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Abstract 

This is the second part of the paper (the first part is published in 
Journal of AMS 9 1135). In the first part, we defined for every modu- 
lar tensor category (MTC) inner products on the spaces of morphisms 
and proved that the inner product on the space Hom(0 X2; 0 A"*, U) is 
modular invariant. Also, we have shown that in the case of the MTC 
arising from the representations of the quantum group UQsin at roots 
of unity and U being a symmetric power of the fundamental represen- 
tation, this inner product coincides with so-called Macdonald's inner 
product on symmetric polynomials. In this paper, we apply the same 
construction to the MTC coming from the integrable representations 
of affine Lie algebras. In this case our construction immediately gives 
a hermitian form on the spaces of conformal blocks, and this form is 
modular invariant (Warning: we cannot prove that it is positive defi- 
nite). We show that this form can be rewritten in terms of asymptotics 
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of KZ equations, and calculate it for 5/2, in which case the formula is 
a natural affine analogue of Macdonald's inner product identities. We 
also formulate as a conjecture similar formula for sln. 

Introduction 

This is the second part of the paper [1], and we freely use the notations 
from there. In [1], we defined for every modular tensor category (MTC) 
inner products on the spaces of morphisms and proved that the inner prod- 
uct on the space Hom(0X2 ® X*, U) is modular invariant. Also, we have 
shown that in the case of the MTC arising from the representations of the 
quantum group Uqsln at roots of unity and U being a symmetric power of 
the fundamental representation, the action of modular group on the space 
of intertwiners Hom(0X; ® X*,U) can be written explicitly in terms of 
Macdonald's polynomials at roots of unity. 

In this paper, we apply the same construction to the MTC O™1 coming 
from the integrable representations of affine Lie algebras or, equivalently, 
from Wess-Zumino-Witten model of conformal field theory. In Sections 8, 9 
we briefly recall the construction of this category, first suggested by Moore 
and Seiberg (see [2,3]) and later refined by Kazhdan and Lusztig [4-7] and 
Finkelberg [8]. In particular, spaces of morphisms in this category are the 
spaces of conformal blocks of the WZW model. We prove in Section 10 that 
O1™* is hermitian, i.e. can be endowed with a suitable complex conjugation. 
Thus, the general theory developed in Section 2 of [1] gives us an nondegen- 
rate inner product on the spaces of conformal blocks, and so defined inner 
product is modular invariant. We show in Section 11 that this definition 
of the inner product is constructive: it can be rewritten so that it only in- 
volves Drinfeld associator, or, equivalently, asymptotics of solutions of the 
Knizhnik-Zamolodchikov equations. 

We conjecture that this inner product is positive definite. In the BI2 
case, it can be proved using explicit formulas (see below); in general, this 
seems to be a very hard problem. Our motivation for this conjecture comes 
from physics, since the spaces of conformal blocks are state spaces for the 
Chern-Simons theory and thus must carry a positive definite inner product. 

Since there are integral formulas for the solutions of the KZ equations 
( [9]), this shows that the inner product on the space of conformal blocks can 
be written in terms of asymptotics of certain integrals. In the case g = 5(2 
these asymptotics can be calculated (see [10]), using Seiberg integral, and 
the answer is given by certain products of F-functions. Thus, in this case we 
can write explicit formulas for the inner product on the space of conformal 
blocks; we do it in Section 12. These expressions are closely related with 
those suggested by Gawedzki et al.   ( [11, 12]), though their approach is 
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completely different from ours. There is little doubt that the same correlation 
holds for arbitrary Lie algebras. 

The norms of intertwiners for 5I2 are given by a formula which is very 
much similar to the Macdonald inner product formula, which gives the norms 
of intertwining operators for Uq$l2 (see [1]). Motivated by this, we formulate 
a conjecture about the norms of the intertwining operators (in some special 
cases, which are related with Macdonald's theory) for sln. 

