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Abstract 

We consider the quantization of the midi-superspace associated with 
a class of spacetimes with toroidal isometrics, but without the compact 
spatial hypersurfaces of the well-known Gowdy models. By a symmetry 
reduction, the phase space for the system at the classical level can be 
identified with that of a free massless scalar field on a fixed background 
spacetime, thereby providing a simple route to quantization. We are 
then able to study certain non-perturbative features of the quantum 
gravitational system. In particular, we examine the quantum geometry 
of the asymptotic regions of the spacetimes involved and find some 
surprisingly large dispersive effects of quantum gravity. 

1    Introduction 

Any quantum theory of gravity must deal with two sets of difficulties inherent 
in classical general relativity. The first is the diffeomorphism invariance of 
the theory, from which it follows that there is generally no fixed spacetime 
geometry on which quantization can be performed. Indeed, the geometry 
itself is the dynamical quantity we study. The second set of difficulties 

arise because the field equations of general relativity are highly nonlinear 
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and difficult to solve. These features raise both technical and conceptual 
problems with the formulation of general relativity as a physical theory in the 
conventional sense. To understand the nature of these problems, and perhaps 
their solutions, it is useful to consider simpler models which also exhibit 
them. One class of such models can be found by requiring the full theory of 
general relativity to satisfy various symmetry properties, thereby reducing 
the number of possible spacetimes while leaving at least the diffeomorphism 
invariance essentially intact. 

The idea of using symmetry reduction to simplify the solution of Ein- 
stein's equations is nearly as old as general relativity itself. In fact, all the 
known solutions to date have been found under the assumption of one kind 
of symmetry or another. The application of such simplifications to the prob- 
lem of quantum gravity, however, seems to have begun with the so-called 
mini-superspace systems. These systems consist of general relativity, per- 
haps coupled with some matter fields, together with the requirement of so 
much symmetry that the number of independent degrees of freedom becomes 
finite. Since mini-superspace systems derive from general relativity, they do 
not depend on any fixed background spacetime structure. On the other 
hand, since they retain only a finite number of degrees of freedom, they do 
not capture the non-linear /jeM-theoretic complexity of a complete gravita- 
tional theory. To incorporate both of these features, we need to consider 
some less restrictive (i.e., less symmetric) models. 

One of the simplest examples of a symmetry reduced gravitational system 
arises from the dimensional reduction of 3+1-dimensional general relativity 
with respect to a (spacelike) hypersurface orthogonal Killing vector field. 
It is well known that such a system is mathematically equivalent to 2+1- 
dimensional general relativity coupled with a free, massless scalar field [1,2]. 
Although the degrees of freedom of 2+1-dimensional gravity are topologi- 
cal in nature and therefore finite in number, the reduced model still pos- 
sesses an infinite number of degrees of freedom which are characterized by 
the excitations of the scalar field. Unfortunately, despite the comparative 
simplicity of these dimensionally reduced systems, they remain somewhat 
difficult to study in practice. The problem lies in the question of global 
existence of solutions to the 2+1-dimensional field theory in the presence 
of gravity. To resolve this issue, it is sufficient to posit the existence of 
a second, independent, hypersurface orthogonal Killing field on the original 
3+1-dimensional spacetime. One can then show that the resulting symmetry 
of the 2+1-dimensional spacetime effectively decouples the dynamics of the 
scalar field from that of the gravitational field in the sense that one can solve 
for the scalar field without any reference to the physical spacetime geome- 
try. Rather, it becomes possible to solve for the scalar field on a fictitious, 
fixed background spacetime and then, afterwards, solve for the gravitational 
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degrees of freedom in terms of a given scalar field configuration. This proce- 
dure demonstrates explicitly the global existence of solutions to the reduced 
theory. Thus, the assumption of two Killing vectors removes most of the 
technical difficulty associated with the diffeomorphism invariance of general 
relativity while leaving its field-theoretic properties intact. One might hope, 
therefore, to gain some further insight into the nature of quantum gravity 
through the study of such systems. 

The most familiar examples of 3+1-dimensional spacetimes with a pair 
of independent hypersurface orthogonal Killing fields are those of Einstein- 
Rosen waves and the Gowdy models. The first of these describes asymp- 
totically flat1 metrics on R4 which are cylindrically symmetric. The Gowdy 
models describe 3+1-dimensional spacetimes with compact spatial topology 
— T3, S2 x S1 or S'3 — which have a toroidal symmetry group, (7(1) x 17(1). 
The quantization of these systems is not a new area of research. The quan- 
tum Einstein-Rosen model, for example, was described by Kuchaf [5] as early 
as 1971. More recently, both of these models have been analyzed [6,7] from a 
more rigorous standpoint, with careful attention paid to the definition of the 
phase space and to certain subtleties of the quantum theory. The present 
paper performs a similar analysis for a third class of spacetimes which has 
only recently been introduced by Schmidt [8]. The spacetimes in question 
have topology R2 x T2 and their Killing fields are assumed to have com- 
pact, toroidal orbits. Although the toroidal symmetry which the Schmidt 
model shares with the Gowdy models will give rise to certain similarities 
between the two, the global structures of the spacetimes involved are very 
different. In particular, the spacetimes considered here do not possess com- 
pact spatial hypersurfaces as in the Gowdy models [7]. Furthermore, they 
are also not asymptotically flat as in the Einstein-Rosen model [3]. In the 
previous cases, these characteristics are used in part to specify the phase 
space of the system and are therefore closely connected with the final the- 
ory. In our case, however, we will see that it is possible to specify the phase 
space completely without initially imposing such restrictions on the space- 
time geometry. Instead, the structure of the phase space will be motivated 
only by the spacetime description of the model and by certain analytical 
requirements. 

