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Abstract 

We present the last missing details of our algorithm for the classification 
of reflexive polyhedra in arbitrary dimensions. We also present the results 
of an application of this algorithm to the case of three dimensional reflex- 
ive polyhedra. We get 4319 such polyhedra that give rise to K3 surfaces 
embedded in toric varieties. 16 of these contain all others as subpolyhedra. 
The 4319 polyhedra form a single connected web if we define two polyhedra 
to be connected if one of them contains the other. 
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1    INTRODUCTION 

1.1    MOTIVATION 

When it was first realized [1] that manifolds of trivial canonical class play 
an important role in string compactifications, only very few manifolds of 
this type were known. This situation changed with the first construction of 
large classes of Calabi-Yau manifolds as hypersurfaces in weighted projective 
spaces [2]. As these varieties are generically singular, it was not clear from 
a mathematical point of view what their Hodge numbers should be, but in 
string theory the corresponding numbers of generations and antigenerations 
could be calculated by using orbifold techniques [3]. These 'physicists' Hodge 
numbers' showed a remarkable property that became known as mirror sym- 
metry: to almost every manifold with a certain pair of Hodge numbers there 
existed one or more other manifolds with the Hodge numbers exchanged. 
Soon an explicit construction applying to a subset of these spaces was found 
[4]. But when a complete classification of all such varieties was available 
[5, 6] it became clear that mirror symmetry is not realized at the level of 
hypersurfaces in weighted projective spaces. 

Indeed, a far more natural setup for the discussion of mirror symme- 
try is given in terms of toric geometry and in particular by hypersurfaces 
in toric varieties that can by described by so-called reflexive polyhedra [7]. 
This construction not only implies manifest mirror symmetry (at the level 
of Hodge number exchange), but also explains how the weighted projective 
spaces have to be desingularised (blown up) in order to allow smooth hyper- 
surfaces with the Hodge numbers that have been assigned to them through 
the orbifold construction. 

It is often possible to obtain a Calabi-Yau manifold from another Calabi- 
Yau manifold by first blowing down some divisors, thereby creating a singular 
variety, and then resolving the singularity by changing the complex struc- 
ture. This raises the question of whether all Calabi-Yau manifolds might be 
connected (directly or indirectly) by processes of this sort [8], which lead to 
important non-perturbative effects in string theory [9, 10]. It has been shown 
[11, 12] that all Calabi-Yau threefolds that are hypersurfaces in weighted pro- 
jected spaces belong to a 'web' of this type. This web could not be formed 
from hypersurfaces in weighted projective spaces alone, but required, once 
again, a generalization to toric hypersurfaces. 

It should be noted that almost all examples of manifolds of trivial canon- 
ical bundle occurring in the physics literature are hypersurfaces (or, in a few 
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cases, complete intersections) in toric varieties. Therefore a classification of 
toric varieties that admit smooth three-dimensional hypersurfaces of van- 
ishing first Chern class is highly desirable. Such a classification amounts to 
the classification of four-dimensional reflexive polyhedra. While this classi- 
fication problem is rather easy in two dimensions (there are 16 well known 
reflexive polygons), only recently an algorithm for approaching this problem 
in higher dimensions was found [13, 14]. In the present work we fill in the 
last missing technical details of our algorithm and apply it to the classifi- 
cation of three dimensional reflexive polyhedra. At first sight this might 
seem to be rather useless, since any hypersurface resulting from this con- 
struction is going to be a K3 surface and all K3 surfaces are known to be 
isomorphic with respect to their differential structures. This is misleading, 
however, since in the context of string dualities algebraic properties become 
important, and these algebraic properties are conveniently encoded in the 
structures of the polyhedra. When we consider F-theory or IIA duals to het- 
erotic string compactifications, we usually consider Calabi-Yau threefolds or 
fourfolds that are K3 fibrations where the K3s themselves are elliptically 
fibered. Then the fibration structures manifest themselves as nestings of the 
respective polyhedra [15, 16, 17], and even the enhanced gauge groups can 
be read off from the toric diagrams [15, 18, 19]. Thus, the toric diagrams 
contain far more information than just which differential type of manifold 
we are dealing with. 

In the remainder of the introduction we will give some definitions nec- 
essary in the rest of the paper. In section 2 we give a rough outline of the 
strategy that we used for the classification and present our results. In section 
3 we explain our algorithm in more detail, starting with a summary of the 
results of refs. [13, 14] and then proceeding to more detailed descriptions of 
various ideas that were relevant in the course of implementing our algorithm. 

