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1    Introduction 

M theory is believed to be a consistent theory of quantum gravity which at 
low energies reduces to the unique supergravity theory in D = 11 spacetime 
dimensions. M theory contains two types of extended objects, membranes 
and fivebranes. Membranes have odd-dimensional worldvolumes and so there 
are no continous anomalies associated with the zero modes of a membrane. 
The cancellation of global membrane anomalies has been demonstrated in [1]. 
Fivebranes on the other hand have even dimensional worldvolumes and chiral 
zero modes so a computation is needed to see if there are continous anomalies 
in the presence of fivebranes. We will not investigate global anomalies for 
fivebranes in this paper. 

A fivebrane of M theory with worldvolume WQ embedded into eleven- 
dimensional spacetime Mn breaks the Lorentz symmetry from 50(10,1) to 
SO{5,1) x 50(5). 2 If we believe that M theory is a well defined theory 
then diffeomorphisms or equivalently local Lorentz transformations which 
map the fivebrane to itself should be symmetries of the theory. 

Diffeomorphisms preserving the fivebrane worldvolume WQ —> WQ are 
generated by vector fields acting either as diffeomorphisms of the fivebrane 
worldvolume WQ or as 50(5) gauge transformations on the connection on 
the normal bundle. Using the metric the normal bundle may be regarded 
as a bundle with metric and connection and structure group 50(5). The 
potential anomalies in worldvolume diffeomorphisms and 50(5) gauge trans- 
formations have two obvious sources. The first is the presence of chiral zero 
modes on the fivebrane worldvolume. For a charge one fivebrane the zero 
modes consist of a tensor multiplet of (2,0), D = 6 supersymmetry. The 
chiral fields in this multiplet consist of a chiral fermion transforming in the 
spinor representation of 50(5) and a two-form potential with anti-self-dual 
field strength which is a singlet under 50(5). The anomaly due to these 
zero modes can be computed from the standard descent formalism [2-5] and 

is determined by descent on an eight-form Igm. That is, we have Is = dl\ ' 

and 5l\ ' = dl^ ' and the anomaly is given by 

27V f    Ilm^\ (1.1) 
Jw6 

The second source of anomalies comes from the presence in supergravity 
of a coupling 

A5= /    C3/\Ib
s(R) (1.2) 

JMii 

2 Since we will be considering fermions we should really be discussing the covering groups 
Spin(ri), this distinction will not be important in what follows 
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with Jg a specific eight-form constructed out of the curvature on Mn. Inte- 
grating by parts and taking the variation of this term gives 

5AS= [     dG4All{1). (1.3) 
JMu 

The fivebrane of M theory acts as a magnetic source for the three-form 
potential C3 of M theory. With G4 = dCs the corresponding field strength 
this means, roughly speaking, that 

dd = 27rS5 (1.4) 

where £5 is a five-form which integrates to one in the directions transverse 
to the fivebrane and has delta function support on the fivebrane3. We thus 
have for the total gravitational anomaly 

with P2{N) the second Pontrjagin class of the normal bundle [6]. The fact 
that anomalies in diffeomorphisms of the tangent bundle cancel between 
these two sources was pointed out in [7]. If we believe that M theory exists 
and that the fivebrane of M theory is a well defined object then there must be 
some additional mechanism which cancels the anomaly in diffeomorphisms 
of the normal bundle. The cancellation of the normal bundle anomaly has 
been investigated in [8, 9, 10], but a completely satisfactory answer has not 
yet emerged. 

In field theory there are many examples where a smooth soliton solution 
of the field theory has chiral zero modes with an anomaly which is cancelled 
by inflow from the bulk [11]. This cancellation is inevitable in field theory 
since if the original theory was consistent then the effective action must 
make sense for any background fields including those of a smooth soliton. In 
theories including gravity the situation is more problematic. The extremal 
fivebrane of M theory is non-singular, but becomes singular when perturbed 
[12, 13]. In order to study anomalies it is necessary to study not just a 
particular fivebrane configuration but families of fivebrane configurations. 

