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Abstract 

I show that physical quantities in several two-dimensional condensed- 
matter models are related to the Seiberg-Witten calculation of exact quan- 
tities in supersymmetric gauge theory. In particular, the magnetization in 
the Kondo problem and the current in the boundary sine-Gordon model 
can each be expressed in the form J dx/y, where for example in the latter 
y2 = x -f- x9 — u2 with u related to the boundary mass scale (the analog of 
AQCD) and g oc i?2, where R is the radius of the boson. Thus for irrational 
g, the hyperelliptic curve y(x) is of infinite genus, while for rational g it 
is of finite genus. The models are integrable and possess a quantum-group 
symmetry for any #, but are supersymmetric only at g = 2/3. Both models 
also possess unique forms of g -» 1/g duality. 

1    Introduction 

Several years ago, Seiberg and Witten showed that "duality" can imply a 
much more elaborate structure than merely invariance under inverted cou- 
plings. In N=2 supersymmetric gauge theories, they showed that one can 
exploit the analyticity implied by the supersymmetry in order to do non- 
perturbative computations [1]. This work has been generalized in many 
ways, but always to field theories with supersymmetry, since analyticity in 
some parameter is required. However, there seems to be no fundamental 
reason why supersymmetry is required for such analyticity to be present. In 
this paper, I will show that several fundamental models of integrable 
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1 + 1-dimensional field theory which are not supersymmetric exhibit similar 
behavior. 

A familiar fact from complex analysis is that if one knows the poles, 
residues and asymptotic behavior of a function, then that function can be 
reconstructed uniquely if it is analytic except at the poles. Similarly, if a 
function has branch-point singularities but is analytic elsewhere, one can 
reconstruct the complete function by knowing enough about the behavior at 
the singularities. In the simplest non-trivial cases, the function f(u) can be 
expressed in terms of integrals like 

/M -IT « Jc y 

for some contour C. Here y2 is a cubic polynomial in x with coefficients 
depending on u] by redefining x one can always write it in the form 

y2 = x3 + a(u)x + b(u) . 

The integrand has three square-root branch points at the roots of this poly- 
nomial, so there are two different branch cuts in the x plane, one connecting 
two of the branch points, and the other connecting the third to infinity. 
The sign ambiguity in y can be fixed by allowing x to take values on two 
sheets. Including the point at infinity, each sheet is a sphere with two branch 
cuts. The two spheres must be glued together along both branch cuts; this 
is equivalent to a torus. For higher-order polynomials in x, there are more 
singularities and the corresponding surface has higher genus. At special val- 
ues of a and b (i.e. special values of u) where two of these roots coincide, 
the integral (1) logarithmically diverges if the contour goes in between these 
two roots. These values of u are the singularities of /(^), and are values of 
u where one of the cycles of the surface is pinched to a point. 

In [1], Seiberg and Witten showed that certain quantities in N=2 su- 
persymmetric SU(2) gauge theory are holomorphic functions of u, an order 
parameter related to the vacuum expectation value of the Higgs field. The 
"duality" is the fact that the monodromies around the singularities in the 
u plane are given by 5L(2, Z) transformations generalizing g -» 1/g. These 
monodromies can exactly be determined by perturbation theory and an ex- 
act mass formula for certain kinds of particles called BPS states. Thus 
various physical quantities (for example the effective coupling constant, the 
beta function and the mass gap) are given exactly and non-perturbatively by 
integrals like (1). Their work has now been generalized to many supersym- 
metric gauge theories, and also is deeply related to duality in string theory. 
There are many review articles on these subjects; see for example [2]. 
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In integrable models, it has long been known how to exploit analyticity 
to derive various physical quantities from information like functional rela- 
tions. In this paper I will show that physical quantities in several integrable 
models of 1+1-dimensional boundary quantum field theory can be expressed 
as integrals like (1). The theories, the Kondo model and the boundary sine- 
Gordon model, are not supersymmetric, and it is not likely that there is a 
hidden supersymmetry. Here the analyticity seems to follow from the inte- 
grability or, equivalently, the quantum-group symmetry of the models. The 
distinction between the models discussed here and integrable models where 
analyticity has previously been utilized is that these models obey intriguing, 
and I believe unique, forms of g -> l/g duality [3, 4]. This sort of duality, 
which generalizes the electric-magnetic duality of electromagnetism, was ob- 
served long ago in some gauge theories [5], providing one of the motivations 
for the work of Seiberg and Witten. This paper thus explores two somewhat 
different forms of duality: the ability to express physical quantities as curves 
around branch-point singularities, and the ability to relate different physics 
by a g -> l/g mapping. 

While the main purpose of this paper is to discuss the Kondo and 
boundary-sine Gordon models as surprising manifestations of Seiberg-Witten 
theory, it is worthwhile noting that both are extremely interesting in their 
own right. Not only are they fundamental models of strongly-interacting 
statistical mechanics, but both have been observed experimentally. In par- 
ticular, the Kondo model used successfully for decades to describe dilute 
magnetic impurities in a conductor (see e.g. [6, 7]) while the boundary 
sine-Gordon model describes the current-carrying edge excitations tunnel- 
ing through a point contact in a fractional quantum Hall device (see [8]). 
The duality in the latter maps Laughlin quasiparticles to electrons. 

