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Abstract 

We consider the compactification of the E$ x E$ heterotic string on a K3 
surface with "the spin connection embedded in the gauge group" and the 
dual picture in the type IIA string (or F-theory) on a Calabi-Yau threefold 
X. It turns out that the same X arises also as dual to a heterotic com- 
pactification on 24 point-like instantons. X is necessarily singular, and we 
see that this singularity allows the Ramond-Ramond moduli on X to split 
into distinct components, one containing the (dual of the heterotic) tan- 
gent bundle, while another component contains the point-like instantons. 
As a practical application we derive the result that a heterotic string com- 
pactified on the tangent bundle of a K3 with ADE singularities acquires 
nonperturbatively enhanced gauge symmetry in just the same fashion as 
a type IIA string on a singular K3 surface. On a more philosophical level 
we discuss how it appears to be natural to say that the heterotic string is 
compactified using an object in the derived category of coherent sheaves. 
This is necessary to properly extend the notion of T-duality to the heterotic 
string on a K3 surface. 
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1    Introduction 

Back in the neolithic period of string theory [1] it was realized that one of 
the simplest methods of achieving a fairly realistic model from string theory 
is to compactify the heterotic string on a Calabi-Yau manifold and "embed 
the spin connection in the gauge group". Such a compactification consists of 
using the tangent bundle of the Calabi-Yau manifold as the vector bundle on 
which the gauge degrees of freedom of the heterotic string are compactified. 
When this is done, certain nonperturbative aspects of the world-sheet field 
theory tend to simplify [2]. 

Not long after this proposal, in such papers as [3], it was realized that 
perhaps the tangent bundle did not play a particularly distinguished role in 
the compactification of heterotic strings. Having said that, the underlying 
conformal field theory does have more supersymmetry in the case of the 
tangent bundle than it would in the generic case and for that reason alone 
one should expect it to have somewhat special properties. 

More recently we have learnt that duality is a very powerful way of prob- 
ing all the nonperturbative effects that may come into play when considering 
a compactification. In this context, the duality between the heterotic string 
and the type IIA string (or F-theory) should be a good way to analyze such 
compact ificat ions. 

At present the analysis of moduli for the heterotic string on a Calabi-Yau 
threefold and of its duality with F-theory is a technically formidable subject, 
although some progress has been made (see, for example, [4-9]). In this 
paper we will tackle the simpler question concerning the E% x £# heterotic 
string compactified on the tangent bundle of a K3 surface. We embed the 
SU(2) of the spin connection into one of the i?8 's leaving an unbroken E7 x i^ 
generically. First, we wish to pose the following question: On what Calabi- 
Yau threefold X should one compactify F-theory so that the theory is dual 
to the £?8 x ^8 heterotic string compactified on the tangent bundle of a 
K3 surface SI Equivalently one may find X such that the type IIA string 
compactified on X is dual to the E% x £?8 heterotic string compactified on 
the tangent bundle of the product of a K3 surface and a 2-torus. 

Although the study of the heterotic string on a K3 surface should be 
much easier than for the heterotic string on a Calabi-Yau threefold, it is 
still far from completely understood. The initial conjectures regarding its 
duality to the type IIA string were presented in [10] and then progress was 
made in [11-13]. 
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If we go to part of the moduli space of theories where both the type 
IIA string and the heterotic string are free from nonperturbative corrections 
then one may define a systematic map between the two theories by using 
"stable degenerations" as used in [4,9,14,15]. This is the method by which 
we will attack the tangent bundle problem. 

The problem of finding the geometry of X is not particularly difficult but 
it gives rise to many questions. In particular we will find that the tangent 
bundle appears to be almost identical to point-like instantons. This raises 
a puzzle as the physics of the heterotic string on the tangent bundle should 
be quite different than that of point-like instantons. 

We are led to a careful analysis of the Ramond-Ramond degrees of free- 
dom of the type IIA string, as it is these which distinguish the two cases. 
This problem has also been studied for the case of the tangent bundle in [16]. 
We will discover that it is necessary to make some refinements of the usual 
rules of F-theory in predicting gauge symmetries and counting of tensor 
moduli in six dimensions. 

The understanding of the tangent bundle can be pursued in various di- 
rections. One of the things one may do is to build on the work of papers 
such as [14,17] in cataloging the possibilities of six dimensional physics for 
compactification of the heterotic string on a K3 surface. We do this in sec- 
tion 4 and discover that the heterotic string may acquire enhanced gauge 
symmetries on A-D-E singularities in a way very similar to the type IIA 
string. 

Instead, on a more fundamental level, we may try to analyze global ques- 
tions about the moduli space. As mentioned above, the usual heterotic/F- 
theory duality arguments are confined to a large codimension boundary of 
the moduli space where both theories are "weakly-coupled". We do not 
currently have a description of string theory which is in any way exact as 
we move into the open interior of the hypermultiplet moduli space — both 
theories suffer from quantum corrections [15]. By restricting to the tangent 
bundle of the heterotic string we will actually be able to penetrate deeply 
into the moduli space along a closed subspace while retaining exactness. This 
will lead us to some new claims about the definition of the data specifying 
the heterotic string. We discuss this in section 5. 

These two goals will require a fairly sophisticated analysis of the geometry 
of sheaves on a K3 surface and this comprises a large part of this paper. In 
particular in section 2 we will review the mathematics of sheaves which we 
will require. Of particular interest are the Mukai vector and the notion 
of the derived category of coherent sheaves.   In section 3 we discuss how 
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the heterotic string compactified on a sheaf is interpreted in the type IIA 
or F-theory language. We discuss how F-theory rules for determining the 
massless spectrum are affected by RR moduli. We also propose that a point- 
like instanton should be identified with the ideal sheaf of a point. To some 
extent the contents of section 2 are important for section 5 and the contents 
of section 3 are important for section 4. Having said this, these two subjects 
are somewhat interconnected and it would be awkward to disentangle them. 

2    The Fourier-Mukai Functor 

2.1    Some Sheaf Generalities 

To do the analysis required in this paper it will be much easier to use the 
language of sheaves rather than vector bundles. This will allow us to handle 
vector bundles on the K3 surface, vector bundles over curves within this sur- 
face, and "skyscraper" sheaves all at once. Consider a vector bundle V over 
some manifold M. We will assume that the vector bundle is a holomorphic 
vector bundle, and in particular that the structure group of the bundle is 
SU(iV) for some N. This assumption is valid for what we require in this 
paper but is certainly not sufficient for a general analysis of the heterotic 
string. See [6,7,9,15] for methods in the general case. The sheaf version of 
this holomorphic vector bundle is to associate to each open neighbourhood 
U C M, the group of holomorphic sections of V over U. A sheaf obtained 
in this way is called "locally free". There are sheaves which are not locally 
free however. Consider a submanifold B C M. One may consider a sheaf 
over M which is defined by a vector bundle W —> B as follows. For every 
open neighbourhood U C M associate the group of holomorphic sections of 
W restricted to U fl B. If U fl B is empty, take this group to be 0. 

Thus we can have a sheaf over M defined by a vector bundle over some 
subspace of M. In a sense, the rank of this vector bundle has some fixed 
value over B but is zero elsewhere. Indeed in this way a sheaf can represent 
a bundle whose rank varies over M. In the example where the groups asso- 
ciated to the sheaf vanish unless U fl B is nonempty, then the sheaf is said 
to be "supported" over B. The extreme example of this is the "skyscraper 
sheaf" which is supported only at a single point, where the "fibre" is C. 

Sheaves are very natural objects in the context of string duality. They 
have been used for example in [18,19]. It seems clear that one cannot hope 
to gain a full understanding of the moduli space of string theories when re- 
stricting one's attention to only locally-free sheaves. We will also see further 
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evidence in this paper to this effect. The main difference between vector 
bundles and sheaves is that the former objects can be described in terms 
of differential geometry, the latter objects are creatures very much of an 
algebro-geometrical upbringing. For this reason, much of the mathematics 
involved tends to be of an algebraic nature. 