There are two related ways to understand the need for families of five- 
branes. First, the problem of anomalies is the problem of defining the effec- 
tive action e^^f as a function of the fields of the theory. Thus the effective 
action is a section of a line bundle over field space. The anomaly vanishes 
if we can trivialize this bundle. Studying this question involves studying 
families of field configurations. Prom a local point of view anomalies involve 
a lack of conservation of a current or of the energy-momentum tensor in the 

3 We will soon give a much more precise definition of 85 
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presence of background fields. In order to study this conservation we have 
to turn on gravitational fields in addition to the background fields of the 
fivebrane. Since the fivebrane becomes singular when we vary the metric it 
is far from clear that the anomalies must in fact vanish. A direct approach 
would involve evaluation of the Rarita-Schwinger operator in backgrounds 
with a horizon and singularity and would be problematic if not impossible. 

In this paper we will not try to study the fivebrane directly as a solution 
of D = 11 supergravity. Rather we will study the fivebrane as a magnetic 
source for the three-form potential of M theory and will divide the fields up 
into bulk fields and zero mode fields which are localized on the fivebrane. We 
will show that a careful treatment in this framework allows us to understand 
the cancellation of all anomalies. We leave to the future the very interesting 
question of the relation of this approach to that based on a direct study of 
solutions to supergravity. 

We conclude this introduction with a brief comment about the descent 
formalism. In the physics literature on anomalies one commonly writes 
Chern-Weil forms such as Is above as differentials of Chern-Simons forms 
Ij '. This is valid globally if we fix a reference trivial connection, but in 
general the Chern-Simons forms only exist locally. In the supergravity the- 
ory discussed here we do not want to impose unnecessary global restrictions 
on the spacetime and the fivebrane, so the descent equations are only valid 
locally. We make some brief comments about the global structure in section 
4. A more complete treatment, together with an exposition of the anomaly 
cancellation in that global framework, will appear in [14]. 

In this paper we will follow the conventions and normalizations of [6]. 
In order to suppress many factors of 27r in various formulae we define (?3 = 
Cs/27T and $4 = G^/I-K with C3 the three form potential of M theory and 
G4 its field strength. 

2    The Fivebrane Source 

Consider a fivebrane of M theory located at ya = 0, a = 1,2,... 5 and with 
longitudinal coordinates xfJ') fi = 0,1,...5. The most naive expression for 
the Bianchi identity in the presence of the fivebrane is 

(Kfi = 6(y1)-'-6{y5)dy1A...Ady5. (2.1) 

The quantity on the right hand side is a five-form with integral one over 
the transverse space and delta function support on the fivebrane. However 
as discussed above, we need to consider families of metrics so the above 
expression could at most be correct locally. While a delta function source is 
sufficient for computations where C3 enters linearly, as in (1.2), we will soon 
encounter a Chern-Simons term which is cubic in C3.   In order to have a 
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completely well defined and non-singular prescription in such cases we need 
to smooth out the delta function source. Having done this we will see that 
in the presence of a non-zero 50(5) connection on the normal bundle we 
will have to modify the right hand side of (2.1) in order that it transform 
covariantly under 50(5) gauge transformations. 

In order to define the fivebrane more carefully we first use the metric to 
define a radial direction away from the fivebrane and we cut out a disc of 
radius e around the fivebrane. That is, we remove a tubular neighborhood of 
the fivebrane of radius e. Let De(We) denote the total space of the resulting 
disc bundle with base WQ and fibers the discs of radius e. We will define all 
bulk integrals as limits as e goes to zero of integrals over Mn — D€(We): 

f     C = lim / £. (2.2) 
JMu e~>0 JMii-De{Wf}) 

We will later integrate by parts and use the fact the 10-dimensional boundary 
of Mn — De{W§) is the total space of the 54- sphere bundle over We of radius 
e, whose total space we denote 5e(W6). 

In order to smooth out the fivebrane source we choose a smooth function 
of the radial direction with transverse compact support near the fivebrane, 
p(r), with p(r) = — 1 for sufficiently small r and p(r) = 0 for sufficiently 
large r. The bump form dp then has integral one in the radial direction. 
The smoothed form of (2.1) should then read 

cI0A=dpA 64/2, (2.3) 

where de^ = 0, 64 is gauge invariant under 50(5) transformations of the 
normal bundle, 64/2 has integral one over the fibers of 5e, and dp A 64/2 
should reduce to the naive expression on the r.h.s of (2.1) for a flat infinite 
fivebrane when dp approaches a delta function. Physically what we are doing 
is smoothing out the magnetic charge of the fivebrane to a sphere of magnetic 
charge linking the horizon. 

