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1    Introduction 

There is a family of inequalities [9], [10] that has proved to be useful in 
various areas of mathematical physics, especially in the proofs of stability of 
matter. They state that given a Schrodinger operator 

-A + y    onL2(Md), 

the sum of the moments of the negative eigenvalues — Ei < —E2 < —E3 < 
... < 0 (if any) of this operator is bounded by 

J^Ej^L^JiV-Wy+^dx, (1) 

with VL^) := max(—V(x),0). These inequalities have been generalized in 
several directions, e.g. manifolds instead of Rd. Here we are concerned with 
the case d — 1. 

The cases originally shown to hold [10] are 

d = 1, 7 > -      d = 2, 7 > 0,     and d > 3, 7 > 0. 

When d = 2 there cannot be any bound for 7 = 0 (meaning the number 
of negative eigenvalues) since at least one negative eigenvalue always ex- 
ists for arbitrarily small negative perturbations of the free Laplacian in two 
dimensions [5, page 156-157], [15]. 

The critical case d > 3 and 7 = 0 was open for a while and proved inde- 
pendently by Cwikel [4], Lieb [7], and Rozenbljum [11]. Still later, different 
proofs where given by Conlon [3] and Li and Yau [6]. The sharp constants 
are still not known, but the best one so far is in [7]. 

If d = 1 it is not hard to see that the inequality cannot hold for 7 < 1/2. 
To prove this choose a sequence of aproximate ^-functions. They converge 
to zero in L7+1/2(M) but the limit may have a negative eigenvalue; see the 
discussion of a Dirac potential below. In the critical case d = 1,7 = 1/2, 
which concerns us here, it was not known until recently whether £1/2,1 is 
finite. This case was settled by Timo Weidl [17] who showed that £1/2,1 < 
1.005. Unfortunately his method of proof cannot be improved to yield the 
sharp constant as can be seen from the following argument: His method 
is also applicable for a half-line problem corresponding to a Schrodinger 
operator on JLj. with Neumann boundary conditions at the origin; in fact he 
reduces the full problem (but not the determination of the sharp constant) 
to this case.  Since in this half-line problem the trivial lower bound for the 
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sharp constant is given by 1 his method cannot yield a better bound than 1 
in the problem concerning us here. 

Hence, the sharp constant £1/2,1 remained undetermined, a tantalizing 
situation, since there is an obvious conjecture about the value of this constant 
[10]. In one dimension the potential can be a measure (thanks to the fact 
that iJ1(IR1) functions are continuous) and when 7 = 1/2 the right hand 
side of (1) is simply the total mass of this measure. In order to maximize 
the sum of the square roots of the eigenvalues it is reasonable to suppose 
that one should concentrate the potential at one point and the extreme case 
should hence correspond to a J-function. 

It is well-known that —d^ — cS is a well-defined closed quadratic form on 
the Sobolev space iJ1(M1) and the Hamiltonian corresponding to this form 
is used in textbooks as a simple solvable model in quantum mechanics. An 
exercise shows that the only bound state of this operator for positive c is 
given by ip(x) = exp(—c|^|/2) with eigenvalue —c2/4. 

If it is true that this Dirac potential is the optimal case we conclude 
that the sharp constant in the Lieb-Thirring inequality for d = 1,7 — 1/2 
is given by £1/2,1 — 1/2- The proof of this statement is the main result of 
this paper. A corollary of our result is that for the half-line problem with 
Neumann boundary conditions considered by Weidl, the sharp constant is 1. 

Before turning to the proof let us note the corresponding - still unproved 
- conjecture when 1/2 < 7 < 3/2. The optimal potential should be given by 

v{x) = -7^172 (cosh(^i7^) 

and the sharp constant is supposed to be [10] 

7,1 — vr 
7 

t    r(7+i) /7-i/2y+1/2 = 2rc h-wy-1'2 

l/2r(7 + l/2) V7 + l/2y ^U + W 

Here L*^ := (27r)-1/2r(7 + l)/r(7 + 3/2) is its classical value. Unlike the 
case 7 < 3/2 the optimal constant in one dimension and 7 > 3/2 is known 
[1], [10] to be L75i = I^i. Using the fact proved in [1] that L^i/L^ is 
monotone decreasing in 7 and the sharp value for £1/2,1 obtained here we 
conclude that L7ji < 2L^ 1 for all 7 > 1/2. As a last remark, let us note 
that our proof uses no special 1-D technique, except for the explicit form of 
the Birman-Schwinger kernel (3) in one dimension. 
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2    Proof of the main result for potentials 

The principal result of this paper is 

Theorem 1. For a Schrodinger operator —d^ + V in one dimension the 
optimal constant £1/2,1 is 1/2, i-e- 

E^< l[v-(x)dx. (2) 

The inequality is strict if the negative part V- is a non-zero L1 function. 