It was proved recently in [4-8] (though this statement was widely believed 
long before) that as a braided category O™* is equivalent to the reduced 
category of representations of UqQ with q being a root of unity, which was 
discussed in the first part of this paper. Since in both categories the action 
of modular group is written in terms of braiding, they are also equivalent as 
modular tensor categories. In particular, this implies that if we let g = sln 

and consider the space of conformal blocks on the torus with one puncture, 
to which a symmetric power of fundamental representation is assigned, then 
in some basis the action of the modular group on this space is given by 
special values of Macdonald's polynomials. Thus, for Q = 5(2 the action of 
modular group on any space of conformal blocks on a torus can be written in 
some basis in terms of g-ultraspherical polynomials, and this basis is related 
to the standard one by a matrix of gamma-functions. 

8    Integrable Representations of AfRne Lie Alge- 
bras and Conformal Blocks 

Here we briefly recall the main definitions, referring the reader to [2,4-7,13] 
for details. This section is completely expository. 

8.1    Integrable Modules 

As before, let g be a simple Lie algebra over C with the invariant bilinear 
form (, ) normalized so that (0,6) = 2 where 6 is the highest root. Let 
§ = 0 ® C[t,t_1] ffi Cc be the corresponding affine Lie algebra; as usual, we 
denote x[n] = x®tn. We also denote by Q its completion: g = g®C((£))©Cc. 
In this whole paper, we fix a non-negative integer k (level). Let x = k + /iv, 
and let O™1 be the category of finite-length integrable highest-weight g- 
modules of level k. This category is semisimple and the simple objects in 
this category are the irreducible modules L\^, A G C, where 

C = {A G P+|(A,0v) < k} = {A G P+|(A + p,ev) < x}, (8.1) 

(see [14]). 
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There exists a natural notion of duality in this category: for V G (9^*, 
let DV be the restricted dual space to V (that is, DV is direct sum of spaces 
dual to weight subspaces of V) and the action of g is defined as the usual 
action in the dual space twisted by the automorphism (j defined by 

x[n]1 = {-l)nx[-n},    c* = -c. 

It is easy to check that DV E C^, and D(DV) is canonically isomorphic 
to V: the usual isomorphism of vector spaces F** ~ V is g-isomorphism. 
Also, DL\^ ~ Lx*^, though the isomorphism is not canonical. 

8.2    Conformal Blocks 

Let X denote the following collection of data: 

(1) X - a non-singular compact complex curve, 

(2) 21,..., zn - distinct point on X divided into two sets In and Out, 

(3) Wi - local parameter near the point zi. i.e. a holomorphic function in 
a neighborhood of zi such that Wi(zi) = O.w'^Zi) ^ 0. 

We assume that on each connected component of X there is at least one 
of the points Zj. 

With each point zi we associate a Lie algebra g ® C((i^)). Let 

flm= (00®C((wi))J eCc 
\i£ln J 

flcm*= I  0 0®C((^))) eCc. 

ian J (82) 

and the cocycle defining the central extension in Qin (respectively, Q0ut) 
is the sum of standard cocycles on each of g (8) C{(wi))^i E In (respectively, 
i E Out). 

Also, let us consider the Lie algebra F: 

T(X) = {g-valued meromorphic functions on X regular 

outside of zi,... ,zn} 

and its central extension F = F © Cc with the defining cocycle given by 

c(f,g) = 53Res2i(ff,d/). 
ZG/TI 
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Expanding a function / G T near a point Zi in a Laurent series in wi we 
get a Lie algebra homomorphism TT; : T(X) -> g®C((wi)) (if X is connected, 
this is an embedding). 

Taking direct sum over all i G In (respectively, i G Out), we get embed- 
dings 

7rin : T(X) C Qin : f*->®ielnni(f)>        c i-^ c, 
(8.4) 

TTo^t : r(;f) C flotit : / ^ ®ieOut^i{f), c ^ -c. 

One can easily check that these embeddings are Lie algebra homomorphisms. 

Definition 8.1. Let X be as above, and assume that we are given integrable 
modules Vi,..., Vn G O™1 assigned to the points zi,..., zn respectively. Let 
us consider Vi as a module over Q ® C((wi)) © Cc. Then the corresponding 
space of conformal blocks is defined by 

W{X; Vi,..., Vn) = {$ : ®ianVi -+ ^eO^|(W/))P$ = ^Uf)  {     . 

for all / G T{X)} ( ' ) 

where ® is the completion of the tensor product with respect to the homo- 
geneous grading. 