In section 2 I introduce the Kondo model and recall various important 
results from the Bethe ansatz computations. Section 3 contains the main 
result of the paper, the writing of the magnetization in the Kondo problem 
as an integral over a cycle of a curve. This form is equivalent to the Bethe 
ansatz result, but much simpler and more useful. For example, it gives 
the entire singularity structure of the magnetization. Section 4 discusses a 
peculiar duality present in the Kondo and boundary sine-Gordon models. 
Section 5 highlights the SU(2) invariant limit of the Kondo problem, which 
physically is the most reminiscent of QCD. 
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2    The Ingredients 

In this section I introduce the Kondo model, and discuss the ingredients 
necessary for understanding its type of Seiberg-Witten duality. 

The Kondo model is one of the fundamental models of statistical me- 
chanics. It describes three-dimensional non-relativistic electrons coupled to 
a single impurity spin. Writing the electron wavefunction in terms of spher- 
ical harmonics around the impurity, the most relevant interaction comes 
from the s-waves. Since these are spherically symmetric, the results de- 
pend only on the radial coordinate, and the problem is effectively 1 + 1- 
dimensional: space is a half-line, with the impurity located at the boundary. 
Moreover, in the one-dimensional effective model, the fermions are relativis- 
tic and massless because one is concerned only with excitations near the 
Fermi surface. When p is the momentum difference from the Fermi mo- 
mentum PF and E the energy difference from the Fermi energy p^/2m, 
E + Ep = (p +PF)

2/2m « £>^/2m + vpp. Therefore the relativistic disper- 
sion relation E = pvp holds, with the Fermi velocity vp = PF/™* playing 
the role of the speed of light. Henceforth VF — 1. Since there are two spins 
of electrons in the original three-dimensional problem, there are two flavors 
of fermions in the effective one-dimensional problem. One can then form an 
SU(2) "spin" current J = ip^aiji/jj using the Pauli matrices cr, and the U(l) 
"charge" current J = i/j^ipi. In conformal field theory language, these yield 
517(2)i and 17(1) WZW theories respectively, each with a central charge 
c = 1 [9]. 

The impurity is represented by a quantum-mechanical spin S in the spin- 
5 representation. An impurity located at x = 0 is coupled antiferromagnet- 
ically to the fermions by a term in the Lagrangian — AJ(0) • S for positive 
A. There is no integral in this term because the interaction takes place at 
a single point in space, the boundary of the half-line. The coupling A is 
dimensionless since the current is of dimension one, so naively it seems that 
this coupling should be marginal and preserve conformal symmetry at the 
boundary. However, Kondo observed more than three decades ago that if 
one does perturbation theory in A, there is a short-distance divergence [10]. 
Thus the interaction term is relevant, and a mass scale is present in the 
theory. In particle-physics language, the Kondo model is asymptotically free 
and undergoes dimensional transmutation. This scale generated is usually 
called the Kondo temperature TR-, and it is completely analogous to AQCD 

in gauge theory. In terms of the original parameter A, 

TK - A1/2e-cona*/A. (2) 

The precise relation as well as the positive constant are not universal (i.e. 
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depend on regularization procedure); we will discuss physics in terms of TK 

and will not need the detailed definition. 

As A gets large (or more precisely, we study physics at energy scales below 
TK), the system crosses over to a strongly-coupled phase. At TK -> oo, there 
is another fixed point, where the spin is screened by one of the electrons 
(because of Pauli exclusion only a single electron can bind to the impurity). 
At this strongly-coupled fixed point, the spin of the impurity is effectively 
reduced from S to S — 1/2. The physical quantity we will study is the 
magnetization Ms of the spin-5 impurity as a function of applied magnetic 
field H. At zero temperature, the Ms is a function only of the dimensionless 
quantity H/TK, so ^5(00) = S, while M(0) = S - 1/2. 

Since Kondo's work, the Kondo model has been analyzed using many dif- 
ferent techniques. It was one of the first models to be thoroughly understood 
using scaling and renormalization-group techniques. Various properties of 
the strongly-coupled fixed point were understood using scaling arguments 
[11]. The crossover between the two fixed points was described using numer- 
ical renormalization-group techniques [12]. Subsequently, many quantities 
were computed exactly using the Bethe ansatz; for reviews see [6, 7]. The 
exact result for the magnetization curves at zero temperature can be written 
in the form [3] 

Ms(f\    =   5-1+    *     f^e-^'^^M + M 

xiz+MFt/.M]25"1 (3) 
where 

±iu 
—t—'if.i —•— f- 

M<») 
±.iu) + e 

27r 

with e positive and tending to zero. The purpose of this paper is to write an 
equivalent expression for Ms which not only simplifies matters but which 
also yields a connection to the gauge-theory results of Seiberg and Witten. 