1.2    BASIC DEFINITIONS 

A polytope in W1 may be defined alternatively as the convex hull of finitely 
many points or as an intersection of finitely many half spaces that is bounded. 
In the mathematics literature a polyhedron is also an intersection of finitely 
many half spaces, but not necessarily bounded [20]. We will, however, always 
mean 'polytope' even when we write 'polyhedron'. More particularly, most 
of the polyhedra that we consider will be polytopes with 0 (the origin of W1) 
in the interior. We will denote this property as the 'interior point property' 
or 'IP property'. Given a polytope A in a vector space M^ ~ W1 with the 
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IP property, we may define the dual (or polar) polytope A* C i% = M^ as 

A* = {yeJVM:     (y,a;)>-l    Vz G ME}, (1) 

where (y, re) is the duality pairing between y E A^ and rr E MR. Because of 
the convexity of A, (A*)* = A. 

Given a dual pair of polytopes such that A has ny vertices and np facets 
(a facet being a codimension 1 face), the dual polytope has ny facets and 
np vertices. We may then define the vertex pairing matrix (VPM) X as the 
np x ny matrix whose entries are X^- = (t^, V}), where Vi and Vj are the 
vertices of A* and A, respectively. X^ will be —1 whenever V^ lies on the 
i'th facet. Note that X is independent of the choice of a dual pair of bases 
in i% and M^ but depends on the orderings of the vertices. 

Given a lattice M, a lattice (or integer) polyhedron is a polyhedron on 
the real extension M^ of M whose vertices lie in M. A lattice polyhedron 
A C MM is called reflexive if its dual A* C .A/R is a lattice polyhedron w.r.t. 
the lattice N dual to M. In this case the elements of the vertex pairing 
matrix X are integer. Note that, in turn, integer X implies that there is a 
(finite number of) lattice(s) with respect to which the polyhedron is reflexive. 
The coarsest such lattice is generated by the vertices of A and is a sublattice 
of the finest lattice of this type, which is dual to the lattice generated by the 
vertices of A*. 

The lattice points of a reflexive polyhedron A encode the monomials 
occurring in the description of the hypersurface in a variety whose fan is 
determined by a triangulation of the dual polyhedron A*. For details of 
what a fan is and how it determines a toric variety, it is best to look up a 
standard textbook [21, 22]. 

If a polyhedron Ai contains a polyhedron A2, then the definition of 
duality implies Aj; C A^. Therefore the variety determined by the fan 
over A^ may be obtained from the variety determined by the fan over A2 
by blowing down one or several divisors. If we perform this blow-down 
while keeping the same monomials (those determined by A2), we obtain a 
generically singular hypersurface. This hypersurface can be desingularised 
by varying the complex structure in such a way that we now allow monomials 
determined by Ai. Thus the classes of Calabi-Yau hypersurfaces determined 
by polyhedra Ai and A2, respectively, can be said to be connected whenever 
Ai contains A2 or vice versa. More generally, if there is a chain of polyhedra 
Ai such that Aj and A^+i are connected in the sense defined above, we call 
the hypersurfaces corresponding to any two elements of the chain connected. 
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2    STRATEGY AND RESULTS 

Our approach to the classification of all reflexive polyhedra starts with the 
construction of a set of maximal objects that contain all reflexive polyhedra 
as subsets. Finding such a set in principle solves the classification problem, 
but in practice the 'trivial' second step of enumerating all reflexive subpoly- 
hedra may be quite tricky or even impossible because of constraints of space 
and time. In section 3 we describe in some detail which algorithms we used 
to complete the classification for the 3-dimensional case. But first we present 
a road map that shows how the pieces fit together. 

d^) 4 5 6 6 7 8 9 10 12 32 42 33 

w? 1 1 1 1 1 1 1 1 1 10 1 0 1 1 

wf 1 1 1 1 1 1 1 1 1 10 1 0 10 

«£> 1 1 2 1 2 2 3 3 4 10 20 1 0 

wf 1 2 2 3 3 4 4 5 6 01 0 1 0 1 

4° 01 01 01 

^ 
Points 35,19 34 30 39 31 35 33 36 39 30 27 30 

dW 34 44 2 2 2 
12 
10 
10 
01 
01 

22 
10 
10 
0 1 
01 

100 
100 
0 10 
010 
010 
00 1 

Points 31 35 27 

Table 1: The 9 single and the 6 combined weight systems defining the polytopes 
containing all others, and the respective numbers of points. 