If we have some algebraic variety X, the most basic sheaf over X is 
the structure sheaf &x> This is the sheaf built from sections of the trivial 
holomorphic line bundle over X if X is smooth. One can view @x as a ring. 
It is then natural to generalize the concept of a holomorphic vector bundle 
to an ^x-module. A free ^x-module will correspond to a trivial vector 
bundle. We will assume that we are always dealing with a particular type 
of ^x-niodule — namely a coherent sheaf.1 

We will be concerned with the way that one may build sheaves from 
others using the algebraic notion of "extensions". Let Si and £2 be two 
sheaves over some fixed variety X. To be pedantic, we consider <D\ and $2 
to be ^x-modules. One may then build a third sheaf, j^", from the exact 
sequence of ^x-modules: 

0 -> Si A & -> <f2 -> 0. (1) 

Here, ^ is not defined uniquely. Algebraically, in the above sequence & is 
defined by an element of Ext^>x (^2^1)- As a sheaf however, two elements of 
Ext^x {^2-, <oi) which differ by a nonzero constant give rise to two isomorphic 
J^'s. This is because we may multiply the map a in (1) by a nonzero constant, 
thus changing the extension class without changing the sheaf J^\ 

One must pay special attention to rather peculiar things which may hap- 
pen when considering the moduli space of sheaves (or indeed vector bundles). 
Of particular concern is the notion of "5-equivalence". Let us consider the 
problem of building a family of sheaves of the above form over some fixed 
variety X. Let A — Ext^x(<f2><£i)- We may then build the "universal ex- 
tension" , J^A over A x X by 

0-+ri^i->^A-+ri<«2->0, (2) 

where P2 : A x X —>• X is the natural projection. The restriction of J^A to a 
point a G A will then specify a sheaf &a over X. 

Consider a complex line through the origin in A and restrict ^4 to it. 
Prom what we have said above &a will be everywhere the same except where 

1If one believes that string theory has an algebraic origin then (quasi-)coherent sheaves 
are a natural choice. A (quasi-)coherent sheaf is defined as a sheaf which may be con- 
structed from the same underlying algebraic structure as the scheme on which it lives. 
See [20] for an exact statement of this. 
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a = 0. That is we have a family of sheaves which is constant everywhere 
except for one member where it "jumps" to something inequivalent. This is 
precisely the kind of thing one wants to avoid when building a nice moduli 
space! 

The simplest approach is to define our way out of the above problem 
by saying that we wish to build the moduli space of 5-equivalence classes of 
sheaves over X. We then say that two sheaves J?i and J^2 are "^-equivalent" 
if we may build a family of sheaves which are all isomorphic to J^i except 
for one member which is isomorphic to J^- 

While such an approach is fine if one is concerned with the isolated 
problem of building a nice-looking moduli space, we are supposed to be 
describing moduli spaces of string theories in this paper. Presumably string 
theory "knows" whether it really wants 5-equivalent but not isomorphic 
sheaves to be considered the same or not. 

An example which will be important to us is the following. Let X = E, 
an elliptic curve, and let S'I and $2 be isomorphic to ^E- Thus we have 

0 -► 0E -> 3? -► &E -+ 0, (3) 

where # is a rank 2 sheaf. Now Ext^(^, ffE) ^ H1^, &E) = C (see for 
example page 234 of [20]) and so (3) defines two possibilities for J^\ Either 
we have the trivial extension ^ = &E © ^£> 01 we have the unique nontrivial 
extension. 

Consider now building the moduli space of degree zero rank 2 (semi- 
stable) sheaves over E. The moduli space of 5-equivalence classes will be 
nice but the true moduli space of sheaves will essentially have two points, 
representing the two possibilities above, at one of the locations of moduli 
space — the moduli space is not separated. This is discussed in some detail 
in [7]. 

Now if we were to consider the moduli space of heterotic strings on a 
2-torus, the above system should fit nicely into it. The moduli space of the 
heterotic string on a 2-torus is well-understood and has no pathologies. Thus 
in this case, we need to use the moduli space of 5-equivalence classes to get 
agreement with string theory. This can be explained because in this case 
the moduli space in question can be written in terms of the moduli space of 
solutions to Yang-Mill's equations. The relationship between Yang-Mill's 
bundles and stability is well-understood (see for example [21]). As we shall 
see however, it is not true that we may always use 5-equivalence for all 
problems in string theory. The distinction becomes especially important 
when we consider families of sheaves: the behavior of the family away from 
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the central fiber may force us to choose one of several S'-equivalent objects 
over the special fiber. In section 3.2 we will in fact want to distinguish 
between the two inequivalent extensions of (3). 

2.2    The Fourier-Mukai Transform of a Sheaf 

In this section we wish to analyze the moduli space of sheaves on an elliptic 
K3 surface. We will review the usual method [4,5,7] of first analyzing sheaves 
on a single elliptic curve and then extending this idea to elliptic surfaces. 

Let E be a 2-torus with a complex structure and a distinguished point 
0 G E. That is, E is an elliptic curve. The moduli space of flat line bundles 
on E may be viewed as the space of flat connections which in turn can be 
viewed as the space E = -ff1(E, E/Z). E is dual to E. We may also view E 
as the Jacobian of E. Actually E has the same complex structure as E and 
so is in some sense isomorphic to E. Indeed we may define a degree zero line 
bundle on E by fixing a meromorphic section which has a pole at 0 and a 
zero at some other point x G E. The moduli space of line bundles on E of 
degree zero may then be identified with the moduli space ofx — which is 
E. 

The Poincare bundle, <^, is a bundle over E x E with the following 
properties. It is "universal" in the sense that when restricted to E x x, 
where x G E, it gives the bundle over E defined by the point in the moduli 
space x G E. We also demand that & restricted to 0 x E is trivial. We 
mainly view IP as the associated sheaf to this vector bundle. Formally we 
may define & as 

^ = ^E><^A-0xE-Exd), (4) 

where A is the diagonal divisor representing the graph of the isomorphism 
E-> E. 

Let Z be a surface and let TT : Z —> B be an elliptic fibration. We 
may replace every fibre by its Jacobian to obtain another elliptically fibred 
surface TT : Z -» B. Some care is needed in analysis of this process over the 
bad fibres (see, for example, [22]). If the fibration TT : Z —> B has a section, 
which we assume is the case from now on, then Z is actually isomorphic, 
as a complex variety, to Z. Nevertheless we will often find it convenient to 
distinguish between Z and Z, as was done in [5]. 

We may extend & to be a sheaf over Z x B Z in the obvious way (except 
again for subtleties at bad fibres).   Recall that Z XB Z is the fibration 
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Z xB Z -» B with fibre 7r~1(6) x 7r~1(6) for any point b e B. We may also 
define projection maps p : Z XB Z -> Z and p : Z XB Z —>• Z. 

Now take a nice smooth locally-free sheaf, <^", associated to some smooth 
SU(iV)-bundle over Z. Consider the following sheaf: 

F1(&) = R1p*(0'®p*&). (5) 

It is common to call F1(^"), which is a sheaf over Z, the "Fourier-Mukai 
transform" of & after [23]. We are working in the "relative" setting. That is 
we are applying the transformation to each elliptic fibre of a fibration. This 
was analyzed in [24]. We refer to this paper for more details of what follows. 
We now explain (5) in detail. 

For any sheaf co over Z Xjg Z, one may loosely take R1]?*^ to be the 
sheaf whose "fibre" (or stalk) over a point z G Z is the group -fiT1^,^I^J, 
where Ez C Z is the elliptic fibre 7r~17r(z). Let g = &> ®p*&. Since we 
have an SU(iV)-bundle (with zero ci) the sheaf £\EZ will have degree zero. 
Riemann-Roch then tells us that dimil0(#z,<f^J = dimff1^,^j^J. 
Now a generic degree zero sheaf over Ez will have no global sections and 
so ^(EZT^EZ) = 0 generically. This shows that F1(^) is supported over 
some proper subset of Z. 