The construction of the smoothed out source involves standard mathe- 
matics [15]. The right hand side of (2.3) involves differential forms which 
arise in a geometric construction of the Thorn class of an oriented vector 
bundle, in this case the normal bundle to We in Mn. As described in [15] 
we may identify the total space of the normal bundle with a tubular neigh- 
borhood of We in Mn. With this identification the differential form dpAe^/2 
represents the Thorn class of the normal bundle and 64/2 is the global an- 
gular form. Although the properties of 64 follow from general principles, an 
explicit local formula is useful for constructing explicit objects which will 
later appear in the M theory action. 

We have E -» We a rank 5 real vector bundle with metric and connection. 
Let P —> We be the principal 50(5) bundle associated to the rank 5 bundle 
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E. Following [16] we work on P x S4 and construct a basic form which 
descends to the sphere bundle S(E). Think of S'4 C M5, choose coordinates 
ya for M5 and let ya = ya/r. Of course, ya is defined only outside of 0 E 
E5, which corresponds to the complement of the zero section of E. On 
that complement the pullback of E has a tautological line subbundle, and 
a perpendicular oriented 4-plane bundle which we call F. Readers with less 
tolerance for mathematics can pick a gauge and with little harm done simply 
think of the ya as isotropic coordinates on the 54 fibres of S(E). 

The 50(5) bundle is equipped with a globally defined connection Qab = 
-eba. (We identify so(5) £ A2M5. ) The Lie algebra so(5) acts on P x SA 

in the standard way and we have horizontal forms: 

(Dy)a = dya - eabyb 

Fab = deab - eac A ecb. 
(2.4) 

We now consider the forms: 

eai...a5(Dyr---(Dyr*r5 (2.5) 
eal...asF

aia> A (Dy)a3(Dy)a*ya5 (2.6) 

and 

eai...a5F
aia2 /\Fa*a*ya5. (2.7) 

These forms are all annihilated by L(X),C(X), for X G so(5), where L(X) is 
the contraction and C{X) is the Lie derivative with respect to the vector field 
X. It follows that these forms are basic and descend to S(E). Moreover, 
(2.5) restricts to the volume form on the 54 fiber and thus reduces to the 
naive expression in (2.1) in the appropriate limit. However, (2.5) is not 
closed. One can use the identities 

dy* = @abyb + {Dyf 

d{Dy)a = eab{Dy)b - Fabyb (2.8) 

plus the rotational invariance of the forms and the fact that ya(Dy)a = 0 to 
show that up to an overall scale there is a unique closed linear combination 
of (2.5) - (2.7). 

Equivalently, the curvature of the oriented 4-plane bundle F defined 
above is the restriction to F of the curvature of E minus a second funda- 
mental form term. The Pfaffian of this curvature is represented by the basic 
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4-form 

e4(e) = ^(^••^^y)aH^)a2(^)a3(^)a4ya5 

- 26ai...a5F
aia2 A (Dy)a* A (Dy)a*ya5 + ta^F^ A Fa^t\    (2.9) 

One can apply the standard descent formalism to expressions of the form 
(2.9). For example, assuming that the normal bundle is trivial and choosing 
9 = 0 as a basepoint reference connection we have 

- Ieaia2ea3a4dya5 - 2Gaia2dya3dyaiya5 J.    (2.10) 

More generally one can write such formulae for the difference of two Chern- 
Simons forms for two connections 61, ©2 on E. 

The gauge transformations 5Qaia* = (De)aia2 and 5ya = eaa'ya' give 

e^(e,e,y) = -^«i-«6 (ea^dya3dya4ya5 - ea^Qa^dya" J •     (2.11) 

The above expressions have natural generalizations to all real oriented bun- 
dles of odd rank. We give the general formulae in the appendix. 