I will discuss a more general model, the anisotropic Kondo model, which 
allows for 5r/7(2)-breaking interactions with the impurity, namely 

The model with anisotropy arises in dissipative quantum mechanics, where 
it describes a particle moving in a double well with dissipation [13]. A 
convenient way of parameterizing the anisotropy is given by bosonizing the 
model; in fact the Kondo model was one of the first models to be bosonized 
[15].   The U(l) charge current J does not couple to the impurity, so it 
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can be ignored. The bulk theory is described by a single free boson, with 
Lagrangian taking the form 

Lo = — /     dxidrf)2 - — /     dx dtcj). (4) 
wg J0 27rg J0 

In the usual conventions of conformal field theory, the boson takes values 
on a circle so that <j) = (/> + 27rR. Changing the coupling g is equivalent to 
rescaling the boson and changing the radius of this circle; i.e. g oc R2. In 
this paper it will be convenient to stick with the coupling g. In the bosonized 
language, the coupling to the impurity is then 

Ls = Xg (s+e-MV + 5_e+^(0)) - HSZ. (5) 

The Lagrangian LQ + Ls describes the Kondo model when g < 1. The 
anisotropy is parametrized by p, which is defined so that the isotropic case 
has g = 1. One well-studied value (known as the Toulouse limit) is g = 1/2, 
where the problem can be mapped on to one of free fermions. The magnetic 
field H couples to the conserved ^-component Sz + f Jz of the spin. The 
operators exp(±i</>(0)) have boundary scaling dimension 1 when g = 1 as 
they should; in general they have dimension g. Therefore 

TK OC A}/*1"'* 

for g ^ 1. For a microscopic definition of TK (i.e. including the cutoff), see 
[6]. 

Traditionally in the Kondo problem, one takes the matrices Si to act 
in the spin-S' representation of SU(2). However, a subtlety arises for g < 
1 when spin is greater than 1/2. For the problem to be integrable, one 
must instead take the matrices to act in the spin-S' representation of the 
quantum-group algebra SU(2)q instead of the ordinary SU{2) algebra [16]. 
The quantum group is actually an algebra defined by the relations 

[5Z,5±] = ±25'±,    [S+,S-) = qZ2q_l\ 

where q = e™9 . In the isotropic case q = — 1 or in the classical limit 
q = 1, this reduces to the usual SU(2) algebra. The Pauli matrices satisfy 
this algebra for any g, so the distinction between SU(2) and SU(2)q is not 
important for S = 1/2. In the following, the anisotropic Kondo model of 
spin-S' is defined to be the model with the g-deformed algebra; it can be 
identified with the "physical" Kondo model for S = 1/2 or for g = 1. 
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The magnetization for spin-1/2 has been found exactly using the Bethe 
ansatz method. The dimensionless parameter u is defined by 

L_   i-d + apL,)   H 
-20Fr(i + 5nLT)rK- *' 

The reason for the extra numerical factors in front is to conform with the 
usual definition of TK [6]. The model is "physical" when H/TK or equiva- 
lently u is real and positive, but for reasons which will soon become apparent, 
we will study the magnetization for all values of u in the complex plane. The 
Bethe ansatz result for the magnetization is [14] 

Mi 
%    f™       o- ,, xr(i/2 + tcjjrri - fy 

w-isgL.*"-*"*' \L*w-£) ■  (7) 

In the limit g -^ 1, Mi/2 here indeed reduces to the expression M1/2 m (3)- 

One can also derive a similar integral expression for Ms(u) for any 5, 
finding for example that although Ms{00) — S as with the isotropic case, 
Ms(0) = (S — 1/2)/g. Instead of using the integral expressions for higher 5, 
it will be much more useful to utilize fusion relations. Fusion relations are 
a way of obtaining a new integrable model from an existing one. For exam- 
ple, from the spin-1/2 Heisenberg spin chain, one can obtain the integrable 
spin-1 chain by fusing together two neighboring spins [17]. In the Kondo 
model, this procedure allows one to construct the higher-spin impurity mod- 
els by continuing the spin-1/2 model to imaginary couplings. The partition 
functions ZS(H/TK,H/T) at arbitrary temperature obey[18] 

Zs W T)    V fzfc* r) = 1 + Zs+l/2 [T*' T) 
ZS

-
1/2

 V^V' T 
(8) 

with ZQ = 1. These relations hold for any g. However, the quantum-group 
algebra has the peculiar property that when g = P/Q for mutually prime 
integers P and Q, then (S±)Q = 0. Thus as opposed to ordinary SU(2), 
the representation of spin Q/2 is reducible. This means that the partition 
functions "truncate" when g is rational (i.e. q is a root of unity) [16]: 

H   H\_ (H   H 1 n    n \ 1 n    n \ 
ZQ/2    ^-> TTT    = A3/2-1 I =^1 — I + 2cosh «#' '-5 «•> 

In the subsequent analysis, this truncation will explain why the curves used 
to describe the magnetization have finite genus for g < 1 rational, but infinite 
for g = 1 or irrational. 



994 DUALITY WITHOUT SUPERSYMMETRY 

This paper will be concerned exclusively with the physics at zero temper- 
ature, so that the magnetization depends only on H/TR and g. In this limit 
the fusion relations (8) become linear because the free energy Fs = —TlnZs 
remains finite as T —> 0. In terms of the magnetization Ms = —dFs/dH, 
the limit of (8) is 

Ms(iu) + Ms(-iu) = Ms_1/2(u) + Ms+1/2(u) (10) 

The argument iu is meant as the continuous deformation of u —> iu at fixed 
large \u\. Because of the In(^) in (7), there are non-trivial monodromies 
in Ms(u) as a function of u, so for example Ms(e27riu) is not necessarily 
equal to Ms(u). The quantum-group truncation (9) also simplifies in the 
zero temperature limit to 

MQ/2(u) = Q/2. (11) 

These relations are the analog of the Seiberg-Witten monodromy relations 
at infinity. 

3    The Result 

In this section we will show that the magnetization of the spin-5 Kondo 
problem is given by 

MsM = £ f  * (12) 
47r Jcs xy 

where 
y2 = (-l)lS(x-X*)+U2 (13) 

where the contour surrounds the "first" 25 branch points in a fashion to be 
described. 

