
©   1998 International Press 
Adv. Theor. Math. Phys. 2 (1998)   963 - 985 

Definition of the Dirac Sea in 

the Presence of External Fields 

Felix Finster 

Mathematics Department 
Harvard University 

Abstract 

It is shown that the Dirac sea can be uniquely defined for the Dirac 
equation with general interaction, if we impose a causality condition 
on the Dirac sea. We derive an explicit formula for the Dirac sea in 
terms of a power series in the bosonic potentials. 

The construction is extended to systems of Dirac seas. If the system 
contains chiral fermions, the causality condition yields a restriction for 
the bosonic potentials. 

1    Introduction 

The Dirac equation has solutions of negative energy, which have no mean- 
ingful physical interpretation. This popular problem of relativistic quantum 
mechanics was originally solved by Dirac's concept that all negative-energy 
states are occupied in the vacuum forming the so-called Dirac sea. Fermions 
and anti-fermions are then described by positive-energy states and "holes" in 
the Dirac sea, respectively. Although this vivid picture of a sea of interacting 
particles is nowadays often considered not to b£ taken too literally, the con- 
struction of the Dirac sea also plays a crucial role in quantum field theory. 
There it corresponds to the formal exchanging of creation and annihilation 
operators for the negative-energy states of the free field theory. 
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1 Supported by the Deutsche Forschungsgemeinschaft, Bonn. 
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Usually, the Dirac sea is only constructed in the vacuum. This is often 
considered to be sufficient, because the interacting system can be described 
by a perturbation of the vacuum. 

Unfortunately, the situation is more difficult: In relativistic quantum 
mechanics with interaction, the fermionic wave functions are solutions of 
the Dirac equation 

(i$ + B-m)y = 0, (1.1) 

where the operator B is composed of the bosonic potentials (for example, 
we can describe the electromagnetic interaction by choosing B = e^ with 
the electromagnetic potential A). 

In contrast to the free Dirac equation (ifi — m) $ = 0, it is not obvious 
how to characterize the negative-energy solutions of (1.1). Qualitatively, the 
problem is that the perturbation B leads to a mixing of the free solutions and 
destroys the natural splitting into solutions of positive and negative energy. 
As a consequence, it is not clear how the Dirac sea of the system (1.1) can 
be constructed. We point out that this problem is not solved by a simple 
perturbation expansion in B; it is then hidden in the non-uniqueness of this 
expansion (see section 2 for details). In quantum field theory, the problem 
of defining the Dirac sea is even more complicated, because the virtual pair 
creation/annihilation must be taken into account. We will not deal these 
problems here and restrict to the limit of "classical" potentials and wave 
functions. Nevertheless, our considerations are also relevant for quantum 
field theory, because it is in many situations (e.g. for a quantum system in 
a classical background field) preferable to use the Dirac equation (1.1) as 
the starting point for the fermionic field quantization. In this sense, the 
construction of the Dirac sea of (1.1) is preliminary for the description of 
interacting quantum fields. 

We conclude that the definition of the Dirac sea is basic for a reasonable 
physical interpretation of the Dirac equation (1.1). In the present paper, we 
will discuss the difficulty in constructing the Dirac sea and finally solve the 
problem in terms of a formal perturbation expansion in B. Before starting 
the analysis, we describe the problem in more mathematical terms: Every 
solution of the free Dirac equation (ift — m) * = 0 is a linear combination of 
plane wave solutions of the form 

with a 4-spinor x^ % which is independent of t and x. The sign of a; gives 
a natural splitting of the solutions into solutions of positive and negative 
frequency. Identifying frequency and energy via Planck's formula, these so- 
lutions are commonly called the positive and negative energy solutions of the 
free Dirac equation. Since the simple identification of frequency and energy 
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might lead to confusion (sometimes the "energy" of a negative-frequency 
state denotes the positive energy of the corresponding anti-particle state), 
we prefer the notion of positive and negative "frequency" in the following. 
We denote the negative-frequency solutions by SPg , where k is the momen- 
tum and a = 1,2 are the two spin states (for an explicit formula for ^!^a see 
e.g. [1]). If the states \I>£a were normalized with respect to the usual scalar 
product 

(tf|$)=   /(* 7° *)(*,«) dx   , * = **7
0 , (1.2) 

we could form the projector P<v^ > on the one-dimensional subspace <^r^a> 
by 

(P<**a> *) (*'*)  = ^ (*&(*'S) ^ka^V)) 7° *(*,V) dy 

In this sense, the product *^a(a:)^f^a(y) would be the kernel of the projector 
on <\Ir£a>, and the sum over all negative-frequency states would yield the 
projector on the whole Dirac sea. Unfortunately, the wave functions SE^ 
are not normalizable. We could arrange normalizable states by considering 
the system in finite three-volume, but we do not want to do this here. It 
is more appropriate for our purpose to formally build up a projector on all 
negative-frequency states by integrating over the momentum parameter 

P(x,v) =   E   L*fc>)^>)^ - (1-3) 
£1=1,2 ■,IR 

which can be rewritten as the integral over the lower mass shell 

= JM3 (^J (¥ + m) S(k2 - m2) e(-fc0) e-**^) 

(0 denotes the Heavyside function Q(x) = 1 for x > 0 and Q(x) — 0 other- 
wise). P(x,y) is a well-defined tempered distribution which solves the free 
Dirac equation (i<f)x — m)P(x, y) = 0. We can use it to characterize the Dirac 
sea in the vacuum. Our aim is to introduce a corresponding distribution P 
for the Dirac equation with interaction (1.1). The construction of P must 
be unique in a sense which we will discuss and specify later. We will as- 
sume the perturbation B to be a differential operator on the wave functions. 
Furthermore, it shall be Hermitian with respect to the (indefinite) scalar 
product 

<tf|$> -   f~¥{x)§(x)dAx . (1.4) 

