g one can choose a subalgebra a' C LQ which maps isomorphically to a un- 
der the map LQ -> g0 and one can choose a subspace Vj in L, complementar 
y to Lj+i for each j >-h such that a' C VQ and [a7, VJ-] C Vj. From this we 
obtain immediately the following (well-known) corollary, which takes care of 
the case when a has a non-trivial center. 
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Corollary 2.2. Let g = ®JL_t$j be a graded Lie superalgebra of depth h. 
Suppose that QQ contains an element c such that adc|g. = j. Then Q has no 
non-trivial filtered deformations. 

Prom now on we shall assume that g is transitive. 

Proposition 2.5. Let g = ®<jlz_hgj be a transitive graded Lie superalgebra. 
Suppose that {/xi, /i2j • -} is a defining sequence of a filtered deformation g€ 

of g. Then /^ is compieteiy det ermined by its restriction to g_ x g. 

Proof.    Let a, b G go and x £ g_. We have 

oo 

[x, [a, 6]c]c   =    [re, [a, 6]]€ + ^[x, ^(a, 6)]ee2 

=    [x, [a, 6]] + [a?, ^i(a7 6)]e + pi(x, [a, b])e + o(e2). 

Now obviously 

[x, [a, 6]c]c   =    [[«, a]c, 6]c + ?(«, a)[a, [x, 6]e]e 

=    [[x, a], 6] + p(a:, a)[a, [a?, b}] + /xi([a;, a], 6)e + [/xi(a:, a), 6]e 

+   p(x)a)[a,^i(x,6)]e +p(a;,a)/ii(a, [x,6])e + o(e2). 

Hence 

[a;,/xi(a,6)] +/xi(x, [a,6])    =   /zi([a,a],6) + [^i(x,a),6] 

+   p(a:,a)[a,/xi(a:,6)]+p(a:,a)/ii(a,[a;,6]).  (2.7) 

By assumption Mi|g_xg is known. Hence the only term in (2.7) that is not 
determined is /xi(a,6). However, since g is transitive, /Lti(a, 6) is uniquely 
determined by (2.7). Thus /xi|g0xg0 is determined by Mi|g_xg- 

Now suppose that a G go and b G g^. We will argue inductively. Suppose 

that IJ'i\9_xQ,IJ>i\Q0xQ0r-,V'i\g0xak-i are uniquely determined. Prom (2.7) 
again we see that the only term that is not deter mined is /xi(a, 6). By 
transitivity again /ii(a, 6) must be uniquely determined. Hence ^i|g_xg and 
A^ilgoxg are uniquely determined. 

Now suppose that a, b G gi- Again from (2.7) and transitivity we see that 
/ii(a, 6) is uniquely determined. Similarly Milg^g is uniquely determined. 
Proceeding this way we see that /xi is uniquely determined by ^i|g_zraesg. 

Now 1^2 satisfies equation (2.7) up to a function depending only on HI 

by (2.3). Since fii is already uniquely determined, we may proceed as before 
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to show that ^2 is uniquely determined by /^Ig.xg and /zi. Similarl y /Z3 
satisfies equation (2.7) up to a function depending on Hi and ^2. Hence ^3 
is uniquely determined by HZ\Q_ xg, A^i and ^2 etc. This completes the proof. 
□ 

Proposition 2.6. Let $ = ®JL_hQj be a transitive graded Lie superalgebra 
such that {//i,/Z2> * * •} and {//i,/4>' "} define two filtered deformations of 
Q. Suppose that ^Ig.xg = Milg.xg for i < k and Mfcls_xg_ = Mfcta-xg. for 
some k > 1. Assume that g is a full prolongation of g<0 of degree k. Then 
gf

6 has a defining sequence {(j,", ^2? * * *} suc^ ^a^ A4? = Vi) for z = 1, • • •, /u. 
Furthermore l^i\g_xg_::=fJ'i\g_xg_ for all i. (In other words ge and gr

e have 
defining sequences that coincide up to the k-th term an d coincide when 
restricted to g_ x g_.) 

Proof. Let a G 0o and x G 5_. By Proposition 2.5 it follows that ^ = ^ 
for i < k. Now from this, the fact that (/Zfc — Mfc)b_xg_ is identically zero 
and (2.5) it is easy to see that the map fa'-g-^g defined by 

/*(») := ^(a, a:) - /4(a, a?),    rr G 0_ 

is a Spencer 1-cocycle. Hence by hypothesis there exists an element va G g 
such that fa{x) = [va,x], for all x G g_. Now set Po(a) = a "" va^ki for all 
a G 0o- ^ follows that 

[Po(a)>*]6    =    [a,x] + YlVi(a>xy 
i<k 

+   nk{a,x)ek + ^^/(a,x)e\Va G 00^^ ^ fl— 
i>k 

Next let 6 G 0i and x G 0_. Using the fact that (/^ — /z^), restricted to 
0_ x 0_ and g_ x g0, is identically zero, that ^ = ^^ for i < k and (2.5) we 
may again show analogously that the map /£ : g_ -> ^ given by 

/6
fc(:r) := ^(6, a;) - ^(6, a:),     a? G 0_ 

defines a Spencer 1-cocycle. In a completely analogous fashion we define the 
map p\ : gi —> g such that 

[^(6), x]'e   =   [b,x} + J2^(b,x)ei 

i<k 

+   Hk(b,x)ek + Y,Vi(b,x)e\    V6 G gu Va; G g_. 
i>k 
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Now p*-, for j > 2, are defined analogously. The sequence above, call 
it {MI,/^,-• •}, 0f course is a defining sequence for g7. We have m = n" 
for i < k and ^k\g_xQ = A^lg.xg- App lying Proposition 2.5 again we 
have fik = M^- Also since the subspace VL remains unchanged, obviously 
Milg.xg. = Milg_xg_-     □ 

The following is an important remark. 

Remark 2.3. In the proof of Proposition 2.6 the only place where full pro- 
longation is used is to find elements vaj which then allows us to define p1?. 
Now we may assume that /Xj|a x g = 0 for all j, where a is the maximal 
reductive subalgebra of (go)o> as explained earlier. Using this it is easy to 
verify that pf is an injective a-homomorphism. Hence the map a —>> va is 
an a-homomorphism. In particular, if H1*1 ($_]&) is a direct sum of irre- 
ducible a-modules that are not isomorphic to those irreducible a-modules 
that appear in the decomposition of g^j, then we may always find such v0's. 
Therefore the assumption of full prolongation of degree k may be repl aced 
by the weaker assumption of 

Homa(#%_;0))0(1)) = O,    VZ > k, 

and the conclusion of Proposition 2.5 remains valid. We will say that g is an 
almost full prolongation of g<o if Homa(fZ'z,1(g_; g), g^)) = 0 for all / > 1. 

Combining Remark 2.3 with Proposition 2.6 we have proved 

Theorem 2.1. Let g = ©^i^g^ be a transitive graded Lie superalge- 
bra. Let ge and g^ be two filtered deformations of g with defining se- 
quences {/xi, //2, • • •} and {fJ'iifJ'h - - *}, respectively. Suppose that /^|g_ xg_ = 
Milg-xg.j for all i > 1. If furthermore g is an almost full prolongation of 
g<0, then ge £ g'e. 

The next two corollaries generalize two results of Kobayashi and Nagano 
[KN]. 

Corollary 2.3. Let g = ®<jL_hQj be a transitive graded Lie superalgebra. 

Suppose that i?^2(g_;g)o contains no non-trivial go-invariant vectors and 
that g is an almost full prolongation of g<0 . Then g has no non-triviai 
filtered deformations. 

Proof. Let ge correspond to {/xi,/i2> * * }• By Propositions 2.2 and 2.3 we 
may assume that w|g_xg_ = 0. But then Theorem 2.1 tells us that g€ is 
isomorphic to the trivial deformation, nd 
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Corollary 2.4. Let L = L_h D • • • D L-i D LQ D LI D • • • be a filtered 
deformation of a transitive graded Lie superalgebra g = @^L_hgj. Suppose 
that $ is an almost full prolongation o f g<0. If there exists a Z-graded 
subalgebra V_ = ®j<oVj of L isomorphic to Q_ such that V_ +LQ = L, then 

Proof. The existence of the subalgebra V_ means that there exists a defining 
sequence {/n,^2, • ■ •} of L such that ^i\g_xg_ = 0 for all i. But since it is 
an almost full prolongation, Theorem 2.1 tells us that /x2- = 0 for all i.     □ 

Corollary 2.5. Let g be a transitive graded Lie superalgebra. Let ge and 
g't be two filtered deformations given by {^1,^23 • • •} a^d {/^IJ ^2* " '}> re~ 
spectively. Suppose that Ui\g_XQ_ = ^lg_xg_ for i = 1, •••, k — 1 and 

IIl>2(g_] g)o contains no g0-invariant vectors for I > k. If furthermore g is an 
almost full prolongation ofg^, then ge = rgf

e. 