Since the reduced Schmidt model can be identified with a free scalar field 
on a fixed, 2+1-dimensional background spacetime, its quantization is rel- 
atively straightforward. Once that quantization is accomplished, however, 
one can express the original gravitational variables of the system in terms 

Note that due to the translational symmetry of the Einstein-Rosen spacetimes, they 
cannot be asymptotically flat in the usual 3+1-dimensional sense. Rather, the manifold 
of orbits of the translational Killing field is required to be flat in an appropriate 2+1- 
dimensional sense [2-4]. 
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of the quantum scalar field and thereby obtain a non-perturbative quantum 
gravitational theory. It is also possible to regard the reduced model of the 
scalar field as a quantum field theory in its own right by neglecting the cou- 
pling of matter to gravity. Therefore, by comparing these two theories, one 
might reasonably hope to gain some insight into how the introduction of 
gravity will affect our current understanding of quantum field theory. For 
example, it is often suggested that a quantum field theory which incorpo- 
rates gravity will come equipped with a natural cut-off at roughly the Planck 
scale which will alter the dynamics of field excitations with trans-Planckian 
energies. In this model, we will have a concrete example of a such a the- 
ory. We will see that, although there is no natural cut-off, there are some 
surprising quantum effects in the presence of high-frequency excitations of 
the scalar field. These effects suggest that the classical, metric structure of 
spacetime, which is a good low-energy approximation, breaks down at high 
field energies. The dynamics of the quantum system do remain well defined 
in that regime, but the notion of a classical spacetime metric — whether 
fixed or dynamical — becomes a poor approximation to the full theory. 

The outline of the paper is as follows. In the second section, we describe 
the Hamiltonian formulation of the Schmidt model. We pay special attention 
to the boundary conditions which we impose on the physical fields and to 
the deparameterization process that isolates the true degrees of freedom of 
the theory. This procedure yields an unconstrained reduced phase space for 
the system which can be identified with that of a free scalar field on a certain 
background spacetime. In the third section, we define a quantum analog of 
this reduced system using a standard Kahler quantization scheme. We are 
then able to use the model to examine certain geometrical questions and 
develop some intuition about quantum gravity in general. In the fourth and 
final section, we summarize the results of the previous two and raise some 
questions for future investigation. 

Lastly, we should explain some of our notational conventions. Through- 
out this paper, the speed of light will be taken to be unity: c = 1. However, 
since we will be interested in comparing situations in which different physical 
effects are taken into account, we will not do the same with the gravitational 
constant G, or with Planck's constant h. 

2    Hamiltonian Formulation 

2.1    The Midi-Superspace 

Let us begin with a precise definition of the system we will study. The space- 
times of the Schmidt model [8] are topologically R2 x T2 and are required 
to support a pair of independent spacelike, hypersurface-orthogonal Killing 
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vector fields. We will assume here that the orbits of the Killing fields are 
2-tori, so the manifold of orbits will be topologically R2. It then follows from 
these symmetry conditions that the metric gab may be written as a sum of 
two pieces 

49ab   =  29ab  +T°ab- i2'1) 

Here, aab is a flat metric with unit total volume on a toroidal orbit of the 
symmetry group, while 2gab is the metric on the 2-manifolds orthogonal 
to the orbits. We use r to denote the scale factor for the metric on the 
toroidal orbits in anticipation of its eventual role as the time parameter of 
the reduced theory. It is possible to use r as a time parameter since, as in 
the Gowdy model [9], the symmetry properties imply that r must have a 
timelike gradient. 

The analysis presented below begins by considering the quotients of these 
spacetimes by only one of their Killing fields. It was shown in [2] that, after a 
conformal rescaling of its metric by r, any one of these quotient manifolds will 
define a solution of 2+1-dimensional general relativity coupled with a zero 
rest-mass scalar field. We may therefore consider a quotient spacetime, M, 
which is topologically R2 x S4 and supports a (nowhere-vanishing) spacelike, 
hypersurface-orthogonal Killing field with closed orbits which we denote by 
<7a. To simplify the following discussion, we will work entirely within the 
context of this 2+1-dimensional theory. We will also assume, for convenience, 
that both the manifold structure and all the fields we consider here are 
smooth (C00). 

Due to the hypersurface-orthogonality of cra, we can write the 2+1- 
dimensional metric as 

9ab = Kb + r2 Va<7 Vfccr. (2.2) 

Here, /za5 := r2gab is the metric on the 2-manifolds orthogonal to aa, and a 
is the angular coordinate conjugate to aa (i.e., Vacr = r~2gaba

b). Because 
we assumed above that the Killing fields of the original 3+1-dimensional 
spacetimes had toroidal orbits, it follows that the space O of orbits of aa 

will be topologically R2 and will inherit a manifold structure from M. Fur- 
thermore, since aa is a spacelike Killing field, hab will give rise to a metric of 
signature (—, +) on O which we will also denote by hab. Finally, the function 
r and the scalar field ^ must be Lie-dragged by aa and will therefore also 
restrict to 0. 

To begin the Hamiltonian analysis of this system, we need to introduce a 
time structure. It is simplest to do this directly on the manifold O of orbits 
of aa. Thus, we choose a foliation of this 2-manifold by spacelike lines of 
constant t, and pick a transverse dynamical vector field ta = Nna + Nzza. 
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Here, na is the unit, future-pointing, timelike normal to the foliation, and 
za is a unit-vector field on each of its leaves. If we now pick a coordinate z 
on a single leaf of the foliation, we can carry it to all of the others using ta. 
In this way, we arrive at the usual dynamical decomposition of the metric 

hob = (-^2 + (Nz)2) Vat Vftt + 2NZ V{at Vh)z + e^ Vaz Vbz.        (2.3) 

The quantities iV, Nz and 7 are all functions of t and z. Similarly, the 
functions r and I/J can now be expressed as functions of the (£, z)-coordinates 
onO. 

The midi-superspace we have built therefore includes five real-valued 
functions on R2: the lapse TV, the (norm of the) shift AP, the metric functions 
7 and r, and the scalar field ip. These functions will be required to satisfy 
the Einstein-Klein-Gordon field equations2 

Gab = Tab    and   gabVaVb^ = 0, (2.4) 

where Gab is the Einstein tensor of g^ and Tab is the usual stress-energy 
tensor of the massless scalar field ip 

Tab = va</> v6v - hdab (gcd vcv v^) • (2.5) 

To make sense of these as differential equations on (TV, .AP,7,T, ip), we need 
only observe that we can now construct a global coordinate system (£, z, a) 
on M. 

To finish the construction of our midi-superspace, we still need to specify 
the boundary conditions for the fields it comprises. We are, however, in a 
somewhat unusual situation in this regard. The spacetimes we construct 
have two disjoint asymptotic regions in which we must specify the fall-off 
conditions for the fields. In particular, they do not have compact spacelike 
hyper surf aces. There is also no appropriate sense of asymptotic flatness 
in either of the asymptotic regions. We will therefore need to use some 
other criteria to decide what the asymptotic values of the fields should be 
and how quickly they should approach them. The criteria we will choose 
are very closely tied to the phase space formulation of the theory to be 
discussed in the next subsection. Nevertheless, for the sake of completeness, 
we will specify here the fall-off conditions for the fields introduced so far. As 
z —> ±00, we require 

7 -> 7±(t) + 0{z-1) N -> N±(t) + Oiz'1) 

T-^TiW + OO*-1)        Nz->0{z-1) (2.6) 

IIJ-+0{Z-
1
). 