In this section we prove this theorem in the case the potential is an L1 

function. In the last section we extend the bound (2) to potentials that are 
(finite) measures and prove that the 5-function is the unique maximizer up to 
translations. By the minmax principle it suffices to investigate the operator 
—d^ — V-. We will henceforth assume V = —U with U non-negative and 
integrable. 

To study the bound states energies of a Schrodinger operator it is often 
useful to investigate another problem. To do so we need some more notation. 
For E > 0 let 

/C^(^y):=x/^eXp(~^X"y|)x/^,    for all x,y GM      (3) 

be the Birman-Schwinger kernel for the Schrodinger operator — d^ — U in 
L2(R). JCE stands for the integral operator given by this kernel. The Birman- 
Schwinger principle [2, 13] states that —En < 0 is the nth eigenvalue of 
—dl — U if and only if the nth eigenvalue of /C^ equals one. The explicit 
expression (3) suggests that multiplying (3) by y/E^ will yield a still implicit 
but perhaps more flexible expression for y/E^. This is exactly what we are 
going to do. Let us define, for ^ > 0, 

Cpfay) := VU(x)e-^x-y\Vu(^),     for all x,y E R (4) 

Moreover, given some arbitrary non-negative locally finite Borel-measure n 
on M, we can generalize the kernel (4) to 

£K{x,y) := VW(^e-\JW-J^Vu(^,    for all x,y <E K, (5) 

where the function J is given by 

J(x):= f K(dz). (6) 
Jo 



D. HUNDERTMARK, E. H. LIEB, L. E. THOMAS 723 

Again C^ and CK are the corresponding integral operators. Of course, C^ 
in (4) corresponds to K(dz) = [idz. Both ICE and C* are compact integral 
operators; their Hilbert-Schmidt norms are bounded by (/ U(x) dx)2/(2^/E) 
and (/ U(x) dx)2, respectively. For a positive compact operator A we denote 
its ordered eigenvalues by Xi(A) > \2{A) > ... > 0. With the help of the 
Fourier transform (exp(—e|a;|)/(2e) = / ^/(p2 + s2) dp/fin)) one sees the 
following facts: 

(i) £K and KE are positive definite operators, 

and hence the (ordered) eigenvalues XJ(JC
K
) obey 

(ii) Ai(£*) > \2(£") > AaCC*) > ... > 0 

with a similar statement for XJ()CE)- The strict inequality follows from the 
positivity of the integral kernel and the Perron-Frobenius theorem. The 
trace of C* is given by 

(hi) tr£* = fU{x)dx: 

independent of K, and 

(iv) C0 = CQ is a rank one operator with eigenvalue J U(x) dx. 

The discussion above suggests that the sum of the square roots of the eigen- 
values of the one dimensional Schrodinger operator is related to the sum of 
the eigenvalues of £/x. Indeed we have the following bound: 

Theorem 2 (Domination by C^). Suppose U > 0 with U G L1(R)  and 
let —Ei < ~E2 < —Ez < ... < 0 be the negative eigenvalues counting multi- 
plicity of the Schrodinger operator —d2 — U given by the minmax principle. 
Furthermore, we denote by XjiC^) the eigenvalues of C^ in (4). Then, for 
all n £ N and 0 < E < En 

2YJ^<Y,X^C^) + X^C^)-X^CVE^' (7) 
i<n i<n 

In (7) we set Ej+i = 0 in case the Schrodinger operator happens to have 
only j negative eigenvalues. 

Proof. As already mentioned, the Birman-Schwinger principle gives a one-to- 
one correspondence between negative eigenvalues of a Schrodinger operator 
and the eigenvalues of KE' A^/CJ^J = 1. Multiplying this equality by 2^/Ei 
yields 2V^ = 2^/Ei A^/CEJ = XiiC^) for all i such that Ei > 0. Note 
that Aj(£o) = 0 if i > 2 since CQ is a rank one operator. Therefore we have 

i<n i<n 
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for arbitrary n G N. If the eigenvalues of C^ were monotonically decreasing 
as ji > 0 increases this would immediately imply 

i<n i<n i<n 

However, such a monotonicity cannot hold since the trace of C^ is indepen- 
dent of /i > 0. Nevertheless, the partial sums ^2i<:n\i{Cn^) of its eigen- 
values are monotone in E even for the slightly more general operator CK 

given by (5). Lemma 4 below is the key lemma in our analysis. Assum- 
ing the monotonicity given in Lemma 4, the proof of the theorem follows 
immediately from (8): For n = 1 we have 

<   Ai^J + AxOC^-AiOC^)    for all 0 < E < E1 

where we take E2 — 0 if the potential has only one negative eigenvalue. If 
there are two or more negative eigenvalues it follows by induction that 

i<n 

< E Wyni) + WVE;) - Ai(/:^) 

for all 0 < E < En+1 and n E N.  I 

Before proving the Lemma, we note a simple consequence of this theorem 
which proves our main bound (2). 