Certain lattice polyhedra A can be described in the following simple way: 
Take the intersection of all positive half spaces Xi > 0 with the set of integer 
solutions to a linear equation ^ qixi — 1 with positive rational coeflicients 
qi > 0, and define A to be the convex hull of these points. If Yl Qi — 1 
then A has at most one interior lattice point, namely the point 1 with all 
coordinates xi — 1. Our approach is based upon two crucial facts [13, 14]: 
1. In any dimension n there is only a finite number of (single) weight systems 
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{qi) with ]r} qi = 1 such that 1 is in the interior of the corresponding poly- 
hedra. (By definition one interior lattice point is necessary for reflexivity; in 
n < 4 dimensions it is also sufficient for poly hedra of this type [14].) 
2. Each reflexive polyhedron is contained in an object that is slightly more 
general: We may have to embed it into Zk with codimension k — n > 1 using 
sets of solutions to k — n equations of the type ^ qj Xj — 1- There is a finite 
number of possible types of such combined weight systems, which consist of 
k — n single weight systems which are extended by zeros (see section 3.1 or 
[13]). 
The last entry in table 1, for example, corresponds to a cube embedded in 
M6 by 

#i + x2 — 2,     £3 + £4 = 2,     £5 + x§ = 2     and     Xi > 0  Vz.       (2) 

In the three examples of table 1 with bi-degrees (Sl\d^) equal to (3,3), 
(3,4) and (4,4), respectively, the coordinate xi enters both equations. 

Points 5 6 7 8 9 10 11 12 13 14 
Multiplicity 1 7 23 54 135 207 314 373 416 413 

Points 15 16 17 18 19 20 21 22 23 24 
Multiplicity 413 348 334 274 234 179 151 117 87 66 

Points 25 26 27 28 29 30 31 32 33 34 
Multiplicity 40 42 27 18 8 13 9 4 2 2 

Points 35 36 39 
Multiplicity 5 1 2 

Table 2: Multiplicities of point numbers for the 4319 reflexive polytopes. 

Picard number 1 2 3 4 5 6 7 8 9 
Multiplicity 2 9 25 58 101 165 254 372 489 

Picard number 10 11 12 13 14 15 16 17 18 
Multiplicity 574 578 521 451 350 204 112 40 12 

Picard number 19 
Multiplicity 2 

Table 3: Multiplicities of Picard numbers for the 4319 reflexive polytopes. 

According to [14, 23], there are 58 single and 21 combined weight sys- 
tems relevant to our classification scheme. Our first new result is that these 
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numbers may still be reduced: It turns out that all 3-dimensional reflexive 
polyhedra are contained in the 15 polyhedra that are defined by the weight 
systems in table 1 (cf. section 3.2). There is, however, a subtle point: This 
statement is true only if we also admit sublattices of the lattice that is de- 
fined by integer xi. Indeed, it turns out that there is one polytope that 
we would miss if we ignored sublattices: It is a Z2 quotient with 19 lattice 
points of the simplex 

{(zi, £2, £3) : xi > -1 A xi + X2 + £3 < 1} (3) 

with 35 lattice points that is defined by the single weight system with degree 
4 (the coordinates have been shifted by 1 such that the interior lattice point 
is at the origin). To obtain the Kith polytope that is not a subpolytope of any 
other, we can restrict our lattice, for example, to xi + £2 = 0mod2, which 
keeps 19 of the 35 points, including all vertices and 0. In other words, we take 
out every other lattice plane parallel to a fixed set of two non-intersecting 
edges. Because of the full permutation symmetry of the 4 vertices there are 
3 different choices of such a plane, which lead to the same polytope up to 
lattice automorphisms. In terms of toric geometry, we have the following 
interpretation: The simplex with 35 lattice points is the Newton polytope of 
the quartic hypersurface in P3. The Z2 quotient of lattices corresponds to a 
Z2 quotient of toric varieties. P3/Z2 has singularities at the fixed lines (P1s) 
^1 — ^2 — 0 and £3 = 2:4 = 0 of the Z2 action (the Zi being the homogeneous 
coordinates of the P3). These singular lines must be blown up to obtain 
a smooth toric variety in which we have a K3 hypersurface whose Newton 
polytope is the simplex with 19 lattice points. 

The fact that every polyhedron A is contained in at least one of the 16 
objects we just discussed implies that the dual A* contains one of the duals 
of these 16 polytopes. Therefore, the fan of any toric ambient variety deter- 
mined by a maximal triangulation of a reflexive polyhedron is a refinement 
of one of the corresponding 16 fans. In other words, any such toric ambient 
variety is given by the blow-up of one of the following 16 spaces (cf.  table 

1): 
-P3, 
- P3/£2, 
- 8 different weighted projective spaces P?   „ a )■> 
-P2 xP1, 

-p(i,W)xp1' 
- 3 further double weighted spaces, and 
-P1 xP1 xP1. 
Each of the three spaces with 'overlapping weights' allows two distinct bun- 
dle structures: The first one can be interpreted as a P2 bundle in two distinct 
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ways, the second one as a IP2 bundle or a P^ 1 2N bundle, and the third one 

can be interpreted as a P^ 1 2^ bundle in two distinct ways. In each case the 

base space is P1. 