Proof. By Proposition 2.6 we may assume that ^ = ^ for i = !,•••, k — 1. 
By formulas (2.5) and (2.6) it follows that (//& — ^)|g_x0_ is a go-invariant 
Spencer cocycle. Hence by Proposition 2.6 again we may assume that uj- = 
n'k. Proceeding this way we show that ^ = ^ for all i > k.      □ 

Proposition 2.7. [G] Let g be a transitive Z-graded Lie superalgebra such 
that g_2 contains a central element of g of parity S. If -H^^cb^-i)** — 0, 
then g has no filtered deformation L such tha t LQ is a maximal subalgebra. 

Proof. Let 1 denote this central element. Suppose that {/ii,/X2 • • •} is a 
defining sequence of a deformation ge = L of g. We will show that there 

exists a defining sequence {^1,^2 " "} 0^ L such that /4(l,0o) = ®' -^rom 

this it follows that 1 normalizes g^o) and hence LQ is not maximal. 

For a,b £ gQ we have by Jacobi identity 

[1, [a, b]e]e = [[1, o]e, 6]e + p(l, a)[a, [1,6]e]e. 

Collecting the coefficient of e we get 

^i(l, [a, 6]) = [^(l, a), 6] + p(l, a)[a,^i(l, 6)]. 

This means precisely that the map c : go ~^ B-i given by c(a) = ^i(l,a) is 
a 1-cocycle of go with coefficients in g_1. By assumption c is a coboundary, 
and hence we may add to 1 an element x in g_1 so that 

[l + ^,a]e = ^/2(l^)e2 + ^3)- 

This choice of VL2 gives the required defining sequence.      □ 
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Lemma 2.1. Let g = g + Cl be a transitive Z-graded Lie superaigebra, 
whicii is a centra] extension of a Z-graded Lie superaigebra by adding a 
central element 1 in degree —2 such that [0_i,g_i] = Cl. Then g i s the full 
prolongation of g<o, provided that g is the fuii prolongation of g<0. 

Proof. Let a : £_! + Cl —> Q be a derivation of degree > 1. Thus a : 
Q_I + Cl —> g. It suffices to show that a(l) = 0. Let x G g_i. Then 0 = 
aQa, 1]) = [a(rc), 1] H-p(a,a;)[a;,a(l)] =p(a, a;)[a;,a(l)]. Thus by transitivity 
a(l) = Al, A G C. But then A = 0, since a is of positive degree.      a 

3. Examples of Z-graded Lie superalgebras. 

In this section we will recall the definitions and list some properties of 
those Z-graded Lie superalgebras whose filtered deformations we are inter- 
ested in. Some of their properties are well-known and can be found in [S]. 

Let A(n) be the Grassmann superaigebra in the n odd indeterminates 
£L> £2? • • • > £n- Let xi, X21 - • •, xm be m even indeterminates. Set A(m, n) = 
C[a;i, • • •, xm] (g> A(n). Then A(m, n) is an associative commutative superai- 
gebra. Let W(m, n) be the Lie superaigebra of derivations of A(m, n). Then 
W(m, n) consists of elements of the form [Kl]: 

m r\ n r\ 

i=l   axl    i=l   a^ 

where f^gi G A(m,n) and -^ (respectively A-) is the even (respectively 

odd) derivation uniquely determined by ^(XJ) = Sij and drdx^j) = 0 

(respectively ^:{XJ) — 0 and -grX^j) = ^j). To each vector field D = 

Yd=\ fi-^ + E?=i 5^ we may associate its divergence by 

Let fi(m, n) be the superaigebra of differential forms over A(m,n) [Kl]. 
Consider the following differential form: 

u = ^da?id£i G n(n, n). 
i=l 

Define the odd Hamiltonian superaigebra [L] 

iJO(n,n) := {D G W(n,n)|Dcj = 0}. 
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The Lie superalgebra HO(ny n) is simple if and only if n > 2. 

The Lie superalgebra HO(n, n) contains the subalgebra of divergence 
free vector fields 

SHO'{n,n) := {D e HO(nyn)\divD = 0}. 

The derived algebra of SHO^n, n) is an ideal of codimension 1, denoted by 
SHO(nj n), provided that n > 2. SHO(n, n) is simple if and only if n > 3. 

In A(n, n) we can define the Buttin bracket by 

which makes A(n, n), with reversed parity, into a Lie superalgebra. It con- 
tains a one-dimensional center consisting of constant functions. The map 
A(n, n) —> HO(n, n) given by 

3    f^dxidh   v   ;    dtidxr 

is a surjective homomorphism of Lie superalgebras with kernel consisting 
of constant functions. Hence we may (and will) identify HO{n^n) with 
A(n) n)/Cl with reversed parity. In this identification we have: 

SHO'in.n) = {/ G A(n>n)/Cl| A(/) = 0}, 

where A = YA=I dxde ^s ^e 0^ Laplace operator, and SHO(n, n) is iden- 
tified with the subspace consisting of elements not containing the monomial 

By putting degz* = 1 and deg£; = 1 for i = 1,2, • • •, n the Lie superal- 
gebras iJO(n,n), SHO'(71,71) and SHO(n,n) become Z-graded Lie super- 
algebras of depth 1. Since [^,£7] = 5ijl we obtain, by adding Cl to degree 
—2, non-trivial central extensions of iJO(n,n), SHO'in^n) and 5i?0(n,n), 

denoted by HO(n,n), SHO (n,n) and SHO(n,7i), respectively. 

The 0-th graded components of 110(71, n) and HO(n, n) have a basis 
consisting of vectors of the form {xiXj}, {x^j} and {^j}^ for i,j = 
1,2, • • •, n. This is the Z-graded finite-dimensional Lie superalgebra -P(n) = 
P(n)_i + P(n)o + P(n)i (cf. [Kl]), where P(n)o = gin, P(n)-i = A2(Cn*) 
and P(n)i = 52(Cn), where Cn stands for the standard representation of 
gln. Their —1-st graded components have a basis consisting of {#;} and {^}, 
i = 1,2, • • •, n. Evidently the span of {xi} as a ^/n-module is isomorphic to 
Cn, while the span of {£;} is isomorphic to Cn*. 
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^ The 0-th graded components of SHO{n, n), SHO'in, n), SHO(n, n) and 

SHO (n,n) have a basis consisting of vectors of the form {xiXj}, {x^j}^, 
{xiti - Zi+i&+i}z<n and {&£}}#; for i,j = l,2,---,n. This is the Z- 
graded subalgebra P(n) of P(n) (cf. [Kl]), where P(n)o S «/n and P(n)_i S 
A2(C"*) and PCnJi S 52(C"), where C" stands for the standard representa- 
tion of sln. Similarly, their -1-st graded components have a basis consisting 
of {xi} and {&}, i = 1,2, • • •, n with the span of {xj isomorphic to Cn and 
the span of {&} isomorphic to Cn*. 

It can be shown that HO(n, n) and SHO'(n, n) are full prolongations of 
EJU(Ca*+Cfc)©P(n) and i:i=i(<Cxi+C^)®P(n), respectively [CK]. Thus it 
follows from Lemma 2.1 that HO(n, n) and SHO'{n, n) are full prolongations 
oiCl®Y,i=i(Cxi+Cti)<BP(n) and Cl©E"=i(Ca;i+cei)©P(n), respectively, 
as well. Consequently, in the case of SHO(n,n) and SHO(n,n) the only 
obstruction to being a full prolongation lies in degree n - 2. More precisely 
we have (I 6 Z+) 

Hl'\SHO{n, nU; StfOCn, n)) = 0,    / # n - 2, 

Hl<\SHO(n, n)_; 5ffO(n, n)) = 0,    Z ^ n - 2, 

Hn-2'l(SHO(n, nU; SHO(n, n)) = C^2 • • • ^, 

^n-2'1(^0(n,n)_;^0(n,n)) =^6 •••$„. (3.1) 

Let us denote the vector £"=1 sc^ in i?0(n,n)o by *. Other Lie superalge- 
bras that arise in the classification in [K3], and hence whose filtered deforma- 
tions we also need to consider are the following four series: SHO(n, n) + C$, 
SHO'(n, n) + C$, SHO(n, n) + C$ and SHO'in, n) + C*. 