2Note that as in [6] we have chosen the normalization of ip which is most consistent with 
the reduction from 3+1 to 2+1 dimensions. This accounts for the unusual normalization 
of Einstein's equation in eq. 2.4. Strictly speaking, the physical scalar field is given by 
$ := ip/VSnG, where G is Newton's constant in 2+1 dimensions. 
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The notation f±(t) indicates that the asymptotic values of / can take any 
value, and are not a priori fixed quantities. Also, the expression 0(z~n) 
denotes any function f(z, t) such that znf(z, £), zn+lf'(z, t) and zn+2f"{z, t) 
all have finite limits as z becomes infinite at fixed t. 

The fall-off conditions in eq. 2.6 for 7, r and iV are about as weak as 
possible; they are only required to approach their limits in a reasonably uni- 
form manner. The conditions on ^ and Nz are somewhat more restrictive 
in that they require these functions to approach specific limits, namely zero. 
In the case of ^, this fall-off condition implies that -0 is square integrable, 
and therefore that its Fourier transform will exist. This condition is usu- 
ally imposed, even in ordinary Minkowski-space field theories, in order to 
avoid infrared divergences in the quantum field. This restriction is therefore 
justifiable on physical grounds. The reason for the seemingly undesirable 
restriction on the asymptotic value of Nz can best be seen within the phase 
space formulation to be discussed below. Because of this, we will reserve its 
discussion for the next subsection. 

2.2    The Phase Space 

The usual Einstein-Hilbert action for 2+1-dimensional general relativity cou- 
pled to a scalar field may be written as 

(2.7) 

Here, R represents the scalar curvature of g^. The second integral is taken 
over the asymptotic boundary dM of the space time, and h and K are 
respectively the determinant of the induced metric and the trace of the 
extrinsic curvature on that surface. However, for the class of metrics we have 
chosen, it turns out that K vanishes identically on dM. We may therefore 
drop it from the action. From the phase space point of view, although the 
second term is usually needed to ensure the functional differentiability of the 
action, in this case the action is already differentiable in its absence. We will 
be able to see this below. 

To pass to the Hamiltonian formulation of this theory, we make use of 
the dynamical decomposition of the metric described in eq. 2.3. Then, by 
direct computation, we can find the scalar curvature of the metric 2.2 and 
use it to perform the Legendre transformation to momentum phase space. 
As a result, the action takes the standard form 

S=ltGJdt (JdZ [P^ + Prr + P^}-C[N}-CZ[N
Z]\,       (2.8) 
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where the functionals C[N] and CZ[N
Z} are given by 

C[N] :=  f dzN e^l2   2T" - ^T' - p7pT + § + r^ 

C4^Z] ■= [dzNz e-T/2 [p77' +pTT,+p^1 - 2py . 
(2.9) 

Note that, as one might have expected, the Hamiltonian of this system is 
written as a sum of constraints, and that the lapse and shift functions appear 
as Lagrange multipliers enforcing these constraints. 

The phase space F for our system is coordinatized by (7,P7,T,pr,^,p-0). 
To complete our description of F, we must specify the fall-off conditions on 
the canonical momenta. These conditions will be motivated in essence by 
the requirement that the symplectic structure 

ftft, fc] := Y^Q ] dz ^P-r 527 + SiPr 52T + Sipj, 62^ - [1 ** 2]),   (2.10) 

as well as the Hamiltonian vector fields of the constraint functionals be well 
defined. Furthermore, motivated by the spacetime treatment of this system 
in [8], we hope eventually to use r as the time parameter for the system. We 
therefore expect that its time derivative should not vanish anywhere, even 
in the asymptotic regions. It follows from this, together with the definition 
of the momenta in terms of the time derivatives of the fields, that p7 cannot 
vanish asymptotically. As stated in the previous subsection, however, we 
want to allow 7 to approach arbitrary (non-zero) limits in the asymptotic 
regions. The only way to ensure the convergence of the integral in eq. 2.10 
is to require that p7 approach fixed, values in the asymptotic regions. In 
this way, although p7 will be finite asymptotically, we can guarantee that its 
variation approaches zero rapidly enough to make the integral converge. We 
therefore take the fall-off conditions for both the fields and their momenta 
to be 

(2.11) 

The asymptotic value p7 -» — 1 is chosen here primarily to simplify the 
discussion of gauge fixing in the next subsection. 

Let us return now to the discussion of the fall-off of the shift function 
begun in the previous subsection. In phase space terms, CZ[N

Z] represents 
a class of functions on phase space which we require to be differentiable, 
and the fall-off condition on Nz amounts to a restriction on this class of 

7-*f±(t) + 0(z-1) p7 -* -1 + 0{z-2) 

T -> T±(t) + 0{Z-1) pT-+0(z-2) 

iP-^Oiz-1) Pi, -> Oiz'1) 

N -> N±{t) + 0(z-1) Nz ->• 0(z~l). 
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functions. The phase space functions corresponding to shifts which do not 
vanish asymptotically are not differentiable at any point of the phase space 
described above. To have them be differentiable, we would have to work 
on a different phase space wherein 7 would also approach fixed values in 
the asymptotic regions. Since the class of Nz which vanish asymptotically 
already separates the points of a spatial slice (and can therefore enforce 
the local constraint density), there is no need to use the larger class of Nz 

which are free to take arbitrary asymptotic values. Thus, our choice of 
fall-off conditions on the shift function is not only sufficient to enforce the 
constraint, but also preferable since the constraint functional is then defined 
on a phase space which can describe many more spacetimes. 

We now have a complete characterization of the phase space F and 
the constraint functionals C[N] and CZ[N

Z]. A straightforward calculation 
shows that these constraints are first class. We have seen in eq. 2.8 that the 
Hamiltonian for our system can be written as a sum of constraints and there- 
fore vanishes identically on the constraint surface. Note that this is not the 
case in the canonical treatment of the Einstein-Rosen model in [6]. In that 
model, the Hamiltonian was equal to the surface term in the gravitational 
action, eq. 2.7. In the present model, this surface term vanishes due to the 
boundary conditions 2.11 we have chosen for the fields. As a result, there is 
no canonical separation of gauge transformations and true dynamical evolu- 
tion in our system as there was in the Einstein-Rosen case. To accomplish 
this separation and isolate the true degrees of freedom of the theory, we are 
forced to break the space-time covariance in a more or less ad hoc way. We 
will do so in the following subsection by using intuition garnered from the 
spacetime picture to "deparameterize" the system [10]. 