The sheaf F1^) will be supported at points where £\EZ contains a triv- 
ial summand. This will generically happen over N points of the elliptic curve 
7r~1(6) where the Poincare bundle nicely cancels out one of the summands 
of J^". Therefore F1^) is supported on a curve which is an TV-fold cover 
of B. This is the "spectral curve" Cs C Z. Generically only one summand 
will be trivialized at a time and so F1^) is rank one over Cs- 

As an example let us consider the simplest case of &z- That is, we begin 
with the sheaf corresponding to the trivial line bundle over Z. Now clearly 
Fl(&z) = &])*&. This will be a sheaf supported along the section of the 
fibration TT : Z —> B. Actually, it follows from either relative duality or from 
Grothendieck-Riemann-Roch (see, for example Theorem 2.8 of [24]) that this 
sheaf corresponds to the canonical bundle of B, i.e., a degree —2 line bundle 
over B = f>1. 

It is natural to consider a closely-related transform: 

F0(^)=p#(^®p*^). (6) 

In our above argument this would amount to considering a sheaf whose stalks 
were given by i?0^,^^) rather than fl1^,*?I^J. One might believe 
therefore that it is equivalent to Fl{^) in some sense.   Actually, due to 
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sloppiness in the above argument this is not the case. One really should be 
very careful when building these sheaves to treat the notion of a stalk of a 
sheaf correctly. If & is a locally-free sheaf as above then F0^) = 0. This 
follows from the fact that sections of F0^) over an open set U C Z are the 
same as sections of & ®p¥^' over fi~l{U). Since fibres of the latter vanish 
at most points of p~1(C7), the sections must all vanish identically. 

The reasons for the difference between F0 and F1 are important but 
rather complicated and we do not discuss them here. We refer the reader to 
section 111.12 of [20] for a full treatment. 

Now let <?o be a sheaf on Z supported over the zero section where it is the 
trivial line bundle, of degree zero. It is not hard to see that FQ

{SQ) = t?z- 
Thus, except for the mismatch in degrees, F0 looks like the inverse of F1 

when we act on the structure sheaf &z- 

To cure this we introduce a new transform: 

T(&) = & ® 0z(E), (7) 

where @z{E) is the sheaf corresponding to the line bundle whose c\ is equiv- 
alent to a generic elliptic fibre of Z. We also define:2 

&{&) = TF*(^) = R%(&®p*<?) ® 02(E). (8) 

The reader may like to check that for a locally-free sheaf & with ci = 0, 
5051(^") is very nearly the same thing as c^*. That is 5° acts rather like 
the inverse of 51. The slight mismatch is that 5051 actually acts as —1 on 
every elliptic fibre of TT : Z —> B. Since 5° takes a locally free sheaf to 0, 
then it cannot be generally true that S'0 and S1 are inverses to each other 
for any sheaf. In order to make a cleaner statement about 5° and S1 we are 
required to go to the "derived category". 

2.3    The Derived Category and the Mukai Vector 

Our goal is to find some kind of transformation we can do to a sheaf to turn 
it into another sheaf such that the resulting sheaf is "equivalent" to the first 
sheaf as far as string theory is concerned. 

2Note that our use of 5 and T differs from [24]. Our notation is supposed to be 
reminiscent of 5L(2,Z) in that S satisfies 52 = —1 while T is of infinite order. But 
actually our S and T sit in the two distinct copies of 5L(2, Z) (inside 0(2, 2; Z)), so they 
commute, and generate an abelian subgroup Z x Z4.) 
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The S1 generator above looks promising in as much as it gives us a sheaf 
supported along the spectral curve when applied to a locally free sheaf. It 
is somewhat unsatisfactory that S4, when applied to this resulting sheaf on 
the spectral curve, gives us 0. Clearly S1 does not generally map within 
any kind of nontrivial equivalence class. We had to use 5° instead to return 
to our original locally-free sheaf. It would be useful if we could somehow 
combine 5° and 51 into a single operator S. (We also combine .F0 and F1 

into F.) 

In order to do this we need to change the objects we use. It turns 
out that rather than thinking about sheaves, we should think of complexes 
of sheaves. In categorical language we will use the "derived" category of 
coherent sheaves. We will denote the (bounded) derived category of coherent 
sheaves on Z by D(Z). The notion of derived categories is rather complicated 
and the details are beyond what we require for this paper. We refer the 
reader to [25] for an account of the original motivation of their construction 
or [26] for a detailed definition. 

The general idea is this. An object of the derived category is no longer 
a sheaf J^*, but rather a complex of sheaves C(J?"): 

... -> C2{&) -> Cl{&) -» C\&) -»..., (9) 

taken up to certain equivalences. For example, if one begins with a sheaf J^", 
then one may associate to this the complex S(j^*): 

... -» 0 -► S\&) A S\&) -> 0 -+ ... (10) 

Often only one of the terms in this complex will be nontrivial and we may use 
this sheaf to "represent" S(Jr). When this is the case, the functor S looks 
like it should satisfy our requirements. In general however S is a functor 
acting on the derived category of sheaves and not the category of sheaves 
itself. 

If we identify Z with Z we may then state the following relative version 
of Mukai's result. 

Theorem 1  The functor S satisfies 

s2 = (-iM-i], (ii) 

where (—l)jg; is the inversion of each elliptic fibre and [—1] denotes a shift 
of the complex of one to the right. 
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We refer to [23,24] for a proof. 

The other construction due to Mukai that we will also find of great use 
in this paper is the "Mukai Vector" [27]. Let Z be a K3 surface and let us 
represent an element of H*(Z, Z) = H0(Z, Z) © H2(Z, Z) © HA{Z, Z) by the 
triple (a, b, c). Here a G H0{Z,Z), b € iJ2(Z, Z), and c € tf4(Z, Z). We may 
take a and c to be integers since H0{Z,Z) 9i iJ4(Z,Z) ^ Z. 

If & is a coherent sheaf we then define the Mukai vector /i(^") G 
H*(Z,Z)by 

H(&) = ch(^) Vtd(Z) 

= (r,c1(^),r + i(c?(^)-2c2(^)))) 
(12) 

where r is the rank of J^\ The Mukai vector has already made appearances 
in the string literature. It has appeared in the context of D-branes and 
anomalies in [28] and has been used subsequently in work such as [19]. Some 
interesting observations about the nature of the Mukai vector in string theory 
were also made in [29]. Given that it takes values in jff*(Z, Z) which is a 
very natural object in string theory [30], it is not at all surprising that it 
should also make an appearance in the analysis of the heterotic string. Note 
that /JL has the following property induced from the Chern character: 

/x(^e^)=/x(^) + /x(^). (13) 

We may also extend the definition of fi to D(Z) by 

ch(C(^)) = ^(-irch(Ci(^)). (14) 
i 

By doing this we can specify the induced action of S on H*(Z^ Z). By using 
(11) we can immediately see the induced action of S2. Since (—1)^ acts 
trivially on our even homology cycles and [—1] reverses the sign because of 
(14), we see that S2 simply acts as -1 on i?*(Z,Z). 

We will consider the case where Z is a generic elliptic K3 surface with a 
section. This means that the Picard lattice of Z is a two dimensional lattice 
in the form of a hyperbolic plane U. Let VQ represent the class of the generic 
elliptic fibre and let vi represent the sum of the class of the section and VQ. 

It can be easily seen that the intersection form on Z gives rise to the product 

^0-^0 =vi.vi = 0 
1 (15) 

VQ.VI = 1. 
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We also define an inner product on iJ*(2r
)Z) by 

(ai, 61, ci).(a2,62, C2) = 61.62 - ^1^2 ~ cia2. (16) 

Before we proceed we need one more fact. Consider a line bundle of 
degree d on some curve C C Z. Let & be the sheaf on Z but supported 
only on C corresponding to this bundle. One may show that 

where C.C is the self-intersection of C. 

We now specify the action of S on some elements of II*(Z, Z). 