In order to enumerate all 3-dimensional reflexive polytopes we thus had 
to construct all lattice subpolytopes A of the 15 objects defined by the 
weight systems in table 1 such that A is reflexive on some lattice. We first 
found 6202 inequivalent subpolytopes with integral VPM (polytopes that are 
reflexive on some lattice; cf. section 1.2), 4318 of which are reflexive on the 
original lattice. Then we computed the resulting 4075 inequivalent VPMs 
(to obtain these numbers we defined and computed normal forms of the 
respective objects and wrote them into a sorted list; cf. section 3.4). Going 
over all allowed sublattices for all integer VPMs (for details see section 3.5) 
we eventually constructed all 4319 reflexive polytopes. The complete list is 
accessible via internet.1 Some statistics is compiled in table 2. 

There are several reasons why we decided to store 6202 polytopes rather 
than 4075 VPMs in the first step of the enumeration process. The fact that 
polyhedra require less disc space might become important in the context of 
four dimensional polyhedra. Besides, having the polyhedra explicitly allows 
us to check for each polyhedron if we already searched the convex subsets of 
another object that only differs by a lattice automorphism and to avoid the 
resulting redundancy. The most important advantage is that we could easily 
check for connectedness: For each new weight system we checked explicitly 
that at least one of its subpolyhedra had been found before. Connected- 
ness of the original list of 4318 polytopes follows from the fact that this was 
always the case. All 679 reflexive proper subpolytopes of the exceptional 
polytope that we only found on a sublattice already show up as subpoly- 
hedra of the 15 maximal objects that live on the original lattices. This 
establishes connectedness of the complete set of 4319 reflexive polyhedra in 
3 dimensions. 

An important check for the correct implementation of our classification 
algorithm is mirror symmetry, i.e. that we obtain for each of the 4319 poly- 
hedra the dual one in the sense of (1). For convenience, we actually checked 
a slightly weaker statement, namely that we got the dual (i.e., transposed) 
for each of the 4075 distinct VPMs. The fact, however, that we recovered all 
4318 previously found reflexive polyhedra (and, in addition, found the new 
one) from these VPMs, also provides a very stringent test for the last step 
of our construction. 

In our first complete calculation we stored all 665598 different subpoly- 

1It can be found at http://tphl6.tuwien.ac.at/~kreuzer/CY.html 
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topes (on the original lattices) that have an interior point. This took about 
2 hours of CPU time and required more than 60 MB of memory. If we only 
remember the subpolytopes with integer VPM (and thus risk to reanalyze 
the same non-reflexive objects again and again) computation time triples, 
but in return we only need less than 1 MB of RAM. 

Thinking about the 4-dimensional case, where we have to deal with at 
least 308 weight systems and with respective point numbers between 47 and 
680, this means, of course, that our program has to be improved drasti- 
cally. From the above numbers it is clear that we will have to avoid the 
construction of all IP subpolytopes. In an improved version we terminated 
the iteration whenever we could verify that all subpolytopes in the present 
branch would have a facet with distance larger than one from the IP. This re- 
duced the computation time to below 1 minute. With this improved program 
we already produced about 20 million reflexive 4-dimensional polytopes and 
the complete number may well be as large as 109, which would surpass the 
computing resources that presently are at our disposal. Nevertheless, even 
with an incomplete list, it will be interesting how the spectrum of Hodge 
numbers of the corresponding Calabi-Yau manifolds changes as compared 
to the relatively few examples that have been known so far. 

Returning to the case of K3 surfaces, we mention that we also calculated 
the Picard number for each of our 4319 models, using the formula [7] 

Pic = J(A*)-4- Y^        J*(0*)+        Z)        l*{9*)l*{8),      (4) 
facets 9* of A* edges 9* of A* 

where I denotes the number of integer points of a polyhedron and I* denotes 
the number of interior integer points of a facet or an edge. Contrary to 
the case of higher dimensional Calabi-Yau manifolds, this number is not the 
same as the Hodge number /in, which is always 20 for K3 surfaces. Instead, 

hn = 20 = Pic + 1(A) -4-       Z      r(0), (5) 
facets 9 of A 

which is another useful check on our programs. Mirror symmetry for K3 
surfaces is usually interpreted in terms of families of lattice polarized K3 
surfaces (see, e.g., [24] or [25]). In this context the Picard number of a 
generic element of a family and the Picard number of a generic element of 
the mirror family add up to 20. The fact that the Picard numbers for toric 
mirror families add up to 20 + YJ l*{0*)l*(0) indicates that our toric models 
occupy rather special loci in the total moduli spaces. 