2.3    Deparameterization 

There are a number of ways to approach the phase space reduction of a 
generally covariant system (e.g., frozen time formalism [11, and references 
therein], presymplectic mechanics [12], etc.). The simplest approach in the 
present case seems to be that of deparameterization [10]. The idea of the 
deparameterization procedure is that a generally covariant system must con- 
tain its own time parameter. There is a (highly non-unique!) procedure to 
isolate this time parameter and reduce the phase space to a proper symplec- 
tic manifold. 

We begin with a presymplectic space (F, 0) on which there are a num- 
ber of first class constraints. First, we seek to gauge-fix all but one of the 
first class constraints. The gauge-fixed constraint surface F will then be odd 
dimensional, and the pullback of the presymplectic form to this surface will 
have precisely one degenerate direction given by the Hamiltonian vector field 
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XQ of the remaining constraint. Second, we need to find a phase space func- 
tion T which satisfies Xc{T) — 1. The level surfaces of T will be everywhere 
transverse to Xc, so the pullback fi of fi to any one level surface F will be 
non-degenerate. It follows that (F, ft) is a true symplectic space. This is the 
phase space of the deparameterized theory. Note that, in the end, some of 
the observables we will want to consider may be time-dependent. Therefore, 
the observables of the reduced theory should be given by equivalence classes 
of functions which agree on F, rather than just on F. This asymmetry in the 
treatment of the constraints when defining observables seems to be where 
the most injustice is done to the original covariance of the system. On the 
other hand, the deparameterization procedure yields a concrete model in 
which it is possible to calculate physically interesting quantities. Obviously, 
this is a very strong argument in its favor. 

Let us apply these ideas to the phase space described in the previous 
subsection. In this particular situation, we already know from the spacetime 
formulation of the theory that we would like to identify r with the parameter 
time t of the system. Therefore, we choose the gauge fixing conditions to be 

r1 = 0    and   p1 + l = 0. (2.12) 

The first of these conditions guarantees that the prospective time parameter 
is constant on a spatial slice of the dynamical foliation of spacetime. The 
second essentially does the same for f. Note that the second condition is 
actually equivalent to p' = 0 since we required p7 to approach —1 at its 
asymptotic limits. However, we made no such requirement of r. Thus, 
although r is constant on the spatial slice, its value may still vary in time. 
In other words, the infinite number of degrees of freedom represented by 
T(Z) have been reduced to just one, whereas those represented by p7 have 
been eliminated altogether. 

To check that eqs. 2.12 are admissible gauge fixing conditions for use in 
the deparameterization program, we need to compute their Poisson brackets 
with the constraints: 

{T',C[N]} « \Ne-^2]' {T',CZ[N
Z

]} « 0 
,    (2.13) 

{p7 + l,C[i\r]}«0 {p7 + l,C2[iVz]} N'e-it2 

Since the matrix so defined is invertible, the gauge-fixing conditions are 
indeed admissible except when 

N = NQe^
2    or   Nz = iV0

ze^2, (2.14) 

where iVo and -/VQ are arbitrary constants. Note, however, that the second 
possibility here is ruled out by the fall-off conditions imposed on Nz. Thus, 
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as required, there is exactly one first class constraint function C (up to 
scaling) which is not solved by these gauge fixing conditions. Observe that 
setting NQ = 1 will give XC(T) = 1. This choice will therefore allow us to 
identify r with the parameter time t of the system as expected. 

Let us now turn to the characterization of the phase space of the depa- 
rameterized theory. To describe the surface F, we must first solve the set 
of second class constraints formed by the first class constraints, eqs. 2.9, to- 
gether with their gauge-fixing conditions, eqs. 2.12. When we then identify 
r with the parameter time t of the theory, we find3 

7 =  /     dz'prpip'       p1 = -1 
«/-oo (2.15) 

These calculations show that F is coordinatized by the pair (Vsp^)- All the 
other dynamical variables of the original system are redundant and should 
now be treated as observables of the reduced system. Thus, we see that 
all the true degrees of freedom of our theory now reside in the scalar field 
and its conjugate momentum. This agrees with the usual notion that in 
2-fl-dimensional gravity, all the local degrees of freedom should reside in 
the matter fields. 

To finish the construction of the deparameterized phase space, we also 
have to specify the symplectic structure and the Hamiltonian function. Both 
of these can be found by restricting the action functional to F. We find the 
reduced action to be 

S = dt (      dz   p^   -      dz pi+m/2 
(2.16) 

The first term of this action gives us a canonical 1-form on F whose exterior 
derivative is the reduced symplectic structure f2. Clearly, we will just find 
that ip and p^ are canonical coordinates on the reduced phase space. The 
second term in the action gives the Hamiltonian for the deparameterized 
theory. Remarkably, these agree exactly with the symplectic structure and 
Hamiltonian of a scalar field theory on a fixed background spacetime whose 
metric is given by 

Lb = - Vat Vftt + Vaz Vbz + t2 Vacj V6(7. (2.17) 

3Note that we have made an additional choice in the expression for 7. The solution 
of the constraint density of C[N} actually only implies that 7' = p^ip'. To recover 7, we 
have to integrate this equality, leading to an undetermined constant of integration. This 
constant can be used to fix the value of 7 at any one point of the spatial slice to be any 
value we like. We have chosen to take 7 -> 0 as z -t -00. This choice can be thought of 
as the completion of the gauge fixing procedure outlined above. 
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This metric is again defined on a 3-manifold with topology R2 x S1. In 
fact, this background spacetime corresponds to the point I/J = p^ — 0 of the 
reduced phase space. 

The identification of the reduced phase space for our system with that 
of a scalar field on a fixed background is very important for the quanti- 
zation which we will describe in the following section. This is due to the 
relative simplicity of the later description. Although other descriptions of 
the reduced phase space are certainly possible, they do not offer as simple 
a quantization scheme as the scalar field. For this reason, it is useful to 
restrict our attention to the scalar field theory to study the quantization of 
our system. We can then use the classical expressions derived above to find 
quantum observables describing geometric quantities of interest. 

