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Abstract 

In this paper we consider the topological side of a problem which is the 
analogue of Sen's S-duality testing conjecture for Hitchin's moduli space 
M of rank 2 stable Higgs bundles of fixed determinant of odd degree over 
a Riemann surface S. We prove that all intersection numbers in the com- 
pactly supported cohomology of M vanish, i.e. "there are no topological L2 

harmonic forms on M". This result generalizes the well known vanishing of 
the Euler characteristic of the moduli space of rank 2 stable bundles J\f of 
fixed determinant of odd degree over E. Our proof shows that the vanishing 
of all intersection numbers of H*pt(M) is given by relations analogous to 
the Mumford relations in the cohomology ring of Af. 

1    Introduction 

Analyzing the conjectured S-duality in N=2 super symmetric Yang-Mills the- 
ory, which is a proposed SX(2, Z) symmetry of the theory, Sen in [Sen] could 
predict the dimension of the space of L2 harmonic forms Hk on the universal 
cover of the moduli space of magnetic monopoles of charge A;,by speculating 

e-print archive: http://xxx.lanl.gov/abs/math.AG/9805071 



1012 VANISHING OF INTERSECTION NUMBERS.... 

that there must be an SX(2, Z) action on the space 0 %&, which represents 
bound electron states of the theory. 

The moduli space of monopoles M^ of charge k is the space of finite 
energy and charge k solutions to the Bogomolny equations in R3, which can 
be interpreted as a reduction of the self-dual SU{2) Yang-Mills equations 
in M4. The space M^ is a non-compact manifold, with 7r(Mfc) = Zfc, and 
has a natural hyperkahler and complete metric on it, which comes from an 
abstract construction (the so-called hyperkahler quotient construction, cf. 
[HKLR]) and known explicitly only in the case k = 2, when M2 is called the 
Atiyah-Hitchin manifold. (For further details see [At,Hi].) 

When k = 2 Sen's conjecture says that din^?^) = 1. By knowing the 
metric of M2 explicitly, Sen was able to find a non-trivial L2 harmonic form 
on the universal cover M27 giving some support for his conjecture and in 
turn for S-duality. 

For higher k Sen's conjecture says something about a metric which is not 
known explicitly. Nevertheless the statement is interesting from a mathe- 
matical point of view as the space of L2 harmonic forms on a non-compact 
complete Riemannian manifold is not well understood. 

Hodge theory tells us that in the compact case the space of L2 harmonic 
forms is naturally isomorphic to the De-Rham cohomology of the manifold. 
However in the non-compact case there is no such theory, and indeed the 
harmonic space depends crucially on the metric. 

Nevertheless some part of Hodge theory survives for complete Rieman- 
nian manifolds (cf. [DeRh] Sect. 32 Theorem 24 and Sect. 35 Theorem 26), 
such as the Hodge decomposition theorem which states that for a complete 
Riemannian manifold M the space fi^ 0f ^2 forms on M has an orthogonal 
decomposition 

and also U* = ker(d) fl ker(<f). 

An easy corollary1 of these results says that the composition 

H*pt(M)^H* ^H*{M) 

is the forgetful map. 

By calculating the image of Hlpt{Mk) in fP(Mfc) Segal and Selby could 
give a lower bound for the harmonic forms on the moduli space of magnetic 

'Cf. [Se,Se] 
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monopoles which coincides with the dimension given by Sen's conjecture (see 
[Se,Se]). This purely mathematical result is thus a supporting evidence for 
the conjectured S-duality in N — 2 SYM of theoretical Physics. 

In this paper we will investigate the analogue of Sen's conjecture for 
Hitchin's moduli space M of rank 2 Higgs bundles of fixed determinant of 
degree 1 over a Riemann surface E of genus g > 1. The space M is a sim- 
ply connected non-compact manifold of dimension 12g — 12 with a complete 
hyperkahler metric on it, and was constructed by Hitchin in [Hitl] by con- 
sidering the solutions of the self-dual Yang-Mills equations on M4 which are 
translation invariant in two directions. Led by the similarities between the 
spaces Mfc and M and their origin, we ask the following question: 

Problem 1   What are the L2 harmonic forms on M? 

In this paper we prove the following: 

Theorem 1.1  The forgetful map2 

3M'H:pt{M)-*H*(M) 

wO. 

This says that unlike the case of M^ the topology of M does not give 
the existence of L2 harmonic forms. We can state this fact informally as: 
"There are no topological L2 harmonic forms on Hitchin's moduli space of 
Higgs bundles". 

Segal and Selby's result together with Sen's conjecture suggest that for 
Mk the topology gives all the harmonic space. Led by this and supported by 
the discussion in Subsection 2.2 we can formulate the following conjecture: 

Conjecture 1  There are no non-trivial L2 harmonic forms on Hitchin's 
moduli space of Higgs bundles. 

It would be interesting to see whether a physical argument could back 
this conjecture. We know of one serious appearance of Hitchin's moduli 
space of Higgs bundles in the Physics literature. In [BJSV] a topological a- 
model with target space M arises as certain limit of N = 4 supersymmetric 

2Unless otherwise stated cohomology is meant with real coefficients. 
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Yang-Mills theory.  However it is not clear whether L2 harmonic forms on 
M have any physical interpretation in this theory. 

Note that the conjecture does not hold for parabolic Higgs bundles, as 
the toy example in Example 2 after Theorem 7.13 of [Haul] shows. Note also 
that Dodziuk's vanishing theorem [Dod] shows that there are no non-trivial 
L2 holomorphic forms on M, since the Ricci tensor of a hyperkahler metric 
is zero. 

From an algebraic geometrical point of view Theorem 1.1 can be in- 
terpreted as follows. First of all it is really about middle dimensional co- 
homology, because it is known that M does not have cohomology beyond 
the middle dimension, and equivalently by Poincare duality M does not 
have compactly supported cohomology below the middle dimension. Thus 
the main content of Theorem 1.1 is the vanishing of the canonical map 
JM '- H^6(M) ->> H69~6(M) between g dimensional spaces (cf. Corollary 
5.4 in [Haul]). This in turn is equivalent to the vanishing of the intersection 
form on HCpf (At), i.e. to the vanishing of g2 intersection numbers. 

There are g +1 intersection numbers whose vanishing follows easily. One 
vanishing is obtained by recalling that the moduli space Af of stable bundles 
of real dimension 6# — 6 sits inside M with normal bundle T^, thus its self- 
intersection number is its Euler characteristic up to sign, which is known to 
vanish. 