Let xx,#2, •  •, Zn be n even indeterminates and ^x,£2, • • •,£„,£„+x = r 
be n + 1 odd indeterminates. Define the odd contact form to be 

n 

fi = dr + J^fodxi + ^i^i) € ft(n, n + 1). 
i=i 

The odd contact superalgebra KO(n,n + 1) is the following subalgebra of 
Wfon + l) [ALS]: 

iiTOCn, n + 1) = {D € W(n, n + 1)\DQ, = fDCt}, 

for some fD € C[r, xj, • • •, xn, &, ■ ■ •, £„]. The Lie superalgebra KO(n, n+1) 
can be realized as follows. We may define the odd contact bracket on the 
space A(n, n + 1) by 

\f,9] = (2 - E)A + (-1)^)^(2 - E)9 - £#-^ + (-1)P(/)^^) 
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where E = X!f=i(gf: + ^r) is the Euler operator. Reversing parity, A(n, n + 
1) with this bracket becomes a Lie superalgebra and the map A(n, n + 1) -> 
KO{n, n + 1), given by 

is a isomorphism of Lie superalgebras. Hence we may (and will) identify the 
Lie superalgebra KO{n, n + 1) with A(n, n + 1) with reversed parity. 

For ^ G C we let div^ = 2(-l)^-/r)(A + (J57 - n/?)^), where A is the odd 
Laplace operator. We set [Ko] 

SKO'in,n + 1;/?) = {/ € A(n, n + 1)| div^/ = 0}. 

This is a subalgebra ofKOfo, n+1) and is simple if and only if n > 2 and /? / 
1,I^. Let 5irO(n,n+l;^) denote the derived algebra of SKO'(71,12+1;/3). 
Then SKO(n, n + 1; /3) is simple forn > 2 and it coincides with SKO'(n, n+ 
1;/?) unless 0 = 1 01 0 = 2=2. The Lie superalgebra SKO(n,n + 1;1) 
(respectively SKO(n,n + 1;!^)) consists of elements not containing the 
monomial T£I£2 • • • £n (respectivel y £1^2 •••&»)• Note that SKO(n, n +1; £) 
is the subalgebra of KO(n, n + 1) consisting of divergence free vector fields. 

By setting degr = 2 and degxi = deg£z- = 1 for all i, KO(n, n + 1) and 
hence SKOfa^n + 1;/?) and SKO'{n,n + 1;/?) (since div/3 is homogeneous 
with respect to this gradation) become Z-graded Lie superalgebras. They 
are all of depth 2. In the case of KO(n, n+1) the 0-th graded component has 
a non-trivial center, namely Cr, and hence by Corollary 2.2, KO(n,n + 1) 
has no non-trivial filtered deformations. 

Now consider SKO(n, n + 1; /?) and SKO'in, n + 1; /?). The 0-th graded 
component is spanned by the vectors {xiXj}, {x^j}, {6^j}^j and r + fi^i 
where i,j = 1,2, •••,n and $ = X^Li^i- T^8 is the Lie superalgebra 
p(n) = P{n) + C(r + /?$). The —2-nd graded component is spanned by 
Cl, on which r + /?$ acts as the scalar -2. The -1-st graded component is 
spanned by the vectors {xi} and {&} for i = 1, • • •, n. With respect to P(n) 
this is the standard representation, and r+^$ acts on S?=i Ca;i (respectively 
XliLi c&) as the scalar -1 + 0 (respectively -1-0). It can be shown that 
SKOl(n,n + 1;/?) are full prolongations for all 0 [CK]. Hence we have: 
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Hl>\SKO(n,n + \\l)-x\SKO{n,n + \;\))=fi,    I ^ n, (3.2) 

Hl^(SKO(n, n + 1; ^—-)_i; 5KO(n, n + 1; ^—-)) = 0,    / # n - 2, 
n n 

fP'H^A'OCn.n + 1; l)_i; SKO(n,n + 1; 1)) = Cr&fc • • ^n, 

if "-2'1(5KO(n, n + 1; ^:^)-i; 5KO(n, n + 1; —)) = C^^ • • ^«. 
n n 

Let Pi,P2,-",Pn,gi,g2r",9n be 2n even and Ci)6r--^m be m odd 
variables. Consider the differential form 

n m 

cr = ^ dpidgi + ^ dfid& G fi(2n, m). 
i=l i=l 

Define the Hamiltonian superalgebra to be [Kl] 

ff(2n,m) = {.0 6 W(2n,m)\Da = 0}. 

It is a simple Lie superalgebra for n > 1 and m > 0. 

Let A(2n,m) = C[pi,--- jPn)?!)"- )9n] ® A(m). For /,3 G A(2n,m) we 
define the Poisson bracket 

As before A(2n, m) with this Poisson bracket is a Lie superalgebra. The map 

defines a surjective homomorphism of Lie superalgebras from A(2n, m) onto 
H(2n,m). The kernel of this map consists of constant functions so that 
we may (and will) identify H(2nJ m) with A(2n, m)/Cl. By putting degpi = 
degqi = 1 and deg^- = 1 for i = 1, • • •, n and j = 1, • • •, m H(2n1 m) becomes 
a Z-graded Lie superalgebra of depth 1. 

The 0-th graded component of H(2n, m) is the Lie superalgebra spo(2n, m). 
Now 5po(2n, m)o has a basis consisting of vectors of the form {piPj^PiqjjqiQj} 
for i,j = 1, • • •, n and {^fj}^ for 2,7 = 1, • • •, m and hence is isomorphic to 
the Lie algebra sp2n © som. spo(2n1m)i has a basis consisting of vectors of 
the form {pi^j, qi£j} for i = 1, • • •, n and j = 1, • • •, m. Its span is isomorphic 
to the sp2n ® som-m odule C2n (8) C971, where C2n and Cm are the respective 
standard representations of sp2n and som. H{2n, m)_i has a basis consisting 
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of vectors of the form {pi, <&} and {£/}, i — 1, • • •, n and j = 1, • • •, m. E 
vidently the span of {viAi) is isomorphic to C2n, while the span of {^} is 
isomorphic to Cm. It is the standard representation of spo{2n,m)^ denoted 
by C2nlm. 

Finally if (2n, m) is the full prolongation of the pair C2nlm © spo(2n, m) 
[CK]. 

4.  Calculations of Spencer 2-cocycles and triviality of filtered 
deformations of SHO(n,n), iJO(n,n), H(2m,n) and SKO(n,n + 

In this section we will apply the results obtained in Section 2 and start 
our investigations of filtered deformations of those graded Lie superalgebras 
discussed in Section 3. Due to Proposition 2.2 our first step should be to 
find gQ-'mva,iia,nt Spenc er 2-cocycles. However, because of lack of complete 
reducibility of g0-modules in general, we will restrict ourselves to the even 
part a = (00)0 of 00* ^0T which we do have complete reducibility (in all our 
examples). So our task w ill be first to look for all a-invariant vectors on 
the level of 2-cochains and then determine which of those vectors indeed 
satisfy the 2-cocycle condition. To find a-invariant 2-cochains we will first 
need the a-module structure of gj and then use this to find all the trivial 
a-modules that appear in A2(g*_) ®gj. So our first task will be to determine 
the a-module structure of gj for every j. 

Consider the Lie superalgebra g = SHO^n^n)^ for n > 3. As usual we 
will write gj for its j-th graded component. Here a = sln and we denote by 
R(52i kiiTi) the irreducible sZn-module with highest weight J2i h^ij where TT^ 

is the i-th fundamental weight of sln. Below we will list the structure of gj 
as sZn-modules and also include explicitly a highest weight vector. 

0_i       : {-Rfri), xi}, {i?(7rn_i), fn} 

£,0       :{i?(27ri),a?}, 

{i?(7ri+7rn_i),a;i£n}, 

{-R(fln-2)j?nCn-l} 

Si        : {i?(37ri),«?}, {i?(27ri + 7rn-i), sfc,}, 

{i?(7ri + 7rn_2), ^l^n^n-l}, 
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Sn-2       : {-R(n7ri), xf}, {B((n - IJTTI + 7rn_i), a;?"1^}, 

{B((n - 2)7ri + 7rn_2), a?r2^n-i}, • • •, 

{i?(27ri), Xi^n ' ' * 6}, {^(0), ^n-l • • • il] 

fln-1 • {#((* + 1)^1), ^1+1}7 {^(^1 + ^n-l), ^l^n}, 
{i2((n - l)7ri + 7rn-2), ^"^n^n-l}, ' ' • , 

{iJ(37ri),xfoi---&} 

Note that the structure as an 5/n-module of SHO{n, n) is exactly the same 
except that the component {i2(0),£n£n_i • • • £1} is removed in 0n_2- 

For i = 1, • • • ,n let faOi G gULi be such that fi{xj) = <Jy, /i(^j) = 0, 
^(XJ) = 0 and di(€j) = <5y. Note that since the map A(n,n) -> HO{n,n) is 
odd (see Section 3), we have to rever se parity in A(n,n) in order to get the 
correct parity. Hence p(/j) = 1 and p(6i) = 0. Evidently the span of {/<} 
is the 5/n-module i?(7rn_i) with highest weight vector /n, while the span of 
{6i} is i?(7ri) with highest weight vector 0\. So using our notation A2(g!!L1) 
consists of the following irreducible components with highest weight vectors: 

n 

{fl^TTn-!), /2}, {^(TTx + TTn-i), «!/„}, {R^), 0M, {fl(0), ^ /A}. 