The proof of this formula follows indirectly from the integral formula (7) 
and the fusion relations (10). Using (7), the magnetization can be expanded 
in a power series around u —> oo (close to the weakly-coupled unstable fixed 
point) and around u = 0 (the strongly-coupled stable fixed point), each series 
with a finite radius of convergence (except for g = 1, which will be discussed 
in section 5). The large-w series is {correcting a few typos in [6]) 

while the small-u expression is 

_ (-l)n    r(l + (n + l/2)^) 
V^ ^ n!(2n + 1) r(l + (n + 1/2)^) 

M  (,A     1 y    -1W   Lv + v + Wtt*,**!      ri^ 
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The non-trivial monodromies in the magnetization as the physical parameter 
u is varied in the complex plane are apparent in these expansions: taking 
u —> e2'Klu at fixed \u\ in (14) does not bring the magnetization back to its 
original value. 

The integral expression (12) follows from either expansion by using the 
integral representation 

r(q) 
r(o + b) r(i-6)^- f dtta-1(t-i)b-\ 27r Jc01 

(16) 

The integration contour Coi is not closed but rather starts at the origin, 
loops around the branch point at t = 1, and returns to the origin. This 
formula is valid when Re(a) > 0 and b is not an integer. Using this in (14) 
yields 

M1/2(u) = ^ jr t^r(l/2+n) f   dtt<l-ti-ll2{t-l)-n-ll2u-2<l-v\ 

Since the sum is absolutely convergent, we can do the sum before the integral. 
The sum is of the form 

n=0 

This yields 

Y" ^-/-r(l/2 + n)zn =    ,  

where the contour Co^ranch starts at the origin, loops around the square-root 
branch point on the positive real t-axis and returns to the origin. To obtain 
the result (12) for S = 1/2, one defines x = u2/t and changes variables. The 
magnetization for a spin-1/2 impurity is therefore 

t    r     dx u 
Mi/2(<')=i41/iM*.-*+„^        (17) 

The contour C1/2 is displayed in figure 1. It starts at 00, loops around the 
square-root branch point along the positive real axis and returns to 00. Such 
a branch point must exist for real u because y2 = x9 — x+u2 is negative for x 
large but positive for x = 0. For complex u we define C1/2 as the continuous 
deformation of this curve away from u real. 

This integral expression for the magnetization is much simpler than the 
original result (7). This expression is analytic in u except at a few singulari- 
ties. It is thus an exact, non-perturbative expression for the magnetization. 
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vy\/\^y\y\y\^} 

I x plane 

I    X^^w^\y^w^w^ 

Figure 1: The dotted line is the integration contour for My2 m the rz-plane. 
The box is the simple pole, the X the square-root branch point on the first 
sheet of a;, and the wavy lines are the square-root branch cut and the x9 cut 
from the origin. 

A singularity can occur at values u = Uj where two roots coincide.   This 
happens when both x9 — x + vZ = 0 and gx9~l — 1 = 0, so 

Un 
9l(X-9)(g _ j\e*27ri/(p-l) (18) 

where j is some integer. All possible singularities are on the circle |^| = \UJ\\ 

for g irrational they are dense along this circle. There are no values of u 
where three or more roots coincide. The integral (17) does not diverge at 
all of the values u = Uj, but only at values where the contour C1/2 goes in 
between the two coinciding roots. It is easy to check that this will never 
happen for real values of u (where the couplings are "physical"). These 
singularities are the Lee-Yang zeroes of the partition function, but there is 
no obvious physical interpretation of them here like in gauge theory. In gauge 
theory, all complex values of u are physical, and the singularities correspond 
to couplings where some particle becomes massless [1]. 

Since it is analytic for u real and positive, the integral expression (17) 
must reproduce not only the weak-coupling series expansion (14) from which 
it Wets constructed, but also the strong-coupling series expansion (15). For 
\u\ < \UJ\, the contour C1/2 can be deformed so that \x — x9\ > \u\2 for all 
values of x. Expanding the square root in powers of u2 yields 

1       ^   (—i}™ r     dr -(n-J-l/2)^2n+l ^ 

Defining a new variable t = x9 1 and using the identity (16) yields the 
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expansion (15). The value u = \UJ\ is therefore the value at which the 
perturbation expansions diverge; i.e. (14) converges for \u\ > \UJ\ whereas 
(15) converges for \u\ < \UJ\. The small-n expansion is like the strong- 
coupling instanton expansion in gauge theory. 

There are two kinds of branch points in the integrand; a square-root 
branch cut at every root of x — x9 — u2, and another at the origin due 
to the x9 term. If desired, the former can be removed by defining a new 
variable t = In a;, leaving only a simple pole at the origin. The square-root 
branch points cannot be removed by a reparamaterization of x. They are 
very interesting, because the higher-spin magnetizations can be expressed 
by contours around these branch points. 