The other g vanishings follow from the fact that the ordinary cohomology 
class of the Prym variety, the generic fibre of the Hitchin map, is 0, i.e. it 
is in the kernel of JM . This can be seen by thinking of the Hitchin map 
as a section of the trivial rank 3^ — 3 vector bundle on M and considering 
the ordinary cohomology class of the Prym variety as the Euler class of this 
trivial vector bundle, and as such, the ordinary cohomology class of the Prym 
variety is trivial indeed. Note that for the case g = 2, the above vanishings 
are already enough to have JM = 0. (Cf. Example 2 after Theorem 7.13 in 
[Haul].) 

The vanishing of the rest of the g2 intersection numbers on M, proved 
in the present paper for any genus, can be considered as a generalization of 
these facts. 

The structure of this paper is as follows: In the next section we describe 
the cohomology of certain moduli spaces. In Section 3 we define hypercoho- 
mology groups and related notions. Then in Section 4 we develop the theory 
of stable Higgs bundles analogously to the stable vector bundle case, and 
prove an important vanishing theorem.   In Section 5 we prove that M is 
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a fine moduli space, and define certain universal bundles. In Section 6 we 
construct the virtual Dirac bundle as the analogue of the virtual Mumford 
bundle, and show that it can be considered as the degeneracy sheaf of a 
homomorphism of vector bundles. In Section 7 we determine the degener- 
acy locus of the above homomorphism in terms of the components of the 
nilpotent cone. Finally in Section 8 we prove our main Theorem 1.1 using 
Porteous' formula for the degeneracy locus of the virtual Dirac bundle. 

Acknowledgements. First of all I would like to thank my supervisor Nigel 
Hit chin for suggesting Problem 1, and for his help and encouragement. I am 
grateful to Michael Thaddeus for his inspiring paper [Thai], enlightening 
communications and his constant interest in my work. I am also indebted 
to Manfred Lehn for the idea of the proof of Theorem 6.2. I have found 
conversations with Michael Atiyah, Frances Kirwan and Graeme Segal very 
stimulating. I thank the Mathematical Institute and St. Catherine's College, 
Oxford for their hospitality during the preparation of this work. Finally I 
thank Trinity College, Cambridge for financial support. 

2    Moduli spaces and their cohomology 

The central object of this paper is a fixed, smooth and complex projective 
curve S of genus g > 2. We also fix a point p G S. 

An additive basis of H*(E): 1 6 .ff0(E), e* e Hl(Z), i = 1, ..,2g and the 
fundamental cohomology class a G iJ2(E) with the properties that e^ Ae^g = 
—ei+gAei = a for i = 1,.., g and otherwise e^ Aej = 0, will be fixed throughout 
this paper. 

2.1    The Jacobian J 

The moduli space of line bundles of degree k over E is the Jacobian J^. 
This is an Abelian variety of dimension g>, Tensoring by a fixed line bundle 
of degree k — I gives an isomorphism between Ji and Jk- We will write J 
for Ji. 

Being a torus H*(Jk) is a free exterior algebra on 2g classes T* E Hl(Jk) 
defined by the formula 

2g 2 

ci(]Lfc) = k ® a + Y, n ® ei E H2(Jk x E) ^ ^ Hr{Jk) ® #2-r(E). 
i=l r=0 
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Here L^ is the normalized Poincare bundle, or universal line bundle over 
Jk x E. Universal means that for any L E Jk'- 

IU |{L}xE- L 

and normalized means that L^ \jkx{p} is trivial (cf. [ACGH]). 

2.2    Moduli space of Abelian Higgs bundles Tj 

As a toy example for the discussions in the Introduction, we consider here 
the moduli space of Abelian Higgs bundles. 

The tangent bundle of J is canonically isomorphic to J x if1(E,(!?s). 
Thus by Serre duality T^ = J x iJ^E,^) canonically.   An element $ G 

(TJOL £ #0(E, if), can be thought of as a rank 1 Higgs bundle: C = L 4 
L® K (cf. Definition 4.1). Thus we can think of Tj as the moduli space of 
rank 1 Higgs bundles. 

The cohomology of Tj is isomorphic to that of J. However there is an 
extra piece of cohomological information namely the intersection numbers 
in the compactly supported cohomology or in other words the map: 

jj-.H^T^^H^T}). 

Clearly this map is interesting only in the middle dimension, where both 
HCpt(Tj) and H29(Tj) are one-dimensional. However the Euler characteris- 
tic of J is clearly 0, thus the self-intersection number of the zero section of 
Tj is 0, which shows that jj vanishes. 

Consider the Riemann metric on Tj = J x iJ0(E, K) which is the prod- 
uct of the flat metrics on the two terms (this is the metric which we get 
if we perform Hitchin's work in [Hitl] for the Abelian case). From the L2- 
vanishing theorem of Dodziuk [Dod], since the metric is flat there are no 
non-trivial L2 harmonic forms on Tj, thus in the Abelian Higgs case the 
topology gives the harmonic space, as conjectured for the rank 2 Higgs mod- 
uli space in Conjecture 1 and for the universal cover of the moduli space of 
magnetic monopoles in [Sen]. 

2.3    The moduli space of rank 2 stable bundles J\f 

We denote by M the fine moduli space of rank 2 stable bundles with degree 
1 over E. It is a smooth projective variety of dimension 43 — 3. The de- 
terminant gives a map det/j : M —> J.  For any A G J the fibre detj^~(A) 
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will be denoted by A/A> which is a smooth projective variety of dimension 
30 - 3. The map / : AfAl -> A/^ given by f{E) = E <g> (A2 ® A^)1/2, where 
(A2 ® AJ)1/2 is a fixed square root of A2® AJ, is an isomorphism between Af^ 
and A/A2. Hence we will write M for A/A, when we do not want to emphasize 
the fixed line bundle A. 

Let G := JH
rl(S,Z2) = Z2^ S ker(a2), where (J2 : Jo -* Jo is given by 

cr2(I/) = i2. Now G acts on Af and J' by tensoring with the corresponding 
line bundle in ker(<T2) and also on Af x J by the diagonal action. Then (cf. 
(9.5) of [At,Bo]) we have 

Ar=(Afx J)/G. (1) 

Because G acts trivially on H*(J) and on H*(Af) (the latter was first proved 
in [Ha,Na]) we see that as rings 

H*(Af) £* (H*(Af) ® H*{J))G & H*(Af) ® ir*(J). (2) 

Thus for understanding the cohomology ring H*(Af) it is enough to know 
the cohomology ring H*(Af). The latter is multiplicatively generated by 
classes a^ G H2(Af), ^ E H3(Af) and /^ G i?4^), which appear in the 
Kiinneth decomposition of C2(End(EA/*)): 

2y 

C2(End(Ev)) = 2a^ ® a + ^ 4^V ® ^ - ^ ® 1 (3) 
2=1 

in i?4(A^ x S) ^ 2r=o ^ W ® ff4"r(S). 