• li — (1,0,1). This is the structure sheaf Cz- As mentioned above, F1 

transforms this to a sheaf of degree —2 supported along the section 
v\ —v§. Applying T will change the degree to — 1. It follows that 

S(1,0,1) = (Cvo -t;i,0). (18) 

• jx = (0,?;o,0). This is a sheaf supported along a single elliptic fibre 
of Z. Over this fibre, the sheaf has rank one and degree 0. When S1 

is applied, we obtain the skyscraper sheaf Gz supported at the single 
point z. Applying T does nothing. One may show that C2{&z) = —1 
and therefore 

S(0,«o,0) = (0,0,-1). (19) 

• li — (0, v\ — ^o, 0). The corresponding sheaf with this Mukai vector is 
&{-\) on the section. Its F0 is Gz(-E), so its 5° is Gz, and we have: 

8(0,01-t;o,0) = (1,0,1). (20) 

• fj, = (0,0,1). This is the skyscraper sheaf Gz. Applying 5° to this we 
obtain the sheaf supported along a single elliptic fibre. Again T does 
nothing. 

S(0,0,l) = (0,t;o,0). (21) 

To review (and using linearity) we obtain 

S(1,0,0) = (0,-^,0) 

S(0,«o,0) = (0,0,-1) 

S(0)«i,0) = (1,0,0) 

8(0,0,1) = (0,t;o,0) 
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Note that S2 = — 1 as required by theorem 1 and that, up to signs, S sim- 
ply exchanges the hyperbolic plane generated by (VQ, VI) with the hyperbolic 
plane generated by H0(Z) and HA(Z). 

As an application let us consider a locally-free sheaf, J^, corresponding 
to an S'f7(iV)-bundle with C2 = k over a K3 surface Z. The above shows 
that 

M^) = (^o,iv-fc) 
MF(i^)) = (0, (N - k)vo - NvuN) (23) 

/z(S(J^)) = (0, (N - k)vo - NvuO). 

This is consistent with the fact that Fl(&k) is a sheaf supported on a curve 
in the class (fc — N)VQ + Nv\ — the spectral curve Cs> This curve has self- 
intersection 2N(k — N) and thus has genus g — N(k — N) + 1. It follows from 
the above calculations that the degree of the line bundle on Cs producing 
the required sheaf is N(k — N — 1) =^ — 1 — JV.3 This result can also be 
obtained by noting that the direct image TT* preserves Euler characteristics: 
in our case, the image 7r*(F1(c^:)) is a rank N vector bundle on B = P1, 
which is easily seen to be the canonical bundle t?Fi(—2) tensored with the 
restriction of J^fc. Its Euler characteristic therefore equals — N. This agrees 
with the Euler characteristic of a line bundle of degree g — 1 — N on Cs- 

We end this section by noting that one of the uses of the Mukai vector 
is to calculate the (complex) dimension of the moduli space of sheaves. To 
do this we restrict to the case where ^ is "simple" — that is the only 
automorphisms of # are global rescalings. In this case the dimension of the 
moduli space is given by [27] 

dimExt^(^,^) = ii(&).ix(&) + 2. (24) 

This restriction to simple sheaves is fairly severe but will work for the 
above locally free sheaf J^fc. In this case the dimension of the moduli space 
is 2g = 2N(k — N) + 2 in agreement with standard methods. 

3    The heterotic string on the tangent bundle 

3.1    Review 

The general system we wish to analyze is an E% x E% heterotic string com- 
pactified on a product of a K3 surface, E', and a 2-torus. This is supposedly 

3There appears to be a typo in [5] for this formula. 
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dual to the type IIA string compactified on a Calabi-Yau threefold, X. We 
refer the reader to [15,31,32] for a general description of this system together 
with much of the notation we will be using. 

We will study the moduli space coming from the heterotic string corre- 
sponding to deformations of Z together with a sheaf on Z. This maps by 
duality to deformations of the complex structure of X together with "RR"- 
parameters which, when X is smooth, take values in if3(X,]R/Z) (and the 
dilaton-axion). This part of the moduli space has a quaternionic Kahler 
structure and is the moduli space of hypermultiplets. The heterotic string's 
2-torus has nothing to do with this moduli space and can be ignored. Thus 
we may view the physics as derived from a six-dimensional theory obtained 
by compactifying the heterotic string on Z. This is the F-theory picture. 

Let us fix notation. We will assume that X is a Calabi-Yau threefold 
which has the structure both of an elliptic fibration irp : X —> E and a K3 
fibration pp : X -> B. Here E is a Hirzebruch surface Fn and B = P1. Z 
is an elliptic fibration TT : Z —> B as above. All the fibrations have sections. 
See [31] for a discussion of these assumptions. 

Let Co be the section of E with self-intersection —n. Thus, CQ is the 
isolated section of E if n > 0. Let / be a generic P1-fibre of E. Let OQ be 
the section of TT : Z —» B and let E refer to a generic elliptic fibre of either 
TT : Z -> B OT TTJP : X ^ T,. Connecting to section 2.3 we see that VQ = [E] 
and vi = [ao] + [E]. 

One of the key points is that neither the heterotic nor type IIA string 
description of the moduli space is exact. Both suffer from quantum cor- 
rections. In the type IIA string case, we may switch the corrections off by 
setting the dilaton equal to — oo. In terms of the heterotic string we may 
take this limit by letting the area of ao go to infinity. 

Once this is done we may remove the quantum corrections from the het- 
erotic side by making the generic fibre of this elliptic fibration very large. As 
we will see later, this is not a necessary condition to remove the corrections 
but it is sufficient. In terms of X, this deformation corresponds to a change 
in complex structure which takes X to a stable degeneration. This degener- 
ation is of the form of two threefolds, Xi and X2 which intersect along a K3 
surface isomorphic to Z. We identify Z with this intersection from now on. 

Essentially string duality identifies the geometry of Xi with one of the 
i?8's of the heterotic string and X2 with the other Eg. From now on we 
just focus on Xi — all things stated also being true for X2. We now have 
a fibration p^ : Xi -> B with fibre a rational elliptic surface and an elliptic 
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Figure 1: The discriminant for an SU(2)-bundle. 

fibration TT^ : Xi -> S where S is still the Hirzebruch surface Fn [14]. We let 
C* denote the section of S disjoint from Co where Xi intersects X2. Thus 
C* is really the same thing as CTQ. Note that C* is isolated if n < 0 (as will 
happen the case of interest). 

The elliptic fibration TT^ : Xj. —> E degenerates over a discriminant curve 
A1 C S. The geometry of Xi also determines a spectral curve Cg C Z. 
Indeed the moduli of A1 determine the moduli of Cg. We refer to [15] for a 
description of this. 

Under the stable degeneration the deformations of complex structure and 
RR-parameters on X divide into three pieces [15]. The complex structure of 
X defines the complex structure of Z and the complex structures of Cg and 
C|, together with the embeddings, Cg C Z, Cg C Z. The RR-parameters 
of X describe a S-field in iI2(Z, M/Z) and a line bundle (of a fixed degree) 
on each of the spectral curves by specifying an element of the Jacobian 

HHCs, 

Suppose now we have a bundle with structure group SU(N) C Eg used 
to compactify one of the Es's of the heterotic string. In the language of the 
last section, the data for the spectral curve, C$, and its line bundle is simply 
obtained by applying F1 (or 51) to the sheaf corresponding to this vector 
bundle. 

Of particular interest to us is the case of SU(2)-bundles with C2 = k . 
The geometry of S is then fixed by n = 12 — k [11]. The geometry of this 
case was explicitly constructed in section 3.2 of [15]. We show the geometry 
of A1 C S in figure 1. A1 is a reducible curve having a component along 
Co above which the elliptic fibres are in Kodaira class III* and another 
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component above which the class is Ii. Here Sc is a double cover of B 
branched at 4fc — 4 points. Mapping S to U, these branch points occur at 
A; -4 places where the Ii component of A1 collides with Co (marked in figure 
1 as /i) and the 3A; points of tangency of A1 with the / direction (marked 
as /2). 