For an electromagnetic potential B = c^, these assumptions are satisfied 
because 4 — 704 7°- In addition, B can be composed of the scalar, pseu- 
doscalar, pseudovector and bilinear potentials as e.g. discussed in [2]. Ac- 
cording to [3], B also allows for the description of the gravitational field. 
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2    Non-Uniqueness of the Simple Perturbation Ex- 
pansion 

Our first idea for the construction of P is to calculate solutions ^^a of (1.1) 
with a perturbation expansion in B and to define P in analogy to (1.3) by 

a=l,2Jm' 

We start with a discussion of this method in a perturbation calculation 
to first order. This is quite elementary and will nevertheless explain the 
basic difficulty. For the perturbation calculation, we need a Green's function 
s(a;, y) of the free Dirac operator, which is characterized by the distributional 
equation 

fflx-m)8(xty) = S*(x-y) . (2.2) 

To first order, the perturbed eigenstates ^^ are then given by 

%» = *£«(*) - fd*ys{x,y)Byy%a{y) + 0(B2) ,       (2.3) 

as can be verified by substituting into (1.1). We insert this formula into 
(2.1) and obtain 

P(x,y)  = Pfayyjjz [S(x,z)BzP(z,y) + P(x,z) Bz s*(z,y)}+0(B2), 

(2.4) 
where we used that B is Hermitian with respect to the scalar product (1.4), 
and where s*(z,y) is given by s*(z,y) = 70 s(yyz)^ 70. It is convenient to 
view the distributions s(x,y),P(x,y) as integral kernels of corresponding 
operators 5, P. Then we can write (2.4) with operator products 

P = P-sBP-PBs* + 0(B2) , (2.5) 

where the superscriptc*' denotes the adjoint with respect to the scalar prod- 
uct (1.4). 

Equation (2.5) gives a possible definition for P. As apparent problem, the 
construction depends on the choice of the Green's function. For example, we 
could have chosen for 5 either the advanced or the retarded Green's function 
5m>5m> which are in momentum space as usual given by 

v/M  _    v ty + m A        _ ty + m 
*mW   -   0*™0 k2 _ m2 _ i£k0     '        8mW   "   o<^0 P - m2 + iekQ 

(2.6) 
More systematically, the arbitrariness of our construction is described as 
follows: According to (2.2), the difference between two Green's functions is 
a solution of the free Dirac equation. We can thus represent s in the form 

s(x,y)  = sym(x,y) + a{x,y) 
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where a{x,y) is in the ^-variable a linear combination of the plane-wave 
solutions, i.e. 

4 

 i «/IR «=i-/»" 

with (generally complex) functions c^a{y)^ where *^a,« = 3,4 denote the 
plane-wave solutions of positive frequency. We substitute into (2.5) and 
obtain 

„v BP - PBs^ - {aBP + PBa*) + 0(B2) . (2.7) 

The expression in the brackets maps solutions of the free Dirac equation into 
each other and vanishes otherwise. We can thus write it in the form 

4 

{aBP + PBa*){x,y) =   £  f   dh fdk2 *-kJx) gah{kuk2)^Jy) 
a,0=1 

with suitable functions gab^i-,^)- This representation of P can also be un- 
derstood directly: The contribution (2.8) describes a mixing of the solutions 
\I/£a of the free Dirac equation. To the considered first order in S, it vanishes 
in the Dirac equation (icj) + B — m) P = 0. Thus we cannot fix this contri- 
bution with the Dirac equation, it remains undetermined in our method. 
According to (2.7), this is the only arbitrariness of the construction; the 
other contributions to P are unique. 

In higher order perturbation theory, the non-uniqueness can be under- 
stood similarly, although the situation is more complicated: For a given 
Green's function 5, we can construct a solution ^f^a of the Dirac equation 
(1.1) by the formal perturbation series 

oo 

*& = E(-**)B*&      - (2-9) 
n=0 

as is verified by substituting into (1.1). Actually, this is a very special 
ansatz. For example, we can use different Green's functions in every order 
of the perturbation calculation, which leads to the more general formula 

oo 

ha - *&. + £(-!)"s(n) B--s(2) B sil) B *&,     (2-10) 
n=l 

with a whole series of arbitrary Green's functions s^1), s^2\ etc.. Once we 
have a formula for ^^a, the non-uniqueness of P can again be discussed by 
substituting into (2.1). In generalization of (2.8), the arbitrariness of the 
construction is described by a contribution to P(x,y) of the form 

E  L d^ L d*2 %» dabihM) %a6(y) 
a,6=1 
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which mixes perturbed eigenstates *£a and vanishes in the Dirac equation 

(i# + B — m) P = 0. The dependence of gabih^h) on B and on the Green's 
functions s^ is rather involved, however, and we need not go into the details 
here. 

To summarize, a simple perturbation expansion in B is not unique and 
therefore does not allow a meaningful definition of P. In the ansatz (2.10), 
for example, we should find a way to specify the Green's functions s^. This 
cannot be done with the Dirac equation (1.1), and we must therefore look 
for additional input to completely determine P. Our basic idea is to apply 
some causality principle. For example, it might seem a reasonable condition 
to impose that P(x,y) only depends on B in the "diamond" (L^ D Ly) U 
(L* HLp, where 

Lw
x = {y\(y-x)2>o, y0-x0>0} (2.11) 

L£ = {y|(2/-a;)2>0, y0-x0<o} (2.12) 

denote the future and past light cones around x, respectively. If we want 
to study conditions of this type, it is no longer useful to look at the pertur- 
bation expansion for the individual states S&£ (x) (because these states only 
depend on one argument x). We must take into account for the perturbation 
expansion that P is composed of many states in a specific way. 