Corollary 3 (Sharp constant). Under the hypotheses of Theorem 2 and 
for U ^ 0 

2^\/^<   fu{x)dx. 

Proof From the theorem we get 

=    ju{x)dx + Xl{C^m)-Xl{C^), (9) 
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since CQ is a rank one operator with eigenvalue J U(x) dx. To conclude the 
strict inequality also note that Xi(C^) is strictly monotone decreasing in 
E > 0 by Lemma 4. The Perron-Frobenius theorem [12, Theorem XIII.44] 
implies Ei is simple and hence AI(JCV^-) — A^/^gr-) < 0. ■ 

Lemma 4 (Monotonicity). For alln G N the nth partial sum of the eigen- 
values of the operator CK defined in (5) is monotonically decreasing in the 
sense that 

Ew^Ew*) (10) 
i<n i<n 

if K,f([s,t]) > K([s:t]) for all s < t G E.   Moreover the largest eigenvalue 
Xi(CK) is strictly monotone decreasing in K. 

Proof. To clarify the line of reasoning we consider first a toy-model given by 
an (m +1) x (ra +1) matrix where the two variables x and y in (5) take on 
m + 1 values XQ < ... < xm. With ai = exp(—| J(xi) — J(a;o|)) < 1 (where J 
is defined in (6) and with U = 1 on {XQ, ... , xm} for simplicity) the operator 
given in (5) has the matrix 

/ 

!>{{<*}) ~ 

1 ai aia2 aia2as ai ... am\ 

ai 1 a2 ^2^3 ^2 • ••am 

•Gm-l a2 ... am-i 1 «m 
..am a2 . • - am Gm 1   J 

ai.. 

\ ai 

Let Aida^}) > A2({ai}) > ... > Xm+i({ai}) be the ordered eigenvalues of 
L({ai}). We investigate the sum of the largest n eigenvalues in the cube 
given by 0 < a^ < 1 for all A; G {1,... , m + l} and want to show that it 
is a (separately) monotone increasing function of each a^ in the interval 
0 < dk < 1. Fix k G {1,... ,m + l} and {a^}^. For simplicity we write 
L(a/C) for L({ai}ij:kiak)- The matrix L has the form 

L(ak) := ^({ai}^, afc) - (^    ak^J =: L(0) + a^T 

with 

L(0):-L({ai}^,0) = ^    °)     on Ck © Cri+1-fc = C"+1 

and the perturbation 

T = 
0 w 

0 
W: Cn+1-fe -td1, 
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where A, B, and W are fcxfc, (ra+1—A:)x(m+1—A;), and A:x (m+1—A;) matrices 
respectively, depending only on {ai}^. This shows that the dependence of 
L on ak (for fixed {a^}^^) is affine-linear. Now the claimed monotonicity 
of the sum of the largest n eigenvalues in 0 < a^ < 1 is easily seen by the 
usual quantum mechanics textbook arguments of perturbation theory, cf. 
[16, chapter 3.5]: The sum is given by 

y^Aj(L(afc))    = sup       tY(dL(ak)) 
i<n 0<d<l,trd=n 

= sup       {tr(dL(0) + ak tr(dT)} 
0<d<l,trd=n 

where d: Cm+1 -¥ C71"1"1 is a density matrix. Consequently, being a supre- 
mum of affine-linear functions, it is convex. To conclude monotonicity in a^ 
it is enough to show that the derivative of the sum with respect to a^ at 
ak — 0 is non-negative. If the eigenvalues of L(0) are non-degenerate this 
follows immediately from the Feynmann-Hellman theorem of perturbation 
theory: Since 1/(0) leaves the decomposition C1"1-1 = C^ ©C771"1"1"^ invariant 
its eigenvectors §i live either in the subspace C^ or C771"1-1-^, so ($;, T$j) = 0. 
Thus by the Feynman-Hellman formula each eigenvalue has derivative 0 at 
ak = 0, and for this reason each partial sum has zero derivative at ak = 0. 