Here E/v is the normalized rank 2 universal bundle over Af x E, i.e. 
CI(EA/*) = CKAT and E/v |{£7}XE— ^ for every E e Af. 

The ring if* (A/") is described in terms of the so called Mumford relations. 
To explain this consider the virtual Mumford bundle 

M^Tr^E^Tr^L-1))    =   -i^TT^CE^®^;1)) 

+R1^^®^{L-l))eK{M). 

Using standard properties of stable bundles it can be shown that R? van- 
ishes. Thus M is a vector bundle of rank 2^ — 1. Its total Chern class is a 
complicated3 polynomial of the universal classes. Since rank(M) =2^ — 1, 
the Chern class C2p+r(M) G iT40+2r (Af) vanishes for r > 0.   According to 

It was calculated by Zagier in [Zag]. 
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(2), the cohomology of M is the tensor product of H*(J) and II*(J\f). Thus 
if we write T5 = Ui£s Ti € H\s\j) for S C {1... 2g} and 

C2p+r(M)-     Y^     Cs®rs 
SC{l:.2g} 

in the Kiinneth decomposition of (2) then we get the vanishing of each ££. 
Thus for every r > 0 and S C {1... 2g} we get a relation 

aeQKAVi] .    (4) 

of degree 4g + 2r —15|. The polynomials ("5 are called the Mumford relations. 

Mumford conjectured, and it was first proved by Kirwan in [Kir], that the 
Mumford relations constitute a complete set of relations of the cohomology 
ring of M. 

By now a complete description of the Mumford relations and the ring 
structure of H*(M) is available (see [Bar], [Ki,Ne], [Si,Ti] and [Zag] and also 
[Tha2] for an introduction to the topology of M). 

2.4    The moduli space of rank 2 stable Higgs bundles M 

We denote by M,2k-i the coarse moduli space of rank 2 stable Higgs bundles4 

with degree 2k — 1 over S, which was constructed as M(2,2k — 1, K) in [Nit]. 
For a fixed E they are all isomorphic to each other. We write M for Mi. It 
is a smooth, non-projective, quasi-projective variety of dimension 8g — 6. 

The determinant gives a map detM ' M —► Tj, defined by detM{Ej $) = 
(A2E,tr($)). For any C G T} the fibre detJ^(C) will be denoted by Mc 
Just as in the stable vector bundle case any two fibres ofdetM are isomorphic. 
Usually we will write M for Mc, when the Abelian Higgs bundle £ has zero 
Higgs field. 

Our main concern in this paper is M. It is a non-projective, smooth 
quasi-projective variety of dimension 6g — 6. It was first introduced in [Hitl] 
and then an algebro-geometric approach was given in [Nit] and in [Sim]. 

Similarly to (1) we have a G- act ion on M and on Tj such that: 

M = (M x T})/G. 

4For definitions see Section 4. 
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This on the level of cohomology gives 

H*(M) = {H*(M))G ®H*(Tj) 2* {H*(M))G ®H*{J). (5) 

In the case of M however we do not have the triviality of the action of G on 
H*(M.), but nevertheless the cohomology ring of M is determined by the 
ring (H*{M))G. 

There is quite little known about the ring H*(M). The Poincare poly- 
nomial of it is calculated in [Hitl]. From that calculation we can easily cal- 
culate the Poincare polynomial of (H*(M))G. Nothing else is known about 
H*(M). We will return to this problem in a forthcoming paper [Ha,Th]. 

In this paper we settle another problem concerning the topology of M. 
We calculate all intersection numbers of M. Because M is non-compact we 
have to work with compactly supported cohomology. Moreover there is no 
compactly supported cohomology below the middle dimension 6(7 — 6. Thus 
the only interesting intersection numbers come from the intersection form 
on Hj*t (M). This space is g dimensional and generated by the compactly 
supported cohomology classes of the components of the nilpotent cone, which 
is the zero fibre of the Hitchin map or in other words the locus of stable 
Higgs bundles with nilpotent Higgs field (cf. Corollary 5.4 of [Haul]). By 
considering the virtual Dirac bundle which is the analogue of the virtual 
Mumford bundle we will prove in the last section of this paper that the 
ordinary cohomology classes of the components of the nilpotent cone are 
trivial. This shows that the intersection form on Hc^ (M) is trivial, which 
is equivalent to Theorem 1.1. 

As a conclusion it can be said that the analogue of the Mumford relations 
for the moduli space of Higgs bundles is Theorem 1.1. 

3    Hypercohomology 

In this section we recall the notion of hypercohomology of a complex from 
[Gr,Ha], and list some properties of it, which we will use later. 

Definition 3.1 Let 

A=(Av-^Al-^A2^...) 

be a complex of coherent sheaves Ai over an algebraic variety X.   For a 
covering U_ — {Ua} of X and each Ai we get the Cech cochain complex with 
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boundary operator S: 

(CO&AJ-^C'&Ai)-^...). 

Clearly d induces operators 

satisfying 52 = d2 = dS + 8d = 0: and hence gives rise to a double complex 

The hypercohomology of the complex A is given by the cohomology of the 
total complex of the double complex Cp>q: 

Et{X,A) = ]imH*(C*{lO,D). 

Moreover if A is a complex over X and f : X -> Y is a projective 
morphism then for every non-negative integer i define the sheaf Wf*(A) 
over Y by 

M7*M)(^)=JHIi(/-1(t/),^). 

Finally, define the pushforward of a complex to be: 

MA) = wPfM) - K1
/*^) + R2/*M) - • • • € K(Y). 

Remark.    In this paper we will work only with two term complexes. 

There is one important property of hypercohomology which we will make 
constant use of. If 

0->A-*B-*C->0 

is a short exact sequence of complexes then there is a long exact sequence 
of hypercohomology vector spaces: 

0 -»• V£(X,A) -»> HPpf.B) -»• l£(X,C) -»- M1^,^) -»- ... (6) 
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As an example consider the short exact sequence of two term complexes: 

0- —s-0 

t t 
0- 0         A ^A2 

t t< 
Ai- -^A2 

=^ "t" t 
Ai Ao 
t t 
0- —>0 

The long exact sequence in this case is: 

0 -► EP{X,A) -> -ff0(X, Ai) -> if0(X, A2) -> H1^,^) -> ... (7) 

which we will call the hypercohomology long exact sequence of the two term 

complex A = Ai —> A2. 

