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Abstract 

We study all three-point functions of normalized chiral operators in 
D — 4, J\f — 4, U(N) supersymmetric Yang-Mills theory in the large N 
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AdS/CFT correspondence. Surprisingly, we find the same answers in the 
two limits. We conjecture that at least for large N the exact answers are 
independent of A. 
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1    Introduction 

The conjectured duality [1] (for earlier related references see [2, 3, 4, 5]) 
between string/M theory on Anti-de Sitter space {AdS) times a compact 
manifold, and conformal field theory (CFT) living on the boundary of AdS 
has attracted much attention. According to this proposal, Type IIB string 
theory on AdS^ x 55 is dual to D — 4, J\f — 4 supersymmetric Yang-Mills 
theory (SYM4). 

In [6, 7] a detailed dictionary relating S-matrix elements of the string 
theory to Green's functions of the CFT was proposed. The operators of 
the CFT are mapped to on-shell bulk fields on AdS. The CFT operators 
interact with the boundary values of these bulk fields through an interaction 
action 5^. The partition function of the string theory with fixed boundary 
values of fields is then identified with the partition function of the CFT with 
external sources coupled to the corresponding operators. 

Using this dictionary, two point functions of CFT operators correspond- 
ing to massive scalars [6, 7, 8, 9], vectors [7, 9], the graviton [10], and spinors 
[11] have been computed. 

In a series of recent papers, the 3-point functions of operators in a CFT4 
corresponding to massive minimally coupled scalars [8, 9], or scalars and 
spinors [12], or vectors and spinors [13] on the AdS^ with certain generic, 
arbitrarily prescribed, interactions have been computed. 

Certain computations of correlation functions of operators in actual SYM4 
have also been performed. Using a proposed form of S^, the 2-point func- 
tions of the stress energy tensor and Tr^^F*1") were computed in [6]. Us- 
ing the model independent coupling of gauge fields to currents, the 3-point 
functions of the ii-symmetry currents of SYM4 were computed in [9, 14]. 
Similarly, 3-point functions of the dilaton and the stress energy tensor were 
computed in [10]. 

Local operators in SYM4 are organized into infinite dimensional fami- 
lies, each of which is an irreducible representation of the D = 4, Af = 4, 
super conformal algebra. Each family (or module) contains special operators 
of lowest scaling dimension in an 5/7(4) representation. We will call them 
primary operators (PO) (strictly, only the operator with the highest S'f7(4) 
weight is primary). SYM4 contains a set of special short families that con- 
tain fewer operators than the generic module. Such families include primary 
operators which are chiral under an Af = 1 subalgebra; the scaling dimension 
of operators in these families is determined by the super conformal algebra 
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[15, 16] in terms of their 5/7(4) i?-symmetry representation. We will loosely 
refer to all the lowest dimension operators in such a representation as chiral 
primary operators (CPO). Under a given J\f — 1 subalgebra, the M = 4 
chiral primaries include M — 1 chiral operators, M = 1 anti-chiral operators 
and non-chiral operators. 

It should be stressed that unlike the situation in J\f = 1, these chiral 
primary fields do not form a ring. The product of two J\f = 4 chiral operators 
includes a product of an J\f = 1 chiral operator with an J\f — 1 anti-chiral 
operator and even two J\f — 1 non-chiral operators, which are singular. 
Because of such singularities the M = 4 chiral operators do not form a ring. 

In this paper, we study the 3-point functions of all CPOs, in the large 
N limit of SYM4. We first compute them in the limit of weak 't Hooft 
coupling A = QYMN <£ 1 using free field theory. We then study them in the 
limit of large 't Hooft coupling A = QYM^ ^ 1 using Type IIB supergravity 
(SUGRA). Surprisingly, we find the same answers. Clearly, this agreement 
for the primary fields guarantees similar agreements for all their descendants. 

Banks and Green [17] showed that for infinite TV the leading order result 
at large A is not corrected at the next order. Given that we found that the 
leading order result agrees with the weak coupling answer, we are led to 
conjecture that the 3-point functions of all chiral primary operators at large 
N is independent of X = QYM^- 

Since i?-symmetry currents and the stress energy tensor are descendents 
of CPOs, our results include all previous results on 3-point functions [9, 10, 
14], as special cases. Also, the discussion of [18, 19] shows that some of these 
3-point functions are independent of the coupling even for finite N. 

We point out that a similar result cannot be true for the 4-point function 
of these chiral operators. Unlike the 3-point functions, the 4-point functions 
depend on A at the next to leading order [17]. 

It might be that even a stronger claim is true, and these 3-point functions 
are independent of QYM even for finite iV. (For some of the 3-point functions 
this was proven in [19].) From the weak coupling side it is clear that the 3- 
point functions depend on N (even the spectrum of chiral primary operators 
depends on N). Therefore, if this stronger claim is true, then at strong 
coupling, on the AdS side, the coupling of three gravitons depends on N; 
i.e. it is corrected by quantum stringy effects. It is well known that such 
corrections are absent around flat space. This result is a consequence of the 
large amount of supersymmetry in the flat space theory. Since the AdS^ x 55 

background preserves the same number of supersymmetries as the flat space 
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background, one might guess that here too the scattering of three gravitons 
is not affected by quantum corrections. This guess cannot be simultaneously 
correct with the claim that the 3-point functions are not corrected at finite1 

N. 