3    Quantum Theory 

3.1    Preliminaries 

In the previous section, we were primarily concerned with the geometrical 
significance of the scalar field in our theory. We therefore focussed on the 
dimensionless quantity i/;. The approach we will take to quantization, how- 
ever, is based on the fully reduced phase space described above — that of 
a free scalar field. Therefore, in this section, it is convenient to rescale the 
field so that it acquires the proper dimension for a physical scalar field in 
2+1 dimensions. Accordingly, we will now switch our attention to the quan- 
tity (f) := ip/VSirG. The natural choice for the momentum conjugate to </> 
is p^ := p^/y/32nG. Using these variables, we can reexpress the reduced 
action of eq. 2.16 as 

S = f dt ( I dz [p^ </>] - f dz I \t-lpl +1^2] \ . (3.1) 

This is just the usual action for a free scalar field on the background space- 
time given by eq. 2.17. Thus, the phase space Y has the structure of a 
real vector space and is coordinatized by the canonical pair (</>,p0). Note 
that we have changed notation slightly from the previous section: we have 
dropped the bars over both the (reduced) action and the (reduced) phase 
space. This is done to emphasize that the scalar filed theory is now regarded 
as fundamental. The other geometrical quantities discussed above will now 
be treated as secondary, derived observables. 

The quantization of scalar fields on fixed background spacetimes is by 
now very well understood. In the present discussion, we will follow the 
standard constructions laid out, for example, in [13]. This procedure yields 
the Hilbert space of the quantum field theory by building a Fock space over 
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a single-particle Hilbert space derived from the space S of solutions of the 
classical equations of motion. We should therefore begin with the description 
of this space. 

The equations of motion for the field theory follow easily from the action 
3.1. They are 

r ^ = t-lpA   ^  £ + t-i$-$,, = o. (3.2) 
I> = ^" j 

Here, and below, the quantity $ = $(£, z) denotes a solution to the equations 
of motion, while (j) = (f)(z) denotes the value of the field on a given spatial 
slice. Note that, as expected for a free field theory, the equations of motion 
are linear. It follows that the space S of their real solutions will be a real 
vector space. We may therefore expand the most general real-valued solution 
in terms of certain fundamental solutions as 

*(t,z) = r 4= \A(k)fi2)(t,z) + A(k)fl1Ht,zj\ . (3.3) 

with the fundamental solutions given by 

fll\t,z):=^HP(\k\t)e^, (3.4) 

where HQ
2J

(') denotes the zeroth-order Hankel function of type 1 or 2. The 
wave profile A(k) we have introduced here will generically be complex, and 
can therefore be viewed as a complex coordinate on the real vector space S. 
It will also have to satisfy come requirements related to the fall-off conditions 
on (j) and p^. By allowing some modifications to the fall-off conditions given 
previously in eq. 2.11, we can make these requirements precise. In particular, 
if we require </> and p^ to be Schwartz functions (i.e., they fall off at infinity 
faster than any polynomial), we will find the corresponding wave profiles 
are also Schwartz. This change in fall-off conditions will not change any 
the results to follow owing to the completion of S to a Hilbert space which 
will take place during the quantization. The point of all this is that we can 
concretely identify the solution space S with the space of Schwartz functions 
of a single variable. 

There is a natural map from the space S to the phase space F of our 
system. One defines this map by identifying a solution of the equations of 
motion with its initial data at some fixed initial time to. It is not difficult 
to show that this map is linear, invertible and (bi-)continuous when the 
fall-off conditions described above are applied. We can therefore use it to 
induce a symplectic structure on S using the given one on F. This symplectic 
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structure can be written in terms of the wave profiles A(k) as 

/oo r   

dk   A^Azik) - A^Azik)  . (3.5) 
-OO 

We have chosen to write the symplectic structure as an antisymmetric bilin- 
ear form on S rather than as a differential 2-form. There is no problem with 
this since S is linear and can therefore be identified with its tangent space. 
Moreover, the quantization procedure requires the symplectic structure be 
given as a bilinear form, rather than as a differential form, which explains 
why the procedure would not work for non-free field theories. 

3.2    Quantization 

The key step in the quantization of a free field theory is to pick a Kahler 
structure on the space S of solutions to its classical equations of motion. 
That is, we need to choose a complex structure J : S —> S such that 

fjL{$u$2):=-%n{$l,Jo$2) (3.6) 

is a positive-definite real inner product on S. There are always a number 
of possible ways to do this, and the various ways do not necessarily lead 
to equivalent quantum theories. In our case, however, we already have a 
complex coordinate A(k) on 5, so there is a natural candidate for such a 
structure given by J : A(k) •-> iA(k). This is indeed an acceptable choice 
since it yields the inner product 

/oo r   -, 

dk   Ai(fc)A2(fc) + Ai(fc)A2(fc)  , (3.7) 
-OO L 

which is manifestly real and positive-definite. 
With the choice of a complex structure, it becomes possible to view S as 

a complex vector space. Moreover, we can define a complex inner product 
on S by 

($1,$2)1:=i/i($lj$2)-^0($1,$2) 
,   f30        (3.8) 

^/T1 /     dkAi{k)A2{k), K    ' 
J —oo 

where the factors of H are included at this point to render the inner product 
of two vectors dimensionless. This inner product will be Hermitian in the 
complex structure defined by J, and is again manifestly positive-definite. 
Thus, we have endowed S with the structure of a complex pre-Hilbert space. 
The Cauchy completion of this space in the inner product norm gives a 
complex Hilbert space Hi which, due to the simple form of the inner product 
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(•,■)]_, can immediately be identified with L2(R). This is the single-particle 
state space for the quantum theory. The Hilbert space of the field theory is 
then given by the symmetric Fock space H := Fs C^i) built on Hi. 

To complete the quantization of the theory, we have to introduce a set 
of operators on H corresponding to a "complete" set of classical observables 
and specify a Hamiltonian operator. It is simplest to do the first of these in 
the form of the quantum field itself 

SM^VhJ^^L [/fM&fc+yfft*)*!]>      (3-9) 

which we have expressed using the creation and annihilation operators pro- 
vided by the Fock structure of the Hilbert space. As usual, this is actually 
an operator-valued distribution. The true observables of the theory are the 
smeared field operators (/)(t\g] and p^fag] gotten by integrating this distri- 
bution (and the one corresponding to its canonical momentum) against a 
suitably well-behaved function g(z). One can check that the smeared field 
operators do actually obey the proper canonical commutation relations. 