Consequently if A = Ai —> A2 is a two term complex over X and / : 
X —> Y is a projective morphism then we have: 

0 -> M0/*(^^) -► ^0/*(^^i) ^ i?0/*(^^2) -> K1/*^,^) ->..-,   (8) 

a long exact sequence of sheaves over Y. 

4    A vanishing theorem 

Definition 4.1 T/ie complex E -+ E ® K with E a vector bundle on S, if 
£/ie canonical bundle o/E, and $ G iI0(E,Hom(jB, E®K)), is called a Higgs 
bundle, w/w/e $ is ca//ed the Higgs field. 

T^e define a morphism ^ : £1 -* £2 between two Higgs bundles 

£ 1 = Ei -4 Ei ® K and £2 = E2 -$ E2® K to be a homomorphism of vector 
bundles \I/ € Hom(£7i, JE^) 5tic/i £/M£ ^/ie following diagram commutes: 

Ei^hEi®K 

JS2 -^> ^2 ® K 
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Moreover we say that 81 is a Higgs subbundle of £2 if^E Hom^i,^) 
is injective and a morphism of Higgs bundles. We denote this by £1 C £2- 
In this case we can easily construct the quotient Higgs bundle £2/£i together 
with a surjective morphism of Higgs bundles TT : £2 —► ^2/^1 whose kernel is 
exactly £1. 

Remark.    It is a tautology that morphisms of Higgs bundles form the hy- 

percohomology5 vector space H0 (S, El ® E2 -^ El®E2® K) where the 
homomorphism [$1, $2] is given by: [$1, $2] (*) := (^ ® idx)^! — $2* for 
* G Hom(£7i,£?2). 

Now we can define the notion of stability of Higgs bundles: 

Definition 4.2 // E is a vector bundle over S then its slope is defined by 
IJL(E) := deg(£/)/rank(£;).  The slope //(£) of a Higgs bundle 

£ = E-$E®Kis defined as the slope /J>(E) of its vector bundle E. Now 
a Higgs bundle is called stable if it has strictly larger slope than any of its 
proper Higgs subbundles. 

The main result of this section is the following theorem, the second part 
of which is Proposition (3.15) in [Hitl]: 

Theorem 4.3 Let £ = E A E ® K and 3= = F \ F ® K be stable Higgs 
bundles with ^{T) < //(£). Then the only morphism from £ to T is the 
trivial one. In other words 

E0 (E, £* ® F [-^] E* ® F ® K) = 0. 

Moreover if ^(J7) = //(£), fAen ^/iere 2*5 a non-trivial morphism f : £ —t J7 

if and only if £ = F in which case every non-trivial morphism f \ £ -^ T is 
an isomorphism and 

dirnflH0 (E, £* ® F ^ S* ® F ® if)) - 1. (9) 

5In connection with Higgs bundles the language of hypercohomology was first used in 
[Sim]. In [Bi,Ra] it was used to describe the tangent space to M.. 
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Proof. For the proof we need a lemma of Narasimhan and Seshadri (cf. 
section 4 in [Na,Se]): 

Lemma 4.4 Let E and F be two vector bundles over the Riemann surface 
S with a non-zero homomorphism f : E -> F, then f has the following 
canonical factorisation: 

0- ->Ei- ̂ E^E2 
if       ig 

■>0 

0«- -F2+- -F+i-Fi<- -0 

where Ei,E2,Fi and F2 are vector bundles, each row is exact, f = igr) and 
g is of maximal rank, i.e. rank(i£2) = rank(Fi) = n and An(g) : An(E2) —> 
An(Fi) is a non-zero homomorphism. In other words g is an isomorphism 
on a Zariski open subset U o/E. Fi is called the subbundle of F generated 
by the image of f. D 

Let / : £ —> T be a non-zero morphism of Higgs bundles. In particular 
/ : E —)> F is a homomorphism of vector bundles. 

Construct the canonical factorisation of / of the above lemma. Consider 
the Zariski open subset U of E where g is an isomorphism. Here clearly 
ker(/ |[/) = ker(?7 \u) = E\ \\j. Nowker(/ \\j) being the kernel of a morphism 
of Higgs bundles is ^-invariant, i.e. a Higgs subbundle off \u. Thus E\ \JJ is 
a Higgs subbundle of £ |jy. This means that Q{E\) is contained in E\ ® K C 

E®K on XJ. Because U is Zariski open in E it follows that £\—E\-^ E\®K 

is a Higgs subbundle of £. Let £2 — E2 -> E2 ® K denote the quotient Higgs 
bundle. 

Similarly im(a) |^= Fi \u is ^-invariant, thus Ti = Fi -> Fi ® if is a 
Higgs subbundle of F. 

By assumption ^(J7) < n{£), stability of £ gives n(£) < ^(^2) (it may 
happen that E = E2) and because g is of maximal rank we get ^{£2) = 
M-^2) < A*(-Pi) — niFi)- Thus ii(T) < niFi) contradicting the stability of 
F. 

If /i(£) = /i(^:*) then the above argument leaves the only possibility that 
77, g and i are isomorphisms, showing that / must be an isomorphism. Sup- 
pose that we have such an isomorphism / of Higgs bundles. Then con- 
sider h : £ —> T another non-zero morphism of Higgs bundles. In par- 
ticular h E Hom(J5, F).    Let A be an eigenvalue of the homomorphism 
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fplhp G Hom(i?p,i?p). Then the homomorphism h — A/ is not an iso- 
morphism, though clearly a morphism of Higgs bundles. Prom the above 
argument this means that h — Xf = 0. 

The result follows. □ 

Corollary 4.5 For any stable Higgs bundle £ with n(£) < 0: 

IHIo(E,<?) = 0, (10) 

for any stable Higgs bundle £ with n(£) > 0; 

IHI2(£,£) = 0. (11) 

If £ is a stable Higgs bundle with fj,(£) = 0 and £ ¥ £o = Os -> Os ® -K" 
£/ien ktf/i fiO) and ^ii^ hold. 

Proof For the first part consider the Higgs bundle £o = Os —► C^E ® if. 
Being of rank 1 it is obviously stable, with /i(£o) = 0- Now the previous 
theorem yields that there are no nontrivial morphisms from £o to £, which 
in the language of hypercohomology is exactly EI0(E,f) = 0, which we had 
to prove. 

For the second part Serre duality gives that ]HP(£,£) = (]BP(E,£*®K))*. 
Now clearly £ * ® if is stable and //(£* ® if) = -//(£) < 0. Thus the first 
part gives the second. 