This paper is organized as follows. In section 2, we compute the correla- 
tion functions in the weak coupling limit. In section 3, we identify fields on 
AdS which represent the modes corresponding to the chiral operators and 
construct their effective action to cubic order in the fields. In section 4, we 
use this action to obtain the 3-point functions of normalized CPOs of the 
SYM4. We compare this result with the free field calculation of section 2 
and find precise agreement. In Appendix A, we explain our notations and 
conventions. Appendix B is devoted to spherical harmonics on 55; we define 
scalar, vector and tensor spherical harmonics in arbitrary dimensions, and 
obtain several formulae needed for the calculation in section 3. 

2    Correlation Functions at Weak Coupling 

CPOs of SYM4 are operators of the form 

where n,---,^ are 50(6) vector indices and (f)1 are six N x N matrices 
transforming in the adjoint of U(N). The trace in the formula above is over 
U(N) indices. C1 is a totally symmetric traceless rank k tensor of 50(6). 
We can choose an orthonormal basis on the vector space {C1} such that 

(C^C12) = C/1 ,• Cl2%1"'%k = 5hl2. We normalize our action as 

J   Z9YM J
   ^QYM 

In this normalization the Yang-Mills coupling and the string coupling are 
related by QYM 

= ^Qs- The propagators of interest are 

where a, 6,... are U(N) color indices. 

The 2-point function of two CPOs specified by tensors C-* ik  and Cj2 jk , 
is computed in free field theory by contracting all the <£s pair-wise and is 

1We thank T. Banks for a useful discussion on this point. 
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nonzero only if ki = k<2 = k. Consider 

g(x,y) = (Tri^W.^Wm^M-^iv)))- 
In the large N limit only planar diagrams contribute. Planar diagrams 
correspond to contracting ifs and j's in the same cyclic order in which they 
appear in g(x,y). One finds 

iVfcff^M(^1^^2..^^ + cyclic) 
9{X'y) " {2n)2k\x-y\2k ' 

Using the orthonormality of the C coefficients one thus deduces that (the 
J/l/2 term in the equation below is replaced by (C^C12) when considering 
the 2-point function of arbitrary CPOs which are not necessarily orthogonal) 

(O* (aOC'fo)) = A*(2ff)a|*_y|2fc^. (2.1) 

In a similar fashion one may compute the 3-point function of CPOs specified 
hyeiLik >Cji..jk >Ch.-ik ' To ensure that all 0s are contracted, aa = ^^^ 
of the (ps must contract between the first and second of these operators and 
similarly for other pairs. In the large N limit, one finds 

<o"o'io,,> - ^w-yi4%^-*i^(cW,>' <2-2) 

where E = A;i+/j2 + ^3 and (C^C^C13) represents the unique 50(6) invariant 
that can be formed from C11, Cl2, CIs (by contracting ai indices between Cl2 

and C/3; 0^2 indices between Cl3 and Cl1 and as indices between C11 and Cl2) 

We rescale the CPOs O1 = O1 \jj r- such that they have normalized 
2-point functions i.e., 

<°hO") = i^p- (2-3) 
Their 3-point function is 

(O'WW'W = » __«iW!> (2.4, v v J      w/      N\x-y\2az\y - z\2ai\z-x\2a2 v     ; 

This result is correct only at large N and receives nonzero corrections at 
0(^2-) from non-planar diagrams. 

Finally note that the contraction of two or three C's may be related to 
the integrals of two or three spherical harmonics over the sphere, by the 
formulae given in Appendix B. 
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3    Equations of Motion and Actions 

3.1    Foreword to the Calculation 

The particle spectrum of Type IIB SUGRA has been worked out in [20]. 
The particles are grouped into supermultiplets [21]. It turns out that the 
supermultiplets present in the theory correspond to representations of the 
superconformal algebra labeled by SU{4) weight (0, A;, 0), S'0(4) ji — J2 = 0 
and scaling dimension eo = k [22] . According to the results of [15, 16] 
these are short representations. These supermultiplets of particles must 
correspond to CPOs (and their descendents) in SYM4 with the same 50(6), 
SO(4) and scaling dimension labels. These are the operators discussed at the 
beginning of section 2. The AdS fields that correspond to CPOs are particles 
in the 317(4) representation with weight (0, A;, 0), 30(4) representation with 
ji = J2 = 0 and mass m2 = 60(eo - 4) = k(k - 4) [7] . Studying [20] (table 
III in particular), we conclude that the required fields s1 are mixtures of the 
trace of the graviton on the sphere, and the five form field strength on the 
sphere. 

Before identifying these fields and starting the calculation we make a few 
comments. 

1. Since gravity is a gauge theory, not all fields in the IIB SUGRA action 
are physical. We need to choose a gauge and then solve the Gauss law 
constraints to identify the physical fields. Only these correspond to 
operators of the SYM4. 