3    The Causal Perturbation Expansion 

In preparation, we first describe how the perturbation expansion for the 
advanced and retarded Green's functions can be performed uniquely: The 
support of the distribution s^x, y) is in the future light cone y G 1% (this 
can be checked by calculating the Fourier transform of (2.6) with contour 
integrals). As a consequence, the perturbation operator B(z) only enters 
into the operator product 

{slBsD^y) = Jd4zsl(x,z)B(z)sl(z,y) (31) 

for z e L^DLy. In this sense, the expression (3.1) is causal. Especially, the 
support of (3.1) is again in the future light cone. It follows by iteration that 
the higher powers 

s^Bs^B -"Bs^Bsl, m 771 771 771 

are also causal and have their support in the upper light cone. We define the 
perturbed advanced Green's function as the formal sum over these operator 
products, 

oo 

& = £(-*»*)*£ • (3-2) 
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Accordingly, the perturbed retarded Green's function is defined by 

oo 

& = E H& »)* 5m • (3-3) 
fc=0 

These operators satisfy the defining equations for the perturbed Green's 
functions 

(i0-m + B)S£ = 1 = W-m + B)^ , (3.4) 

as is verified directly. 

Notice that the perturbation expansion for the Green's functions becomes 
unique by the condition that the contribution to 5^, 5^ to every order has 
its support in the future and past light cones, respectively. We want to 
take this construction as the guiding line for the perturbation expansion of 
P. Unfortunately, the method cannot be directly applied to the Dirac sea, 
because the distribution P(a:, y) does not vanish for space-like y — x, and we 
thus have no notion of causality. As way out, we decompose the free Dirac 
sea in the form 

Pfay) = ^{Pmix.y) - km(x,y)) (3.5) 

with the tempered distributions 

Pm(x,y)   =   j-^-Am + m)5{k2-m2)e-ik^-y) (3.6) 

km{x,y)   =   J-0^(lf + m)6(k2-m2)e(ko)e-ik(*-y)        (3.7) 

(e denotes the step function e(x) = 1 for x > 0 and e(x) = — 1 otherwise). 
We also consider pm(x,y) and km(x,y) as integral kernels of corresponding 
operators pm, km. The operator pm is built up as a formal sum over the 
projectors on all solutions of the Dirac equation and can be viewed as a 
spectral projector of the free Dirac operator. The definition of km differs 
from pm by a relative minus sign for the states on the upper and lower mass 
shell. As a consequence of this relative minus sign, the Fourier integral (3.7) 
vanishes if y — x is space-like (this can be seen from Lorentzian invariance 
and a symmetry argument for k = (0, k)). Thus km(x,y) is causal in the 
sense that it has the support in the light cone y G L^ U L£. This makes 
it possible to uniquely express its perturbation expansion in terms of the 
perturbed Green's functions: We substitute the distributional equation 

lim   (  —  — )   = 27ri Six) 
\<e^\x — ie       x + iej 0<£->>0 

into the formula for fcm in momentum space, 

MP)    =   (V + m) 5(p2 - m2) eip0) 
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1 1 
—- (^ + m)    lim 

- (^ + m)    lim 

p2 — m2 — is       p2 — m2 + is 
1 1 

V) 

27ri Vir  ' "^ o^V^o [p2 — m2 — z£:p0       p2 — m2 + iep0 

and obtain with (2.6) a simple relation between km and s^, s^, 

km = h (s- " 5-)     • (3-8) 

We extend this relation to the case with external fields: 

Def. 3.1   We define the operator &m by 

with the Green's functions (3.2), (3.3). 

According to (3.4), km really is a solution of the Dirac equation (ift + B — 
m) km = 0. 

In order to explain the significance of this construction, we point out 
that the factor e(fc0) in (3.7) describes the splitting of the solutions of the 
free Dirac equation into solutions of positive and negative frequency. With 
the introduction of kmi we were able to uniquely generalize this splitting to 
the case with external fields. This solves the basic problem in defining the 
Dirac sea. It remains to perform the perturbation expansion for pm. On a 
formal level, this is very easy, because we can remove the relative minus sign 
for the positive and negative frequency states by taking the absolute value 
01 Km, 

pm 
for-ly V^      • (3-10) 

This gives a unique definition for pm. Since km is composed of eigenstates 
of the perturbed Dirac operator with eigenvalue m, it follows automatically 
that (i$ + B — m) pm — 0. 

Unfortunately, it requires some effort to convert the formal relation (3.10) 
into a mathematical definition. The problem is that the square k^ is ill- 
defined; furthermore we want to write pm as a power series in B. These 
problems are solved in the following theorem. The reader who is not so in- 
terested in the technical details and the combinatorics of the expansion may 
skip the proof. For the statement of the theorem, we need some notation: 
We work with the Green's function 

Sm   =   \{sy
m + St) , (3.11) 
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which has the advantage of being Hermitian (with respect to the scalar 
product (1.4)). Furthermore, we introduce the series of operator products 

oo oo oo 

k=0 k=0 k=0 

and set for Q C iV 

neQ =    i  Pm     if' Fm(Q,n) -   ,   L      itn^Q 

Theorem 3.2 The relations (3.9)j(3.10) uniquely determine the perturba- 
tion expansion for fcm and pm.  We have the explicit formulas 

00 

km   =    EHTT)
2
^^^™)

2
^ (3.12) 

/3=0 

oo    UJ 

Pm     -     EE^"5)^^"0) (3-13) 
/3=0 a=0 

toi^ i/ie coefficients 

c(0,0)    =    1 , (3.14) 

n=a+l \ / 

and the operator products 

Gm(a,/3)    - Y, (-^)2(3b<Fm(Q,l)bmkmbmFm{Q,2) 
Q€^(i3+l),  #Q=2a+l 

x bmkmbm • • • bmkmbm Fm(Q, f3 + 1) 6^   , (3.16) 

where V(n) denotes the set of subsets of {1,... ,n} (W tzse ^e convention 
l\\ = 1 forl< 0). 

Proof: Notice that (i$ + B — m) 6< = 0. Since all operator products in 
(3.12),(3.16) have a factor 6^ at the left, the operators pm, km are solutions 
of the Dirac equation 

(i# + B - m) pm = 0 = (i^ + S - m) km 

Thus the theorem gives a possible perturbation expansion for pm and km. We 
must verify that the conditions (3.9),(3.10) are satisfied and show uniqueness. 