Likewise, the third statement follows by referring to the last part of 
Theorem 4.3. □ 

5    Universal bundles 

Nitsure showed that M is a coarse moduli space. Here we show that M is 
in fact a fine moduli space. We closely follow the proof of Theorem 5.12 in 
[New] and (1.19) of [Tha3]. All the ingredients have already appeared in the 
unpublished [Thai]. 

Definition 5.1 Two families £T and Ej, of stable Higgs bundles over T x E 
are said to be equivalent, (in symbols £T ~ £j>) tf there exists a line bundle 
L on T such that £^^£T® ir%(L). 
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The next lemma, which is taken from [Thai], shows that two families are 
equivalent iff they give rise to the same map to the coarse moduli space M. 

Lemma 5.2 // ET = Er -► Er ® Kz and £^ = E^ -> E^ ® K^ are families 
of stable Higgs bundles over T x E such that 

£T |{t}xs- £T l{t}xs (12) 

for each t E T, ^/ien £T ~ ST- 

Proo/. Let ^ := EJ, ®E^ -^TJ E^ ®E^ ®Kj*. We define L = E07rr*(^). 
By (12) and (9) this is a line bundle over T. By the projection formula 
the sheaf K0?^*^ ® ^(L*)) is just OT> the structure sheaf. A non-zero 
section * G iI0(T,R07rT!(s(^ ® n%(L*))) for every * G T gives * |WxS: 
(ST ® 7rT(^)) l{t}xs-^ ^T l{t}xE a non-zero morphism of Higgs bundles, 
which is by Theorem 4.3 an isomorphism. 

The result follows. D 

Now we prove the existence of universal Higgs bundles (cf. [Thai]): 

Proposition 5.3 Universal Higgs bundles Sj^ = E^ —> E^ ® K^ over 
M x S do exist. 

Proof. The proof is analogous to the proof of Theorem 5.12 of [New] using 
the GIT construction of Nitsure [Nit] (cf. also (1.19) of [Tha3]). 

First we recall the construction of M2k-i from [Nit]. Let n = 2k — 1 + 
2(1 - g) with k large enough. Then by Corollary 3.4 of [Nit] for any stable 

Higgs bundle E —> E ® K, E is a quotient of Og. Let Q be the quot scheme 
of all quotient sheaves O^ —► T of rank 2 and degree d. Let C^xQ "* ^ 
be the universal quotient sheaf on S x Q. Let R C Q be the subset of all 
</ for which Tq is locally free and the map ir0(X!,(!?g) -)► H0(Y,,Uq) is an 
isomorphism. 

It follows from Proposition 3.6 of [Nit] that there exists a locally universal 
family for stable Higgs bundles of degree 2 and degree 2k — 1 given by 

Ss = Es —^ E5 ® Kz over Fs x S where Fs is an open subset of a linear 

iJ-scheme F -+ R and Ss = Sp |FSXE where Ep = E^ —4 E/? ® i^s is a 
family of Higgs bundles over F. 
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First by Theorem 5.3 of [New] GL(n) acts on R. Now GL(ri) acts equiv- 
ariantly on the i?-scheme F —> R, which gives a GL{n) equivariant complex 
£F> The centre of GL(n) acts trivially on F and by multiplication on Sp. 
Nitsure constructs A^fc-i in Theorem 5.10 of [Nit] as a good quotient of Fs 

by PGL(n) ^ GL(n)/Z{GL(n)). 

The proof of Lemma 5.11 of [New] gives a GI/(n)-equivariant line bundle 
L over R (although in Lemma 5.11 of [New] L is constructed only over Rs 

the same construction works over the whole R) for which Z(GL(n)) acts on 
L by scalar multiplication. Now for the GL(n)-equivariant bundle Sp® (TT^O 

g)*(L_1) the centre acts trivially thus it descends to a PGI/(n)-equivariant 
complex over F x S. This gives a PG?L(n)-equivariant locally universal family 
55® (7rjpog)*(L~1) over Fs x E. By Kempf's descent lemma (cf. Theorem 2.3 
of [Dr,Na])) the PG£(n)-equivariant bundle Es x (TT^ og)*(L_1) descends 
to a bundle to the good quotient M2k-i x S and since the section <£<j is 
invariant, it also descends.  Clearly the resulting complex Sj^   _   then will 

be a universal Higgs bundle over M.2k-i- (A similar situation appears in 
(1.19) of [Tha3].) 

Finally from a universal Higgs bundle over M2k-i one can easily con- 
struct universal Higgs bundles over any M21-1- 

The result follows. □ 

As in Theorem 5.12 of [New] and (1.19) of [Tha3] our Lemma 5.2 and 
Proposition 5.3 gives: 

Corollary 5.4 The space M is a fine moduli space for rank 2 stable Higgs 
bundles of degree 1 with respect to the equivalence ~ of families of stable 
Higgs bundles. 

As another consequence of Proposition 5.3 and Lemma 5.2 we see that 
although E^ is not unique End(EA^) is. Moreover it is clear that by setting 
EM = %< |.MxE we have 

c(End(E^)) = c(End(EM)) ® 1 (13) 

in the decomposition (5). 

Thus from the Kiinneth decomposition of End(E^4) we get universal 
classes 

2g 

C2(End(E.A4)) = 2aM ®CF + ^2^M ® e* - PM ® 1 
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in H^iM x S) ^ EUoHr(M) ® ^4"r(S) for some OM G ^2(A^), Vjw <= 
iJ3(A^) and /3M G if4(7W). 

Clearly a^ |^= a^, ipl
M \M= ^V and AM W= PAT- 

Though EM is not unique we can still write its Chern classes in the 
Kiinneth decomposition (cf. proof of Newstead's theorem in [Tha2]), getting 
ci(Ex) = 1 ® a + f3i ® 1, where /3i G H2(M) (note that .M being simply 
connected by [Hitl] H1^) = 0) and C2(EM) = a2®o-+X;'£i a^ei+ft® 1, 
where a^ G H2{M), m G if3(X) and ^ G if4(A4). Because ^(E^) - 
CI(EM) = C2(End(E<M)), we get a.M = 2^2 - pi and (3 = ffi - Afc. Because 
Pic(M) = H2(M,Z) (cf. [Haul]) we can normalize EM uniquely such that 
A = CM/i i-e- CI(EA4) = 1 ® a + ayw ® 1- 

Definition 5.5  T/ie universal Higgs bundle £M is normalized if 
CI((EM)P) = OM, ^ere (EA^)^ := EM \MX{V}- 

We also need to work out the Chern classes of E^. It is easy to see that 
c(E^) in the decomposition (5) is the product of c(E^) |.MXI; and c(Li), 
where Li is some universal line bundle over J x E. 