2. Because of the absence of a simple covariant action for IIB SUGRA, 
we choose to work with equations of motion rather than an action. 
In order to compute the action for the fields 5^ to cubic order, we 
compute their equations of motion to quadratic order, and then pro- 
duce an action that leads to these equations of motion. The action 
thus produced is of uncertain normalization; we fix this ambiguity by 
comparison with the correctly normalized action proposed in [23], at 
quadratic order. 

3. We need to identify the SUGRA fields that couple to various operators 
only at linear order in fluctuations about the AdS^ x S5 background. 
Nonlinear higher order corrections modify the computed correlation 
functions of the corresponding operators only by contact terms. This 
translates in spacetime to the fact that we compute only S matrix 
elements which are not modified by field redefinitions. We use this 
freedom to simplify our analysis. 
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With the cubic action in hand we then use the procedure of [8, 9] to 
obtain the correlation functions of interest. 

3.2    The Setting 

The IIB SUGRA equations of motion of the graviton and the 5-form field 
strength are 

■K-mn — 'T7-timijkl^n v^'-U 

J? _   _,- 7^711712713714715 fo  n\ 
->-7ni7n27nz7n4m5 —  ^. traiTT^msTT^msniT^ns^ns•*■ • \0m^) 

We use units in which the scale i?o = (Aa/2)1//4 of the AdS^ and S^ is set to 
be unity. See Appendix A for other conventions. 

The AdS§ x S5 background solution is 

1 
dsz    =    -2(-dxQ + dx( + dx2 + dxi + dzz) + dtt£, 

RliXva     —     —{9/JLI/9X(T — S/zo-flAi/);    Rfxi/ = -^djjuyi    Rl = -20, 

Ra-fp5     =     (Oapg-Yd " 9a59^p)]    Rap = ^9aPi     -^2 = 20, (3.3) 

^MiM2M3Ai4M5      =     e/xiAi2Ai3Ai4Ai5 5    ^aia2a3a4a5 ~ eai0:20:30:4^5 • 

Bulk fields of interest are fluctuations about this background. Following 
[20], we set 

^77171 —       977171  H" 1^7X1711 

tya/J) =     fya/8) + y!    ffa/3/l(a/3) = 0, 

h/iis =  ^ _ y^'"  ^ = ^'(/H/) 
+ ^9^; g^h'ip,) = 0> 

F =    F + 8F,   5Fijklm = Viajklm + 4  terms = 5V[iajklmy 

(3.4) 

We choose to (almost completely) fix diffeomorphic and 4-form gauge in- 
variance by choosing the de Bonder gauge Vahap = Vahlj)a = 
VQ:aamim2m3m4 — 0. With this choice the most general expansion of these 
functions about the sphere is given by [11] (see Appendix B for information 
on spherical harmonics). For our purposes, it suffices to note that 

b'w   =   Ey//i 
/jLVi 

=   E^2, (3-5) 

—     Y^ \7aVIf= h1 

L-/ M1M2M3M4" 



704 THREE-POINT FUNCTIONS OF CHIRAL OPERATORS 

3.3    Linear Constraints and Equations of Motion 

The Einstein and self-duality equations about this background have been 
written out to linear order in [20]. Of interest to us are the three constraint 
equations (E3.2), (E2.2) and (M2.2) in that paper, 

G*" - ^) v^y/=o' (3.6) 

V^/i"1^ - V" ( h!1 - ^-hi + 8b1) - ^"w^ai 
MlM2AJ3/i4 

vay
/ = o, 

(3.7) 
15'"z ' " J     4! 

va/iifj2/i3w "^ ^I^MS^MS"   b )vaY   =0, (3.8) 

and the dynamical equations for b and /12 (Eq.(2.31) and (2.32) of [20]), 

VmVm6' + ilh'1 -^2)]^ = 0, (3-9) 

(VTOVm - 32)^ + 80VQ Va6/ + VaVa (h'1 - ^^ )   Y1 = 0.     (3.10) 
15 

We are interested in modes with k > 2 only.  For such modes the con- 
straint (3.6) may be used to eliminate h'   from (3.9) and (3.10) to yield 

VmVm6 - -h2 = 0, (3.11) 

(VmVm - 32)/i2 + 80VaVab = 0. (3.12) 

These two equations may now be diagonalized. Using the fact that VaV^Y1 = 
—k(k + 4)y   as shown in Appendix B, we find that the diagonal linear com- 
binations (We choose the normalization such that the inverse relations are 
simple: h^ = lOks1 + 10(k + 4)i7,   b1 = -s1 + t1.), 

s1   = -[^-10(A; + 4)6/], 
20(A; + 2)' 

t1   =    ../.
1. ^[hi + lOkb1} 

20(k + 2) 

obey the equations of motion 

V^VV   =    {k + i){k + 8)tI. 

(3.13) 

(3.14) 
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To linear order, s1 corresponds to CPOs in SYM4, and it will be the 
focus of our attention through the rest of the paper. 

The scalars t7, on the other hand, correspond to descendents of CPOs; 
specifically they map to the operator </>(6) in Table 1 of [11] . The expansion 
of t proportional to the kth spherical harmonic, corresponds to an operator 
formed by acting with 4 Qs and 4 Qs on the trace of k + 4 (/> operators. 
The 3-point functions of these operators are determined in terms of those 
of CPOs by the superconformal algebra, and so we will not compute them 
directly. Henceforth we set t1 = 0. 