According to (3.8), the advanced and retarded Green's function can be 
written in the form 

Sm   =   Sm -f- ITT km     , Sm    =   5772 — ZTT Km . (o.I( J 
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We substitute the sums (3.2),(3.3) into (3.9), 

1       oo 

*■» = as £ ((-s- B)k s™ - (-s- B)k 5-)      '       (3-18) 

insert (3.17) and expand. This gives a sum of operator products of the form 

Ci B C2 B - • • B Ci+i with Cj = km or Cj = sm 

The contributions with an even number of factors km have the same sign 
for the advanced and retarded Green's function and cancel in (3.18). The 
contributions with an odd number of fcm's occur in every Green's function 
exactly once and have opposite sign. Using the notation 

{km   it' 
Sm     if' 

Cm{Q,n)  =   {   7    i^Q      ' QCIN 

we can thus rewrite (3.18) in the form 

00 

km    =    £(-1)' E (iir)**-1 

1=0 QeP{l+l), #Qodd 

x Cm(Q, 1) B Cm(Q, 2) B ■ ■ ■ B Cm(Q, I) B Cm(Q, l + l) 

After reordering the sums, this coincides with (3.12). 

Next we want to give the relation (3.10) a mathematical sense. For this, 
we consider m > 0 as a variable mass parameter. Then we can form products 
of the operators pm, km by manipulating the arguments of the distributions 
in momentum space. For example, we have with (3.6) 

Pm(k)pm,(k)    =    (^ + m)5(fc2-m2)(^ + m,)^2-(m,)2) 

=    {k2 + (m + m')lf + mm') 6(m2 - (m7)2) <Kfc2 " m2) 

=    (k2 + (m + m7)^ + mm') ^- 8{m - m!) 5{k2 - m2) 

=   S(m - mf) pm(k) , (3.19) 

and similarly with (3.7), 

Pm km1    =   k^ pm = 5{m - m!) km (3.20) 

km km'    =   6(mr-m')pm • (3.21) 

This formalism has some similarity with the bra/ket notation in quantum 
mechanics, if the position variable x is replaced by the mass parameter m. 
Equation (3.19) can be understood directly from the fact that Pm are the 
spectral projectors of the free Dirac operator; the relations (3.20),(3.21) 
reflect the relative minus sign in km for the states on the upper and lower 



F. FINSTER 973 

mass shell. Especially one sees that km km> = pm pmi. This relation can be 
extended to the case with interaction, 

Pm Pm'   ~   Km ^m' 5 \6.ZZ) 

and gives a meaningful square of (3.10) (we will see in a moment that km km' 
vanishes for m / ra7). If our construction ensures that pm is a positive 
operator, (3.22) is even equivalent to (3.10). 

We calculate the product km kmi explicitly: The definitions (3.6),(3.7) 
and (3.11),(2.6) yield in analogy to (3.19) the formulas 

Pm Sm'     =     Smi pm   =   PP ( 7 )  Pm (3.23) 

km Sm'     —    sm' ^m   =   "^   I - I   km (o.z4j 
Vm — m! J 

SmSm'    =    PP( -)   {Sm-3mi) , (3.25) 

where PP(a;~1) = | limo<e->o[(^ + is)-1 + (x — i£)~l] denotes the principal 
value. As a consequence, the operator products with factors sm,smi are 
telescopic, i.e. 

n 

E km {B smf {sm, B)n-p km,  =0 for n > 1. (3.26) 

This allows us to easily carry out the product 6^ 6^ in the expression 

km &m 6^/ kmi  = S(m - m!) pm . (3.27) 

With this formula, we can calculate the square of (3.12) to 

oo 

km km'   -   S(m - m')      ^    (-in)2**2* b< (km bm?* Pm (bm km)2(32 &>  • 
Pl,02=O 

(3.28) 

We could continue the proof by verifying explicitly that the product 
PmPm' withpm according to (3.13) coincides with (3.28). This is a straight- 
forward computation, but it is rather lengthy and not very instructive. We 
prefer to describe how the operator products (3.16) and the coefficients (3.15) 
can be derived. In order to keep the proof better readable, we make some 
simplifications: Since the factors 6^, 6^ cancel similar to (3.27) in telescopic 
sums, we can omit them in all formulas without changing the multiplica- 
tion rules for the operator products. Then all operator products have km or 
pm as their first and last factor, and we can multiply them with the rules 
(3.19),(3.20), and (3.21). Since all these rules give a factor 5(m — ra'), we 
will in any case get the prefactor S(m — ra7) in (3.28).   Therefore we can 
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just forget about all factors 5{m — m!) and consider all expressions at the 
same value of m. Furthermore, we will omit the subscript 'ra' and write the 
intermediate factors b as a dot '.'. After these simplifications, we end up 
with formal products of the form 

F1.F2.F3- • • • • Fn with Fj = k or Fj = p (3.29) 

and have the multiplication rules 

p2 = k2 = 1   , pk = kp = k . (3.30) 

We must find a positive operator p being a formal sum over operator products 
(3.29) such that 

00 
p2   =       £    (_i7r)2/31+2fe (fc BJ2A p (   fcj2A (33!) 

/3i,/32=0 

In this way, we have reduced our problem to the combinatorics of the opera- 
tor products. As soon as we have found a solution p of (3.31), the expression 
for pm is obtained by adding the subscripts c

m' and by inserting the factors 
&m> ^rnj ^m* Relation (3.22) follows as an immediate consequence of (3.31). 

The basic step for the calculation of p is to rewrite (3.31) in the form 

p2 = p+A with A =        £      (-z7r)2/3l+2/32(fc.)2/3lp(.A;)2^   . 
(/3i,/32)/(0,0) 

(3.32) 
The operator p is idempotent and acts as the identity on A, Ap — pA = 
A. Therefore we can take the square root of p + A with a formal Taylor 
expansion, 

p = v^T^ = p + EC-ir1 ^^ A- , (3.33) 
71=1 

which uniquely defines p as a positive operator. 