Let us end this section with briefly discussing a few of the most interesting 
objects in our list. As table 3 indicates, there are precisely two mirror pairs 
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with Picard numbers 1 and 19, respectively. One of them is the quartic 
hypersurface in P3 with Picard number 1, together with its mirror of Picard 
number 19, which is also the model whose Newton polytope is the only 
reflexive polytope with only 5 lattice points. This model corresponds to a 
blow-up of a Z4 x Z4 orbifold of P3. The blow-up of six fixed lines Zi = Zj 
by three divisors each yields 18 exceptional divisors leading to the total 
Picard number of 19. The other mirror pair with Picard numbers 1 and 
19 consists of the hypersurface in P^ ll^ of degree 6 and an orbifold of 
the same model, with Newton polyhedra with 39 and 6 points, respectively. 
The other polyhedron with the maximal number of 39 points is the Newton 
polytope of the hypersurface of degree 12 in IDf1146). This model leads 
to the description of elliptically fibered K3 surfaces that is commonly used 
in F-theory applications [26, 27, 28], with the elliptic fiber embedded in a 
P^ 2 3x by a Weierstrass equation. The mirror family of this class of models 
can be obtained by forcing two E$ singularities into the Weierstrass model 
and blowing them up. The resulting hypersurface allows also a different 
fibration structure which can develop an S'0(32) singularity; thereby this 
model is able to describe the F-theory duals of both the Efe x Es and the 
SO(32) heterotic strings with unbroken gauge groups in 8 dimensions [19]. 

3    THE ALGORITHM 

3.1    GENERAL OUTLINE AND EXISTING RESULTS 

The starting point of our algorithm is the introduction of the concept of 
a minimal polyhedron [13]. Consider a polyhedron in W1 with the interior 
point (IP) property. We call this polyhedron minimal if there is no strict 
subset {Vf, i E /}, / C {1,..., k} of the set {Vi,..., Vk} of vertices such that 
the convex hull of {T^,i G /} has 0 in its interior. It could be shown that 
these objects allow a classification according to the types of linear relations 
between its vertices. In particular, in two dimensions only two types are 
possible: The triangle V1V2V3 with 

QiVi + 42^2 + 93^3 = 0 where 0 < ft < 1, qi + q2 + Qs = 1  (6) 

and the parallelogram ViV^V/V^ with 

91^1 + 92^2 = 0, JiV{ + (&Vl = 0 where (7) 

0 < ft, ql < 1, 91 + 92 = 9i + 92 = 1- (8) 

In a shorthand notation, this result may be summarized as {3; 2+2}. In the 
same notation the result for three dimensions can be summarized as {4; 3+2, 
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3+3; 2+2+2} where the underlining symbol indicates a vertex occurring in 

both linear relations. Here this means that our polyhedron is the convex 
hull of Vi, V2, V3, V2, V3 and that there are relations qiV\ + g21^2 + 93^3 = 0 
and q^Vi + ^V^ + 93V3 = 0. A minimal polyhedron Vmin C W is then 
specified (up to linear transformations) by its structure and by the weights 
qi involved in this construction. We will call (combinations of) sets of qi > 0 
with Yl Qi — 1 (combined) weight systems. Notice that everything said so far 
applies to polyhedra in IRn and real qi. In the context of lattice polyhedra 
(which we will consider henceforth) the qi are rational. 

Clearly any polyhedron with the IP property allows at least one (pos- 
sibly trivial) subset of vertices whose convex hull is a minimal polyhedron. 
Applying this to the dual A* of a reflexive polyhedron, we find that there 
exists a minimal integer (not necessarily reflexive) polyhedron Vmin C A*, 
implying A C V^. The fact that A is a lattice polyhedron leads to the 
stronger restriction 

A C Amax := ConvexHull(V^in n M). (9) 

Given a minimal polyhedron Vmin C W1 we still have to specify a choice of 
lattice TV C N^ ~ W1. The coarsest possible such lattice iVcoarsest is the lat- 
tice generated by the vertices of Vmjn. Its dual is the finest M lattice Mfinest- 
Any other M lattice compatible with integrality of Vmin is a sublattice of 

^finest- 

For pairs of reflexive polyhedra clearly only minimal polyhedra and there- 
fore (combined) weight systems such that Amax (w.r.t. Mfinest) has the IP 
property are relevant. In such a case we also say that a (combined) weight 
system has the IP property. As a side remark we mention that this def- 
inition implies reflexivity of Amax for lattice dimensions n < 4 [14]. It is 
easy to see that a combined weight system can have the IP property only 
if each of its weight systems by itself has it. The weight systems with up 
to 5 weights with the IP property were classified in [14]. There is one such 
system (1/2,1/2) with two weights; with three weights there are the three 
systems (1/3,1/3,1/3), (1/2,1/4,1/4), (1/2,1/3,1/6); there are 95 systems 
with four and 184,026 systems with five weights. 