The higher-spin magnetizations are found from the spin-1/2 magnetiza- 
tion by using the fusion formula (10). This requires analytically continuing 
the spin-1/2 magnetization into the complex-^ plane. How to do this is most 
easily seen by first studying rational values of 5, where g = P/Q for mutually 
prime integers P and Q. The branch cut from the origin can be removed by 
defining a new variable r = a;^, yielding 

JCl/2 

± H  (19) 

When \u\ is large, the roots r^ of the polynomial rp — r® + u2 are approxi- 
mately 

rk « e®*i°/QuVQ 

for k = 0,..., Q — 1. The roots r = ffc of the polynomial rp — r® — u2 at 
large \u\ are 

fk « ^W+VIQuVQ (20) 

for k = 0,..., Q — 1. Therefore under the continuation u -> iu at fixed large 
|^|, the root r^ moves to f^, while under u -> — iu, r^ moves to rk-i- In 
particular, the root ro = u2/® on the real axis for real u moves to \u\2^e±%7r^ 
under u —>- ±iu. The contour C1/2 in (19) rotates accordingly. 

Now it is clear how to utilize the fusion relation (10) to obtain higher 
spins. The spin-1 magnetization is 

Mi(ii)    =   M1/2(m)+M1/2(--m) 

_    iQ  f iu iQ   f —iu 

4^ yCoo5 (rp -rQ- u2)1/2 + 4^ ,4 (rp -rQ- u2)1/2 

where the contour C^ starts at infinity and loops around the branch point 
at fV   Up to a minus sign, the integrand is the same for both pieces, so 
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rWXr -EJ 

\x/ 

I r plane 

Figure 2: The dotted line is the integration contour for Mi in the r plane 
for g = 4/5. The box is the simple pole, an X is a square-root branch point, 
and the wavy lines are the square-root branch cuts. This schematic drawing 
is for large u; at u = \UJ\ the two branch points on the right meet at the real 
axis, and for u < \UJ\ they both lie on the real axis. 

the two contours can be subtracted from each other.   This yields a closed 
contour encircling both branch points, as displayed in figure 2. 

As u is decreased, the roots r^ no longer obey the approximate relation 
(20). It follows from (18) that when u = \UJ\ these two branch points coincide 
at the value x = gl^l~9\ The integral does not diverge because the contour 
is not trapped between these two roots. Since Mi is analytic at u = \UJ\ it 
can be continued to u < \UJ\ where these two roots are no longer complex 
conjugates but are both on the real axis. The contour Ci still just loops 
around the two. In fact, at value u = \UJ\ where these roots coincide, the 
integral can be done by residue. This yields the amusing relation 

Mx(gVW{l-g)W) = 
Vtg' 

(21) 

The value u = \UJ\ can be thought of as the crossover point, the limit of 
both the weak-coupling and strong-coupling series' applicability. It is ironic 
that for spin 1, the magnetization takes on a simple value at this point. 

In terms of the original integration variable x, 

(22) 
/Cl  (x9 - X - U2)1/2 

where the contour Ci surrounds the "first" two branch points. More precisely, 
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the first two branch points are those which approach x « ±iu for u large, 
coincide at u = Uj, and approach 0 and 1 at u small. 

The magnetizations for higher spins are built up from M^ in a similar 
manner. The fusion relation can be rewritten as 

5-1/2 

Ms(u) =     J2     Mi/^JU) (23) 
j=-5+l/2 

where Mi/2{e%au) means Mi^iu) continued from u —> elCLu at fixed large 
\u\. All half-integer-spin magnetizations therefore utilize the original curve 
y2 = x9 — x + u2, while the integer-spin ones use y2 = x9 — x — u2. The 
integration contours encircle the first 2S branch points. For example, (23) 
gives 

M3/2(u) = M1/2(u) + M1/2(e™u) + M^e'^v) 

At large n, continuing u —> el7ru means that the contour starts at infin- 
ity and goes around ri. Because of the relative — sign, the contour for 
-^1/2M+^1/2(e271^) starts at infinity and surrounds both ro and ri. Adding 
Mi/2{e~l7ru) means that the contour surrounds rq-i as well. This is illus- 
trated in figure 3. In terms of the original variable a;, the contour C3/2 
surrounds the "first" three branch points. In general, the contour Cs is the 
contour which surrounds the first 25 branch points but does not go around 
the origin. This definition completes the proof of (12). 

However, one remaining question must be answered. For g rational, 
there are only Q branch points. What are the "first" 2S branch points when 
2S > Q? Defining x = r® and changing variables as in (19) yields 

zO   f   dv u 
Ms{u) = 4^ JCs V((-l)^(rQ-rp)+u2y/2' (24) 

When 2S = Q, the contour surrounds all the square-root branch points but 
does not surround the simple pole at the origin as shown in figure 3. The 
contour can therefore be deformed to surround only the origin and none 
of the branch points. The integral is then easily done by residue, yielding 
MQ/2 = Q/2. This is precisely the quantum-group truncation from (11)! 
The fusion relations still hold for S > Q/2, but all the magnetizations can 
be expressed in terms of lower-spin ones. Likewise, the contours Cs for 
S > Q/2 are expressed in terms of the lower-spin contours plus the contour 
surrounding the origin. The latter contributes only multiples of Q/2 to the 
magnetization. 

The equation y2 = (—l)25(r<^ — rp) + u2 defines a hyperelliptic curve, 
which is a Riemann surface of genus (Q — l)/2 for Q odd and (Q — 2)/2 for 
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r plane 

spin 1/2 

spin 3/2 

spin 5/2 

Figure 3: The contours for M^, ^3/2 and M$/2 in the r-plane for g = 4/5. 
The box is the simple pole, the X the square-root branch point, and the 
wavy lines are the square-root branch cuts. 