Generically, Xi has a curve of £7 singularities (from the III* fibres) which 
suggests an £7 gauge symmetry [12]. This arises since SU(2) C E% centralizes 
E7. In some special cases this need not be the exact gauge symmetry as we 
discuss later. 

3.2    Two special cases 

Prom above we see that for a nice smooth SU(2)-bundle, or the associated 
sheaf J^fc, we obtain a spectral curve C\ C Z in the class 

[CD = 2[ao} + k[E}. (25) 

Over this curve we have a line bundle of degree 2k — 6. This represents 
the sheaf F1^- The moduli of the curve Cg are fixed, in the type IIA 
language, by the moduli of Xi. The moduli of the line bundle are fixed by 
the RR-fields in the type IIA string. 

If Cg is smooth then the moduli space of line bundles is a torus (abelian 
variety) iJ1(C^, M/Z) parametrized in the type IIA language by elements of 
iI3(Xi, M/Z). We will be concerned with the case where C^ and Xi are not 
smooth. In this case, the Jacobian of Cg need not be a torus and so the 
RR-fields will not parameterize a torus either. 

In the genus one case, this degeneration of the Jacobian is familiar from 
Kodaira's classification. We are doing a similar construction here except 
that the spectral curve has a large genus. Thus, we want to know how an 
abelian variety of a large complex dimension can degenerate in a family. This 
is in general a very hard question. In our case we will see that the Jacobian 
becomes reducible, so the RR moduli can take their values in either of several 
distinct components. Quite generally, this happens whenever the spectral 
curve becomes non-reduced. A detailed analysis of these components is given 
in [33] in the case where the spectral cover becomes everywhere non-reduced 
C = 2C'. In our present situation there is one additional feature, namely 
that only part of the spectral curve becomes non-reduced: it becomes (twice) 
the zero-section CTQ, plus (once) each of 24 fibres. However, the distinction 
we will establish between the two F-theory compactifications will be entirely 
due to the contribution of the non-reduced locus as seen in [33]. 



P. ASPINWALL, R. DONAGI 1057 

We will focus on two specific examples with k = 24. First we will consider 
degeneration of the SU(2)-bundle to that of 24 "point-like instantons". That 
is, this bundle becomes everywhere flat except at 24 points. We will denote 
the associated sheaf by ^24. The precise mathematical meaning of this will 
become apparent. Second we will consider the tangent sheaf ^z- 

In order to compute the spectral curves we need to compute F1 of each of 
these sheaves. To do that we first consider a Fourier-Mukai transformation 
at a generic elliptic fibre, E, of Z. 

First consider the point-like instanton sheaf ^4. Clearly it restricts as 

^24^ = ^0^, (26) 

so long as we are not at one of the 24 points where the instantons are located. 

Now for the tangent sheaf case we have the exact sequence 

O^fis^ &Z\E -> OYE/Z -» 0, (27) 

where JVE/Z is the normal sheaf of E C Z. Now since S'E — ^¥E/Z — ^E, 

we see that ^Z\E is an extension of &E by ^E- In particular on a generic 
fibre, the tangent sheaf is S-equivalent to the point-like instanton sheaf. 

To a string theorist it should come as a nasty surprise that the tangent 
sheaf and the point-like instanton sheaf should be so similar. There is cer- 
tainly no hope that these two theories could somehow be dual to each other. 
The heterotic string on the tangent bundle of a smooth K3 surface should be 
a very well-behaved theory with no extra massless particles. The point-like 
instantons, on the other hand, are known to leave an unbroken Eg gauge 
symmetry and generate massless tensor particles in six dimensions [11,34]. 

One might hope that the full form of the spectral curve will get us out 
of this difficulty but we will see that this is not the case. Recall that we 
saw earlier that F1(ffz) produced a sheaf in Z supported along CTQ. Thus 
in each case we see that the generic elliptic fibres produce a double copy (in 
a way to be made precise) of CTQ in the spectral curve. Thus, from (25) the 
non-generic contribution must be in the class 2A[E]. The only divisor of Z 
in this class is 24 copies of E. In both cases therefore Cs is a reducible curve 
containing CTQ doubly and 24 fibres. The only question is which 24 fibres. 

In the case of ^24 the answer is clear — we use the 24 elliptic fibres 
containing the 24 instantons. In the case of &z for a generic K3 surface the 
answer is also obvious — we use the 24 Ii fibres where the smooth elliptic 
fibres degenerate.4 These are the only locations where the above arguments 

4This was shown explicitly using toric geometry in [8]. 
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Figure 2: The discriminant for the tangent bundle and point-like instantons. 

fail. 

In general we see that the spectral curve for ^24 will be different than 
that for the tangent sheaf. Generically F^J^) contains 24 smooth fibres 
whereas the 24 fibres in 5^ are singular. We can remove this discrepancy 
however by specializing to the case of ^24 where all 24 points are located on 
singular fibres of TT : Z -> B. Now the spectral curves for ^4 and Sfz 1°°^ 
identical! 

We thus obtain 

Proposition 1 Let XT be the Calabi-Yau threefold which represents the F- 
theory dual of the E$ x E$ heterotic string compactified on the tangent bundle 
of a K3 surface. Let Xj be the Calabi-Yau threefold which represents the 
F-theory dual of the same heterotic string theory compactified on the same 
K3 surface except with one point-like instanton located at a point on each of 
the 24 h fibres of the elliptic fibration TT : Z —> B. Then XT is isomorphic 
to Xj. 

We draw the form of the discriminant locus Ai C S for Xj. for this case 
in figure 2. This is also discussed in [15]. 

Applying the usual rules of F-theory to figure 2 we see that we have a 
curve of type II* fibres along Co which implies an i?8 gauge symmetry. We 
also have 24 Ii-II* collisions each of which must be blown up to resolve X. 
This implies 24 massless tensors. The result of an Es gauge symmetry and 
24 massless tensors is exactly what we would expect for the 24 point-like 
instantons.   It is not at all what we want for the tangent bundle.   Clearly 
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we have to think a little more carefully about how the rules for F-theory 
should be applied and, more importantly, what precisely should distinguish 
the tangent bundle from the point-like instanton case. 

3.3    Ramond-Ramond moduli and the degenerate Jacobian 

The only thing in the type IIA language on X that remains that can pos- 
sibly distinguish the two cases are the RR moduli. We know that these 
parameterize the exact form of the spectral sheaf supported on the spectral 
curve Cs- If Cs were smooth, we would expect the RR moduli to live on 
the torus representing the Jacobian of Cs- In order for duality to work, the 
same thing should be true when Cs degenerates except that this time the 
Jacobian will generally not be a torus. As we have seen before, the genus of 
the spectral curve Cs is 2k — 3 = 45. So in the smooth case the Jacobian is 
a 45 (complex) dimensional torus, while in the singular case we expect the 
Jacobian to be more complicated, but still 45 dimensional. 

We thus expect &z and ^4 to be distinguished by the fact that their 
transforms under F1 will differ as sheaves even though the spectral curve, 
the support of this sheaf, may look the same in both cases. 

We begin by computing i?1(5z). This was also discussed in section 
6.2 of [16]. Let us analyze the Fourier-Mukai transform acting on a single 
generic elliptic fibre, E, of X again — this time with a little more care. As 
mentioned earlier, since the restriction &Z\E 

ls an extension of && by 0E 
we 

expect this to map, under F1, to "twice the origin" of E. To avoid cluttering 
notation we will omit the restriction to E for a while. Restricting our earlier 
definition of the Fourier-Mukai transformation to just a single elliptic fibre 
we have 

Fl(^z) = R%(^®p*^z)^ (28) 

where now p : E x E -> E and p : E x E ->- E. This is a sheaf over E which 
has a trivial stalk except at the origin. Let us further restrict this bundle to 
the origin, 0. Now 

= H1(£r>^|JSx8®^) (29) 

= H
1
(E,SZ\E), 

where we have used the "base change" theorem of [20] and the definition of 
the Poincare bundle we stated earlier. 
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Now the exact sequence (27) gives 

0 -4 H\E, 3rE) -> H\E, 3rz\E) -> H\E, J^EIZ) A H\E, &E) -> 

H\E, 3rz\E) -+ H^E^E/Z) -> 0.   (30) 

Since «% = ^E/Z - @E we see that 

dimil1^, &Z\E) = 2 - rank(r). (31) 

It is also true that 1^OTEL{H^{E,J/EIZ),H
X
{E, «%)) = Ext(^/Z,,%) and 

so rank(r) = 0 if (27) splits and rank(r) = 1 otherwise. 