We now construct an action whose variations leads to the equations of 
motion of s1. 

s = f E y HV^')2 - Hk - 4)(5')
2] (3-15) 

with Ai undetermined constants which depend on k. 

3.4    Normalization of the Quadratic Action 

The normalization coefficients Aj may be determined by comparison of (3.15) 
with the full 'actual' action of IIB SUGRA [23] 

s -6s=6 fdW^ {R -1 w(F - ^■pm,k'}' 
(3.16) 

where F is defined by the right-hand-side (RHS) of (3.2), and a is an auxiliary 
field. In our units ^ = j^js- 

In order to obtain Aj from (3.16) we work at quadratic order, choose a 
gauge, solve for all constrained fields in terms of physical fields, and then set 
all physical fields except s1 to zero. 

Firstly we eliminate the auxiliary field a in (3.16) . As shown in [23], we 
are free to fix a gauge by choosing an arbitrary function for a. We will set 
a — a;4, which amounts to removing the components of the 4-form potential 
of the form Aij^. 

Having done this use (3.6), (3.7), (but not yet (3.8) ) in (3.16) and set 
all unconstrained fields other than b and /12 and h'^ to zero. The action we 
obtain at the end of this process is (z(k) is defined in Appendix B equation 
(B.4)) 
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5 = £ z(k) f d5xV=g~i {Li + Li + 4} . (3.17) 

L[ contains terms from the Einstein part of the action except those involving 
& 

L' = 2>      ( , TNO ,   /, ,w,   TxOl «J^ 
i - -^ {(V^)2 + *;(& + 4)(^)2} + — {8(V^)2 + 5(A;2 + 4A; - 9)(^)2} 

(3.18) 

where the first group comes from the hi kinetic and mass terms while the 
second group was obtained by inserting (3.6) into the h! kinetic and mass 
terms. L^ contains terms from the F2 part except /i7^) terms, 

L/ = _8/c(A; + 4) {(V&')2 + k(k + 4)(&/)2 + ^26J} - if^)2     (3-19) 

L\ is the part of (3.16) quadratic in h!^^ : 

-h^ + 4k-2)h'lv)h'I^). (3.20) 

We now attempt to use (3.7) to obtain the quadratic dependence of L3 
on b and /12. On eliminating /i'7 and a1^^^^ from (3.7) and separating out 
the trace explicitly we obtain 

V^'U=V,{|^ + 166/}. (3.21) 

We can solve the equation by setting 

where H1^ obeys V^fff^ = 0 and K1 satisfy (V2 - 5)if7 = |^ + 2067. 
Note that unlike ft'/ x, if/ N may consistently be set to zero for arbitrary /12 
and 6. Substituting this into L3 leads unfortunately to an action non-local 
in b and /i2- 

To avoid undue complications, we notice that it is sufficient for us to 
compute (3.17) on shell in order to obtain Aj. In that case 
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We substitute h^ = Wks1, b1 = -s1 in (3.15) to find 

Us1]    =   -l^-k2 + 32k-m\(VsI)2-^-k2(2k + l){k-A)(s1)2 

4(fc2 + 4fc - 2) m J2 4 ,A2^99\ 

(3.17) vanishes on shell in the bulk (as every quadratic action does), but 
is nonzero as a function of boundary values due to surface terms. We now 
compute each of (3.15) and (3.17) as a function of boundary values of s , 
and compare the two results to read off the value of Aj. The result is 

A, = 32«k-W + *>M. (3.23) 

3.5    Cubic Couplings 

To study the 3-point functions of the field s7, we need the cubic terms in 
the action (3.15). To compute these we need quadratic corrections to Eqs. 
(3.6), (3.8), (3.9) and (3.10). We define 

1  £v 

h'   =   —h2 + 10Qu (3-24) 
15 

1 f\ 

(VmVra - 32)/i2 + 80VQVQ6 + VaV^/i' - — /12) = IOQ2, (3.25) 
10 

0 V[MiaM2M3Ai4/J5]   — €niH2fl3llAllS VfflV
a6+^/-^/l2 + 04 

Substituting (3.24) into (3.25), we obtain, 

(VmVm - 32)/i2 + 80VQVa6 + lQ{VaVaQl - Q2)   = 0,        (3.26) 

VmVm6 - \h2 + 5Qi + V^ + QA   =0. 

The corrected equation of motion for 5 is a linear combination of the two 
above: 

[V^V - *(* - 4)]s7   = 1 

2(^ + 2) 

x    {{k + A){k + 5)Qi + (32 + (A + 4)(VMQ^ + Q4)}7 • 

(3.27) 
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To calculate the Q^s we use the methods outlined in [11]. The first lines 
of (3.24) and (3.25) are the coefficients of V^V^y7 and Y^^p respectively, 

in the equation Rap = ^F^i^i^F^12131415. To compute Qi and Q2, we 

must therefore compute Rmn and FmijkiFn^1 to second order in 5 [24]. Since 
we are only interested in the s dependence of these quantities, we substitute 

hU   =   -|^+
5(fc + 1)(fc + 3)V(^)^-306J) 