Q even. The contours Cs can be decomposed into combinations of contours 
on the surface. Thus the quantum-group truncation allows the associated 
surface to be of finite genus. It seems very likely that there is a deep reason 
for this. However, there is one obvious puzzling question. When g = 2/3 
(which, perhaps not surprisingly, is where the anisotropic Kondo model is 
supersymmetric [19]), the surface is a torus. In this context, what is the 
meaning of the modular parameter r of the torus? M3/2 is trivial here, 
so for a fixed surface only M^ is non-trivial (Mi is related to a different 
surface). In other words, is there any physical interpretation of the contour 
integral around the other cycle of the torus (the integral surrounding the 
branch points ro and n)? 

g —> 1/g Duality and The Boundary Sine-Gordon 
Model 

In this section I discuss the g —> 1/g duality present in the anisotropic Kondo 
model, and the self-duality of the boundary sine-Gordon model. 

The boundary sine-Gordon model is another integrable 1 + 1-dimensional 
field theory defined on the half-line. It is deeply related to the anisotropic 
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Kondo model [16, 20], but here there is no extra boundary degree of freedom 
like the impurity spin. The bulk Lagrangian is still (4), but the boundary 
Lagrangian is 

LBSG = 2vcos(f){0). (25) 

In this model, the parameter H/g is replaced by the voltage V, while v 
is related to a boundary scale Tg like A is related to TK- The analog of 
the magnetization is the current / arising from the applied voltage. The 
power-series expansions for the normalized current 1 = I/gV as a function 
of u oc Vv-W-d are [4] 

oo 

l(u,g) = l-Y,*n(9)u2n^ (26) 
71=1 

and 

where 

X(u,5) = £an(l/5)u2"(1/9-i) (27) 
71=1 

a (a) - (-1)n ^        r(ng + *) (OR) ani9)-~^r^-r(3/2 + n(g-l)y (28) 

This model is self-dual because the weak-coupling expansion is identical to 
the strong-coupling expansion by the exchange g —>• 1/g. This leads to a 
simple statement about the behavior of the current as an analytic function 
of<?[4]: 

l(u,g) = l-l(u,l/g) (29) 

A simple integral expression for the current can be derived from either 
expansion (26) or (27). The proof is similar to that given in section 3 for 
the Kondo model. The result is 

if 1 
l(u,g) = — /    dx   . == (30) 

where the curve CB starts at the origin, loops around the branch point 
on the positive real x-axis, and returns to the origin. Proving the self- 
duality relation (29) using (30) is easy because this integral expression is 
valid for all values of g: start with l(u,l/g), change variables x -> x9, 
and integrate by parts. The self-duality of the boundary sine-Gordon model 
and some generalizations is discussed in detail in [21]. In the context of 
the fractional quantum Hall effect, this duality exchanges electrons with 
Laughlin quasiparticles. 

The g —► 1/g duality in the Kondo model is not so obvious. Nevertheless, 
it was noted some time ago [3] that the isotropic Kondo model has a duality 
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relating the large-tx expansion for spin S to a piece of small-?/ expansion for 
spin 5+ 1/2. The shift in S is not shocking because at the strongly-coupled 
{u — 0) fixed point, one of the electrons binds to the impurity, effectively 
reducing the spin from 5+1/2 to S. This duality is not a self-duality, 
because it maps one spin onto another. To see how this duality arises using 
the integral (12), first note that if one changes variables x —>> a;1^, one has 

%     C dx u 
Ms^ = 4^ J '7((-i)2S+i^i/9_x>>+u2y/2- (31) 

where the contour must be defined. Up to the extra factor of g in front, the 
integrand is exactly that for the magnetization with g replaced with l/g, and 
integer spins exchanged with half-integer. However, a simple formula like 
(29) does not instantly follow because the contour in (31) must be carefully 
defined. 

The subtlety involving the dual contours can be seen in the small-w ex- 
pansion of Mi(u). As discussed in the previous section, for u < \UJ\ the 
contour Ci loops around the two roots on the positive real axis. For u small, 
these roots of x — x9 + u2 are at x « u2/9 and at re « 1. The contour Cs 
can be decomposed into two contours: one starting at infinity and looping 
around the root near x = 1, and the other starting at infinity and looping 
around the root near x = u2/9. The integral can therefore be split into two 
pieces. The first piece is like M1/2(w), but the integrand is slightly different 
because of the (—I)25. For small u this piece can still be expanded in powers 
of u2n+1 (the resulting coefficients are in fact i(—l)n times those in (15); this 
piece is purely imaginary). The duality is seen in the second piece, which is 
denoted Mi(^). Defining a new variable t = x9/u2 gives 

Ml[U) " Ang JCool  t {u-*+Wl9 - t + 1)1/2 • 
(32) 

The contour Cool loops around the branch point near t = 1. For small u and 
fixed £, the square root can be expanded in powers of ^v2+2/#): 

M^u) = -4" f     T E ^r(n + 1/2)^(1 - t)—1/2^(1/,-!)^ 

The resulting integral in t converges if n < 5/(2(1 — g)) (or equivalently 
u2n(i/g-i) < u^ k^ foe terms for higher n can formally be defined by 
continuing in g from values close to 1. The integrals for larger n diverge 
because integer powers un (possibly multiplying ln(w)) also contribute to 
the small ^-expansion of Mi(u). (This can be seen explicitly by breaking 
Cooi into two pieces so that one can construct convergent expansions.) The 
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integer powers must cancel the imaginary pieces from the first contour to 
ensure that Mi(u) is real for real positive u. By using the identity (16), the 
magnetization is 

The 0(xn) terms include the contributions from the first contour as well, 
and also include terms like xhix. The duality in the Kondo model is now 
apparent: the contributions to Mi(^) at small u displayed in (33) are pre- 
cisely those in the large-t^ expansion of Mi^iu) in (14), with the replacement 
g —> l/g, up to the extra factor of g. Thus for example, we recover the fact 
that Mi(0) = l/(2p), as mentioned before. 