So to find trivial 5/n-modules in A2(tfLl) ® 0j we need to find modules in the 
table above that are contragredient to these modules in A2

(Q*_1). 

Let g = SHO(n,n) or g = SHO'in.n) n > 3. In the case when n = 3 
g_i = i?(7ri)®i?(7r2). Hence there exits a trivial sZa-module in A2(g!_1)(8)g_1, 
given by the vector YA=I 6i®xi) where 9* stands for the Hodge dual of hetdi. 
However this vector is odd, hence it cannot give a deformation. For n > 3 
there are no trivial sZn-modules in A2(g!.1) ® Q_1. 

Now for n > 3 we have the following linearly independent sZn-invariant 
vectors in A2(g!_1) ® g0: 

Ci      =     Ylfifj^XiXj, 
hi 
■t n—1 

C2     =     - ^(fA - fi+lOi+l) ® (Xi€i - ^i+l^i+l) 
2i=l 
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i<j 

But 01,02,03 are all odd vectors, hence they cannot give deformations. 

In A2(£(!_1)®07Z_2 we have the following sZn-invariant vector in SHO(n, n): 

hi 

where £| again denotes the Hodge dual of £j. However, 

rfci(fi,a:i,a?i) = -[$i,xi€l] ^ 0. 

Hence ci is not a cocycle. In the case of SHO'(n,n) there is an additional 
sZn-invariant vector in A2(g!_1) ® gn_2 that is not proportional to ci, namely 

n 

i=l 

It is subject to direct verification that ci + C2 is an even Spencer cocycle for 
n even. For n odd, obviously ci and C2 are both odd. We summarize the 
above computation. 

Proposition 4.1. 

Hl*{SHO{n, n)_i; SHO{n, n))s^ =0,    n > 3, 

Hl>2(SHO'(n, n)_i; SHO'in, n))fn - 0,    n > 3, Z ^ n, 

Hn*{SHO'{n, n)_i; SHOf(n, n))$n = C,    n > 3, n even, 

Hn>2{SHOf(n, n)_i; SHO'in, n))$n =0,    n > 3, n odd. 

Prom the structure of SHO(n, n) as an s/n-module given in the above 
table, we see that the trivial sZn-module doesn't appear in the decomposi- 
tion of 5ifO(n,n), for n > 3. Hence by (3.1) SHO(n,n) is an almost full 
prolongation and so by Corol lary 2.3 we obtain 

Theorem 4.1. SHO{n, n) has no non-trivial filtered deformations for n > 
3. 

Next consider the case of SHO,(2,2). In this case the maximal reductive 
subalgebra of QQ is 5/2-   Denoting by R(k) the irreducible s^-module of 
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highest weight k G Z+, SHO'(2,2) decomposes as an 5/2-module as follows: 

91    :    {RWtxlhWUih} 

gk    :    iR{{k + 2)),xi+%{R{(k + 2)),xplZ2} 

A2^) ^ {B(2) J2
2}©{i?(2)J/2ei}e{li(0),/iei + /2fl2}e{i2(0),M2}. 

Here as usual fi{xj) = 6ij and ^(^j) = <S»j, i,i = 1,2. 

Thus ij(0) can appear in A2(g!.1) (g) 0 only in degree 2, i.e. in A2{g*_i) ® 
g0. The following linearly independent vectors span the even s^-invariant 

subspace in A2(£|!!Li) 0 0o: 

ci    =   /i/2®(a?i^i-a?26)-/i®a?i& + /2®^i, 

C2   =   (/1 ^1-/2^2)® ^1^2 -/i02®a;i + /20i®*2> 

C3     =     (/l01 + /202)®^2. 

Compute 

rfci(^i,&,xi) = 0, 

dc2(ei,6,xi) = -Ki,-^] + [6,^2] = -3xi ^ 0, 
dc3(ei,6^i) = K2,fi6]=0. 

Hence any cocycle must be a linear combination of ci and C3. Now dci(^i, a?i, 
a?i) = [6^16] = -6 7^ 0. One checks easily that ci - 2C3 is a Spencer 
cocycle. This calculation also shows that SHO{2,2) has no non-trivial sfe- 
invariant Spencer 2-cocyles. Thus we arrive at 

Proposition 4.2. Proposition 4.1 holds for SHO,(2,2) and £#0(2,2) as 
weii. 

Consider now g = SHO(n,n). We will now compute Hki2(g_]g)^ln. Let 

ck E i?fc'2(0-; fl)j'n. Recalling that g_ = CI 0 0_i, cfc can be written as 

-2,-2 ,    -2,-1 ck = ck '     +c + Ci 
-1,-1 

where c^2' 2 : CI x CI -> g^, cfc  '      : CI x g.x ^ gk_3 and c^ 
-1,-1 

g.ixg.x -» gA._2 are bilinear maps. It follows from the fact that 1 is central 
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and transitivity that c~2,~2 = 0. Hence 

-2,-1   ,     -1,-1 ck = ck        +ck 

Now both ck   ~   and ck   ~   are 5/n-invariant. We have investigated ck   ~ 
in our computation Spencer 2-cocycles of 5i?0(n, n). Now we need to inves- 
tigate ck   ~ . Prom our table of sZn-module structure of SHO{n^ n) a bove, 
ck '     can be non-zero only for k — 2 and k = n. Let 1* denote the dual to 

 o  -i 

1. Then we have the following choices for a non-zero ck '    : 

For k = 2: c^"2'-1 is a linear combination of Y2=i ^ fi®xi and YJi=i 1*0*® 
&. However, both vectors are odd. So this cannot happen. 

For k = n: c~2~l is a scalar multiple of 

2=1 

where as usual £? is the Hodge dual of &.   In this case we see from our 
previous calculations that c"1'-1 is a scalar multiple of 

Cl =Yjfof3®X£*3 

We know that ci is not a cocycle. However, it is easy to verify that ci + C3 
is a non-trivial Spencer cocycle. Thus we have 

Proposition 4.3. Let n > 2. Then 

n. Hl>\SHO(n,n)-]SHO{n,n))%n =0,    I ^ 

Hn>2(SHO(n,n)_; SHO(n,n))sJ» = C,    n even. 

Hn^(SHO(n,n)^SHO(n,n))lln =0,    n odd. 

Now consider g = SHO (n,n). In this case the calculations of Spencer 
cocycles is analogous to the case of SHO{n,n). We write an element ck G 
Hk,,2(%_',Q) as ck — ck ~ +ck ~ . As before ck ~ is non-zero only for k = 
2, n. When k = 2 this cannot happen as in the case of SHO(n, n). For k = n 
we conclude as before that c"2'-1 is a scalar multiple of C3 = J2?=i 1*/* ® £?■ 
However, there are two other linearly independent 5/n -invariant cochains 
of degree n, as we have seen in the computation of SHO'{n,n), namely 

^1 = Ezj fifj ® ®»^ and c2 = E?=i /i^i ® f 1 • • ■ fn- There are two ^nearly 
independent cocycles in the span of the se three vectors, namely ci + C2 and 
ci + C3. However, C2 — C3 = d6, where b is the Spencer 1-cochain defined by 
6(1) =&•••&» and fifo-xHO. 
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Proposition 4.4. Let n>2. Then 

Hl'2(SHO'(n,n)-;SHO'(n,n))iln =0, l + n. 

HnHSHO'{n,n)_; SHO\n, n))^n = C, n even. 

Hn<2(SHO'(n,n)-;SHO'(n,n))sJn = 0, n odd. 