=   U{k)s V + WWV^V,)/, (3.28) 

h1 

b1   =   X^s1,   hail = 0, 

V(k)    =   ~U(k) = 2k,   W(k) = jj^Yr   X(k) = -1.      (3.29) 

to find 

Rap = 2^Y + ioZ^9al3 + l2^)' 

Y   =   Viy2V
7(SiV752) + WzVteiV^z) 

+WlV2VIJi{V^slV1Js2), 

Zap   =    (3Fi72 + 5^i^2)(Vaa1V/3a2 + 2aiVaV^2) 

+WiWr2(VaV^Vl/)SiV/3V(^VI/)52 

+2V^Vi/)SiVQV^V(/iViy)a2) 

^m^^^'    =   45Q/3{X1X2(V-1'V75lV'5V5S2 + V'iV^1V^V7S2) 

-8ViX2SiV7V7S2 + IOF1F2S1S2} 

-SXiXiVaVpSiVpWsi. (3.30) 

In the equations above, the symbol Sj is used as shorthand for s^Y1* and 
Ui,- ■ ■ ,Xi as shorthand for U(ki), ■ ■ ■, X(A;J), respectively. Summation over 
Ji and J2 is assumed. 

Projection of these quantities onto V(Q V^) Y^ yields 

Qi1 = 20q(kll)z(k1) S {(Cl23 + d231 + d32i)T23 + 32X2^30123V^saVsa} , 

(3.31) 

T23 = (3^2 ^3 + 5[/2t/3)s2S3 + P^^V^V^saV^V^sa, 
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where C123, etc., are used as shorthand for c(fci,^2,^3), etc. defined in 
Appendix B (dropping an overall factor of (C^C^C13) from the equations 
which will be reinstate later) and Si as shorthand for s1*. 

Projection onto QafiY1 yields 

^      =     ^r47rTE105123+^23(&123-2/3a123) 

+32X2X3VAi52V^53^123, 
Sm   =   -V2V3b2i3S2S3 + V3U2a123^{s2V(,s3) (3.32) 

+W2y3ai23V/x(V^V^52V^3) 

-8X2X3 {ai23f2hS2S3 + &123VM52V/i53) 

-ai23 (64^2^3/3 + 80^2^3)5253. 

Expansion of the self-duality equations to quadratic order and projection 
onto appropriate spherical harmonics yields Q3 and Q4. Q3 arises as the 
coefficient of VQY

7
 and (54 from the coefficient of Y1 in the self duality 

equation (3.2). The answers are 

9S" = -7(w5)g(0i+SV2)Jf**,v'*' 
+W2*3V<'1V,/>S2V„336213, (3.33) 

Ql1    =   -^rr E{T23-(16F2^3/3 +40^2^3)8233} a123, (3.34) 
^Z{Ki)   23 

where f(k) = k(k + 4) and T23 is the same as in (3.31). 

This completes the evaluation of the RHS of the equation of motion 
(3.27) which now takes the form 

iWsV^V'Vw^V,/3. (3.35) 

where D, E and F are computed by substituting (3.31),(3.32),(3.33) and 
(3.34) into (3.27). We can remove the derivative terms on the RHS of (3.35) 
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by a field redefinition 

sh = 5//i + J2 {jIll2l3s
,hs^ + L/l/2/3V^,/2V^,/3} , (3.36) 

/2,/3 

where 

1 11 
LIll2h  =   2Fhl2hl      JIll2h  =   2Ehhh +  4^/1/2/3 (m/i   - m/2  - m/3  + 8)' 

such that (3.35) becomes (we henceforth omit the primes on redefined fields) 

(V^ - m2
h)s

h = 2 A/l/2j3S/2 A (3.37) 
/2,/3 

where 

2 
A/l/2/3   = ^1/2/3  - (m/2  + m/3  - ^iJJhhh  -   5L/l/2/3m/2m/3- (3-38) 

Putting together the values of Q^s and reintroducing the factors 
of (C^C^C13) that we suppressed for notational convenience (the definition 
of S and c^ are as in Section 2) we obtain 

^1/2/3    z= 

a(ki, k2, ks)   8S{(^)2 - 1}{(^£)2 - 4}a1a2a3 

2^(A;i)(fci + 2) (fci - l)A;i(fc2 + 1)(*:3 + 1) 

x(ChCl2Cl3). (3.39) 

Taking into account the normalization of the quadratic action (3.23), the 
cubic coupling constant is 

^1/2/3    =   ^/i^/i/2/3 

(3.40) 

Note that Gi^is is totally symmetric, which ensures that the equations 
of motion can be derived from an action. 
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4    The Strong Coupling Limit of The Three-point 
Function 

The cubic equations of motion for the fields s1 may be derived from the 
action 

4iV2   f   -     , ^Aj 

(2*) 
I d'xV^fij: Y[-(^/)

2
 " Hk - 4)(s/)2]       (4.1) 

+   E   \GiihhSIlsl2sh- 
I1J2J3 

There is an ambiguity in the use of this action due to our lack of knowledge 
of Sint- We know only that the field that couples to the primary operator of 
interest is proportional to s1. The unknown proportionality constant may 
be a function of iV, A and k. Let s1 be the field that couples to CPOs via 
Sint — JPO1 and s1 — w1^1 for some function w1. The action written in 
terms of s is 