The map r is given by the Kodaira-Spencer theory of deformations. It 
shows how for a family of elliptic curves TT : Z —>> S, the tangent directions in 
the base JVEIZ = 2FB map into deformations of E. Generically, our elliptic 
K3 surface will not have constant fibre and so this map is not zero. Thus 
rank(r) = 1 and dimiJ1^, ^Z\E) = ^ for a generic E. 

We have thus concluded that F1(^) restricted to E is a rather peculiar 
sheaf. It is of "length" two — that is it has two complex degrees of freedom, 
since <% is rank two, and yet it is supported only at a single point 0 G E 
whereupon it restricts to a sheaf of rank one. How can this be? 

The answer is that it is the skyscraper sheaf on a "fat" point. Let J^2 be 

the sheaf of functions which vanish at 0 and whose derivative also vanishes 
at 6. The sheaf we require is tf^/y?. 

The upshot of all this is that we may state more clearly what we meant 
by saying that the spectral curve Cs oi F1{^'z) contains OQ "doubly". Cs 
really contains a "fat" copy of the line CTQ. The sheaf F1{^'z) may be viewed 
as a sheaf supported on this fat CTQ plus 24 Ii fibres. Over this support the 
sheaf can be thought of as having rank one. 

Let us contrast this to the transform of the point-like instantons.   All 
of the analysis above may be repeated except that this time the sequence 
defining ^4 is generically split and so r = 0. This means that 
dimiJ1(J5, ^2A\E) = 2 and so over a generic E, F1^^*) looks like two copies 
of the skyscraper sheaf, ^5 ® ^o* 

We see that the sheaf F1(3f24) is a sheaf whose support contains the 
reduced (non-fat) CTQ but it has rank two over this curve. 

The two sheaves F1^^ and F1(Jf24) are therefore qualitatively differ- 
ent objects even though naively their support looks the same. Fixing this 
spectral curve, each of these sheaves may be varied in a 45 parameter family. 
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This is what we would expect for the (complex) dimension of the RR moduli 
space. However, since these two families are quite different we must have at 
least two components to the Jacobian in which the RR moduli live. We thus 
resolve our problem with 

Proposition 2 When X = Xi = X?, the moduli space of RR fields has at 
least two components. The two points corresponding to the tangent bundle 
and the point-like instantons lie in different components. 

In particular, the moduli space of RR fields need not be a simple torus 
when X is singular. Its torus part is, in general, only 24 complex dimensional: 
it is the Jacobian of the reduced part of the spectral curve Cs, i.e. the 
product of the 24 elliptic fibers. (In the case we are actually considering, all 
24 fibers happen to be singular, so this 24 dimensional part of the Jacobian is 
no longer compact, but rather the product of 24 copies of C*.) The remaining 
21 dimensions come from the non-reduced structure along CTQ. It is this part 
which is reducible, with one component corresponding to deformations of the 
tangent bundle and another corresponding to deformations of the point-like 
instantons. We will see a more detailed description of these 21 parameters 
for deforming the point-like instanton in the next subsection. 

3.4    Obstructed extremal transitions 

Having sorted out why the tangent bundle is not the same thing as 24 point- 
like instantons as far as string duality is concerned, we need to tidy up the 
rules of F-theory. The heterotic string on a tangent bundle should not have 
massless tensors or totally unbroken gauge symmetry even though figure 2 
suggests it should. 

Let us consider the general picture of an extremal transition. Begin with 
a smooth three-dimensional Calabi-Yau manifold Y. Deform the complex 
structure of Y to produce a singular variety Y". In some cases Y^ can be 
resolved by blowing up to produce a smooth Calabi-Yau threefold Y' which 
is not topologically (or birationally) equivalent to Y. It is not hard to see 
that h2>l(Y') < h2^{Y) and h^Y') > h^Y). 

Now when we put such an extremal transition in the context of type IIA 
compactifications we need to worry about the RR fields. Since /i2'1(Y/) < 
h2,l(Y) it must be that the type IIA string compactified on Y7 must have 
fewer RR degrees of freedom than Y. Thus, in order to pass through the 
extremal transition some of the RR parameters must be tuned to a fixed 
value — which we call zero. 
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Now we wish to claim that an enhancement of gauge symmetry cor- 
responds to an extremal transition. To see this we think again in the 4- 
dimensional type IIA picture corresponding to the heterotic string compact- 
ified on Z times a 2-torus. When the structure group of the bundle decreases, 
the gauge symmetry is enhanced and we may switch on more vector moduli 
(which break the enhanced gauge symmetry back down to its Cartan sub- 
group). This corresponds to blowing up the fibre in the elliptic fibration of 
X [11] (see also [31]). 

This potentially explains why the tangent sheaf doesn't give rise to the E% 
gauge symmetry. The blow-up in the fibre which raised the gauge symmetry 
from E7 to E% completes an extremal transition which kills some of the RR 
fields which are not zero for the tangent sheaf. We will now try to justify this 
claim by arguing that these RR fields are zero for the point-like instantons. 

First we wish to make a change to our concept of the point-like instanton. 
Until now we have really considered it to be an object that lives on the 
boundary of the moduli space of SU(2)-bundles. While this is true, the 
point-like instanton is really no more an SU(2)-object than an SU(3)-object 
or an object tied to any nontrivial group. Indeed, as the holonomy of a 
point-like instanton is trivial it would be more natural to associate it to a 
trivial structure group. 

We will claim the following: 

Proposition 3 A point-like instanton is the ideal sheaf of a point, <#z. 

In particular we claim that 

JTM^^Z©^!,^,...^, (32) 

where c/Zl}Z2v.. jZ24 is the ideal sheaf of functions vanishing at zi, Z2, • • • > z2\ 
which are the locations of the point-like instantons. We no longer insist that 
these points lie in the Ii fibres. 

Clearly this claim is perfectly reasonably away from the instantons since 
both sides of (32) are then equal to &z © Gz- It follows that the spectral 
curve is a copy of CTQ, over which the Fourier-Mukai transformed sheaf has 
rank 2, and the 24 elliptic fibres containing the ^'s. The above argument 
implies that they live in the same component of the RR moduli space for 
this fixed spectral curve. 

Let us now consider how we might parameterize this 45 dimensional 
component of the RR moduli space.    Clearly 24 directions are given by 
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moving the locations of the Zi up and down the fibres. Locally near each 
instanton we may view the sheaf as &z © -^ • However there is no reason 
why we need to globally insist that the sheaf decomposes as a sum over the 
whole of Z. At each of the 24 points Zi choose a direction C C C2 (i.e., a 
point on P1) which specifies how we locally decompose the rank 2 sheaf into 
tf'z © ^zi- By an 5L(2,C) symmetry action on this C2 fibre, this gives us 
24 — 3 = 21 more parameters. 

These numbers work perfectly for comparison with the E$ transition. 
When the E$ appears we do the blow-up in the fibre, /i2,1 decreases by 21 
and we lose 21 complex parameters from the RR moduli. That is, in order to 
switch on the E$ transition, the sheaf must globally decompose as &z © ^ 
in agreement with (32). 