The classical Hamiltonian of the system is given by the second term in 
the action 3.1. It can be promoted to a quantum observable on H which will 
take the standard form 

/oo 

dkh\k\alak. (3.10) 
-OO 

We have chosen the conventional normal-ordering of the right side of this 
expression to subtract the (infinite) ground state energy and make H a well- 
defined operator on the Hilbert space H. It does not require any further 
regularization. 

We conclude this discussion with a remark. As we noted above, there 
is no canonical choice of complex structure on S and different choices can 
lead to inequivalent quantum theories. In the case of Minkowskian quantum 
field theories, the complex structure is fixed by the requirement of Poincare 
invariance. In the present case, however, we have only a rotational invari- 
ance which unfortunately is insufficient to determine the complex structure 
uniquely. As a result, one should note that the quantization we have per- 
formed above is not unique and there are other realizations of the quantum 
system. Nevertheless, the complex structure we have chosen does have some 
nice properties which justify its use, even though they do not single it out. 
From the geometric point of view, the only interesting classical observable of 
the system is the metric function 7. This function is quadratic on the phase 
space of the system but unfortunately is not bounded from below. The 
complex structure we have used here does commute with the infinitesimal 
canonical transformation generated by 7 on the classical phase space. Had 
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7 been bounded from below, this commutativity would have been sufficient 
to choose the complex structure uniquely [14]. As it stands, this fact only 
shows that our choice is one of a class of complex structures which are well 
adapted to the observables of interest for the system. From a practical point 
of view, however, this choice of complex structure has the property that it 
does allow us to complete the quantization of the model exactly. 

3.3    Quantum Geometry 

Since in the previous two subsections we have constructed an exact quan- 
tum theory of a gravitational system, we can now ask whether there are new 
physical insights to be drawn from the model. In this subsection, we will 
see that there are indeed some lessons we can learn. In [15], it was shown 
that surprisingly large quantum dispersions in the Coulombic modes of the 
spacetime metric would result from the presence of high-frequency excita- 
tions in the quantum Einstein-Rosen model of [6]. The Schmidt model is 
similar to the Einstein-Rosen model in certain respects, but has a decidedly 
different overall structure. It is therefore natural to ask whether these large 
quantum effects persist in this model. As we will see below, they do. This 
will constitute a first check on the robustness of the dispersion results. 

The content of the spacetime geometry in the Schmidt model is encoded 
in the 2-|-l-dimensional metric Qat,. In the classical theory, after the gauge- 
fixing conditions have been applied, the metric of eqs. 2.2 and 2.3 becomes 

Qab = e7^ (-Vat Vfct + Vaz Vbz) + t2Vaa V6a, (3.11) 

where j(t:z) is defined in terms of the scalar field by eq. 2.15. The only 
nontrivial component of this metric is clearly gzz = —gu — e1^^, and we 
will accordingly focus our attention here on the quantum analog e^z^ of 
this observable. 

Let us begin by describing the operator 7(t, z) itself. We can use the 
classical expression of eq. 2.15 to express this in terms of the creation and 
annihilation operators as 

7(4, z) = ISnGh / dkdt  A+(t, z\ k, I) aja{ + A+(t, z] fe, £) akaz + 

A_(t, z] k,I) aja/ + A_(i,*;M)a|aib     (3-12) 

where the Green's functions A±(£, z\k,l) are given by 

A±(M;M) = ^HPm^H^mt) ['  dz'e^*'.        (3.13) 
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Note that, as with the Hamiltonian above, we have chosen to normal-order 
the right hand side of eq. 3.12. This is done both to regularize the operator 
and to preserve the classical relationship between 7 and the field momentum. 
Also note that the Green's functions A±(t,z]k,£) which we use here are 
actually distributional due to the last term in eq. 3.13 (which is the Fourier 
transform of a step function). Therefore, eq. 3.12 does not define an operator 
on the Hilbert space %, but rather another operator-valued distribution. To 
make sense of this as a proper observable, one must define an appropriate 
class of smearing functions to mitigate the singular nature of the integrals 
involved. Although this is certainly possible in principle, there are significant 
technical problems with the procedure; we will concentrate instead on the 
structure of the asymptotic metric operator. This is both technically simpler 
and physically more interesting. 

All of the spacetimes we consider in this paper have two distinct asymp- 
totic regions. In each of these regions, the expression for the operator 7 of 
eq. 3.12 simplifies considerably. In the limit as z —> —00, we find that the 
asymptotic form of 7 is identically zero. Therefore, the metric in this region 
will simply agree with the background metric introduced in eq. 2.17. In par- 
ticular, it is a "c-number;" it has no dispersion. This is really a result only of 
the choices we made in the gauge fixing procedure. Recall that, classically, 
we were able to fix the value of 7 to be any given quantity at any particular 
point Zj and that we used this freedom to fix 7 -> 0 as z —> —00. The quan- 
tum mechanical theory, then, is based on a space where other asymptotic 
values of 7 simply do not occur. In light of these facts, the above result about 
the metric operator 7_ is not surprising. It is also not very interesting. 

In the opposite asymptotic limit, as z —t +00, the distributional inte- 
grals in eq. 3.13 converge, in an appropriate sense, to delta functions. As a 
consequence, the asymptotic form of 7 becomes 

7+ := lim j(t,z) = —IGTTG / dkhka\ak- (3.14) 
z->oo J K 

Unlike the generic expression for 7(2, z) given in eq. 3.12, this expression 
does define a proper self-adjoint operator on H. Thus, we may define and 
study the geometrical operator g+z = e^+. 

To illustrate the quantum gravitational effects in the system, we wish to 
concentrate on a class of semi-classical states which approximate classical 
spacetimes. Luckily, there already exists a well-known class of semi-classical 
states which approximate classical states of the scalar field, namely the co- 
herent states 

lA):==e-\\A\\l/2e^fdkA(k)al\0h (3^ 

The norm H'l^ which appears here is that associated with the one-particle 
Hilbert space inner product of eq. 3.8, and |0) denotes the (unique) ground 
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state of the theory. As usual, each of these states is peaked at the classical 
configuration of the scalar field given by the wave profile A(k) and minimizes 
the uncertainty in the value of the field. With the normalization factor given 
in eq. 3.15, this set of coherent states also reflects both the classical and 
quantum structure of the system: 

{Al\A2) = e-^i-^||?/2 e-in(AuA2)/2hm ^w) 

The classical system is reflected in the phase of the inner product which in- 
volves the symplectic structure of eq. 3.5. On the other hand, the amplitude 
of the inner product is given in terms of the single-particle Hilbert space 
norm. Although it has been shown [16] that there are other classes of semi- 
classical states which minimize the combined uncertainty in the field and the 
metric, we will continue to use these here because of the close integration 
with the reduced classical system. 