AN2   fJ5    /  

+ ^ w^^gIll2ls^l2f^ (42) 

hhh 

To compute the 2- and 3-point functions of CPOs from (4.2) we apply 
the formulae derived, for instance, in [9]. From Eq. 17 and the correction 
factor in Eq. 95 of [9], we derive that in the large iV limit of SYM4, 

(o"(X)o'Hy))=^ j^r r",  r !i: ■  <«> m2   lT(k + \)2k-±AI(w
I)28hh 

(2izY^T{k-2)     k        \x-v 

From Eq. 25 of the same paper we derive that 

47V2   1  r(ai)r(a2)r(a3)r(iS-2) 
<07l(z)<?/2(y)(9/3(,O}  = 

in* 1 on^^nn^^Cj T   T   T 

(4.4) 

(27r)5 TT
4
 r(A;i - 2)r(/e2 - 2)r(A:3 - 2) 

\x _y|a3|y _z|a1|^_a;|a2" 

Using (3.23) and the formula (B.l), we can simplify (4.3) to read 

(oHX)oHy)) = i^-^^-1)2(fe-2)2("/)W2 (4 5) \u   {x)u   (y))      (27r)52fc_7 (A. + 1)2 l^-ypfc- ^•^ 
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Similarly using (3.40) and (B.2) we have, 

(2^)° 7r22E-9 F ~ 2/1    |y — z\a2\z — x\az 

w Ax (An - l)(fci - 2) fcafo - 1)(A;2 - 21 

(4.6) 

(fci + 1) {hi + 1) 

.A3(fe3-l)(fc3-2) 

{h +1) 

Finally, we obtain the 3-point functions of normalized CPOs, 

which agree exactly with the weak coupling result (2.4) in Section 2. Note 
that all the numerical factors as well as the unknown function w1 present in 
(4.5) and (4.6) have been canceled. 

The action (4.2) was obtained up to an overall normalization merely 
from the equations of motion. To obtain this overall normalization, we had 
to make assumptions about the 'true' action (including surface terms) for 
IIB SUGRA. Changing the normalization of (4.2) by a factor 77 scales the 
result in (4.7) by -4=, i.e a factor independent of A;. We present here a further 

argument that the 3-point functions in (4.7) are correctly normalized. 

i?-symmetry currents are descendents of Tr ((jfcft) (after subtracting the 
trace). Specifically     J^a        oc        e^b{QaiQ^    -    iQamQ^I) 

xTr{(j)a)j(f)ki - ^(t)mn(l>pqemnpqea)jkl). Here a,6,--- = l,---,4 label the 4 
or 4 of 517(4), brackets indicate trace removal, a is a chiral spinor index and 
$ is an anti-chiral spinor index. Therefore, the correlation functions of ill- 
symmetry currents are determined in terms of those of Tr((j)l(j^). However, 
the 2- and 3-point functions of jR-symmetry currents are known to be given 
exactly by the free field value ([9] , and references cited therein ). This is 
sufficient to ensure that the overall normalization in (4.7) agrees with the 
free field result at least for k — 2, and hence for all k. 
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Appendix A. Notations and Conventions 

Consider the manifold AdS^ x S5. We use Latin indices z, j, £;,Z,ra,... 
for the whole 10-dimensional manifold. Indices /x, z/, A,... are AdS§ indices 
and run from 0 to 4. Indices a,/3,7,... are S5 indices and run from 5 to 
9. Our choice of the signature of the metric is (—h ... +). We use Gmn 

for the metric and gmn for its background value. The conventions for metric 
connection, curvature tensor, Ricci tensor and the scalar curvature are 

Fj/c   -    9^ (^Gij + djGik - diGjk), 

R'jki   =   dkT1^ - diTl
jk + r^rj^ - TlmTf31 (A.l) 

Rji   —   Rljiu   R — G3 Rji. 

For comparison, we note that Ref. [20] uses the same convention as 
ours except that they define Rmn = Rmnk = — Rmkw ^^ determinant of 
the metric is denoted by G. The determinants of the AdS metric g^y and 
the 55 metric gap are denoted by Gi and G^, respectively. The completely 
antisymmetric emo...m9 symbol is defined to be a tensor of rank 10, such that 

— /    n  or,^ ^0123456789 _  i / / n 
^0123456789 — V —^ ^nd €        — -1/V-^- 

Appendix B. Spherical Harmonics 

B.l    Scalar Spherical Harmonics 

The set of scalar functions on SD form a vector space which is an infinite di- 
mensional reducible representation of SO (D +1). Scalar spherical harmonics 
(SSH) form a complete basis on this space. 

It is convenient to regard a function on SD as a restriction of functions 
on the RD+1 in which SD is embedded. An arbitrary (7°° function on RD+1 

may be expanded in polynomials in the Cartesian coordinates x1, so it is 
sufficient to consider separately functions on R0^1 homogeneous in x1 of 
degree A;. Not all such functions are independent when restricted to a sphere. 
Consider, for example, r2xn...x'Lk. This is a function of degree k+2 but when 
restricted to the sphere, it is identical to xn...xlk^ a function of degree k. If 
at each degree we wish to restrict ourselves to functions linearly independent 
of those of lower degree, we must consider only functions C^...^21 ...x'lk such 
that C^.^ifl™-'171 = 0 for any 1 < m,n < k. With no loss of generality, we 
may demand that C^..^ be symmetric in ii-.i^. 