We will now consider HO(n,n). Here the even part of 0o is flfn- First 
we will assume that n ^ 2,4. As an sZn-module HO(n,n) decomposes as 

follows (* = E?=i*i6): 

g_1 : {R(Tr\),Xx},{R(Ttn-\)An} 

go       :       {B(2iri), a??}, {^(TTI + 7rn_i), xi^n}, {i?(0), §}, 

{iJ(7rn_2),^n^n-l} 

fll       :       {E(37ri),a;f},{il(27ri+7rn_i),x^n},{^(vri),a;i$}, 

{^(Trx + 7rn_2),a;i^n^n-i}, {R(nn-i),£n§}, 

{R^n-z), £nt,n-\£,n-2} 

02        :        {iJ(47ri), xf}, {^(STTX + 7rn_i), xf^n}, {^(2^), «?*}, 

{il(27ri + 7rn_2), xf^n^n_i}, {i?(7ri + 7rn_i), :ri£n$}, 

{il(7ri + 7rn_3), Xi^n_i^n-2}, {R(Ttn-2), ^n-l^n-2*}, 

{i?(7rn_4), ^„^„-l^n-2^n-3} 

0n_2       :       {U(n7ri), x?}, {U((n - 1)^ + 7rn_i), x?"1^}, 

{i?((n-2)7r1))xr
2$})---, 

{I2(27n), a;i^n • • • 6}, {^(^2),^ • • • 6*}. 

{#(0),£n£n-l---6} 
S,,,!       :       {iJ((n + l^i), xj+1}, {^(nTn + 7rn_i), x^n}, 

{i?((n - IJTTI), x?"1*}, • • •. {^(3^i), ^i^n • • • 6}, 

{.R(7ri + Tra), xi^n • • • $3$}, {.R(7ri), xi£„£„_i • • • ix) 

gn        :        {i2((n + 2)7r1)Ix?+2}> 

{R{{n + IJTTI + TTn-i), x?+1&,}, {^(nTn), x^}, • • •, 

{i?(47r1),xfen---6}, 
{iJ(27ri + 7r2), x^n • • • £3$}, Wvn), x?$„e„-i • ■ • £1} 

A2^!) = {i2(27rn-i),/2} 0 {i2(7ri + Vn-ilfnh} © {^2)^1^2} © 
{i?(0), S?=i /«^i}i where as before /< and ^ are the corresponding dual basis 
to Xj and & , respectively. 
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For n = 3, there is a ^/3-mvariant vector in A2(g!_1) ® g.x, namely 
Z)iLi Qt ® xii where ^* is the Hodge dual to 0,-. However, this vector is 
odd. For n > 3, there are no non-zero ^/n-invariant vectors in jh?(tfL\)®Q-\ 
by inspection of the table above. 

For n > 3 there are four linearly independent sZn-invariant cochains in 
A2(gl1) ® 0O. However they are all odd. 

Consider now the sZn-invariant cochains in A2(0!_1) ® 02- They are all 
linear combinations of the following vectors: 

ci    =   '*r/fifj®XiXj$, 
hi 
1 n—1 

2*=i 

*<i 

Compute 

dci(a;i,rci,a;i) = — 3[a;i,a;2$] = — 3x1 ih 0? 

rfc2(a?i,a;i,aji) = 0, 

dcz{x\,x\,x\) = 0, 

rfci(fi,f2,6) = o, 
**(&,&, 6) = 0, 
dcaK i,6,&) ^ 0, 

^2(6^1^1) = [^1^16 -Z26] =^1 7^0. 

Therefore there are no cocycles in the span of ci, C2 and C3. Hence there are 
no #Zn-invariant Spencer cocycles in A2(0!_1) (8) 02- 

Consider now the sZn-invariant cochains in A2(£(!.1) ® 0n_2- They are all 
linear combinations of the following vectors: 

hi 
n 
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It is evident that $ acts non-trivially on ci and C2, hence these vectors are not 
g/n-invariant. Hence there are no <7Zn-invariant non-trivial Spencer cocycles 
mA2(fl!.1)®gn.2. 

Finally there is an s/n-invariant cocycle in A2(0l1) ® 9rl, namely 

hi 

But obviously c is not g/n-invariant. 

Next consider H0(4,4). The 5/4-invariant cochains in A2(9l1) ® QQ and 
A2(0!_1) ® 04 are as in the general case and the same argument applies. 

There are five cochains now in A2(0!_1) ® 02 > namely 

ci    =   J2^fj®XiXJ^^ 
hi 

1   3 

C2    =    T ^(/»0i - /i+i^i+i) ® (^6 - ^i+l^i+l)* 
Zz=l 

i^i 

*<i 

C4   =   Yshfi^^h 
hi 

4 

C5     =     (E/^)®ei6^4. 

(Recall that £j denotes the Hodge dual as usual.) However, C4 and C5 
are not 5f/4-invariant, and we have seen earlier in the general case that there 
is no cocycle in the span of ci, C2 and C3. 

Finally consider #0(2,2). In this case the s^-module structure of 
#0(2,2) is as follows: 

8.!    :    {12(1), xi}, {12(1), &} 

go    :    {12(2), z2}, {12(2), x1&},{12(0),*}J{12(0)^i&} 

0!    :    {12(3),^},{12(3),a:26},{l?(l)^i$}, 

{12(1), x&h} 

02    :    {12(4), *?}, {12(4), xjfe}, {12(2), x2*}, {12(2), ^16} 
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9k    :    {R(k + 2),xk
1+

2},{R(k + 2)Jx
k

1+%}, 

{R(k),x$*},{R(k),xUit2} 

A
2
(0*-I) = {i?(2),/2

2} e {R(2)j291} e {^(0),/^! + f2e2} e {^(o),^^}. 
Here as usual f^Xj) = (% and 0^) = Jy, ij = 1,2. 

In A2(0!.1) ® g0 the even 5/2-invariant cochains are in the span of the 
following vectors: 

ci    =   /1/2 ® (^1^1 - ^26) 

-  /i2®^i6 + /22®^i, 
C2     =     (flOi - f202) ® £122 

^3     =     (/l01+/202)®£l&, 

However, none of them is ^-invariant, as is easily seen. 

In A2(Qti) ® B2 ^e even 5Z2-invariant cochains are in the span of the 
following vectors: 

C2     =     (fl0l-f202)®X1X2ZlZ2-fl02<8>xlZ1Z2 + f20l®xl£1$2- 

Compute 

dci(xi,xi,xi)    =   -3[a;i,a^$] ^ 0, 

dc2(xi,xi,xi)    =   0, 

<M£i,6,zi)    -   -3a?i^2^0. 

Hence there are no even ^-invariant cocycles in A2(gti) ® 52• Thus we 
have proved 

Proposition 4.5. 

H^iHO^^HOin))!1" =0,    I > 1; n > 2. 

Recall that HO(n, n) is the full prolongation of g<0. Hence by Corollary 
2.3 we obtain 
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Theorem 4.2. iTO(n, n) has no non-trivial filtered deformations for n > 2. 

.'• 

Remark 4-1- Let g be either SHO(n,n), SHO (n,n) or HO(n,n) and let a 
be its maximal reductive subalgebra with respect to which we have decom- 
posed g. For n T^ 3 it is clear from the a-module structure of g that the 
a-module QQ ® Q_I has no trivial a-component in its a-module decomposi- 
tion, and hence it has no trivial 0o"subquotient in its go-composition series. 
Therefore -H'1(goj0-i) — 0- ^ follows from Proposition 2.7 that g has no 
filtered deformation L such that LQ is a maximal subalgebra. In the case 
when n = 3, the vector 1 and the trivial sZn-module in go®g_i have opposite 
parity, and so Proposition 2. 7 takes care of this case as well. In fact it can 
be shown directly that HO(n,n) has no non-trivial filtered deformations at 
all. However the remaining two cases do possess non-trivial filtered defor- 
mations which turn out to be interesting. Thi s is the reason why we have 
calculated Spencer 2-cocycles of SHO(n, n) and SHO (n, n) in Propositions 
4.3 and 4.4. 

In the next two remarks we will deal with the Lie superalgebras SHO(n, n) 

+C$, SHO'in, n) + C$, SHO{n, n) + C$ and SHO*(n, n) + C$. 

Remark 4.2. Let g be either SHO(n,n) + C$ or SHO'{n.n) + C$. Here 
the maximal reductive subalgebra a of g0 is of course gln = sln + C$. As in 
Remark 4.1 it follows from Proposition 2.7 that g has no filtered deforma- 
tion L such that LQ is a maximal subalgebra. Actually one can show that 
SHO{n,n) +C$ has a unique non-trivial (non-simple) filtered deformation, 
while 5.ffO (n, n) + C$ has no non-trivial filtered deformations at all. 