It remains to calculate An. If we take the nth power of the sum in 
(3.32) and expand, we end up with one sum over more complicated operator 
products. We first consider how these operator products look like: The 
operator products in (3.32) all contain an even number of factors k and 
exactly one factor p. The factor p can be the 1st, 3rd,... factor of the 
product. Each combination of this type occurs in A exactly once. If we 
multiply n such terms, the resulting operator product consists of a total odd 
number of factors p, k. It may contain several factors p, which all occur at 
odd positions in the product. Furthermore, the total number of factors p 
is odd, as one sees inductively. We conclude that An consists of a sum of 
operator products of the form 

(k . k .)qi p.k.(k.k .)q2 p.k.(k.k .)q3 • • • (k . k .)^+1 p (. k . k)q2«+2  (3.34) 



F. FINSTER 975 

with a, qj > 0. We set /3 = 2a + Ylj Qj- Notice that the number of factors p 
in (3.34) is 2a + 1; the total number of factors p, k is 2/3 + 1. The form of 
the operator product gives the only restriction 0 < 2a < (3 for the choice of 
the parameters a, /?. 

Next we count how often every operator product (3.34) occurs in the 
sum: The easiest way to realize (3.34) is to form the product of the a + 1 
factors 

\k.k.)qi p (.k.k)q2+1] [(fc.fc.)(?3+1 p (.k.k)^1] • • • [{k.k.)q2«+1+1 p (.k.k)q2«+2] 
(3.35) 

However, this is not the only possibility to factorize (3.34). More precisely, 
we can apply to each factor in (3.35) the identities 

(k.k.)qp{.k.k)r   =   [(k.k.)qp}\p(.k.ky} 

(k.k.)qp(.k.k)r   =   [(k.k.)sp} [(k.k.)q-sp(.k.k)r] 

(k.k.)qp(.k.k)r   =    [(k.k.)qp(.k.k)r-s} \p(.k.k)s] 

By iteratively substituting these identities into (3.35), we can realize every 
factorization of (3.34). Each substitution step increases the number of factors 
by one. The steps are independent in the sense that we can fix at the 
beginning at which positions in (3.35) the product shall be split up, and 
can then apply the steps in arbitrary order. There are (a + 1) + (<Zi — 1) + 
X^=21 Qj + (#2a+2 — 1) = P — (a + 1) positions in (3.35) where we could split 
up the product (in the case qi — 0 or ^2a+2 = 0, the counting of the positions 
is slightly different, but yields the same result). Since we want to have n 
factors at the end, we must choose n-(a+l) of these positions, which is only 
possible for a + 1 < n < (3 and then gives (/3 — a — l)!/((n — a — 1)! (/? — n)!) 
possibilities. 

Combining these combinatorial factors with the constraints 0 < 2a < /3, 
a + 1 < n < (3 gives for n > 1 

oo   min(n-l,[f])   / v 

/3=n a=0 \ /   Qev((3+l), #Q=2a+l 

x (-Z7r)2/3 F(Q, 1) . k . F(Q, 2) .&.••.. k . F(Q, /? + 1) (3.36) 

with F(<2, n) = p for n G Q and F(Q, n) — k otherwise. Notice that the last 
sum in (3.36) runs over all possible configurations of the factors p, k in the 
operator product (3.34) for fixed a, /?. We finally substitute this formula into 
(3.33) and pull the sums over a,/3 outside. This gives the desired formula 
for p. ■ 

In order to illustrate the derived formulas for p and fc, we give the contribu- 
tion up to third order in more detail: 

^m    =   ""m Km & Sm ^m & km 
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+Sm BsmBkm + smBkmBsm + kmBsmBsm - i? km B km B km 

~sm & sm " sm B km — sm B sm B km B sm 

—sm BkmBsmB sm - kmBsmBsmBsm 

+7r2 smBkmBkmBkm + TT
2
 kmBsmBkmB km 

WkmBkmBsmBkm + 7r2kmBkmBkmBsm + 0{BA) 

Pm   =  Pm   - PmBSm   -  Sm B pm 

+sm BsmBpm + Sm Bpm Bsm + pmBsmBsm 

TT2 TT2 

^~ Pm B km B km   —   — km B km B Pm 

-SmB SmB SmBpm   -  5m B 5m B Pm B 5m 

-^m BpmBsmBsm  - Pm B Sm B Sm B Sm 
TT2 

+ Y^Sm BlPm BkmBkm  + PmBSmBkmBkm 

+Pm B km B SmB km  + Pm B km B km B Sm) 
TT2 

+ y (5™ BkmBkm Bpm  + km B Sm B km B pm 

+kmBkmBSmBpm  +  ^ B km B Pm B Sm)   +  0(B4) 

The theorem gives precise formulas for the perturbation expansion of the 
Dirac sea. Both the combinatorics of the factors km,pm, sm and the numeri- 
cal prefactors are a non-trivial result and, as far as the author knows, cannot 
be understood intuitively. 

We call the perturbation expansion of this theorem the causal perturba- 
tion expansion. It allows to uniquely define the Dirac sea by 

P(x>y)   =   g (Prn-km){x,y) 

4    Generalization to Systems of Dirac Seas 

In the previous section, we defined the Dirac sea for a system of interacting 
fermions of mass m. A realistic model, however, is composed of several types 
of fermionic particles with masses mi,... ,ra/. Furthermore, the fermions 
of zero mass may (like the neutrinos in the standard model) occur only as 
left or right handed particles. The perturbation B will in general mix up the 
eigenstates to different masses and will in this way describe an interaction of 
all the fermions. We will now extend the previous construction to this more 
general setting. 