The proof of the duality for general S is straightforward. For example, 
the contour C3/2 can be split into two contours, one around the branch 
point on the positive real axis, and the other surrounding just the first 
two complex-conjugate branch points (e.g. 7*1 and rg_i for rational g = 
P/Q). The first contour gives merely M^faO. The second contour is best 
understood by using the variable t = x9/u2 just like in (32). In the small-w 
limit, the second contour surrounds the square-root branch point t = — 1 
just above the branch cut from the origin and and the square-root branch 
point t = — 1 just below the branch cut from the origin. This contour is 
the same as the contour for Mi(^) in the large-^ limit, and moreover, the 
integrand is the same as Mi(^) for large w, up to the replacement g —> 1/g 
and with an overall 1/g. In other words, 

i    C     dx u 

"3/2 

dt 
"■/><■> + £/ 4*9 Jd * (t-n-2+2/st1/9 +1)V2 

M1/2(u) + iMi(J (34) 
3 Ip-M/p 

By this argument, for integer S one has 

(35) Ms+i^) = Af1/2(tt) + -Ms{u) 
0-H/0 

where the g —>• l/g in the last line is precisely defined at least at small u. 
For half-integer S, such a simple relation does not seem to be true, but by 
these arguments 

Ms+1/2(n) = -gMs{u)\g^lg + 0{un) (36) 
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is true for all S. This is the Kondo duality discussed in [3]. Given the integral 
relation (31) it seems likely that this is not the only form of g -> 1/g duality 
in the Kondo model. 

5    The SU(2) Point 

A simple integral expression for the zero-temperature magnetization of the 
anisotropic Kondo model was derived in the section 3. The results most 
resemble the Seiberg-Witten results for gauge theory when g is rational and 
less than 1, and the integral is on a finite-genus hyperelliptic curve. However, 
the model which is most like QCD is the S'?7(2)-symmetric case g = 1. As 
explained in section 2, the Kondo model is asymptotically free, develops a 
mass scale even though all parameters are naively dimensionless, and exhibits 
a crossover into a strong-coupling phase. In this section I discuss the isotropic 
Kondo model in more detail, find explicit expressions for its perturbative 
coefficients, and highlight its g -> 1/g duality. 

Taking the limit g —► 1 of (12) yields the appropriate integral expression. 
The definition (6) shows that for fixed H/TKl u2 -> (1 - g)H2/(27rT^) as 
9 -+ 1, so 

lim x9 - x + u2 = (g - 1) (xlnx - H2/(27rT%)) . 

Denoting MS{H/TK) = lim^i Ms(u), its integral form is 

MSWTK) = ^fcs f((_1)2527ra;1f^(if/^)2)1/2 (37) 

The contour Cs is defined as in the previous section; there are of course 
an infinite number of solutions to the transcendental equation 27ra;lna; = 
±(H/TK)

2
-> SO as expected for SU(2) symmetry, all the Ms are independent. 

Weak- and strong-coupling perturbative expansions can be derived from 
(37), but there are some subtleties. For spin 1/2, the small H/TK expansion 
follows as before, by expanding the square root in powers of (H/TK)

2
- One 

indeed obtains the g -» 1 limit of (15). However, the form of the large-if/T^ 
expansion (which corresponds to the weak-coupling expansion in terms of 
the original coupling A) is not so obvious: the coefficients in (14) diverge as 
g —y 1, while the powers all collapse to zero. As seen from the definition (2) 
of TK at the SU(2) point, the perturbative expansion in A should include 
terms with logT/f. This is the usual behavior of an asymptotically-free 
theory. This suggests defining a renormalized coupling z(H, A,D) (D is the 
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cutoff) which is renormalization-group invaxiant and which obeys z « A for 
A <tC 1. The explicit perturbative results (summarized in [6]) suggest 

ln(ff/Ttf) = --iln(z/47r). (38) 
z      I 

This differs from the definition in [6] by a z-independent numerical factor on 
the right; the reason will be apparent shortly. 

Weak coupling (H/TK large) is equivalent to z small. The magnetization 
^1/2 (u) can be expanded in a power series in z: 

M     / x    ^    J_ f     dx \/2  
JVil/2[Z) 47r 4/2  ^ (-x(lnx + hi(H*/4nT*)) + 2)1/2 

_     i    f     dx A/2 

4^ Jcl/2~^ (-x(lnx + 2/z - Ins) + 2)1/2 

r-/"   -/ / /OM ^ ^ (39) 
dx 1 

(-(^xlnx-rr + l)1^ 

where the first line required a rescaling x -> xH2/(47rT^) and the third line 
required x —> zx. Now the square root can be expanded in powers of z: 

00 

A<i/2(*) = £^n (40) 
n=0 

where 
/     -j\n poo 

•*» = ^k^^ + W /   dx x-Hlnxn* - I)—V. 