While we do not see a direct connection between the analysis presented 
here and the discussion in [6] concerning the normal bundle anomaly, it is 
interesting to note that the last term in (2.9) is very close to the expressions 
which appear in the discussion there. We expect that upon dimensional 
reduction our mechanism becomes equivalent to the anomaly cancellation 
mechanism for the IIA fivebrane described in [6], but we have not worked 
out the details of this. 

3    Connection to Anomalies 

In giving a precise definition of the fivebrane source we encountered the 
global angular form 64/2. It is clear from (2.9) that the global angular form 
depends on the connection on the normal bundle and is closed and gauge 
invariant under 50(5) gauge transformations acting on the normal bundle. 
As described above we can thus apply descent: 

64 = d40), ^f =^1). (3.1) 
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We will now express the uncanceled anomaly (1.5) in terms of (3.1) 
using a result of Bott and Cattaneo [16]. Consider a real vector bundle 
iV —> M of odd rank 2n + 1, and for convenience fix a metric. Let TT : 
S(N) -» M denote the unit sphere bundle in N. Then the lift 7r*N has a 
tautological line subbundle L, and in [16] it is shown that the Euler class 
of the orthogonal complement L1- satisfies 7r*[e2n(^"L)3] = 2pn(N). The 
factor of 2 is the Euler characteristic of the even dimensional sphere. At the 
level of cohomology, this formula follows from a simple argument using the 
splitting principle. If TV has an orthogonal connection, then we represent real 
characteristic classes as differential forms using Chern-Weil representatives. 
The formula also holds at the level of differential forms, since both sides are 
gauge invariant and depend on only a finite number of derivatives of the 
connection. Applying the result of [16] to our case, and applying the descent 
formalism we have: 

U        aA^Af./   feW)'", (3.2) 
6 Jse(w6) 2       2        2       JW6        24 

The D = 11 supergravity which describes the low-energy limit of M 
theory contains a Chern-Simons term 

Scs = -^[     tf3Ad03Ad03 = X /      ^3A^3Ad#3, (3.3) 
0   JMu *>   JM12 

where Mu is a twelve-manifold with boundary Mn. In the absence of five- 
branes we have G4 = dCs and dG^ = 0. In the presence of fivebranes we 
have argued above that this equation should be modified to dlf^ = dp A 64/2. 
This requires that we modify the relation between G4 and C3. The modified 
Bianchi identity is satisfied with 

0A = cK?3 + ApeA/2 - Bdp A e^0)/2, (3.4) 

where locally C3 can be viewed as a small fluctuation field about the five- 
brane4 and A + B = 1. Since have smoothed out the fivebrane source we 
expect on physical grounds that C3 and G4 should be smooth on the five- 
brane, and in fact in the treatment of [6] it is important that C3 be well 
defined on the fivebrane. Since pe^ is singular at the fivebrane this requires 
that we take A = 0 and hence B = 1. 

We thus have 

#4 = ^3 ~dp A 6^/2. (3.5) 

This relation is quite analogous to the relation H3 = dB2 — UJ3 which occurs 
in D = 10, N = 1 supergravity coupled to gauge theory and is central to the 

4The global definition of C3 is given in the following section. 
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Green-Schwarz anomaly cancellation mechanism. In particular, the relation 
(3.5) implies that C3 must have an anomalous variation under S'0(5) gauge 
transformations in order that G4 be gauge invariant, 

5(y3 = -dpAe{2)/2. (3.6) 

Given the modified relation between G4 and dCs we must ask how the 
Chern-Simons term should be modified. These modifications will involve 
higher derivative metric interactions. Actually, describing these terms as 
higher derivative terms is slightly misleading since it presupposes a local 
description of the physics. However as is not local in the metric, since we 
use the exponential map to transfer forms from the total space of the normal 
bundle to a neighborhood of the fivebrane. We expect that an eventual 
microscopic derivation will explain this nonlocality or replace it with a local 
description. With this caveat in mind, there are many higher derivative 
terms one could add to the supergravity action. These are constrained by 
physical principles such as supersymmetry and gauge invariance. Here we 
will only examine the constraints of gauge invariance under diffeomorphism 
and 3-form gauge transformations. We introduce the expression as defined 
by: 

04 - peA/2 = d(fo - pe<0) /2) = d(03 - a3). (3.7) 