Given all simple weight systems, finding the combined weight systems is 
an easy combinatorial task [23]. From what we have discussed up to now 
it is clear that any reflexive polyhedron is a subpolyhedron of a maximal 
polyhedron Amax w.r.t. some (combined) weight system {q) that has the 
IP property, on some lattice M that is Mfinest or a sublattice thereof. Thus 
the task of classifying reflexive polyhedra is reduced to the task of classify- 
ing all reflexive subpolyhedra A C M C Mfinest of all maximal polyhedra 
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Amax C Mfinest- Before we describe how to find all subpolyhedra of a given 
polyhedron efficiently, we will show that the set of (combined) weight sys- 
tems relevant for the classification scheme may still be reduced. 

3.2    NEW DEFINITIONS OF MINIMALITY 
OF POLYHEDRA 

Remember that our definition of a minimal polyhedron meant that no subset 
of the set of vertices of Vmin should define a polyhedron with the IP property 
(we might have called such polyhedra vertex-minimal). If we work not just 
in W1 but with a lattice, we may similarly define a polyhedron Vipm to be 
Ip-minimal (Ip standing for 'lattice point') if no subset of the set of lattice 
points of Vipm defines a polyhedron with the interior point property. A 
(combined) weight system will be called Ip-minimal if the corresponding 
Vmin on iVcoarsest is Ip-minimal. Clearly a polyhedron that is not Ip-minimal 
will contain an Ip-minimal polyhedron as a proper subset; therefore only 
Ip-minimal polyhedra will play a role in our classification scheme. 

Note, however, that even being Ip-minimal does not guarantee that Amax 

is not a subpolyhedron of any other reflexive polyhedron: Aj^ might con- 
tain not only Vipm, but also a different Ip-minimal polyhedron Vipm such 
that Amax C Amax. This cannot happen, however, if it is impossible to omit 
any of the vertices of Vmin from AJ^ fl N without violating the IP prop- 
erty. In that case we call the corresponding (combined) weight systems very 
minimal. Clearly very minimal implies Ip-minimal. 

As an example of a polyhedron that is Ip-minimal but not very minimal 
consider Vmin defined by the single weight system (1,2,3,5)/11. Here we may 
represent the vertices of Vmin by 

Vi = (1,0,0), V2 = (0,1,0), Vs = (0,0,1) and V4 = (-2,-3,-5),      (10) 

the only other lattice point being 0. As V^in is not a lattice polyhedron, 
Amax is smaller than VJ^ and so A^^ is larger than Vmin. More precisely, 
Amax has the three additional vertices 

V5 = (-2, -3, -6), V6 = (0, -1, -1) and V7 = (-1, -1, -2)        (11) 

and besides contains 6 further lattice points.    Thus V^' ' ^     contains 
Vmin3'6)/12 (the convex hul1 of ViMiVsM) and v£jn1,2)/5 (the convex 
hull of Vi, V2, V3, V7). In addition it contains some other minimal polyhedra 

/-1  00 E\ /I 1 

corresponding to other lattice points.   Therefore Amax ' is contained 
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in other maximal polyhedra and does not play a role in the classification 
algorithm. 

An example of a very minimal weight system is (1,1,3,4) /9. The vertices 
of Vmin can be represented as 

Vi = (1,0,0), V2 = (0,1,0), V3 = (0,0,l)andVi = (-l,-3,-4),      (12) 

the only other lattice point again being 0. A^^ has the additional points 

F5 = (0, -2, -3), P6 = (0, -1, -2), P7 = (0,0, -1) and P8 = (0,0, -1) 
(13) 

(V5 is the only vertex among them). Dropping any of the vertices Vi,..., V4 
from A^^ results in loss of the IP property, as is easily checked. Thus 

there cannot be a weight system (g) 7^ (l,l,3,4)/9 such that (Amax)* Q 

(A^3'4)/9)* or, conversely, that A^'3'4)/9 C A^. 