Definition 5.6  We call the universal Higgs bundle 8^ normalized if in the 
decomposition (5) 

ci((EM)p) = aM, (14) 

where (EM)P = EM \Mx{p} . 

Remark.    Since ^((E^)^) — ci((E^)p)2 — c<i (End((E^)p)), for a normal- 
ized universal Higgs bundle over M. x S (13) and (14) yield: 

Finally, given a universal Higgs bundle Ej^ over M. x E, we introduce a 
universal Higgs bundle of degree 2k — 1 by setting 

where Lp is the line bundle of the divisor of the point p G S. It is called 
normalized if f^ is normalized. As a matter of fact E1*- can be thought of 

as a pull back of a universal Higgs bundle from M.2k-i x S. 
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6    The virtual Dirac bundle, D^ 

The strategy of the proof of Theorem 1.1 will be to examine the virtual Dirac 
bundle D^ which is defined in the following: 

Definition 6.1  The virtual Dirac bundle is6 

D* :=-7^,(5^) €tf(.M), 

where £^ is a normalized universal Higgs bundle of degree 2k — 1 and TT^ : 

M x E —> M is the projection to M. 

The name is justified by Hitchin's construction [Hit2]7 of D^ related to 
the space of solutions of an equation on S, which is locally the dimensional 
reduction of the Dirac equation in M4 coupled to a self-dual Yang-Mills field. 

The virtual Dirac bundle is a priori 

a formal sum of three coherent sheaves. Corollary 4.5 shows that one of 
these sheaves always vanishes: if k > 0, then R2 = 0, if k < 0 then M0 = 0. 
Prom now on k is assumed to be positive. 

In this section we show that we can think of the virtual Dirac bundle as 
the virtual degeneracy sheaf of a homomorphism of vector bundles. More 
precisely we prove: 

Theorem 6.2 There exist two vector bundles V and W over Ai together 
with a homomorphism f : V —> W of vector bundles, whose kernel and 
cokernel are respectively R07r^*(£^) and M1?^*^^). In other words there 
is an exact sequence of sheaves: 

o -+ R^M^M) ->VAW^ M
1
 W^) -► 0. 

Proof. First we need a lemma. 

6Recall the definition of the pushforwaxd of a complex from Section 3. 
7Cf. Subsection 1.1.5 of [Hau2]. 
8The idea of the proof was suggested by Manfred Lehn. 



T. HAUSEL 1029 

Lemma 6.3 Let X be a smooth quasi-projective variety and S a smooth 
projective curve. If E is a locally free sheaf over X x S then there exists a 
vector bundle F over X x E with a surjective vector bundle homomorphism 
QE : F -> E such that R07rx^(F) = 0. We will call F a sectionless resolution 
ofE. 

Proof. The lemma is a special case of Proposition 2.1.10 of [Hu,Le]. We 
have to only note that X as an algebraic variety is a C-scheme of finite 
type, TTX* : X x E —> X is clearly a smooth projective morphism of relative 
dimension 1 and E being locally free is flat over X. 

The proof is rather simple so we sketch it here. Let us denote by Ex the 
vector bundle E |{X}XE 

over ^- ^ix an ample line bundle L on E. Then it is 
well known that for big enough k the vector bundle Ex ® Lk is generated by 
its sections and i?1(E; Ex®Lk) = 0. Let us denote by X^ C X those points 
x for which Ex ® Lk is generated by its sections and firl(S; Ex ® Lk) = 0. It 
is standard that X^ is a Zariski open subset of X. Thus we have a covering 
X — (J Xk of X by Zariski open subsets. It is again standard that the Zariski 
topology of an algebraic variety is noetherian9, which yields that we have 
some k such that Xk — X. It is now immediate that 

F = rt(L-k) ® IT*X ((TTXUE ® 7r£(L*))) 

has the required properties. 

The result follows. □ 

Proposition 6.4 Let T, be a smooth projective curve and X be a smooth 

quasi-projective variety. Let £ = E —)> F be a complex of vector bundles on 
X x E. Let gp '> A -+ F be a sectionless resolution of F. Let M be the fibred 
product of f and gp. This comes with projection maps pp : M -» F and 
PA : M —> A. Let gM '• A2 —> M be a sectionless resolution of M, and denote 
3 = gM 0PA2' Finally, let Ai = kergM and i : Ai -> ^2 tAe embedding. The 
situation is shown in the following diagram: 

E   -A   F 
\ 

M    t 

0—±Al-UA2-J^A 

9Cf. Example 3.2.1 on p. 84 of [Har]. 
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In this case the cohomology of the complex 

R
1

<KXMI) -^ Rl^xM2) ^ R1
KXM) 

calculates the sheaves M07rx*(^); M1^*^) and IR27rx*(f) respectively.  In 
other words 

K07rx*(£)    =   ker(i*) (16) 

R1 ***(£)    =   ker^J/im^) (17) 

M27rx*(^)    =   cokerO'*). (18) 

Proof. Let us recall the definition of the fibred product: M := ker(/ — gp - 
E®A —>► F). This comes equipped with two obvious projections pp : M —^ E 
and ^ : M —>» A. Because ^F is surjective f — gp is also surjective. Thus 
Af is a vector bundle. By construction the kernel of PE is isomorphic to 
the kernel of gp- Denote it by B. This says that the following diagram is 
commutative and has two exact columns: 

PE   I I   9F 

0- —> ■0 

t t 
E- M ■F 

t t 
M PA >A 
t 

Cji 

t 
B-  > ■B 

t t 
0-  > •0 

PA — If ^l denotes the complex A = M -4 A and B the complex # = B -> B, 
then the above diagram is just a short exact sequence of complexes 

0-^#—+A—>£—>0. 

Clearly WTTX^B) vanishes for all i. (Any hypercohomology of an isomor- 
phism is 0.) Thus the long exact sequence of the above short exact sequence 
gives the isomorphisms 

]R07rx*(£)    =   VP*xM) (19) 

R1**^)    =   VfinxM) (20) 
M27rx*(f)   =   m2Trx*(A) (21) 
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Because A is a sectionless resolution of Af, we have R07rx^{A) = 0 thus 
the long exact sequence of the push forward of the complex A breaks up into 
two exact sequences: 

0 -»• K07rx*M) -> R\x*{M) -»• 0, 

and 

0 —»■ R1**,^) —»• ^TTWCM) ^ ^TTX^A) —»• K27rx*(^) —>• 0. 