(Note that G4 is not exact.) A natural set of higher order terms relevant to 
the anomaly cancellation problem is obtained by replacing C3 by as or dCs 
by G4,pe4, or das- One finds in this way twelve linearly independent higher 
derivative metric interactions. One combination of higher derivative terms 
which maintains the Chern-Simons structure of the original interaction is 

S'cs = lim -— / (03 - as) A dfa - as) A d(fo - as)      (3.8) 

and we will take (3.8) as the modified Chern-Simons term. It includes higher 
derivative interactions involving up to eleven derivatives of the metric. More- 
over, it is not gauge invariant by itself under diffeomorphisms. Under diffeo- 
morphisms (50(5)-gauge transformations of the normal bundle) the varia- 
tion of Cs leads to a variation of (3.8). Indeed, it follows from (3.6) that 

6(<?3-*3) = -d(peP/2). (3.9) 

Computing the variation we have 

SS'rq = lim ^ f d(pe^/2) A d(0s - ^ A d(03 - as).    (3.10) 
O   JMu-De(We) 
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Integrating by parts and taking the limit and using the fact that G4 and C3 
are smooth near the fivebrane we obtain 

(i) 

b   JSe(We)  Z        Z Z 

which by (3.2) cancels the remaining anomaly in diffeomorphisms of the 
normal bundle. In [6] the cancellation of antisymmetric tensor gauge trans- 
formation of C3 was also studied. It is not hard to see that the modification 
we have made to the Chern-Simons coupling preserves the cancellation found 
in [6]. 

4    Global Structure 

Far from the fivebrane dp vanishes and we have locally G4 = dC^. On the 
other hand we have by the definition of a fivebrane that 

/. 
04 = 1 (4.1) 

so C3 cannot be globally well defined. Rather, we must define C3 in patches 
of an open cover Ui and relate the C3 across patches by antisymmetric ten- 
sor gauge transformations, C3 — C3 = dA1-7'. The appropriate machinery for 
this construction is the Cech de Rham complex. A very readable account 
aimed towards physicists can be found in [17]. The situation here is more 
complicated due to the mixture of tensor gauge transformations and diffeo- 
morphisms required by the Green-Schwarz like structure. Because of the 
way we have smoothed out the fivebrane source the quantity with constant 
linking number through an 54 surrounding the fivebrane is $4 — pe^/l. In 
particular 

/. 
0A (4.2) 

si 

varies from 1 to zero as r decreases from large r to small r. To explain the 
consequences for C3 we first describe the patching conditions on C3 near 
the fivebrane. Then we summarize briefly a global description; see [14] for a 
more leisurely exposition. 

Choose an open cover VQ for the fivebrane W§. Then in the transverse 
space which we take to be E5 for simplicity we choose radial coordinates and 
split 54 = S\ U Si into northern and southern hemispheres. 

We then have patches 

V«x5tx[r>0] 

VQ x 5i x [r > 0] 
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The antiderivative 63 ^ (0, y) transforms across the overlap region Ssxl = 
S+ PI Sl by an 50(5) gauge transformation g±. 

Using the fact that C3 is well defined on We and the gauge invariance of 
G4 we therefore take: 

<?3+ -$3  = 7:(l + p)deV(g±,&+,y+), (4.4) 

where e^ is the integrated form of the cocycle e^ given in (2.11). Note 
that this is not a an antisymmetric tensor gauge transformation. But we can 
use the fact that C3 has picked up a diffeomorphism variation to write this 
as: 

<#-<£ d (±±del2)(g±,G+,y+) 

1 
2' fc A efjjtei, ©+,#+) 

(4.5) 

which is a sum of an antisymmetric tensor gauge transformation and a dif- 
feomorphism gauge transformation. We thus find that C3 is well defined 
near WQ. As we move away from the fivebrane C3 requires non-trivial tran- 
sition functions between patches which are a combination of antisymmetric 
tensor gauge transformations and diffeomorphisms. At infinity these reduce 
to pure antisymmetric tensor gauge transformations. 