Thus we have shown that each independent component of a totally sym- 
metric traceless tensor of rank k defines a spherical harmonic by Y1  = 
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C/j   ikx
ll...xlk. This construction clearly shows which representation of SO(D+ 

1) the spherical harmonics transform in. The Gelfand-Zetlin indices for the 
representation are (hi, /i2j ^3? • • •)  =  (&, 0,0,.. .)•    The degeneracy of the 
harmonics is the number of symmetric polynomials of degree k minus the 
number of symmetric polynomials of degree k — 2, i.e. ( £ ) — (    D~ )■ 

Since Map = {—i){xaVp — xpVa), the Casimir of this representation, 
I? = ^MapM®!3 = k(k + D- 1), is simply the value of -r2V2 on the sphere. 
Therefore we deduce that the degree k spherical harmonics are eigenvectors 
of V2 on the sphere, with eigenvalues — k(k + D — 1). 

The eigenvalue of V2 may be obtained in an alternative fashion. Note 
that the harmonics as polynomials in RD+l obey (V^D+ifk ="0. How- 
ever, (V2)jr>-t-i = -^drr

Ddr + ■iz(V2)SD. Since our functions behave as rfe, 
(V

2
)D+I//C = 0 implies (V2)SDfk = -k(k + D- l)fk as above. 

B.2    Scalar Harmonic Contractions on S5 

We need to evaluate the integral of the product of two or three scalar spher- 
ical harmonics over S5. Let Y1 = 
The results of the integration are 
ical harmonics over S5. Let Y1 = C(lmmmi xll...xlk be the spherical harmonics. 

1      r xhh 
JL /   y/iy/2    =     °  (B.l) 
usJs* 2*-1(fc + l)(fc + 2)' ^      ^ 

- f   YW'Y1*    = 1   i(T ./^^'(C^C72^8),  (B.2) 
UJ5 Js* (Is + 2)!22(s-2) «l!a2!«3,. 

where ai = I(A;2 + ks - fci), Y, = ki + k2 + k3 and CJS = TT
3
 is the area of 

a unit 5-sphere. Both of the above equations can be derived by using the 
following general formula: 

— /   x11 •••xl2rn = rr x (All  possible  contractions), (B.3) 
UJ5 Js* (m + 2)! 

where "All possible contractions" means Sili2 for m = 1, Sili2S1314 + 
jiiiaJ^M _]_ giiiA^is for m = 2 and analogous objects for higher m. This 
formula can be proved by starting from 

/   ^•••^"• = — —— /   eJx. 
Js* oJi, ■ ■ ■ dJi2m Js* 
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The following integrals occur naturally when one considers projection of 
the equations in section 4 onto appropriate spherical harmonics. 

fy^Y12 = z{k)5hI\ 

/v^VflY^V^V^y72 = q{k)z(k)8hI\ 

/■y/iy/2y/3 = a(ki,k2M)(ChCl2Ch), (B.4) 

fYhVaY
hVaYl3 = b(kl,k21k3)(ChCl2Ch), 

fv{aV0)YhVaY
hWpYh = c(fci,A;2,fc3)(C/lC/2C/3), 

JYIlV{aVp)Yl2VaVpYh = d{kuk2,h)(CIlCl2Cl3). 

The functions g, a, 6, c, d can be evaluated by integrating by parts and 
using the fact that VaVaY/ = -k{k + 4)Y1. 

B.3     Vector and Tensor Spherical Harmonics 

One may now ask for a basis in the space of vector functions on the sphere. 
To find such a basis, one again considers vectors of the form 
eaY

a = CaC^ ^x7*1 ...xlk in i?^"1-1, where ea is a unit vector in the ath Carte- 
sian direction. This is a complete set of vector functions on RD~^1 but is 
over-complete on SD for two reasons. The first is the same as that for SSH 
and may be fixed in the same fashion. The second reason is that some of 
these vectors have no projection onto the tangent space of the sphere. 

The vector function CaC^ ikx
n...xlk transforms in the product of the 

vector representation and (fc, 0,..., 0) under SO(D + 1). For the rest of this 
subsection we assume that D is odd as it is in our paper. That product 
has 3 irreducible representations, (k — 1,0, 0,..., 0), (k + 1,0, 0,... , 0) and 
(ft, 1,0,... ,0). The first corresponds to a vector of the form Ya = xaY(k—1), 
where Y(k — 1) is a SSH of degree k — 1. It has no projection onto the 
tangent space of SD. The second corresponds to a vector of the form Ya = 
daY(k + 1). It is a derivative of a SSH of one higher degree. Projected onto 
5D, this becomes VaY(k +1). The last corresponds to vector functions that 
obey xaY

a = daY
a = 0, which implies VaYa = 0 on SD. This function is 

called a vector spherical harmonic. 
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In summary, an arbitrary vector function on SD is a linear combination 
of the gradients of SSH and vector spherical harmonics introduced above. 