Thus 

K^GA)    =   R0nx*(M) (22) 

M1^*!^)    =   ker(pA,) (23) 

M27rx,(^)    s   coker(pA»). (24) 

Now consider the short exact sequence: 

0 -^ Al -U A2 i^ M —»• 0. 

R0irx*{A2) = 0 because A2 is a sectionless resolution of M and hence we 
get the exact sequence of sheaves: 

0   —»■   R0nx*{M) —* R^xMi) -^ R^xAM) 9M* 
—>   ^vrw^M) —>• 0. (25) 

Thus ker(»») S R0Trx*(M) which by (22) and (19) proves (16). 

Since ^M* is a surjection coker(j*) = coker(pA*)- This together with (24) 
and (21) gives (18). 

Finally, consider the commutative diagram: 

Rlnw*(M) A Rlirx*{M) 

9M» t 4- PA* 

Rl7rx*(A2) A R^xM) 

Since ^M* surjective by (25) we get that ker(j*)/ker(^M*) = ker(pA*). From 
(25) clearly ker(^M*) = im(t*), thus lser{j^)/im(u) - ker(pA*).   This to- 
gether with (23) and (20) proves (17). □ 

Corollary 6.5 //]R27rx*(£) = 0, in the situation of Proposition 64, then 
there exist two vector bundles V and W over X together with a homomor- 
phism f : V -> W, whose kernel and cokernel are R07rx*(£) and E17rx*(^) 
respectively. I.e. the following sequence is exact: 

0 -» R07rx*(£) -> V 4 W -> M1^*^) -> 0. 
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Proof.    Prom the long exact sequence corresponding to (6), we have 
R0nx*(Ai) = 0. Let V be the vector bundle R17rx*(Ai). 

Moreover jR17rx*(^2) and R17rx*(A) are also vector bundles because A2 
and A are sectionless resolutions. Furthermore the assumption IR27rx*(£) = 
0 shows that j* is surjective. Let W be the vector bundle ker^'*), and / be 
the map z* : V —> W. 

The result follows from Proposition 6.4. □ 

The proof of Theorem 6.2 is completed by Corollary 6.5 noting that by 
Corollary 4.5 we have E27r^*(£^) = 0. □ 

7    The degeneracy locus Dk 

Definition 7.1 The degeneracy locus Dk := {E € M : ^(E,^) ^ 0)} is 

the locus10 where D^ fails to be a vector bundle, i.e. where f of Theorem 6.2 
fails to be an injection. 

The aim of this section is to give a description of the degeneracy locus 
Dk- For this we need a refinement of Theorem 5.5 of [Haul], which still 
follows from the proof of Proposition (19) of [Thai]. 

Definition 7.2 The nilpotent cone N C M is the set of stable Higgs bundles 
with nilpotent Higgs field. In other words it is x"1^)-' the zero fibre of the 
Hitchin map. 

Similarly N := x"1^) C M. 

Proposition 7.3  The nilpotent cone is a compact union of 3g — 3 dimen- 
sional manifolds: 

0-1 

N = Afu\jEkl 
k=l 

where each Ek is biholomorphic to the total space of a vector bundle over 
Nk, the k-th component of the fixed point set of the C*-action. 

10For a rigorous construction of degeneracy loci cf. [ACGH] p.83. Our degeneracy locus 
is the &-th degeneracy locus of [ACGH], where k = rank(Vr) - 1. 
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Moreover E^ can be characterised as the locus of those stable Higgs bun- 

sS = E -» E®K which ht 
by the non-zero Higgs field $. 
dies £ = E -^ E <S> K which have a unique subbundle Lg of degree 1 —fc killed 

Proof.    The first part is proved in Theorem 5.5 of [Haul]. 

For the second part consider a universal Higgs bundle £M 
over A^ x E 

restricted to E^ x E. Let us denote it by £& = E*. -£ E* x JCs. Consider 
the kernel of *^- Because ^ parameterizes nilpotent stable Higgs bundles 
with non-zero Higgs field ker(4>A;) is a line bundle over E^ x E.   Recall 

from Proposition 7.1 of [Hitl] that for E ->- E ® K G Nk C Ek we have 
deg(ker($)) = 1 — k. Since JS^ is smooth we have that deg(ker($)) = 1 - k 

for every E ^ E ® K € Ek. 

The result follows. □ 

Remark. Clearly a completely analogous result holds for iV with AT, Ek and 
iVfc instead of A/*, Ek and Nk- 

Notation 7.4 If X is an irreducible locally closed subvariety of a smooth 
algebraic variety Y of codimension d, then r]\ E II2d{Y) denotes the coho- 
mology class of X in Y. 

If X is an irreducible locally closed and relatively complete subvariety of 
Y then rj^ G iJ^(Y) denotes the compactly supported cohomology class of 
X inY. 

Theorem 7.5 Let k = 1, ..,#—1.  The degeneracy locus Dk has the following 
decomposition: 

k 

Dk=Afku(JE^ 
i=l 

where Mk = Dk fl N', and E^ C Ei are those nilpotent stable Higgs bun- 
dies whose unique line bundle Ls of Proposition 7.3 has the property that 
^(E.-LfiSL*-1)^. 

Furthermore E% := {£ E E/. : Ls = Lp~h} and hence 

4 N [J] = n&e H«-*{M) (26) 

where r)-^ \ [J] means the coefficient of r]^t in the decomposition of (5). 
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Proof. Let £ = E-)>E®Kbe& stable Higgs bundle with $ ^ 0 and 
Iffl^Ejf ® -^p"1) 7^ 0.   It is easy to see that this hypercohomology is the 

vector space of all morphisms from £$ ® L^~k = Lp~k -t Lp~k ® K to £. 
Consider a nonzero such morphism /. Consider L the line subbundle of 
E generated by the image of / of Lemma 4.4. Clearly L is killed by the 
Higgs field $. This shows that £ G N and L = Lg. We also see that 
HI0 (E, £ ® Z^-1) = fr0(L£ ® L^"1). The first part of the statement follows. 

By the above argument we see that E% = {£ e Ek : iI0(S, L? ® Lp-1) ^ 

0}, however L^ is of degree 1 — A;, thus Ek = {£ E E^ '• !>£ = Ll~k}, as 
claimed. This means that for every £ G Ek there is a unique line bundle 
L = L*"* ® L^ such that £®LeE%. This shows (26). □ 

Remark.    By definition A/fc = W^fc-i are non-Abelian Brill-Noether loci as 
defined in [Sun] (cf. [Tei]). 