In many ways this gives the ideal sheaf the interpretation of an "SU(1)- 
bundle". Consider the moduli space of the sheaf, ^(N), corresponding to 
an SU(iV) bundle. There is a locus within this moduli space where the sheaf 
decomposes &z © ^{N — 1). This corresponds to perturbative enhanced 
gauge symmetry for the heterotic string. For example an SU(3)-bundle will 
leave an EQ gauge symmetry unbroken but if we tune the bundle moduli 
we may decrease its structure group to SU(2) and obtain an unbroken E7 
gauge symmetry. Given this behaviour, it is natural to interpret the ideal 
sheaf, c/Zl^2>...^24, as a degenerate SU(1) bundle with C2 = 24. The only 
feature particular to point-like instantons is that the extremal transition is 
more complicated and leads to massless tensors in addition to more gauge 
symmetry. 

We hope the reader agrees that this is reasonable evidence to assert that 
the point-like instanton case really is the same thing as the ideal sheaf and 
that this is where we identify the RR-fields as having value "zero" allowing 
the extremal transition. 

Having accepted this, it follows that the tangent bundle does not have 
the correctly-tuned RR fields to allow the extremal transitions giving rise to 
the massless tensor or the E$ gauge symmetry. Indeed it is quite apparent 
why this is so. One cannot possibly try to decompose the sheaf Fl(Sz) as it 
has this strange part looking like a rank one sheaf over a "fat" non-reduced 
curve. The two degrees of freedom we expect from this part of the sheaf 
are inextricably wound together. This can be contrasted to the point-like 
instantons where we have the sum of two copies of the structure sheaf over 
the same curve. 
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4    The tangent sheaf of an orbifold K3 

As an application of the technology we have pursued above let us consider the 
six-dimensional physics of the heterotic string compactified on the tangent 
bundle of a K3 surface when we go to an orbifold limit. 

Given that we know explicitly how to identify the K3 moduli in the F- 
theory language [4,14,15], it is straight-forward to identify the exact form of 
the required Calabi-Yau threefold, X, or more precisely its stable degener- 
ation, Xi U -X*2, required to make the K3 surface have a particular complex 
structure compatible with the elliptic fibration. We will consider the case 
where the complex structure puts an orbifold point in Z. 

Let s and t be affine coordinates for a patch on S = Fn (where n — —12 
to obtain the correct C2) as in [14] and let our elliptic fibration, TT^ : X\ —> S 
be in standard Weierstrass form 

y2 = xz + a(s, t) x + 6(5, t). (33) 

This has a discriminant equal to 4a3 + 21b2. Restricting this fibration to C* 
we obtain the Weierstrass form for the K3 surface Z. We may let t be an 
affine coordinate on C*. It is not difficult to show 

Theorem 2 Consider the heterotic string compactified on the tangent sheaf 
of the K3 surface Z which has Weierstrass form 

y2 = x3 + a(t)x + P(t). (34) 

This is dual to F-theory compactified on the Calabi-Yau threefold X which, 
in the stable degeneration, gives Xi in the form (33) with 

a(s,t) = a(£)s4 

6(5, t) = m** + (4a (*)3 + 27/3(*)2y. 

This may be proven by imposing the condition that the fibration of Xi 
reduces to that of Z when restricted to C* (where s = 00) and by analyzing 
the form of the discriminant to obtain the required factorization shown in 
figure 2. 

We show the discriminant locus for Xi in figure 3 where Z acquires a 
C2 /Z2 singularity. Locally this may be modeled by putting a = — 3 and 
P = 2 + t2. The K3 surface has a C2/Z2 singularity because the I2 fibre 
intersects C* which is where Z sits in the elliptic fibration. 
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Figure 3: The discriminant for the tangent sheaf on a C2 /Z2 singularity. 

Applying the usual rules of F-theory to figure 3 would require us to blow- 
up the collision between the curves of II* and I2 fibres twice to resolve the 
threefold. This would imply a local contribution of 

• A nonperturbative SU(2) gauge symmetry in addition to the full un- 
broken perturbative E$ gauge symmetry. 

• Two massless tensors. 

• Four hypermultiplets in the 2 representation of the above SU(2). 

Now this would seem to be somewhat excessive! The problem is of course 
that we need to worry about the RR moduli again and the fact that they may 
block various extremal transitions giving rise to the above spectrum. It seems 
reasonable to assume that the above massless spectrum actually corresponds 
to the point-like instanton case. That is, two point-like instantons coalesce 
at the quotient singularity. This was also asserted in [14] (without worrying 
about RR moduli). 

Now in many ways figure 3 is the same thing as figure 2 except that two 
of the vertical Ii lines have coalesced. Therefore much of the discussion in 
section 3.3 applies. This can be used to argue that for the tangent sheaf case 
we do not have any massless tensors and the E^ in not fully restored — we 
only have an Ej part of it as for any generic SU(2)-bundle. 

An interesting question is whether we actually have the nonperturbative 
SU(2) gauge symmetry and its associated hypermultiplets. We now argue 
that we do. 

The problem we need to address is how to identify which RR moduli are 
lost when we go through the extremal transition associated to this SU(2) 
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gauge symmetry enhancement. As mentioned earlier, in order to see the 
extremal transition we need to go to four-dimensional physics given by the 
type IIA string compactified on X (where the fibres of the F-theory elliptic 
fibration can be given nonzero size). 

If we really have an SU(2) gauge symmetry in the four dimensional theory 
then we should be able to break it to U(l) by switching on a vector multiplet. 
In terms of Xi, this is the deformation of the Kahler form which blows up 
all the I2 fibres along the vertical line in figure 3. As this line passes through 
C* it corresponds to blowing up to produce an algebraic P1 C Z. 

Recall that in [15] some of the RR modes were identified with 3 cycles 
which intersected Z along transcendental 2-cycles. As we have produced 
an algebraic 2-cycle in Z in this extremal transition we must have lost a 
transcendental 2-cycle. This lost 2-cycle is naturally the one which lay in 
the 3-cycle corresponding to the lost RR mode. 

The analysis in [15] argued that the RR fields associated to 3-cycles 
which intersect Z in 2-cycles are interpreted as B-fields in the heterotic 
language. That is, the RR mode which potentially blocks the appearance of 
the nonperturbative SU(2) gauge symmetry is a B-field on the K3 surface. 
(We expect the masslessness of the four 2's of SU(2) to be blocked in the 
same way since there are no other moduli which could further affect these 
modes.) 

The conclusion is therefore that in order to get enhanced gauge symmetry 
for the tangent sheaf of an orbifold, the corresponding component of the B- 
field must be set to zero. This is highly reminiscent of the type IIA string 
on a K3 surface as described in [35, 36] where it was also argued that the 
i?-field must also be set to zero to see the enhanced gauge symmetry from 
an orbifold point. 

It is not difficult to generalize this discussion to that of a general A-D-E 
singularity. We find 

Proposition 4 If the E% x E% heterotic string is compactified on the tan- 
gent sheaf of a K3 surface with an A-D-E singularity then one acquires the 
corresponding A-D-E gauge group nonperturbatively if and only if the B-field 
associated to the shrunken 2-cycle(s) is set to zero. 

For the cyclic quotient singularity we expect an SU(iV) gauge symmetry 
to come with 2N hypermultiplets in the fundamental representation. This 
is implied by the F-theory geometry and and can also be seen to correctly 
cancel anomalies. Similarly F-theory suggests 2N — 8 hypermultiplets in the 



P. ASPINWALL, R. DONAGI 1067 

vector representation of SO(2iV) and no hypermultiplets in the EQ, JEV, and 
Eg case. 

It is also perhaps worth mentioning a local description of the tangent 
sheaf of a quotient singularity in terms of previously analyzed point-like 
instantons. In [17] methods were described which analyze a point-like in- 
stanton with a Z2 holonomy which broke Es to (E7 x SU(2))/Z2. Such an 
instanton is forced to sit on a C2/Z2 quotient singularity (or worse). By 
using methods similar to section 4.1 of [17] one may show that this instan- 
ton has C2 = |. Figure 3 is precisely the F-theory picture for what happens 
when one allows such an instanton to coalesce with a normal free point-like 
instanton in the Es x Es heterotic string. Therefore up to changes in the 
RR-moduli, the tangent sheaf of C2/Z2 looks locally like a sum of a "half" 
instanton with a full instanton. It therefore has a local charge of C2 = §. 
This is consistent with the construction of a K3 surface as a quotient T4/Z2. 
This has 16 orbifold points of the above form and the Euler characteristic is 
24 — so each orbifold point "contributes" | to the Euler characteristic. 