The results on quantum geometry we will obtain shortly all follow from 
a simple proposition. Suppose we have an observable O = Jdkf(k) a^a^ 
which can be written as a sum of contributions from each particle present 
in the quantum state. The action of the exponential of this operator on a 
coherent state of the particle system is then given by 

e6 \A) = exp (^ fdk [e2f^ - l] \A{k)A \efA^ , (3.17) 

where \e^A) denotes the coherent state associated with the wave profile 
A^k) = e^k^A(k). Note that since, as we have done above, the wave profiles 
A(k) are typically taken to be Schwartz functions, \e^A) is not necessarily 
a well-defined coherent state. If / diverges faster than logarithmically at 
infinity, the function e^A will not necessarily be Schwartz, and the opera- 
tor e0 may not be defined. This is not too surprising since the operator 
in question is certainly unbounded and we expect therefore that we should 
have to restrict the domain of definition of the operator. Fortunately, there 
is a natural domain which we can always choose: the coherent states corre- 
sponding to wave profiles of compact support. It is not difficult to show that 
these can approximate the Schwartz function coherent states to arbitrarily 
close precision. Since the later are already (over-)complete, this shows the 
exponential operator can be densely defined. Thus, although the expression 
may initially appear suspicious, we should not be too concerned with the 
functional analytic subtleties of eq. 3.17. 

Since, according to eq. 3.14, 74. is of the required form, we can apply the 
above result to the study of the metric operator gfz. The expectation value 
of the metric operator and the relative uncertainty in its measurement may 
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be expressed in closed form as 

(g+) = exp (V1 I dk [e-i6*GA* - l] \A(k)\2^ (3.18) 

\2 

^f = exp f^"1   fdk [e-16-^ - l]2 ^(A;)!2) - 1.      (3.19) 

Meanwhile, the classical expression for the asymptotic metric is 

G^dassical = eXP (-IteGjdkk \A(k)\^ . (3.20) 

These expressions clearly show that there are non-trivial quantum effects 
present in our system, even when the scalar field is sharply peaked at a 
classical configuration. Since we now have a canonical frequency scale given 
by the Planck value 1/Gh, we can gain some qualitative understanding of 
these effects by examining some of the limiting behavior of these expressions. 
In each case, we will consider a wave profile A(k) which is sharply peaked 
at a certain characteristic wave number ho. There are three distinct regimes 
we will discuss. In the discussion, it is useful to define N := ||-A||i, which 
may be interpreted as the expected total number of particles in the coherent 
state associated with the wave profile A(k). 

1. Low frequency (\Ghko\ ^ 1): In this case, we can simply expand the 
various expressions in powers of Ghko to find the expectation value of 
the metric operator and its relative uncertainty. The results are: 

<&> « (^)classical [1 + f (ItoGhko)2 + ■■■] 

(*9},)*„„«„m.^2  , (3-21) 

(9. ZZ I 

N{16iTGhkor + 

This shows that in the low frequency limit, both the deviation of the 
quantum metric from the classical and its relative uncertainty are sec- 
ond order in the expansion parameter4. Thus, in this regime, the 
quantum system closely mimics the classical one. 

High frequency, forward direction (Ghko 2> 1): This situation occurs 
when the quantum state describes a number of high-frequency particles 

4Note that we should also have N(Ghko)2 -C 1 to get these results. As a result, the 
number of particles expected in the quantum state cannot be too large. This limitation is 
somewhat surprising since the coherent states of the scalar field approximate their classical 
counterparts only when the expected particle number is large: N ^> 1. However, since the 
characteristic frequency of the particles, Ghko, is already very small, there is presumably 
some intermediate range wherein both approximations are reasonably accurate. 
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moving toward z = +00. In this limit, the expectation value of the 
metric and its relative uncertainty become 

{gfz)^e-N    and    {-^- » eN - 1 (3.22) 
{glz) 

Meanwhile, the classical metric in this limit becomes e-^
N^GhkQ ^ ^-^^ 

is small, even when compared with the quantum expectation value. 
Furthermore, when there are more than a couple particles present, the 
uncertainty in the metric can be quite large compared to its expectation 
value. 

3. High frequency, backward direction (—Ghko 3> 1): This situation oc- 
curs when the quantum state describes a number of particles moving 
away from z — +00. In this limit, we can again find approximate 
values for the metric and its relative uncertainty 

(^)«exp(iVe-16^^0)     and    ^9*z\   re exp (jVe"32^0) . 

(3.23) 

The classical metric in this case is again approximately e_16iV7rG/i/i:o. 
This, too, is small compared to the quantum expectation value. In 
this case, even when there is only one particle expected in the quan- 
tum state, the uncertainty in the metric can be huge compared to its 
expected value. 

These results seem to agree, on the whole, with the results found in [15] 
regarding the cylindrical wave case. There do exist semi-classical states 
within our system, but they belong to a very restrictive class. Specifically, 
states with too few or too many particles, as well as any state which con- 
tains particles of Planckian or trans-Planckian frequencies do not occur in 
the classical limit of the quantum theory. All of these states are narrowly 
peaked around a particular classical field configuration. However, in the 
case of the excluded states, not only is the uncertainty in the metric large, 
but the expected value of the metric is wildly different from the classical 
approximation. It has been shown in [16] that the uncertainty in the metric 
measurement is partially a consequence of the particular family of semi- 
classical states we used in our analysis; a different choice could decrease this 
uncertainty at the expense of introducing a larger uncertainty in the value 
of the field. However, even if some other set of states were chosen, the cor- 
responding classical field configurations would remain poor approximations 
to the solutions of the full, interacting quantum theory. 
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4    Discussion 

It has been known for some time that general relativity, under the assump- 
tion of two hypersurface-orthogonal Killing fields, can be described in terms 
of a free scalar field theory. In light of this fact, the equations governing the 
Schmidt model are not unexpected. However, in the phase space formulation 
and quantization, there are some unusual aspects of the construction which 
merit further discussion. 