Remark 4.3. Let g be either SHO{n,n) + C$ or SHO'in.n) + C$. Our 
computations of Spencer 2-cocycles oiHO(n, n), 5i?0(n, n) and SHO'{n) n) 
above also show that g has no non-trivial Spencer 2-cocycles. Namely, the 
computation for iJO(n,n) shows that all Spencer 2-cocycles of g of degree 
2 are odd and so cannot give rise to filtered deformations. Also it is easy to 
check that the unique non-trivial Spencer 2-cocycle of SHO'fo, n) of degree 
n cannot be invariant u nder the action of $. Thus if {/ii, 1^2, • • •} is a defining 
sequence of a filtered deformation ge, then we may assume that fii vanishes 
for all i when restricted to g^. In particular it follows that [fl_i,fl_i]c has 
trivial projection onto C$. Now for n ^ 3 the trivial sZn-module does not 
appear in go ® g_i and hence [go,0-i]e projects trivially onto C$. When 
n — 3, [go)fl-i]c Pr ojects trivially onto C$ due to parity reason. Of course 
[flijfl-ile projects trivially onto C$. Therefore [g,g]e projects trivially onto 
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C$ and hence g6 cannot be simple. Again here one can determine all non- 
trivial filtered deformations. It turns out that SHO(ny n) + C$ has a unique 
non-trivial (non-simple) filtered deformation, while SHO'in, n) + C$ has no 
non-trivial filtered deformation at all. 

We shall next consider SKO^n.n + l]^) and SKO(n,n + l;/3). Here the 
even part of g0 is gln. As an s^-module SKO^n, n+1; /?), (3 ^ 1, decomposes 
as follows (as usual we include a highest weight vector and $ = Y^=i xi£i): 

go    :    {iJ(27ri), a??}, {^(TTI + 7rn_i), a;i^n}, 

{R(0),T + iS*}, {72(^-2), ^n-l} 

9!    :    {iJ(37ri), a;f }, {i?(27ri + 7rn_i), a;^n}, 

{-R(^)^i(r+^^*)}l n + 1 
{R{7ri + 7rn_2), ^l^n^n-l}, 

{^n-i),^(r+^£^$)}, 

{i?(7rn_3), £„f„_i£n-2} 

B2    :    {i2(47ri),xj},{il(37ri+7rn_i),x?eri}, 

{R(2lTi + 7rn_2), ^i^n^n-l}7 

/3n — * 
{R(7ri + 7rn_i), a:i4n(T +  

n 
{R(7ri + 7rn_3), xi^n^n-1^-2}, 

{it(7rn_2Mn-Kn-2(T +  ~ 
n — l 

0n-2    :    {^(nTrO^^^jR^n-ljTri+Trn-i)^?  ^n}, 

{it((n-2)7r1)>grV+^^2^)}---> 
{i2(27ri),a;ifn ■•.&}, 

{it;(o),Un-i---ei} 
fe-1     :     {-R((W + lkl)> ^l^}) {i2(w7ri + 7rn-i), xJCn}, 

{i?((n - 1)711), xr\r + ^Z^ + i$)}j..., 



S. CHENG, V. KAC 1171 

{^(7r1+7r2),x1en---6(r+^n~3
n + 1^)}, 

{R(*i),Un-i ■ ■•Mr + /?n~i
n + 2$)} 

0„    :    {i?((n + 2)7r1))x^
2},{i?((n + l)7r1+7rn_1),^

+1e„}, 

{i2(„7r1),x?(r + ^=^#)},..-, 

{i2(47ri), xf$» • • • 6}, {^(27ri + 7r2), a;f^n • • • &(T + ^j^^h 

{R(2n1),x1Un-i ■ --Ur + ^Y^^)} 

fln+i    =    {i?((n + 3)7ri),4
+3},{JR((n + 2)7r1+7rn_1),x^-t-2U, 

{JJ((n + 1)*!), Z?
+1

(T + ^=^Ili*)}, • • •, {£(5^), x^n • • • 6}, 

{RiZm + n2),xUn ■ ■ ■ 6(T + ^n~n~1$)}, 
o 

{^(STTO, xf^^x • • • 6(r + /?n~W~1$)} 

In the case when 0 = 1 an extra component {.R(0),T£„£„_I • • -^i} is in- 
cluded in gn. The structure of SKO(n, n + l;/3) is then easily derived from 
(3.2).   AV_)  ^ {i^TTn-x),/2} e {Rfa + TTn-x),/,,^} 0 {i2(7r2),0i02} © 
{£(*„_!), l*/n} © {i2(7ri), 1*^1} © {R(0), 1*1*} © {JJ(O), E?=i M}, where 
/i , 0$ and 1* are the corresponding dual basis to Xi, & and 1, respectively. 
Below we will find <7Zn-invariant 2-cocycles. Just as for HO(n,n) the cases 
n = 2,4 again need to be considered separately, however, the analysis is c 
ompletely analogous and we will omit these cases. For our calculations below 
we shall need the following lemma, whose proof is straightforward. 

Lemma 4.1. Let f be a monomial in C[xi, • • •, xn, £i, • • •, £n] and Jet A 6 C. 
Let o(f) and e(f) denote the number of ^ 's and Xi ;s in /, respectiveJy. Then 

(i) [r + /?$, (r + A*)/] = ((1 - p)o(f) + (1 + /3)e(/))(r + A*)/. 

(ii) [(r + /3$), /] = (-2 + (1 - (3)o(f) + (1 + /3)e(/))/. 

For n = 3 there is an sZn-invariant 2-cochain of degree 1. However, as in 
the case of 710(3,3), this vector is odd. 

The sZn-invariant Spencer 2-cochains of degree 2 are all odd, and so are 
excluded. 
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There are six linearly independent sZn-invariant Spencer 2-cochains of 
degree 4. They are as follows: 

fifj®xixj(r + ——*), 

r~t n — I 

c6    =    1*1* ®(r + /?$). 

However, by Lemma 4.1 all these vectors have (r + /?$)-eigenvalue 4, and 
hence are not (^-invariant. 

We have three linearly independent sZn-invariant vectors of degree n, 
namely 

id 
n 

i=l 

ca = Er/i®^*, 
2=1 

where as usual £? is the Hodge dual of &. By Lemma 4.1 r + /3$ acts on 
these vectors as the scalar (1 — /?)n and hence they are (^-invariant if and 
only if /3 = 1. However there are two 1-cochains of degree n , namely 

i=l 

which are ^-invariant if and only if /3 = 1.   It is easy to check that dbi 
and d&2 are linearly independent and lie in the span of ci, C2 and C3.  But 
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dc2(£i)£i>#i) = —2^* 7^ 0 and thus there are no non-trivial cocycles in the 
span of ci, C2 and C3. 

Of degree n + 2 there are three sZn-invariant cochains, namely 

ci = E/^®^i(r + ^V^$)' 

i=l 

C3     =     l*l*®fi&---en. 

Note that they are even cochains if and only if n is odd. By Lemma 4.1 they 
are r + /^-invariant if and only if (3 = n^. Compute (/? = *&) 

dc3($i,a:i,a;i) = 0, 

dci(fi,a;i,l) = 0, 

dc3(^i,a:i,l)    =   $16 •••^n- 

Hence the space of cocycles in the span of ci, C2 and C3 is at most one. We 
will construct a cocycle of degree n + 2 in the next section. 

For (3 = 1 there exists an sZn-invariant cochain of degree n + 4, namely 

C=1*1*®T£16...£„. 

By Lemma 4.1 its (r + /3$)-eigenvalue is 4, hence it is not <7/n-invariant. 

We summarize our calculations above. 

Proposition 4.6 For n > 2 

Hl>2{SKO(n, n + 1; /?)_; 5KO(n, n + 1; /3))g'n = 0, VZ and /? ^ ^-^, 

H'l2(5iirO(n, n + 1; ^^)_; 5if 0(n, n + 1; ^:^))?B = 0, / 7^ n + 2, 
n n      u 

ffn+2'2(5KO(n) n + 1; T^-^)^,SKO(n, n + 1; ^i^))^" =€,71 odd, 
n n      u 

iyn+2,2(5^C)(n) n + 1; !L±i)_; 5XO(n, n + 1; !^:^))^n = 0, n even. 
n n      " 

Theorem 4.3.   The Lie superalgebras SKO(n,n + 1;/?) and SKO'{n,n + 
l;/3); for ft 7^ ^^ or n even, have no non-triviai filtered deformations. 