5    T-Duality 

Finally we will study some global issues about the moduli space of the het- 
erotic string compactified on the tangent bundle of a K3 surface. We will 
discover that the mathematical abstraction of derived categories is pretty 
well forced upon us if we are to make sense of conventional ideas such as 
T-duality. 

Consider first the non-linear cr-model of a superstring with a K3 target 
space. When the metric on this K3 surface is Ricci-flat, we have a conformal 
field theory which has N = (4,4) supersymmetry. It was argued in [37-39] 
that the moduli space of such conformal field theories receives no quantum 
corrections. It was then deduced in [30,40] that the moduli space must be 
exactly of the form 

^ = O(r4,2o)\ 0(4,20)/(O(4) x 0(20)), (36) 

where F^o is the even unimodular lattice of signature (4,20) and ©(F^o) 
is its discrete isometry group (often called, more loosely, 0(4,20; Z)). 

The best way to view the action of O(r4}2o) is as follows. Consider 
#*(Z,Z) = H0(Z,Z)®H2(Z,Z)®H*(ZiZ) and let w G H*(Z,Z) £ F^o 
be a primitive null vector which denotes the generator of HA{Z^ Z). Given a 
point in the moduli space and a choice of w € F^o, we may define a Ricci- 
flat metric on Z and a choice of S-field [30,31]. The modular group 0^4,20) 



1068 THE HETEROTIC STRING ... 

acts transitively on the set of possible choices for w within the lattice F^o 
and so generates the possible target space interpretations of a single point 
in the moduli space. These identifications include such notions as mirror 
symmetry and R «->» l/R symmetries. 

The N = (4,4) conformal field theory has no preference for which di- 
rection in H*(Z,Z) is H4(Z, Z) — this is what the modular group CKF^o) 
expresses. In order to impose a geometric interpretation on the theory we 
are forced to choose a w, breaking this modular group. 

Any string theory compactified in a conventional way should have the 
moduli space of corresponding conformal field theories as part of its moduli 
space — supplemented by more parameters such as the dilaton, RR fields 
etc. The conformal field theory moduli space may receive corrections which 
are quantum with respect to the string coupling (as distinct from the a- 
model coupling). Given enough supersymmetry, such quantum corrections 
may vanish leaving the conformal field theory moduli space intact. 

An example of this is the type IIA string compactified on a K3 surface. 
The well-known duality of this to the heterotic string on a 4-torus requires 
that the moduli space (36) be exact. 

We can also expect to rid ourselves of such quantum corrections if the 
dilaton somehow lives in another sector of the theory. This happens when 
the heterotic string is compactified on a K3 surface — the dilaton lives in 
a tensor multiplet whereas the conformal field moduli space is composed of 
hypermultiplet moduli. When we "embed the spin connection in the gauge 
group" for the heterotic string, we obtain an N = (4,4) underlying conformal 
field theory and so the space (36) must be an exact subspace of the moduli 
space of heterotic strings on a K3 surface. 

Note that when we deform the bundle of the heterotic string away from 
the tangent bundle, we generically break the world-sheet supersymmetry to 
N = (4,0) and then the moduli space may well pick up quantum corrections 
in the non-linear a-model. This was discussed in [15]. 

The question we want to address is, can we extend the T-duality for 
conformal field theories to T-duality for heterotic strings? The answer is 
strikingly clear. The Mukai vector lives in H*(Z, Z), We must therefore let 
the T-duality group act on this too. 

It is worth pointing out that Mukai's work of [27] precedes the notion 
of mirror symmetry and that the appearance of H*(Z>Z) in both contexts 
appeared to be somewhat unrelated at first. One connection between these 
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objects has already been pointed out by Morrison [41] based on the work [42]. 
Here we have another relation — perhaps more unavoidable because of the 
way that the heterotic string combines vector bundles with conformal field 
theories. 

As explained in section 2.3, the group ©(F^o) does not act in a natural 
way on the space of vector bundles or even the space of sheaves. Instead 
we are forced to use the derived category of coherent sheaves. We can then 
make the following 

Proposition 5 Let Zi be a K3 surface and consider the heterotic string 
compactified on the tangent bundle of Zi. This is mapped by T-duality to 
an elementj W, of the derived category of coherent sheaves over Zi- Zi is 
related to Z\ by the usual action o/OO^o) on ^e moduli space of conformal 
field theories. The Mukai vector ofW is obtained by the action of Ofi^o) 
on the Mukai vector of the tangent sheaf of Zi. 

It is worth pointing out that the way one might generate 0(1^20) in terms 
of conventional T-dualities on a K3 surface and how one might generate it 
from actions on the Mukai vector are remarkably similar. It was shown 
in [30] how 0(1^20) could be generated from three sets of elements: 

1. The classical diffeomorphisms of K3 generating 
o+(fr2(z,z))so+(r31i9). 

2. Mirror Symmetry. 

3. Shifts in the J5-field by an element of #2(Z, Z). 

It is not hard to see that the map S of section 2.3 is similar to mirror 
symmetry5 and the map T is the analogue of a shift by the class of the 
elliptic fibre. 

We can now try to resolve an important question as to how, in general, 
the heterotic string can be viewed. In particular what kind of data should 
be specified in order to compactify it? The conventional point of view was 
that a vector bundle over some Calabi-Yau manifold was the correct picture. 
It was seen in [18] that this is not sufficient to fill out the moduli space in 

5This similarity can be a little confusing. Whether or not one really identifies it with 
mirror symmetry comes down to a question of the actual definition of mirror symmetry for 
a K3 surface. In [41] an identification with mirror symmetry was made. Having said that, 
S is not mirror symmetry in the sense of mirror symmetry between families of algebraic 
K3's as discussed in [43] for example. 
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the case of compactification over Calabi-Yau threefolds. Some phases of the 
moduli space correspond to non-locally-free sheaves. In this case the sheaves 
were "reflexive", i.e., they were locally free except over codimension 3 (that 
is, points). 

One might therefore suspect that reflexive sheaves might be the right 
choice. If one believes that string theory really has an algebraic underpinning 
then one might also propose that coherent sheaves are the natural choice. 

Instead we propose that one must go even further and specify an element 
of the derived category of coherent sheaves as the heterotic string data. One 
must do this to get T-duality. 

Let us spell out a little more clearly what we mean by this. Suppose one 
takes a large smooth K3 surface with its tangent bundle. This bundle is a 
locally-free sheaf. We now shrink the K3 surface to a size well below the a' 
scale. We know that we may use T-duality to turn such a K3 surface back 
into a large K3 surface. To do this however we are required to reinterpret the 
way that we divided T^o = #*(£, Z) into iJ0(Z, Z) © H2(Z, Z) © H\Z, Z). 
For example, a good R <-> l/R symmetry is one which exchanges the role of 
H0 and HA [31]. When we do this however we are also forced to reinterpret 
the bundle data. A vector bundle has Chern classes for example which live 
in H*(Z,Z) and so these must be changed in accordance with T-duality. 
The natural way to do this remapping is to use the Mukai vector and the 
derived category D(Z). 

Once we have accepted this claim for the tangent sheaf, we are required 
to extend it to many other, if not all, possible sheaves on which we may 
compactify the heterotic string. This is because we may deform the tangent 
bundle into other SU(2)-bundles and then we may connect via extremal 
transitions to many other cases. It would appear that the Mukai vector and 
D(Z) provides a good general setting for analysis of the heterotic string. 

We close with the observation that this is not the first time that the de- 
rived category of coherent sheaves has appeared in string theory. It was used 
by Kontsevich in a conjectural description of mirror symmetry [44], which 
has recently been proved for the one-dimensional case in [45]. While such 
abstract objects as derived categories are not the kind of things a physicist 
would normally wish to consider, this clearly deserves to be studied further! 
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