First we must generalize (1.3) and define a distribution P{x,y) which 
describes the system in the vacuum: In order to distinguish the chirality 
of the zero-mass fermions, we introduce (4 x 4)-matrices XL, ... ,Xf.   For 
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the zero-mass fermions rrij = 0, they can be either Xj = 1, Xj = XL? 
or 

■Xj" = XH) where XL/R = ^i^-Tj5) are the chiral projectors. For rrij ■£ 0, they 
must coincide with the identity Xj = 1. The Dirac seas of the individual 
types of fermions are then described by Xj\{pmj — fcm., )(#, y)- The remaining 
question is how to build up P{x, y) from the individual Dirac seas. In view 
of the configuration and the interactions of the fermions in the standard 
model, one might want to use combinations of sums and direct sums 

/      a Z 

(e.g. with / = 1,..., 8 = 2(3 + 1) running over the color, lepton, and isospin 
index, and with the index a = 1,...,3 to distinguish the three fermion 
families. It seems reasonable to use the ordinary sum over a because the 
families show the same interactions). Prom the mathematical point of view, 
however, it is easier to use only direct sums 

/ 1 
P(*,V) = 0 Xi oiPmt - kmi){x,y) . (4.2) 

J=i        l 

This is no loss of generality, because the ansatz (4.1) can be obtained from 
(4.2) by taking a suitable partial trace over the /-index (in our example, 
by choosing / — 24 = 3 • 8 and forming the trace over the three families). 
For the perturbation expansion, we can also restrict ourselves to the ansatz 
(4.2), because the perturbation expansion for (4.1) is obtained by taking the 
partial trace of P{x1 y) (see [4] for a more detailed discussion of this method). 
Therefore we must in the following only consider a P{x, y) of the form (4.2); 
it is called the fermionic projector of the vacuum. 

It is convenient to use a matrix notation in the direct sum: We set 

pfay) = ffif=iPmi(^y)  >        k(x>y) = ©/liW^y) 

and define the matrices 

/ i / 

X = 0X,   , Y = - 0m, 
l=i m l=i 

which are called chiral asymmetry matrix and mass matrix, respectively (m 
is an arbitrary mass parameter; e.g. one can choose m = maxjmj). Then 
we can write the fermionic projector as 

P(x,y) = X^(p(x,y)-k(x,y)) . (4.3) 

Since rrij = 0 for X ^ 1 and because Pm^o, fcm=o anti-commute with 75, we 
have alternatively 

P{*> y) = \ (P(X, v) - *(*, y)) x*       , (4.4) 
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where X* = 70X^70 is the adjoint with respect to the scalar product (1.4). 
The fermionic projector is a solution of the free Dirac equation 

Wx-mY)P(x,y) = 0 

In order to describe the interacting system, we again insert a differential 
operator B into the Dirac equation. Thus the fermionic projector P(x, y) is 
supposed to be a solution of the Dirac equation 

{i$x + B-mY)P{x,y) = 0 . (4.5) 

B may be non-diagonal in the "Dirac sea index" /; we assume it to be Her- 
mitian with respect to the scalar product 

/    r  

The perturbation expansion for k and p can be carried out exactly as in 
the previous section: We define the advanced and retarded Green's functions 
by 

sv(x,y) = ®f
j=ls^.(x,y)   , sA{x,y) = @f

j=1si.(x,y) 

Their perturbation expansion is, in analogy to (3.2),(3.3), uniquely given by 

oo oo 

Sv =  £(-5
v£)fc

S
v   , sA - £(-*AB)*aA . (4.6) 

Theorem 4.1   The perturbation expansion for p and k is uniquely deter- 
mined by the conditions 

k = JL(sV-3*), pfor^allyy/p . (4.7) 

We have the explicit formulas 

OO OO      1.2 J 

* = E (-^b< k (b k)w b> '      p = E E c(a' 0)G^ ft 
(3=0 0=0 oc=0 

with 

0(0,0)   =   1 

n=a+l \ / 

GU,9)   = E (-in)2t3b<F(Q,l)bkbF(Q,2)bkb--- 
Qe-Ptf+l),  #Q=2a+l 

xbkbF(Q,p + l)b>  , 
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where V(n) is the set of subsets of {1,..., n} and where we used the notation 

p   ifneQ 
k    ifngQ 

s = i(.v+o ,     m^l" »"s« 
OO 

k=0 k=0 k=0 

Proof:   Follows exactly as Theorem 3.2. ■ 

After this straightforward generalization, we come to the more interesting 
question of how P can be defined. Our first idea is to set in generalization 
of (4.3) 

P(x,y)  = X±(p-~k)(x,y) . (4.8) 

This is not convincing, however, because we could just as well have defined 
P(x,y) in analogy to (4.4) by P = ^(p — k) X*, which does not coincide 
with (4.8) as soon as X,X* do not commute with B. It turns out that 
this arbitrariness in defining the Dirac sea reflects a basic problem of the 
causal perturbation expansion for systems with chiral asymmetry. In order to 
describe the problem in more detail, we consider the perturbation calculation 
for k to first order: According to (4.6),(4.7), we have 

k   =   k - ~{svBsv - sABsA) + 0(B2) (4.9) 

=   k - sBk - kBs + 0(B2) 

This expansion is causal in the sense that k(x,y) only depends on B in the 
"diamond" (l£ n L$) U (1^ n Z£), as is obvious in (4.9). It is not clear, 
however, how to insert the chiral asymmetry matrix into this formula. It 
seems most natural to replace all factors k by Xk, 

(Xk) = Xk - sBXk - XkBs + 0(B2) . (4.10) 

This formula really gives a possible perturbation expansion for the system of 
Dirac seas. Unfortunately, it cannot be expressed similar to (4.9) with the 
advanced and retarded Green's functions, which means that the causality of 
the expansion is in general lost. In order to avoid this problem, one might 
want to insert X at every factor 5, fc, 

(Xk)   =   Xk - XsBXk - XkBXs + 0{B2) 