Proof.    We shall always assume that /3 ^ I^. We know that SKO'(n, n + 
1;/?) is a full prolongation, and hence by Proposition 4.6 and Corollary 
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2.3, it has no non-trivial filtered deformations. Since SKO(n,n + 1;/?) = 
SKO,{n1 n + 1; a) for /? ^ 1, ^^p, we are left to consider two cases. 

Now SKO(n,n + 1; n^)(i) contains no trivial sZn-module. Thus it is an 
almost full prolongation by (3.2) and hence Proposition 4.6 and Corollary 
2.3 take care of this case as well. 

Now consider g = SKO(n, n + 1; 1). In this case it is not an almost full 
prolongation. We need to go back to the proof of Proposition 2.6, from which 
and (3.2) it follows that if L is a filtered deformation of g, then L can be 
given a defining seque nee {ni,^,' * •} with the properties that l^i\g_xg — 0 
for i < n, )Un(0_,a) = 0 for a G go not lying in the trivial sZn-component 
and iJ,n(x,T + $) = A[T£I£2 • * '€n>x]) for all x ^ 9- and for some A G C. 
Furthermore by Proposition 4.6 we may also assume that fin vanishes when 
restricted to g_. Of course this only makes sense if n is even. Hence we 
may assume that n is an even integer from now on. For a fixed i we let 
b = €i(T + $) G fli, lying in the irreducible sZn-module i?(7rn_i). We then 
have for x € g_: 

[b,x]e = [b}x] + Vn(b,x)en + • • •. 

Taking x G 0_i we have ^n(&, x) C gn. But the irreducible sZn-modules -R(O), 
Rini + TTra-i) and i?(7rn_2) do not appear in 0n. Hence ^n(fr>£J-i) = 0 by 
Proposition 2.4. Using this fact we compute the Jaco bi identity of the triple 
xii €ji€i(T + $) for z T^ J and derive that A[r^i^2 • • • fn* ^j] = 0. Thus A = 0. 
Therefore ^n|0_xgo = 0. Now g^ only has one more trivial sZn-component, 
namel y fif2 • • * fn- However it has parity different from that of T£I£2 • • • £n- 
Thus we conclude that li>n\g_xg — 0- Now g is a full prolongation of degree 
n + 1, which combined with Proposition 4.6, allows us to a pply Proposition 
2.6 to conclude that L is a trivial filtered deformation.     □ 

We shall now consider the Lie superalgebra g = iJ(2n, m). Here (g0)o is 
isomorphic to a = sp2n © <som. With respect to a, g decomposes as follows 
(TTJ and TTJ are the respective fundamental weights of sp2n and som.): 

0-1 : iJ(7ri),i2(7ri) 

g0 : i2(27ri), i2(7ri) ® i?(*i), i?^) 

^ : iJ((fc + 2)7ri), R{(k + 1)^) 0 i?(^i), • • •, #(^+2) 

gm_2 • i?(m7ri), R{(m - IJTTI) ® i?(^i), • • •, i?(7ri) ® ii(7rm-i), i?(0) 
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gs : R((s + 2)^), R((s + IJTTI) ® ^(TTI), ■ ■ •, 
i2((3 - m + 3)7ri) ® i?(7rm-i), i2((fi - m + 2)^) 

Continuing using the notation adapted in Section 3, we let dpi, dqi for 
i — 1, • • •, n and d£j for j = 1, • • •, m denote the dual basis to p;, <& and £j, 
respectively. Then as sp2n © 5om-modules we have 

A2^) ^ fl^) 0 fl(0) © iJ(7ri) ® iJ(^i) © i?(2^i) © JJ(0), (4.1) 

where the two trivial components are spanned by the vectors YA=I dpidqi and 
YsiLi d^i, respectively. We need to make some further clarifications of (4.1): 
Rfa) = 0 if n = 1. Also jR(27ri) is understood a s follows: It is irreducible 
of highest weight 2ni only when m > 5. For m = 4 it is isomorphic to 
R{2) ® R(2), where 504 = 5/2 © sh- For m = 3 it is i?(4), where we identify 
503 with 5/2. For m = 2 it is isomorphic to C+ © C_, where £i£2 acts on 
the one-dimensional spaces C+ and C_ as the scalars 2^/—[ and — 2\/^T, 
respectively. For m = 1, it is empty. 

Note that all the modules are self-contragredient. Furthermore Rfa) 
doesn't appear in gk for any k. Also .R(7r&) are all non-isomorphic except for 
R^m-i) = R(ni). Finally the component R(2 pi^ in (4.1) is not isomorphic 
to i?(7rfc) in Qk for any k. From this it follows that the only sp2n © som- 
invariant cochains are: 

InA2^)®^: 

In A2(gl1)®gm_2: 
n 

Cl     =     (52dPidQi)®€l--€m, 
i=l 
m 

C2 = (52dZi)®Zi-'U, 
1=1 
n 

C3     =     Yl dPidZj ® Pitj + d(lid^3 ® Q&j > 
i=l 

where £!• as usual stands for the Hodge dual of ^. 

Suppose that m ^ 2. Now dco(pi,£i,£i) = 2pi ^ 0. Hence CQ is not a 
cocycle. On the other hand 

dci(£i,£i,£i)   =   0, 
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dtziZuZuti)   =   -SfxVO, 

Prom this it follows that the space of cocycles in A2
(Q*_1) ® 5m_2 is at 

most 1-dimensional. Let 

n 

b = Y^dpi <8)Pi€i -'(im + dqi<g> QiCl •' '€m> 
2=1 

It is an sp2n © 5om-invariant 1-cochain such that db E A2(0!_1) ® Qm-2 and 
db ^ 0. Hence any sp2n © 50m-invariant cocycle in A2(0!L1) (8) gm_2 must be 
a coboundary. 

Now if m = 2, then all four cochains appear in A2(0!_1) ® 0o- We have 

<M£i,£i,£i) = 0. 

Hence every cocycle must be a linear combination of Co, CI and C3. However, 

dco(pi,£i,£i) 7^ 0, 

dci(pi,$i,fi) = 0, 

dcz(pu€i,€i)   =   0. 

Thus any cocycle must be a linear combination of ci and C3. But we have 
seen from the general case that it must be a coboundary. 

Proposition 4.7. For n > 1 and m > 0 

iJ/'2(if(2n,m)_i;if(2n,m))^e50m = 0,    VZ. 

By Corollary 2.3, since H(2n, m) is a full prolongation, we arrive at 

Theorem 4.4. H{2n, m) has no non-trivial filtered deformations for n > 1 
and m > 0. 
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5. Existence and uniqueness of filtered deformations of 
SHO'fan), SHO(n,n) and SKO(n,n+ 1; *&). 

In this section we will construct non-trivial filtered deformations of the 
Lie superalgebras SHO(nJn)y SHO^n^n) and 5^0 (n,n), for n even, and 
for SKO(n,n + 1; ^±2), for n odd. Prom Propositions 4.2, 4.3, 4.4 and 4.6 
and Corollary 2.5 it follows that such filtered deformations are necessarily 
unique. 

Let g be either SHO(n,n) or 5^0 (n,n). As usual we identify g with 
a subalgebra in A(n,n) with the odd Poisson bracket. Recall that A(n) 
is naturally Z-graded so that we may write A(n) = ©"=0a(n)j. We let 

Q3 = 0 fl (Cjxi, X2, • • •, xn] ® A(n)J-)- 

Lemma 5.1. Let f G g3 withj > 1, wheregiseitherSHO(nJn)) SHO (n,n) 
or SHO'(n,n). Then [&& •••$„,/] = 0. 

Proo/. Note that we have [g\ 8i] C jj^"1. Hence [£& • • • fn, ^] C fln+i"1. 
In particular if j > 1, fofc • • • fn, 0j] C 0n. But gn = €^6 • • • & or fln = 
0. On the other hand we know that C£i£2 • • • £n doesn't lie in the derived 
algebra. Thus [&& • • ^n, /] = 0.      □ 

We define a super-skewsymmetric bilinear map /xn : g A g —> g of degree 
n as follows: 

Mn(/,P)    =    [Zi&'-tnyfg]    if/,5^00, 
PnUiQ)    =   0 otherwise. 

In g = SHO(n, n) or g = 5JTO (n, n) we define a new bracket [•, -je using 
this nn) i.e. we set 

[/,5]e = [/,5]+Mn(/,3)6n. (5.1) 

Proposition 5.1. The deformed bracket (5.1) defines a unique non-trivia] 
Gltered deformation of SHO{n,n) and SHO (n,n). 

Proof. It suffices to check the [-, -\€ is a Lie bracket. Since [•, '}e is obviously 
super-skewsymmetric, we only need to verify that the Jacobi identity is 
satisfied. 