In the degenerate case a single eigenvalue might have a negative deriva- 
tive at ak = 0 but the partial sum of the largest n eigenvalues always has 
a non-negative derivative. Indeed, if the eigenvalues are degenerate we first 
have to diagonalize the perturbation T in the corresponding eigenspace h of 
L(0). This eigenspace, however, can be decomposed into h — h\ © hi, with 
h\ C Cfc, /12 C Cm+1_/!:, h\ or /12 possibly empty. With Pi being the orthogo- 
nal projection onto hi, % — 1,2, the perturbation T restricted to the subspace 

h is again of the form T^ - PKTPK = W + W^ i.e., T\h = (^t ^) with 

W := PhlWPh2 : /i2 -+ hi. This gives tihT = tiT\h = 0. The Feynman- 
Hellman formula tells us that the eigenvalues of the restricted perturbation 
T\h are the derivatives of the eigenvalue branches emerging from this de- 
generacy subspace at ak = 0. Since even the perturbation restricted to the 
eigenspace h has trace zero, we conclude that the derivative of the sum at 
ak = 0 is at most greater or equal to zero. 

For the strict monotonicity of the largest eigenvalue Ai(L({a^})) in the 
cube 0 < di < 1, i E {!,... ,m + l} note that by the Frobenius-Perron 
theorem the corresponding eigenvector <$>({ai}) has only positive entries. 
Consequently for 0 < a* < a- < 1, all z G {1,... ,m + 1}, the minmax 
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principle implies 

Ai(L({ai}))    =    mai}),L({<Hm{(k})) 
< <«({oi})1L({a{})*({ai})) 

< m°i})M{0im{a!i})) = MW) 

Remark: The above reasoning for the toy model remains valid if L is 
replaced by MLM where M is a multiplication operator, i.e. a diagonal ma- 
trix, so that the partial sums of the eigenvalues for MLM are also monotone. 

To apply this reasoning to our operator C^ it is enough to show the mono- 
tonicity (10) for finite discrete measures K = Ylcj^xj an(i d — ^2cj^xj with 
cfj > Cj. Indeed, approximate K and K* — K by finite sums ttm and Am of 
<5-functions. This is possible since they are weakly dense in the set of locally 
finite Borel-measures. It is easy to see that the corresponding operators CKm 

and /^rn+A™ converge in Hilbert-Schmidt norm to CK and C*'. Monotonic- 
ity of the partial sums of eigenvalues of £* for arbitrary K then follows by 
approximation and, without loss of generality, we may assume 

m m 

K = y~^ Cj5Xj,     K = V^ cjfixj for some m G N 
3=1 3=1 

with dj > Cj > 0, j E {!,... ,m}, and —oo < xi < ... < Xm < oo. For 
x < y we infer 

\J(x)-J(y)\= [\(dz)=   Yl   ci 
Jx ^^ -„. x<Xj<.y 

and 

£K™(x,y)    =    VU{x)eM- E ^V^ 
x<Xj<y 

.m 

=       J]   e-^VcTRv7^ 

JJ   ajy/U^iy/uiy),        ar.= e-ci,j = l,, 
x<Xj<y 

=:    ^({a,})^^). (11) 

As in the matrix case the dependence of C({ai}) on a single a^ (for fixed 
{aj}j^fc) is affine-linear and decomposition of the Hilbert space is now given 
by L2(M) = L2(—oo^Xk) ® L2(xk^oo). Hence we are in precisely the same 
situation as for our MLM toy-model, and we infer that the partial sums of 
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the largest eigenvalues are monotone in K for CKrn. By the above limiting 
argument therefor for C* and in particular for C^. 

Strict monotonicity of the largest eigenvalue Ai(£K) in tt, i.e. \i{CK ) < 
\i{CK) if K! > K, follows from the Perron-Frobenius theorem, the minmax 
principle, and the strict monotonicity of the kernel (5) in K. One can, how- 
ever, avoid the minmax principle in this conclusion. The Perron-Frobenius 
theorem states that the eigenvectors $£ and $£ corresponding to Ai(>CAt) 
and Xi(CK ) are non-negative and strictly positive on the support of the 
potential U. By definition 

and the same for d. From this we get 

\i(£K')($$,$$') - Ai(£*)($?',$?) = ($$,€"'$?) - ($?',£*$?).      (12) 

since (^, $£') > 0 and ^e scalar products in (12) are real, hence symmetric, 
we get by interchanging the integration variables 