8    Proof of Theorem 1.1 

In this final section we prove Theorem 1.1. 

Proof of Theorem 1.1.    The proof proceeds by showing that cho(D^) = 4^—4 
then C40_3(Dfc) = 0 and we finish by using Porteous's theorem for D^. 

First we make some calculations. 

Lemma 8.1  The formal difference of coherent sheaves D^ has rank 4p — 4, 
i.e. 

cho(D,0=:4<7-4. 

Moreover 

29-2 

in the decomposition (5). 

Proof.    It follows from the long exact sequence (8) that 

(27) 
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We can calculate the Chern character of the right hand side by the 
Grothendieck-Riemann-Roch theorem. This gives 

ch(D,) = TT^ (ch(E^)(ch(#s) - l)td(E)) . 

Now td(S) = 1 - {g - l)a and ch^s) = 1 + {2g - 2)a. Moreover TT^^ maps 
a cohomology class in a G H*(M) ® H*{Y) of the form 

a = ap ® 1 + y^ ai ® tj + 0.2 ® o 

to the class ai G jff*(A^). The class a2 is denoted by a^ — a N a, while the 
class ao is denoted by ao = a \ 1. Prom this it follows that 

ch(Dfc) = (ch(E^)((2<7 - 2)c7)(l - (g - l)a)) x a = (2g - 2)(ch(E^) x 1). 

Observe that ch(E^) \ 1 = ch((E^)p)  e H*(M), where (E^)p = 
EA4 \MX{P}' ^ follows from (14) and (15) tliat ci((E^t)p) = a^ and 

C2((E^)p) = (a^ - PM)/^. Hence the formal Chern roots of (E^)p are 

(«A4 + VPM)/2 and (a^ - V
/
AM)/2. Thus 

ch((E^)p)    =   expl )+exp[ 1 

-   2ea^/2cosh(v/A^/2), 

and hence   
ch(Dfc) = (40 - 4)e^/2 cosh (V^M/Z) • 

This shows that rank(D/j;) = cho(D^) = 4^ — 4 and formal calculation gives 
(27). □ 

(27) has the following immediate corollary: 

Corollary 8.2 c^-spfc) = O.D 

To prove Theorem 1.1 we exhibit g linearly independent elements 

ro,ri,..,rp_i eH^~6{M) 

for which JM(ri) = 0. 
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To construct r^ for 0 < k < g consider the Zariski open subvarieties 

k-l 

Mk = M \ (AT IJ Ei) 
i=l 

and 
k-l 

Mk = M \ (Af [J Ei) 
i=l 

of M and M respectively. Restricting the sequence of Theorem 6.2 to Mk 
yields: 

o -► M0^(^)U^^U/J^^U 
->   MV^^I^^O. (28) 

The degeneracy locus of / |^    (where / |^   fails to be an injection) 

is Dk fl .Mfc which is S^ from Theorem 7.5. This has codimension Ag — 3. 
Furthermore 

rank(W0 - rank(F)    =   rank (R1
 TTM*^)) - rank (E07r^*(^)) 

=   rank(Dfc) =4^-4 

by Lemma 8.1. Thus the degeneracy locus has the expected codimension 
hence we are in the situation of Porteous's theorem (cf. [ACGH]), which 
gives: 

iQ = ci9.3(w \Mk -V \Mk) e if8^-6^,). 

The right hand side equals c^g-sCDk Ijd ) by (28), which vanishes by Corol- 
lary 8.2. Moreover (26) yields 

It follows that 

^N[J] = <*. 

g* = o e tf'-'iMk). (29) VR 

Prom now on we work over M.. We show by induction on i that there is 
a formal linear combination 

j=k-i 
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of cohomology classes in H69~6(Mk-i), such that A^ = 1 and the corre- 

sponding cohomology class Sfc/b-* ^*' VE**'
1
 ^

S
 ^ ^n H69~6(Mk-i)- 

For i = 0 the statement is just (29). Suppose that there is such formal 
combination rl

k. Consider the following bit of the long exact sequence of the 
pair Mk-i C Mk-i-Y- 

H«°-«(Mk-i,Mk-i-i) —> Hf-tiMk-i-!) —> H«°-«{Mk-i). 

Because Mk-i-i \ Mk-i = Ek-i-i is of real codimension 6(7 — 6, the Thorn 
isomorphism transforms this sequence to: 

H^Ek-^) -1+ H^-^Mu-i^) -A ^^(Mfc-i), (30) 

where r is the Thorn map and p is restriction. Clearly p('r)E.k~%~1) — VE*
-

*- 

Thus 

p(EAr<fc-i-1)= EAr<-=o. 
j=k—i j=k—i 

The exactness of (30) yields that the cohomology class J2j=k-i ^O'VE* * 1 IS 

in the image of r. Because H0(Ek) = E there is a real number —A^-^-i G R 
such that 

k 
M r(-A,_i_1) =  Y, Xr V"'"1 6 ^-6(Mfc-i-i). (31) 

j=k-i 

However a well known property of the Thorn map gives r(l) = riE
k_l_ ^ 

thus from (31) the formal linear combination 

j=k-i-l 

is 0, when considered as a class in H^9 ^(Mk-i-i)- This proves the existence 
of formal linear combinations rl

k for all 0 < i < k — 1. 

Using r^.-1 an identical argument gives the formal linear combination 

4 = A.[^]+^Ar[^] 

with the property that A^ = 1 and rf
k when considered as an element of 

H69~e(M) is 0. Now the compactly supported cohomology class 

k 

rk = A ■ 7?# + J2 Ai • 1% e flSr6(M)- 
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has the property that JM(rk) — rk = ^^ where by abuse of notation r'k 

denotes the cohomology class in II69~6(M) corresponding to the formal 
linear combination rf

k. 

We have found g — 1 linearly independent compactly supported coho- 
mology classes ri,..,r^_i G H^ (M). Clearly rffi is not in the span of 
ri,.., rg-i. Moreover for each 0 < i < g we have 

/ 
IM 

since JM(ri) — 0. Furthermore 

^Ar* = 0 

[  Vtf*vtf= [ c3g-3(Tfr) = 0. 
JM JM 

Thus 7)$ is perpendicular to r*i,..,rp_i and ryj^, which constitutes a basis 
for H%t-

6(M), and so jM(rJ^) = 0. 

Putting our findings together: we have g linearly independent middle 
dimensional compactly supported classes ro = rfff and ri,..,r^_i in the 
kernel of the forgetful map jM : H^-6(M) -> H^-^(M). 

Theorem 1.1 is finally proved. □ 
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