The story is very similar for symmetric tensors. Any symmetric tensor 
on the sphere can be decomposed into a sum of the form 

Sap = Y.da^Y1 + s'v^Vfly' + Cv^ + D'Y^ 
I 

where A,B,C,D are constants. The Y* and YJQS are vector and symmet- 
ric tensor spherical harmonics. Symmetric tensor spherical harmonics of 
degree k are a new set of functions. They transform in the (A;, 1,1,0, ..0) 
representation of SO(D + 1) and obey 

V'YU = ^YU = o 
These properties, and the orthogonality of SSHs on the sphere imply that 

D   fyty1   ' /v(av/3)y
/v(av«y/ 

References 

[1] J. Maldacena, "The Large N limit of Super confer mal Field Theories 
and Supergravity," hep-th/9711200. 

[2] S. S. Gubser, I. R. Klebanov, and A. W. Peet, "Entropy And Tem- 
perature Of Black 3-Branes," Phys. Rev. D54 (1996) 3915, hep- 
th/9602135. 

[3] I. R. Klebanov, "World Volume Approach To Absorption By Nondila- 
tonic Branes," Nucl. Phys. B496 (1997) 231, hep-th/9702077. 

[4] S. S. Gubser, 1. R. Klebanov, A. A. Tseytlin, "String Theory And 
Classical Absorption By Three-branes," Nucl. Phys. B499 (1997) 217, 
hep-th/9703040. 

[5] S. S. Gubser and I. R. Klebanov, "Absorption By Branes And 
Schwinger Terms In The World Volume Theory," Phys. Lett. B413 
(1997) 41, hep-th/9708005. 

[6] S. S. Gubser, 1. R. Klebanov and A. M. Polyakov, "Gauge Theory 
Correlators from Non-critical String Theory," hep-th/9802109. 

[7] E. Witten, "Anti-de Sitter Space and Holography," hep-th/9802150. 



S. LEE, S.MINWALLA, M. RANGAMANI, N. SEIBERG 717 

[9: 

W. Miick and K. S. Viswanathan, "Conformal Field Theory Correla- 
tors from Classical Scalar Field Theory on AdSd+i? hep-th/9804035. 

D. Z. Freedman, S. D. Mathur, A. Matusis and L. Rastelli, "Correlation 
Functions in the CFTd/Arf^+i Correspondence," hep-th/9804058. 

[10] H. Liu and A. A. Tseytlin, "D=4 Super-Yang-Mills, D=5 Gauged Su- 
pergravity, and D=4 Conformal Supergravity," hep-th/9804083. 

[11] M.Henningson and K. Sfetsos, "Spinors and the AdS/CFT correspon- 
dence", hep-th/9803251 

[12] A. M. Ghezelbash, K. Kaviani, S. Parvizi and A. H. Fatollahi, "In- 
teracting Spinors-Scalars and the AdS/CFT Correspondence," hep- 
th/9805162. 

[13] W. Miick and K. S. Viswanathan, "Conformal Field Theory Correla- 
tors from Classical Field Theory on Anti-de Sitter Space 11. Vector and 
Spinor Fields," hep-th/9805145. 

[14] G. Chalmers, H. Nastase, K. Schalm and R. Siebelink "i?-Current 
Correlators in Af = 4 SYM from AdS," hep-th/9805015. 

[15] V. K. Dobrev and V. B. Petkova, "All Positive Energy Unitary Ir- 
reducible Representations Of Extended Conformal Super symmetry," 
Phys. Lett. B162 (1985) 127-132. 

[16] S. Minwalla, "Restrictions imposed by Superconformal Invariance On 
Quantum Field Theories, "hep-th/9712074. 

[17] T. Banks and M. B. Green, "Non-perturbative Effects in AdSs x S5 

String Theory and d=4 SUSY Yang-Mills," hep-th/9804170 

[18] J. Erdmenger and H. Osborn, "Conserved Currents and the Energy 
Momentum Tensor in Conformally Invariant Theories for General Di- 
mensions," hep-th/9605009. 

[19] P. S. Howe and P. C. West, "Is Af = 4 Yang-Mills Theory Soluble?" 
hep-th/9611074. 

[20] H. J. Kim, L. J. Romans and P. van Nieuwenhuizen "Mass Spectrum 
of Chiral Ten-dimensional Af = 2 Supergravity on S5," Phys. Rev. 
D32 (1985) 389. 

[21] M. Guhaydin and N. Marcus, "The Spectrum of the Sb Compactifi- 
cation of the Chiral J\f — 2, D = 10 Supergravity and the Unitary 
Supermultiplets of t/(2,2|4)," Class. Quant. Grav. 2 (1985) L11-L17. 



718 THREE-POINT FUNCTIONS OF CHIRAL OPERATORS 

[22] S.Ferrara and A Zaffaroni,"On N=8 Supergravity on AdSb and N = 4 
Superconformal Yang-Mills therory", liep-th/9802203 . 

[23] G. Dall'Agata, K. Lechner and D. Sorokin, "Covariant Actions for 
the Bosonic Sector of D=10 IIB supergravity," liep-tli/9707044 and 
references therein. 

[24] C. W. Misner, K. S. Thorn, J. A. Wheeler, "Gravitation," W. H. 
Freeman and Company (1973), p. 965. 