=   Xk - ^-{Xsv BXs" - XsABXsA) + 0{B2)        (4.11) 
ZTXl 

Similar to (4.9), this expansion is causal. In general, however, it does not 
give a solution of the Dirac equation (ifj) + B — m) k = 0, which does not 
make sense. 
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The only way out of this dilemma is to impose that the perturbation 
expansions (4.10) and (4.11) must coincide. This yields a condition on the 
perturbation operator 0, which can be characterized as follows: We demand 
that 

Xsy BXsv = sv BXsy = XsvBsv . (4.12) 

Since the operator s^_0 anti-commutes with 75, we have Xsv = swX*. 
Substituting into the second equation of (4.12) yields the condition X* B = 
B X. Since X is idempotent, this condition automatically implies the first 
equation of (4.12). We formulate the derived condition for the whole Dirac 
operator i$ + B — mY and thus combine it with the fact that chiral fermions 
are massless (i.e. X*Y = YX = Y) and that X is composed of chiral 
projectors (which implies that X*<ft = $X). 

Def. 4.2  The Dirac operator is called causality compatible with X if 

X*(i$ + B-mY) = (i$ + B-mY)X . (4.13) 

In the perturbation expansion to higher order, the condition (4.13) allows 
to commute X through all operator products. Using idempotence X2 = X, 
we can moreover add factors X to the product, especially 

X dBdB   •• BCn = XCiBXdB ... BXCn 

with 
Cj = PJ CJ = k or Cj = s   . 

This ensures the causality of the perturbation expansion. For a Dirac op- 
erator which is causality compatible with X, the fermionic projector in the 
external field is uniquely defined by (4.8). 

5    Discussion, Outlook 

In this paper, we gave the formal definition of the Dirac sea in the presence 
of external fields. The method differs considerably from earlier attempts 
to solve the external field problem (see e.g. [2] and the references therein). 
Namely, in these previous approaches, the Dirac sea was always constructed 
as the "negative frequency solutions" of the Dirac equation. The basic prob- 
lem of this concept is that the notions of "positive" and "negative" frequency 
do not make sense in the case with general interaction. Therefore the con- 
struction was always limited to potentials which are either static or have 
an only adiabatic time dependence. As shown in this paper, the notion of 
"negative frequency states" is not essential for the description of the Dirac 
sea. For a general definition of the Dirac sea, it must be given up and must 
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be replaced by a suitable causality condition. In this way, it becomes possi- 
ble to define the Dirac sea in the presence of potentials with arbitrary time 
dependence. Although the details of the perturbation expansion are a bit 
complicated, the basic concept is very simple. The construction is explicitly 
covariant. It puts the usual "hole"-interpretation of the Dirac equation on 
a satisfying theoretical basis. 

In order to clarify the connection to the usual definition of the Dirac 
sea, we describe how our definition simplifies in the limit of static potentials: 
If considered as multiplication operators, static potentials map functions of 
positive (negative) frequency into functions of positive (negative) frequency. 
Since p, A;, and s are diagonal in momentum space, they clearly also preserve 
the sign of the frequency. Thus we have 

[Pi.p] = [P^k] = [P*,*] = {P±,B} = 0 , (5.1) 

where P± denote the projectors on the states of positive and negative fre- 
quency, respectively. The operators p and k only differ by a relative minus 
sign for the states of positive and negative frequency, 

P± p = ± P± k 

Using this relation together with (5.1), we can replace pairs of factors p by 
pairs of factors fc, e.g. 

...pB---pB--   =     -pB-pB'- (P+ + P-) 

=   P+{'"kB"-kB'") + p-('"(-k)B'"{-k)B"-) 

=   •••kB'-kB-- 

where the dots '• • •' denote any combination of the operators s, k, p, and 
B. This allows us to simplify the formula for p by only using exactly one 
factor p in every operator product. After going through the details of the 
combinatorics, one obtains the formula 

oo 

p = J2(-^)2bb<p{bk)2bb> 

Thus the Dirac sea (4.8) can be written as 

26 h< P{x,y)  =  ^(-^)26& 
6=0 

\x{p-k) (bkybb 26 L> 

This equation shows that P(xJy) is composed of the negative-frequency 
eigenstates of the Dirac operator (notice that the expression in the brackets 
[• • •] is the fermionic projector of the vacuum and that all other factors pre- 
serve the sign of the frequency). Thus, for static potentials, our definition is 
equivalent to the usual concept of "negative frequency states." On the other 
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hand, this consideration illustrates in which way our definition goes beyond 
the usual picture. 

In order to get a better understanding of the time-dependent situation, 
we next consider a scattering process. For simplicity, we use the elementary 
framework of [1], but our consideration also applies to the operator algebra 
and Fock space formalism as e.g. described in [5]. We first recall how a 
scattering process is commonly described in the classical Dirac theory. We 
assume the scattering to take place in finite time io < t < ti- This means 
that the external perturbation B in (1.1) vanishes outside this time interval, 

B(t,x)  = 0 for tg[to,*i]   • (5.2) 

We consider a solution ^ of the Dirac equation with interaction (1.1). Ac- 
cording to (5.2), ^(i,x) is, for t < io, a solution of the free Dirac equation. 
We uniquely extend this free solution to the whole Minkowski space and 
denote it by ^in, i.e. 

(i#-m)§in  = 0 with *in(*,^)   =  *(*,£)    for t < to- 

Similarly, $(£, x) is also for t > ti a solution of the free Dirac equation; we 
denote its extension by ^outo 

(i#-ra)*out  = 0 with *out(*,£)  = *(*,#)   for t > ti. 

The wave functions ^in and ^out are called the incoming and outgoing scat- 
tering states. The 5-matrix S maps the incoming scattering states into the 
corresponding outgoing states, i.e. 