These integrals converge for all n, but with a different choice of the constant 
in (38) they would not. This expansion in z is asymptotic: for large enough x 
the term zx In x eventually dominates the other terms in (39) no matter how 
small z is, so the expansion in powers of z has zero radius of convergence. 
Of course this is expected for a theory with dimensional transmutation; 
what is remarkable here is that even the non-perturbative corrections are 
included in the Bethe ansatz solution of the Kondo problem and in the 
simple integral expression (39). The leading term is ^0 = 1/2 as required, 
and Ai — —1/4. The integral cannot be done in closed form for higher n, 
although it can be expressed in term of a hypergeometric function at fixed 
argument. Numerically, A2 = 0.298286794, As = -0.648160191,..., and as 
n —> 00, An oc n!. 

The last remaining issue is how the duality manifests itself at the SU{2) 
point g = 1. To find a perturbative expansion for Mi for small H/TK, it is 
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convenient to define the parameter z analogously to z: 

ln(ff/Tif) = -i-iln(S/47r). (41) 
Z        A 

The changed sign in (41) means that z -> 0 as H/TK -> 0 (notice that z is 
imaginary for large H/TK)- The spin-1 magnetization is then 

%    f  dx 1 
Ml{~z) = 4^ ^ T ((5/2)0; Inx-x + ljVa (42) 

For 0 small the contour surrounds the branch points at x w 2/^ and a; « 1. 
As for 5 < 1, the contour can be split into two pieces, the first extending 
from infinity around the branch point near 2/z, and the second extending 
from infinity around the branch point near 1. The first can be expanded 
in a power series in (H/TK)

71
, as can easily be seen by returning to the 

original integral expression. Denoting the second piece Mi(z), it follows 
immediately that ^ 

M^z) = Ml/2{-z) 

The expansion of Moo(z) in powers of z is asymptotic. Putting the two 
contours back together gives 

Mi{z) = Myti-z) + O {{HITK)). (43) 

In this sense the parameter z is dual to 2, just like the earlier Kondo duality 
required sending g —>• l/g. It is possible that there is a better definition of z 
and z which makes the duality relation more transparent. 

6    Conclusions and Questions 

I have shown that the zero-temperature magnetization in the spin-S' Kondo 
model can be written as integrals around cycles of a curve y2 — {—l)2S{x — 
x9) +u2. At the 517(2) point, this curve reduces to y2 = xlnx - H2/27rTJc. 
At rational g < 1, this curve is of finite genus, a fact connected to the 
quantum-group symmetry of the model. The curve also gives a simple way 
to see the duality in the Kondo problem between the weak-coupling spin-5 
problem and the strong-coupling spin-(S'+ 1/2) problem. 

The Kondo model is integrable, which implies the existence of an infinite- 
dimensional symmetry. The results in this paper clearly utilize the integra- 
bility of the model, so even though the Kondo model is not super symmetric 
in general it does possess a great deal of symmetry. In fact, the infinite- 
dimensional quantum-group symmetry underlying some integrable models 
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can be shown to be an extension and deformation of two-dimensional N = 2 
supersymmetry (which exists at the point g = 2/3 here) [22]. The question 
is then if such a deformation is possible in four dimensions: for example, can 
the SU(2) gauge symmetry of [1] be deformed into some sort of quantum- 
group-like symmetry, which may break the supersymmetry but still enable 
the Seiberg-Witten computations? In fact, by deforming away from a su- 
persymmetric point, it is known that duality holds in non-supersymmetric 
string theories [23]. 

A potentially related issue is the fact that the results of [1, 2] are known 
to be intimately connected to classical integrable systems [24]. The models 
discussed in this paper are quantum integrable systems. There is no obvious 
relation between the two, but it is hard to imagine that there is none. 

Since the Seiberg-Witten results follow from a finite-dimensional sym- 
metry algebra, this raises a question for the two-dimensional models: is the 
full power of integrability necessary for these computations to be valid, or 
is some smaller symmetry algebra sufficient? For example, in two dimen- 
sions at least one way of exploiting a finite-dimensional symmetry algebra is 
known, the topological-antitopological fusion of [25]. The results here hint 
that there may be a completely new way of approaching 1 + 1-dimensional 
field theories, integrable or not. One way of approaching the problem is to 
find a physical interpretation of the monodromies around the singularities; 
the fusion relation (10) says something about the monodromies at infinity, 
but not much about those at \u\ = \UJ\. Of course, since the exact solu- 
tion is known these monodromies can be found, but it would be much more 
desirable to know them a priori instead of a posteriori. 

Another important direction to explore is to understand if these results 
can be extended to finite temperature, where the fusion relations (10) are 
nonlinear. This may seem to destroy the whole picture, since the addition 
of contours is a linear relation. However, the current in the boundary sine- 
Gordon model is also related to the magnetization in Kondo by a non-linear 
fusion relation [4, 20], and still obeys the integral expression discussed in 
section 4 and in [21]. 

The Kondo model is one of the grand old problems of quantum statistical 
mechanics. It was recognized long ago to be a useful toy model for QCD 
[12]. It is remarkable that more than two decades later, it still holds a few 
surprises. 

I would like to thank K. Intriligator and P. Arnold for many useful con- 
versations on duality, B. McCoy for interesting comments on the paper, and 
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H. Saleur for related collaboration. 
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