A global discussion may be framed in terms of a general 'T-calculus," 
which is an extension of the usual calculus of differential forms. We describe 
it in terms of an open cover {Ui} of M which is good in the sense that all 
intersections 

uio...ip = uio n ■ • • n uip (4.6) 

are contractible. The set of good covers is contractible in a suitable sense, so 
the particular choice of good cover does not affect the result of any compu- 
tation. Let (ra(M),D) be the total complex of the modified Cech-de Rham 
complex 
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Cl2(U) 
dt 

nl(u) 5 

C0O(^>T) 

Ut Uij          Uijk    ■ ■ ■ 

(4.7) 

Here 5 is the usual Cech differential, the columns form the de Rham complex 
modified by replacing 0-forms by circle-valued functions, and D = 6±d is the 
total differential. There is a subspace QP(M) C TP(M) of "connection-like" 
elements: 

Qp(M) = {Lje r*(M) : Du E 0^+1(M)}. 

For example, an element to = {gij,ai} G 61(M) has the form 

(4.8) 

2 
t 

1 Cti ->■ 0 
t 

0 9ij -> 0 

Ui Uij Uijk 

(4.9) 

It represents a circle bundle with connection: gij are the transition functions 
of some local trivializations, c^ are the local connection forms, and O = DUJ is 
the curvature. Intuitively, u E @P(M) for p > 1 is a higher degree version of 
a connection on a circle bundle. An element a E rp~l(M) is a trivialization 
of the trivial bundle Da E QP{M). 

Given the fivebrane W§ C Mn we first define a Poincare dual form 

ftfa) E n5{M) (4.10) 

by the right hand side of (2.3). It depends "functorially" on the metric g 
on M: the construction is invariant under diffeomorphisms. There is also a 
diffeomorphism-invariant antiderivative 

n{g) e n4(M\w) (4.11) 
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on the complement of the fivebrane; it was denoted "pe^/T previously. By- 
working universally we can also choose a diffeomorphism-invariant connec- 
tion-like object 

u(g) G e4(M) (4.12) 

which is an antiderivative globally: it has curvature Du = ft. Furthermore, 
there is a trivialization 

a(g) er3{M\W) (4.13) 

off of the fivebrane with "covariant derivative" /i(g): we write Da = /i — 
u. The quartet (a;,cr, fi,/i) is our global description of the smeared-out 
fivebrane. It depends on the metric g and the fixed cutoff function p. 

In the absence of any fivebranes the 3-form field 0 is globally an element 
of 03(M) with curvature $4 = D(?3. In the presence of the fivebrane, (? is 
a global trivialization 

fceT3{M) (4.14) 

of uj(g) with covariant derivative 

04 e fi
4(M), (4.15) 

i.e., JD(?3 = 04 — u(g). With these definitions the modified Chern-Simons 
term (3.8) makes sense globally and leads to the anomaly cancellation com- 
puted above. 

5    Reduction on a Calabi-Yau 3-fold 

One of the closest relatives of M-theory is M = 1 supergravity in five dimen- 
sions. This theory has Chern-Simons interactions and chiral strings, which 
can lead to both gauge and gravitational anomalies [18]. A natural way 
to produce such models is via compactification of M-theory on a Calabi- 
Yau manifold X. In this case there are hl'l{X) independent vector fields, 
including one graviphoton and hl)l{X) — 1 vectormultiplets. 

Suppose a 5-brane W wraps a four-cycle P with homology class [P] = 
pA[S^], where [E^] is an integral basis for H/L(X, Z). At long distances 
the noncompact part of W is a chiral string in the M1,4 supergravity. The 
number of left and right-moving bosonic zero modes Nj*R and right-moving 
fermionic zero modes iV^ on the string are given by [19]: 

ATf - 6L> + C2 • P 

JVl + ^ = 6JD + ^-P (5.1) 
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where 

c2-P = I c2(TX), (5.2) 

and the self-intersection is given by 

D = ±J P3 = DABcpApBpC, (5.3) 

where P is the Poincare dual class in H2(X, Z). 
The BPS string is magnetically charged under the gauge field obtained 

from the Kaluza-Klein reduction of C3 on X dual to P, namely, C3 = Ci A 
pA0A where Ci G ^^^(M1'4) and 9A is an integral basis of harmonic two-forms 
on X. Defining the field strength associated to Ci in the presence of a string 
requires a treatment very similar to what we presented in the fivebrane case. 
In particular, the normal bundle is now an S'0(3) bundle with connection 
0 and smoothing out the string source requires that we modify the relation 
between G2 and dCi to 

cl01=02 + dpAeP(e)/2. (5.4) 