Let g = SHO(n,n) or g = SHO (n,n). Recall that [•, •] is a Poisson 
bracket, which means that we have 

[h, fg] = [h, f]g + {-irWWWffog}. (5.2) 
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Here and below we mean by p(f) the parity of / as an element of the Lie 
superalgebra. So for example p(xi) = 1 and p(Ci) — 0- We remind the reader 
again that the Lie superalgebra HO{n,n) is isomorphic to the odd Poisson 
superalgebra A(n, n) with reversed parity, which accounts for the additional 
+1 in (5.2). We need to check 

[M/.sWe = [[h,f\e,g]t + p(h, /)[/, [h,g}e}€. (5.3) 

By Lemma 5.1 fj,n(a,iJ,n(b, c)) = 0, for a, b,c e g. Thus the left-hand side of 
(5.3) is 

[h, [/,<?]] + Mh, [/,<?]) + [h,fin(f,9)])en, 

while the right hand side of (5.3) is 

[[h,f],g]   +  P(h,f)[f,[h,g}} 

+   (»n([hj},g) + [fj,n(h,f),g] 

+   Pfo/KCMM) +P(h,m^n(h,g)})en. 

Thus (5.3) is equivalent to 

mun(h,[f,g]) + [h,nn(f,g)] = (5.4) 

Mn([fc, fig) + [t*n(h, f),g] + p(h, /)//n(/, [h,g]) + p(h, /)[/,/*„(/&,£)]. 

So we need to verify (5.4) for f,g:h G g. It is easy to see that if one of 
the f,govh lies in g-7, for j > 2, then the left-hand side and the right-hand 
side of (5.4) are zero. Thus we may assume that f^g^h G g-7, j — 0,1. Now 
it is as easy to see that if any two of the f^g^h lie in JJ

1
, then (5.4) gives 

again 0 = 0. Hence we may assume that either f^g^h G g0 or exactly one 
of them lies in g1 and while the other two lie in g0. We will consider those 
cases separately. 

CASE 1. /,#,/i G g0. In this case, noting that p(f) = p{g) = p(h) = 1 and 
[5

0,5
0] = 0 (5.4) reduces to 

[K Kl • ■ ■ £n, /<?]] = [fcl •••&.,/>/],»]- [/, Kl • • • fn, %]]• (5.5) 

Now the left-hand side of (5.5) equals 

[M6 •••&»,/]$] + [&,/&•■•£», 0]] = 
[^[^•••e»>/]]^+/[^[ei---e«^]]- 

The right-hand side of (5.5) is 

[& • ■ • ^ A]/, 5] + [AKi • • • in, /], 5] - [/, [6 • • • ^n, %] 
-[/,Mei---en,5]] = [[ei---en!/l],5]/ + M[ei---en,/],5] 
-[/, [£1 •••en,/*]k-M/,[£i •••£«, s]]- 
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Thus we axe to show 

[h,[ti---Zn,f]]9 + f[h,[h---Zn,9]]    =   [[Zi---Zn,h],g]f + h[[Zi-.-ZnJ],g] 

-    [f,[^---Uh}}9-h[f,[C1---U9}}- 
(5.6) 

But (5.6) is equivalent to saying that 

-Ki ■ • • £n, [/, h]}g - [6 • • • en, [h, 9}]f = /iKi • • • en, [/, </]]■ (5-7) 

But (5.7) is obviously true, since [go,00] = 0. 

CASE 2.  One of the /,<7,/i is in g1, while the other two are in g0.  We will 
assume that h G g1. Other cases are analogous. In this case (5.4) reduces to 

[h, [6 • • • en, fg]} = [6 • • • en, [h, f]g] + Ki • • • en, f[h} g}}. (5.8) 

(5.8) is equivalent to 

[h,[ti---Zn,f]9] + [h,mi---tn,9]] = [ei---en,[/i,/]]ff+^,/][ei---en,5] 

+     f[Zl'-'Zn,[h,9]], 

which in term is equivalent to 

[h,[Zi---Zn,f]]9 + [ti---Zn,f][h,9] + [h,mi---Zn,9] + f[h,[Zi---Zn,g]] 
-   [Zi---tn,[h,f]]9 + [h,mi'--Zn,g] + [Zi-'-tn,f][h,g] + m---Zn,[h,g]]. 

But this is equivalent to saying that 

f[[Si---Zn,h],g] + [[Z1.--tn,h],f]9 = 0, 

which is certainly true, since [£i • • • £n, h] = 0 by Lemma 5.1.      D 

Denote these filtered deformations of SHO(n: n) and SHO (n, n) by 

5fi"0(n,n)e and S'-ffO (n,n)c, respectively. SHO(n)n)€ is a simple Lie su- 

peralgebra. Now in 5iIO (n, n)€ 1 is no longer central. But it is easy to see 
that 1 — £i • • • £n is central. Dividing by the ideal C(l — £i • • • fn) we obtain a 
filtered deformation of S'jH"0/(n,n), which we denote by SHO,(n^n)e. The 
Lie bracket in 5-H'0/(n,n)e is given by: 

[/,ff]c = [ti'-tnjg],   figZQ0, 

[xi>€j]e = Sij^l '"Cm (5.9) 

[f,9]e = [/,ff],    otherwise. 
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Define a map p : SHO(n,n)e -> SHO'(n,n)e by 

P(f)    =   f,        f€9(-i), 

p(i) = 66 •••en. 

It is easy to see that p is an isomorphism of Lie superalgebras. We summarize 
our discussion above in the following theorem. 

Theorem 5.1. Let n > 2 be a positive even integer. 

(i) SHO'fo, n)€ with bracket given as in (5.9) defines a unique non-trivial 
filtered deformation of 5i?0'(n,n). It is a simple filtered Lie superalgebra. 

(ii) SHO(n,n)€ with bracket (5.1) defines a unique non-trivial filtered 
deformation of SHO{n,n). It is isomorphic to SHO'(n,n)e. 

(iii) SHO (n, n) has no simple filtered deformations. 

We define a deformed bracket on SKO(n^ n+l; n^) as follows (cf. [Ko]): 

[f,9]e     =     ([^l6---en,/5]+2Ml6--^n)^+2,/,5GC[^1,...^n], 

[/>5]€   =   [/>#]>    otherwise. (5.10) 

Note that [rftfa •••&», fo] + 2/tf i& • • • ^n 6 SKO(n, n + l; ^). 

Theorem 5.2 The deformed bracket in (5.10) defines a unique non-trivial 
filtered deformation ofSKOin, n + l; 2±2). 

Proof.    It remains to show that [•, -]e is a Lie bracket. Set 

Mn+2(/, 9)     =     [rf !& • • * fn, /»] + 2Ml6 ' * * fn,      /, 5 € C^i, • • • , #„], 

lin+2Ui9)   =   0,    otherwise. 

Note that ^+2(0*, ^+2(6, c)) = 0, for a, 6, c G SKO(n, n+l; 2^). Thus [•, .]c 

is a Lie bracket if and only if /xn+2 is a 2-cocycle of SKO(nJ n + l;I1^) with 
coefficients in its adjoint representa tion. Hence for f,g^h £ SKO{n,n + 
1; 2±2) we oniy nee(j to check identity (5.4). It is easy to verify that unless 
/, g and h belong to the ^/n-components generated by the highest weight 
vectors x\, x\£n and a?f(r + ^p^*) (see the table of SKO{n,n + l;/3) in 
Section 4) (5.4) gives the trivial identity 0 = 0. Also it can be verified 
directly that if two of the /, 5, h are not in C[a;i, • • •, #n], then (5.4) again 
gives the trivial iden tity. Hence we are to consider three cases. Namely 

(1) f,g,he<C[xu--,xn}. 
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(2) f,g G C[^i, • • •, flJn] and h is in the gZn-component generated a;^n. 

(3) /, 9 £ C[a;i, • • •, icn] and /i is in the g/^-component generated by Xi (r+ 
 JJ 
n+A; 

^w"fc$). 

Even though we don't have the Poisson bracket at our disposal, we have 
the following useful identity: 

Mn+2(/, 9) = [rftk " " " $n, /]fl + /[rfl6 * ' ' £n,£],      /,» € C[xi, ■ • • , Xn]. 

Note also that [r^i^2 • • * €m /]—0, if / lies in the <7/n-component generated by 
x![€n and [r^i^2 • • *, £n, g] + Zgtib ' • ^n = 0, if g lies in the 3Zn-component 
generated by XI(T + P™~k $). Using these identities the computation is sim- 
ilar to the one given in the proof of Proposition 5.1.     □ 
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