^rout  = 5 ^rin for every * with (i$ + B - m) * = 0 

As a consequence of the Dirac current conservation, S is a unitary operator 
(with respect to the scalar product (1.2)). Using the scattering states, one 
can build up asymptotic Dirac seas for t < to and t > ti. Namely, for an 
observer in the past t <to, the bosonic potentials are zero. Thus it is natural 
for him to describe the vacuum with the free Dirac sea (1.3). If this Dirac 
sea is extended to the whole Minkowski space with external field, one gets 
the object 

0=1,2 •/IR 

where the wave functions $£ are the solutions of the perturbed Dirac equa- 
tion whose incoming scattering states are the plane wave solutions \I/£a, 

(t? + B - m) *l = 0 with (^Jin = *fc-o 

Accordingly, an observer in the future t > to describes the vacuum with the 
Dirac sea   
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where 

(,? + B-m)*k = 0 with (^)aut  = *£, 

The states ^  and ^^  have a more explicit form in terms of the perturba- 
tion series 

oo oo 

" ka 
n=0 n=0 

PA = P   - pv 

6A      _ 
^out   — 

O   6V 
0 ^OUt s-1 

=     5-1 

as is immediately verified with (5.2) using that the support of the advanced 
and retarded Green's functions is the future and past light cone, respectively. 
The asymptotics of the Dirac seas is completely described by the S-matrix; 
namely 

(5.3) 

(5.4) 

(5.5) 

The physical scattering process is conveniently described with the two Dirac 
seas of the observers in the past and in the future: If the physical system 
is described by PA, for example, the observer in the past is in the vacuum. 
According to (5), PA does in general not coincide with the Dirac sea Pv. This 
means that for the observer in the future, both positive frequency states are 
occupied and negative frequency states are unoccupied, so that for him the 
system contains both particles and anti-particles. This explains the physical 
effect of pair creation. Other scattering processes are described similarly. 

The causal perturbation expansion yields a unique object P describing 
the Dirac sea in the scattering process. P coincides neither with Pv nor 
with PA; since its construction involves both the advanced and retarded 
Green's functions, it can be considered as being an "interpolation" between 
PA and Pv. At first sight, it might seem strange that the Dirac sea is now 
in both asymptotic regions t < to and t > ti described by the same object. 
Namely, it was essential for our discussion of pair creation that the Dirac 
seas of the past and future observers were different. It might seem that 
by redefining the Dirac sea, we no longer have pair creation. Clearly, this 
is not the case; all physical effects occur in the same way regardless if one 
works with the asymptotic Dirac seas PA, Pv or with P. This is because 
the 5-matrix, which completely describes the physical scattering process, 
does not depend on the definition of the Dirac sea. Thus the choice of the 
definition of the Dirac sea in the asymptotic regions is merely a matter of 
convenience. This may require some explanation: Suppose that we describe 
the Dirac sea with P. Then the asymptotic Dirac seas Pin and Pout consist 
of both positive and negative frequency states. As a consequence, they are 
not stable; they tend to decay into the Dirac sea P of all negative-energy 
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states (this is clear physically from the fact that P has lower energy than 
Pin and Pout)- Taking this into account, one gets a consistent description 
of the physical observations. A further complication with P is that the 
current and energy distributions in the asymptotic regions are in general 
not homogeneous. For these reasons, it is highly inconvenient to describe 
the scattering process only with P; it is much easier to work with PA and 
Pv. But apart from these purely practical considerations, there is no reason 
against the description of the Dirac sea with P. The great advantage of 
the causal perturbation expansion is that it gives a unique definition of the 
Dirac sea, even in the region with interaction to < t < ti. The Dirac sea 
is not defined with reference to an observer, but becomes a global object of 
space-time. 

Our definition of the Dirac sea is the starting point for the more technical 
analysis in [6], where all operator products are estimated and computed 
explicitly in an expansion around the light cone. In order to further clarify 
the definition of the Dirac sea, we now qualitatively anticipate some results 
of [6]. 

First of all, we explain what "causality" of the perturbation expansion 
for the Dirac sea precisely means: The expansion (3.9) for km(x, y) is causal 
in the strict sense that the perturbation operator B{z) only enters for z in 
the "diamond" z € (L^ fl Ly) U (L£ fl L^). Since Pmi^jV) does not vanish 
for space-like y — x, its perturbation expansion, and consequently also the 
expansion of the Dirac sea, cannot be causal in this strict sense. As is 
shown in [6], the distribution P(x,y) has singularities on the light cone (i.e. 
for (y — x)2 = 0). It turns out that these singularities can be completely 
described in terms of B(z) and its partial derivatives along the convex line 
z G xy. Our perturbation expansion is causal in this weaker sense. It is even 
uniquely characterized by this "causality" of the singularities on the light 
cone. 

Both the operator products and the perturbation series were only treated 
as formal expressions throughout this paper. We outline in which sense these 
expressions make mathematical sense: It is shown in [6] that all operator 
products are well-defined distributions if reasonable regularity conditions on 
B are assumed. The convergence of the perturbation expansion is a more 
difficult problem. For chiral and scalar/pseudoscalar potentials, convergence 
is shown in [6] for the formulas of the light-cone expansion by explicit calcu- 
lation. For a gravitational field, the situation is more complicated, because 
the contributions to P(x, y) of higher order in B become more and more 
singular on the light cone. With a Taylor expansion of the ^-distribution 

a2 

5{x + a) = 5{x) + a5'{x) + —6"(x) + ••• 

these contributions can be understood as describing a "deformation" of the 
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light cone (corresponding to the diffeomorphism invariance of General Rel- 
ativity), but the convergence has not yet been established rigorously. 

We finally remark that the fermionic projector P(x, y) of section 4 is 
considered in [4] as the basic physical object. In this context, the above 
construction gives a unique characterization of P by a perturbation B of the 
Dirac operator. This makes it possible to get a connection to the description 
of the interaction with classical potentials. It turns out that this "classical 
limit" is completely determined by the singularities of P{x,y) on the light 
cone. The "causality" of our perturbation expansion is then directly related 
to the locality and causality of the classical field equations. 
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