Let us summarize: By the analysis given in this subsection, every reflex- 
ive polyhedron is contained in the dual of an Ip-minimal polyhedron, and 
the duals of very minimal polyhedra are not contained in the duals of any 
other minimal polyhedra. 

Our computer programs led to the following further statements: For 
n = 3, there are 15 very minimal weight systems and 4 further weight systems 
that are Ip-minimal without being very minimal. The latter weight systems 
lead to polytopes Amax, however, that are contained in the Amax coming 
from the 15 very minimal weight systems. 

3.3    FINDING SUBPOLYHEDRA 

Finding all subpolyhedra of a given polyhedron without introducing exces- 
sive redundancy is a non-trivial task. Postponing the problem of identifying 
polyhedra that are related by lattice automorphisms to the next section, the 
first step is to construct all convex subsets of lattice points. This can be 
achieved by first generalizing the problem: Consider the task of finding all 
subpolyhedra of a given polyhedron A that contain a specific subset of the 
vertices of A (let us call these allowed subpolyhedra). We may think of spec- 
ifying this subset by attaching labels k (for 'keep') to these vertices. Finding 
the corresponding subpolyhedra of A can be done recursively: Unless A is 
empty or all of the vertices of A carry k labels, we may choose a vertex V 
that does not carry a A; label. Then the allowed subpolyhedra of A will be 
the allowed subpolyhedra of A \ {V} and the allowed subpolyhedra of A 
with an extra k label attached to V. Clearly the recursion terminates only 
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when A is empty (or, in our case we let it terminate whenever it ceases to 
have the interior point property) or when all of its vertices carry k labels. 

Our original problem can thus be solved with the following recursive 
algorithm: 
(1) Start with Amax without labels 
(2) At a specific step in the recursion we have a polyhedron A, some of whose 
vertices carry k labels. If A doesn't have the IP property, we don't continue 
with it. Otherwise, if all vertices of A have k labels, we can add A to the 
list of subpolyhedra of Amax. Otherwise, pick a specific vertex V without a 
label. Do step (2) with the label of V changed to k and with A7 = A \ {V}. 

As a vertex of a polyhedron is also a vertex of any subpolyhedron to 
which it belongs, a point that carries a k label is always guaranteed to be a 
vertex. 

The application of this algorithm to the Newton polygon of P(i,2,3) is 
shown pictorially in figure 1. Note how every subpolyhedron occurs precisely 
once as an endpoint of the recursive tree. 

3.4    NORMAL FORMS OF POLYHEDRA 

In a classification scheme like the present one that produces the complete 
set with large redundancy it is useful to define normal forms of the relevant 
objects. A normal form allows us to define a total ordering (for example 
lexicographic) so that we can efficiently check for new entries by searching a 
sorted list with bisection. 

To describe our polyhedra we start with the matrix of coordinates of the 
vertices. This matrix is determined only up to an Snv x GL(d, Z) symmetry, 
where Snv is the group of permutations of the vertices and GL(d,Z) is 
the group of coordinate transformations of a d-dimensional lattice. To lift 
this redundancy we first define a normal form for vertex pairing matrices 
using permutations of lines and columns to obtain the (lexicographically) 
maximal matrix. This removes the Snv degeneracy, except for the subgroup 
that corresponds to the symmetry of the polyhedron on the coarsest lattice, 
if we demand that the ordering of the vertices should be the same as in the 
normal form of the vertex pairing matrix. Given a particular ordering of the 
vertices we then use the GL(d1Z) freedom to make the matrix of vertices 
upper diagonal with positive elements along the diagonal and minimal non- 
negative elements above. 
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r\ 
Not IP 

/ ..\ / \ 

Not IP Add to list 

/  \ 

k k k 

Add to list 

k k k 

Add to list Add to list 

Figure 1: Applying the classification algorithm to A(P(lj2,3)) 

In the cases where the normal form for vertex pairing matrices has not 
determined the ordering of vertices unambiguously, we do this for every 
allowed ordering and choose the lexicographically smallest one to be our 
normal form. 

Invariances of this normal form correspond to symmetries of the polyhe- 
dron. 

To make sure that we cannot miss any reflexive polyhedron in our clas- 
sification scheme we have to keep record of any polyhedron that is reflexive 
either on the lattice on which it was found or on any sublattice. A necessary 
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and sufficient condition for a polyhedron to be reflexive on some lattice is 
just integrality of the vertex pairing matrix: If A is reflexive, then its vertex 
pairing matrix will obviously be integer, and if the vertex pairing matrix is 
integer, A will be reflexive on the lattice generated by the vertices of A. So 
the minimal set of polyhedra to be stored is the set of those with integer 
vertex pairing matrix. For saving calculation time, however, it makes sense 
to keep record of non-reflexive polyhedra as well, thereby increasing the re- 
quired storage capacity. For the present case of classifying three-dimensional 
reflexive polyhedra it doesn't really matter if one chooses to keep record of 
non-reflexive polyhedra. It seems, however, that for four-dimensional poly- 
hedra memory seems to be a greater problem than time, so it probably never 
makes sense to keep record of polyhedra that are not reflexive on any lattice. 