AX^VAIOC*)  =       *     JJ$Ux)®i\y)(^\^y)-£K^y))dxdy 

<   0 

by the strict monotonicity of the kernel CK(x: y) in K and the strict positivity 
of $£, $i on the support of U. This concludes the proof of the monotonicity 
lemma. I 

3    Extension to ^potentials' that are measures 

In this section we extend theorem 1 to measure perturbations of —d^. As 
mentioned in the introduction the Sobolev inequality in one dimension, cf. 
[8] [Theorem 8.5], ensures that a finite measure r on M yields a quadratic form 
r[(f>] :— f \(j)(x)\2 T(dx) that is infinitesimally form bounded with respect to 
the Laplacian in one dimension. The quadratic form 

:=    (dxil>, dx(f)) + f W)^) T(dx) (13) 

is thus closed on the Sobolev space Hl{^) and defines a unique self-adjoint 
operator H — —d2 + r on L2(IR). By the minmax principle for forms it is 
again enough to consider the case r — — v for some positive bounded measure 
v on M. We will hence consider E — -dl - v. Our result is 
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Theorem 5. Suppose v is a non-negative measure with i/(M) < oo and let 
—Ei < —E2 < —Ez < ... < 0 be the negative eigenvalues counting multiplic- 
ity of the Schrodinger operator —d^ — v (if any) given by the corresponding 
quadratic form.  Then 

00 -. 

5] V^ <-!/(») (14) 
2=1 

with equality if and only if the measure v is a single Dirac measure. 

Proof. One obstacle in the proof of this theorem is to construct an analog 
of the Birman-Schwinger kernel (3) for measures. It is given by 

KE[V]{X,V) :=  I    r^—^M)   /J-—(C,yMdC) (15) 
J  VP + E        vP + E 

where we set p2 := —d2 for convenience. A given measure u can be approxi- 
mated by smooth functions by convoluting it with an approximate S-function 
v —> vE = 5£ * z/. Of course z/e -» z/ weakly and the operators KEWE] converge 
to KE[V] for large E in Hilbert-Schmidt norm, hence in the usual operator 
norm, too. By Tiktopoulos' formula [14] this shows the norm convergence of 
the resolvents (p2—u£-{-E)~1 to (p2—u-JrE)~1 and thus any finite collection of 
eigenvalues of p2 — u£ converges to those of p2 - v. So, applying the results 
of the last section, we have for any partial sum, i.e. any n E N 

2 Yl JEi    <    lim j ve (x) dx + lim (Ai [C^v,]) - X, (C^M) 
i<n 

=   J v(dx) + lim (AiOC^J) - A1(£v^N)) 

where for ^ > 0 the operator C^v^ is defined by the right hand side of 
(4) with U{x) replaced by ve{x). For any positive bounded measure v let 
C^v] = 2/x(p2 + n2)-ll2v(p2 + /i2)~1/2 be defined by its kernel 

CMM :=2^ /   /^—r^O   r^ -^y)v{dO. 

Since the spectrum of an operator of the form AA^ is the same as that of 
A^ A except at zero we conclude for /i > 0 

Ai(^N) = Ai(£>,]) ^ AiftH) 

since Ai(£/i[i/e]) > 0 and the operators C^Ve] converge to C^v] in Hilbert- 
Schmidt norm as e —> 0 . Thus the equivalent of (9) in the measure case is 



730 SHARP BO UND FOR AN EIGENVAL UE MOMENT  

given by 

2 Y, V^ < KM) + AxCC^M) - Ai^M) (16) 

By the Perron-Frobenius theorem for quadratic forms we know that the 
lowest negative eigenvalue — Ei of p2 — v is simple, ie. E\ > E?. So (14) 
will follow from (16) once we prove that 0 < JJL H-> \I(C^[V\) is (strictly) 
monotone decreasing. The operator C^f] is given by a strictly positive 
integral kernel and hence the eigenvector ^ corresponding to the largest 
eigenvalue is strictly positive. Rewriting C^v]^^ — Ai(£M[z/])(/)/i with ^ = 

(p2 +^2)1/20M > 0 we get 2/i(p2 + /i2)~1i/7/;/z = Ai^fz/])^- Consequently 
for 0 < /xi,/i2 

P     i   Mi 

and similarly for Ai(>CAi2[^]) with /ii and ^2 interchanged. As in the end of 
the proof of Lemma 4 we can substract these equations and interchange the 
integration variables to arrive at 

Ai(^1M)-A1(^2H) 

——r // vidxMdyW^ixWniy) -^i\x-y\ _    -fi2\x-y\ 

<   0    for 0 < /i2 < Mi 

if is is not concentrated at one point. 
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