At the classical level, we considered a class of spacetimes with the some- 
what unusual property that they are neither spatially compact nor asymptot- 
ically flat. These properties, one of which is usually assumed for one reason 
or another, often play a decisive role in formulating the canonical theory for 
the system under consideration. Nevertheless, we saw that it is possible to 
define a proper phase space for the Schmidt model by requiring only the 
convergence of the symplectic structure 2.10 and the differentiability of the 
constraint functions 2.9. However, the resulting classical system does not 
have any natural time structure and its Hamiltonian vanishes weakly. To 
isolate its true, independent degrees of freedom, we therefore found it nec- 
essary to "deparameterize" the theory. Fortunately, since we had previous 
knowledge of the spacetime treatment of the model, we had a natural candi- 
date for the time parameter of the reduced system. Furthermore, after the 
reduction, the system took the expected form of a free scalar field on a fixed 
background. This was the key fact which enabled us to quantize the theory 
in a relatively straightforward way. 

In the quantum theory, we saw that there is a natural class of semi- 
classical states of the quantum system which are built from its classical 
solutions. These states can be identified with the usual coherent states of the 
scalar field theory which describes the reduced model. As was pointed out in 
[16], there are ways of realizing other such sets of semi-classical states within 
the quantum theory. However, the set which we have chosen is particularly 
well adapted to a discussion of the modifications to the fixed-background 
scalar field theory which result from coupling it to a dynamical gravitational 
field. This is because these semi-classical states remain sharply peaked at a 
classical scalar field configuration even in the presence of the gravitational 
field. The other possible sets of coherent states do minimize a combination 
of the metric and scalar field uncertainties at the expense of introducing a 
larger dispersion in the value of the scalar field by itself. 

Using the exact quantum model we had constructed, we were able to 
find some unexpectedly large dispersions in the (asymptotic) metric caused 
by the presence of high-frequency scalar field excitations. Surprisingly, the 
dispersions are independent of where the particle is located. Even a single 
high-frequency particle located at any point of space can cause very large 
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dispersions in the asymptotic metric. This result can be interpreted at a 
couple of levels. 

Firstly, one can consider the implications for quantum field theory in 
general. It is often hypothesized that the introduction of gravity will intro- 
duce a natural cut-off in quantum field theory that will obviate the need for 
renormalization. In our model, no such cut-off has emerged. However, the 
dispersions in the metric expectation suggest that a classical spacetime ge- 
ometry simply fails to be a good approximation to the quantum state when 
high-frequency particles are present5. The coupling of the matter field to 
the gravitational field seems to cause the classical spacetime structure to 
break down in this regime. Conversely, the absence of metric dispersions 
when no high-frequency particles are present suggests that fiat spacetime 
quantum field theory is a reasonable approximation to the true situation in 
that regime. These facts lend some concrete credence to the notion that 
quantum field theory is a low-energy limit of a larger theory which includes 
gravity. As such, infinities can and do arise when this limiting theory is 
pushed beyond its domain of validity. 

The Schmidt model also provides an infinite number of examples of exact 
solutions to semi-classical gravity. Semi-classical gravity is the theory of 
quantum fields propagating on a dynamical classical spacetime. A state of 
this theory must therefore specify a Lorentzian manifold (M, g^), a quantum 
field (f) on that manifold, and a state l^) of the quantum field which satisfy 
the dynamical equation 

Gab = STT (Tab^ . (4.1) 

In our model, the expectation value of the stress-energy operator in any 
coherent state is exactly equal to its value in the associated classical state. 
Consequently, eq. 4.1 will be satisfied for any coherent state by taking the 
metric to be that of the corresponding classical solution. However, as was 
pointed out in [15], the states of semi-classical gravity which include high- 
frequency particles should not be taken seriously. Again, these solutions do 
not approximate the full quantum gravitational theory at all closely. 

Finally, we should discuss the limitations of this model.   At a techni- 
cal level, we have described only one possible quantization of the Schmidt 

5There is another possible interpretation of this result: that the dispersions signal the 
breakdown of the rotational symmetry of the configuration rather than of the spacetime 
picture itself. That is, that symmetric high-frequency excitations of the fields are unstable 
and rapidly become asymmetric when quantum effects are taken into account. By itself, 
however, this would be an unforeseen, genuinely quantum mechanical effect. There are 
efforts under way [17] to examine this question by studying quantum gravity effects in 
configurations which are asymmetrically perturbed from the symmetric states described 
here. 
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model; it is not unique. There are two points at which one could make 
different choices to quantize the system. First, as was discussed above, it 
is possible to pick a different complex structure to use in the quantization 
procedure. Although different choices can lead to inequivalent quantum the- 
ories, this ambiguity is fairly tame for our purposes since the large quantum 
gravity effects which we have found in this paper will persist in alternate 
quantizations. Second, and more importantly, there are ambiguities in the 
gauge fixing procedure already at the classical level. To make sense of our 
theory for quantization, we had to isolate its true degrees of freedom using 
a deparameterization procedure. In this case, it is not clear that alternate 
gauge fixings would reproduce the qualitative content of our results. How- 
ever, from a practical point of view, one should note that the quantization 
procedure given our choices can be completed and that we can recover con- 
crete results from the theory. In general, this would probably not be the 
case. 

At a more fundamental level, although we have caught some glimpses of 
quantum geometry in this model, the spacetimes involved are only 2+1- 
dimensional. The physically interesting case, of course, is that of 3+1- 
dimensional gravity, and there are fundamental differences between the two. 
Most notably, the 2+1-dimensional spacetimes do not allow the possibility 
of black holes (without permitting a non-zero cosmological constant). The 
present system models a different sector of the 3+1-dimensional theory: the 
radiative modes of the gravitational field which are not sufficiently strong 
to cause gravitational collapse. The simplest 3+1-dimensional analog of the 
systems discussed here and in [6, 7] describes the collapse of a spherically 
symmetric scalar field in a Schwarzschild spacetime. It would be quite illu- 
minating to understand the quantization of that model. There are at least 
two reasons to expect this. First, it incorporates the black hole sector of 
gravity which the models considered until now have ignored. Second, it is 
a truly 3+1-dimensional system, so the radiative modes of the gravitational 
field are expected to die off asymptotically as the inverse of the radius rather 
than logarithmically. Consequently, the details of the dispersion effects due 
to high-frequency excitations may differ slightly from those described here. 
Nevertheless, since all of these models describe scalar fields propagating on 
spacetimes on which the gravitational field does not have its own local de- 
grees of freedom, it is reasonable to hope that the calculations in the spher- 
ically symmetric case can be completed using intuition garnered from the 
lower-dimensional models. 
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