3.5    SUBLATTICES 

Given an integer vertex pairing matrix, there is always a coarsest lattice on 
which the polyhedron A is reflexive (the lattice generated by the vertices of 
A) and a finest lattice (the lattice dual to the one generated by the vertices 
of A*). The quotient of these lattices is a finite Abelian group. This group 
can be represented by expressing the generators of the finer lattice in terms 
of the generators of the coarser lattice. The corresponding vectors in (Qf1, 
taken modulo Zn, are the generators of the quotient group. 

A vertex pairing matrix X is an np x nv matrix, np and ny being 
the numbers of facets (dual vertices) and vertices, respectively. X can be 
decomposed X = W • D • U where W is np x rf, D is a d x d diagonal matrix 
and U is d x ny. Before giving a geometrical interpretation, let us see 
how this decomposition can be achieved algorithmically: By recombining 
the lines and columns of X in the style of Gauss's algorithm for solving 
systems of linear equations, we can turn X into an rtp x ny matrix D 
with non-vanishing elements only along the diagonal. But recombining lines 
just corresponds to left multiplication with some GL(Z) matrix, whereas 
recombining columns corresponds to right multiplication with some GL(Z) 
matrix. Keeping track of the inverses of these matrices, we successively 
create decompositions X - W^ • D^ • U^ (with W^ = 1, iM0) = X and 
U^ = 1). Let us denote the matrices resulting from the last step by W, 
D and U. W and U being regular matrices and the rank of X being d, it 
is clear that D has only d non-vanishing elements which can be taken to be 
the first d diagonal elements. Then we can choose W to consist of the first 
d columns of W, U to consist of the first d lines of U and D to be the upper 
left d x d block of D. 
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The interpretation of U and W is as follows: We may view the columns of 
X as the coordinates of A (on Mfinest) in an auxiliary n^-dimensional space 
carrying an n^-dimensional lattice in which A is embedded. The UF X np 
matrix W effects a change of coordinates in the n^-dimensional lattice so 
that A now lies in the lattice spanned by the first d coordinates. Thus we 
can interpret the columns of D • U as the vertices of A on Mfinest- Similarly, 
the lines of W • D are coordinates of the vertices of A* on JVfinest > whereas U 
and W are the corresponding coordinates on the coarsest possible lattices. 

More explicitly, denoting the generators of McoarSest by Ei and the gen- 
erators of Mfinest by ei, we have Ei = SjDji. An intermediate lattice will 
have generators Ei = SjTji such that the Ei can be expressed in terms of the 
£j, amounting to 

Ei = EjSji = SkTkjSji (14) 

with some integer matrix S. This results in the condition D^i = T^jSji. In 
order to get rid of the redundancy coming from the fact that the intermediate 
lattices can be described by different sets of generators, one may proceed in 
the following way: E\ may be chosen as a multiple of ei (i.e., Ei = eiTn). 
Then we choose £2 as a vector in the ei-e2-plane (i.e., Ei = eiTi2 + e2T22) 
subject to the condition that the lattice generated by Ei and £2 should be 
a sublattice of the one generated by Ei and #2, which is equivalent to the 
possibility of solving T^jSji = D^i for integer matrix elements of S. We may 
avoid the ambiguity arising by the possibility of adding a multiple of £1 to 
£2 by demanding 0 < T12 < Tn. We can choose the elements of T column 
by column (in rising order). For each particular column i we first pick Ta 
such that it divides Da] then Su = Da/Ta. Then we pick the Tji with j 
decreasing from i — 1 to 1. At each step the j'th line of T • S = D, 

J-ji^ii +    / v   TjkQki + Ijjbji = 0, (15) 
j<k<i 

must be solved for the unknown Tji and Sji with the extra condition 0 < 
Tji < Ta ensuring that we get only one representative of each equivalence 
class of bases. Proceeding in this way, we create all inequivalent upper 
triangular matrices T and S such that the coordinates of the vertices of 
A* on the intermediate lattice given by the Ei are the columns of S • U 
and the vertices of A* on the corresponding dual lattice are W • T. This 
completes our discussion of the building blocks that we needed to implement 
our construction. 
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