The zero mode spectrum is anomalous and the anomaly is given by de- 
scent from 

h(TW, N) = ±(c2-P (pi(TW) +Pi(N)\ + 12Dpl(N)\ . (5.5) 

The cancellation of anomalies in diffeomorphisms of the tangent bundle by 
inflow requires a bulk coupling 

AS5= / CiA/4(TM), (5.6) 
JM5-De(W) 

where now I^(TM) = ^(c2 • P)pi(TM). This coupling can be obtained by 
reduction on X of the eleven-dimensional bulk term (1.2). It is easy to see 
that 

i*(l4(TM?) = h(TW,N) - |pi(N), (5.7) 

where L is the inclusion map. Again there is a part of the anomaly involving 
gauge transformations of the normal bundle which is uncancelled by the 
inflow. It is interesting to note that the anomaly of the normal bundle arises 
only when the self-intersection is non-zero which is precisely the condition for 
having a Chern-Simons interaction in five dimensions. Thus the mechanism 
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for cancellation of the normal bundle anomaly should be the same as in M 
theory. 

The modified Chern-Simons coupling is 

-12L>7r / {0i - tri) A d{0i - en) A d{(fi - ai).    (5.8) 
JMs-De(W) 

S' cs — lim 
e—>-0 ./A/r-_rww) 

The anomaly in pure Ci gauge transformations is compensated by a phase 
factor coming from the coupling of Ci to the string worldsheet in a way 
completely analogous to the discussion of C3 antisymmetric tensor gauge 
transformations in [6]. 

The cancellation of the anomaly in gauge transformations of the nor- 
mal bundle follows as in the fivebrane case upon application of the relevant 
version of the Bott-Catteneo formula: 

/ e2Ae2Ae^=2 f   (pi(i\0)(1) (5.9) 
JSe(W2) JW2 

It would be interesting to explore whether there are implications of this 
discussion for the black hole entropy following the discussion in [19]. 
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Appendix A:  Volume form for all odd rank bundles 

The formulae used in the text for 64,63 etc. have natural extensions to the 
50(271 + 1) case. The global angular form can be given, as above, and as 
in [16] as a basic form on P x S2n. We find: 
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where 

e(Fy(Dy)2n-Vy = eav..a2n+lF
a^ ■ ■ ■ F^-^ (Dy)a^ ■ ■ ■ (Dy)a^ya2n+1 

(A.ll) 

and the normalization is fixed by noting that the volume form defined by 
d2n+ly = r2ndr^2n has ^ ^ = 27r^1/2/r(n + 1/2). 

Similarly, the Chern-Simons form for the general 5'0(2n+l) case is given 
by: 

4i-i(ei)-4»-i(©o) 

(A.12) 

2^'        i=o 

where 0* = t©i + (1 - t)©o, and Ft = d®t - ©? and Dt = (d - ©t). The 
equations simplify for the case that the normal bundle is topologically trivial. 
In that case there is a canonical choice of basepoint connection © = 0 for 
which we may take an antiderivative of the volume form of the sphere S2TI

. 

It is also worth noting that one can give e2n a Mathai-Quillen-like rep- 
resentation. We can introduce 2n + 1 orthonormal antighost zeromodes and 
write, up to a constant, the angular form for the odd rank case as: 

1 r 2n+l 
e2n{9)=2{2^ n^^p v      / a=l 

papbFab _ (£>y)ttpa + paya 
(A.13) 

The MQ representative of a rapid-decrease Thom class of odd-rank bundles 
is therefore: 

/2n+l    , a 

TT -^exp 
a=i v27r 

pVV"0 - (Dy)apa + pV ,   (A.14) 

where K,n is a normalization constant and </> is in the Weil algebra. The 
expression (A.14) closely resembles the Mathai-Quillen representative of the 
universal Thom form of even rank bundles, which is a starting point for the 
development of topological field theory (see, for example, [20]). It would be 
interesting to see if the above expressions could also be used to develop new 
topological field theories. 
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