Remark 8.2. If i G Out then denote by X' the same data as X except that 
now we consider i as an element of In: In1 = In U {i}, Out1 — Out \ {%]. 
Then we have a canonical isomorphism: 

W(Af;Vi,...,Vr
n) = W(Af,;ViJ...,2?yi,...yn). 

Thus, it suffices to consider conformal blocks when all points are incoming 
(or all are outgoing), as is done in [13]; however, it is more convenient to 
consider the general situation. 

In a similar way, it can be shown that if X1 is obtained from X by marking 
one more incoming point z§ and assigning to it the representation VQ = Lo,A; 
then the map 

$^$(1,...), 

where 1 is the highest weight vector in LQ,^ is an isomorphism. Thus, the 
condition that there is at least one point on each connected component of 
X is inessential. 

Remark 8.3. In fact, the definition of conformal blocks works in more general 
situation: we can allow X to be a semi-stable singular curve. This plays a 
crucial role in proving the gluing axiom ( [13]). However, all of the results we 
need in this paper can be formulated without reference to singular curves. 
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Example 8.4. Let n = 3, X = CP1 with global coordinate w: In = 
{(X)}, Out = {0,z} with local parameters l/ty, —w, z — w respectively. 
Let $ : Voo —>• Vb®T4 be an element of the space of conformal blocks 
W^^V^oo). Then 

$x[n] = (x[n] ® 1 + Y^ ( ~n ) *~n~il ® ^H] ) $- 
^ i>0 ^ ^ ^ 

This slightly differs from the usual formulas in the physical literature where 
usually oo is considered as an outgoing and 0, z as incoming points. 

The following result is well known; we refer the reader to [13] for the 
proof. 

Proposition 8.5. The spaces of conformal blocks are always finite-dimen- 
sional 

8.3    Correlation Functions 

For a simple module Lx^ let LA,/C[0] be the g-module generated by the highest 
weight vector; clearly, L^fO] — Lx- Since every object in O™1 is isomorphic 
to a direct sum of Lx,k, we can extend it to a map V *-> V[0] from O1™* 
to the category Rep g of finite-dimensional representations of g. It is easy 
to show that this operation can be defined in invariant terms and thus, 
this map is a faithful functor. Note that we have canonical identifications 
(DV)[0] ~ {V[0])*,L0jk[0} ~ C. Denote by i : V[0] -> V and p : V -> ^[0] 
the canonical embedding and projection respectively. 

For every $ E W(X] Vi,..., Vn) define its correlation function (or, which 
is the same, its highest term) ($) by 

($) = p ® ... ® p o $ o (i ® ... ® i) e Hom0(®/nVri[O]J ®OutVi[0]).      (8.7) 

Proposition 8.6. On a sphere, every $ G W(X, Vi,..., Vn) is uniquely de- 
fined by its correlation function (<&). In other words, we have an embedding: 

W(X]Vu...,Vn)cRomQ(<^)Vi[0]^Vi[0}) 
In Out (8.8) 

Remark. This statement is not true on higher genus surfaces. 

Note that this embedding depends on the choice of points zi and local 
parameters at these points (in fact, it depends only on 1-jet of the local 
parameter). For irreducible Vi the image of this embedding can be explicitly 
described; we refer the reader to [15,16] (for the case of three-punctured 
sphere, this description also appears in [13]). 
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8.4    Flat Connection 

The definition of conformal blocks which we gave depends on A'; thus, we 
can consider the space of conformal blocks as a finite-dimensional vector 
bundle over the corresponding moduli space. This vector bundle is called 
the bundle of conformal blocks. 

It turns out that this vector bundle has a natural flat connection, which 
was first calculated by Knizhnik and Zamolodchikov on the sphere and by 
Bernard on a torus. This connection can be naturally defined using the 
Sugawara construction; we refer the reader to [5,13] for details, giving here 
only the answer. 

From now on we assume the following 

X = CP1, w - global coordinate on X\ 

X — I     In = {oo},     WOQ = 1/w, 

Out = {zi,...,Zn},       Wi = Zi 

(8.9) 

■Wi J 
By Proposition 8.6, for each zi,..., zn the space W(X, Vi,..., Vn, VQO) 

can be identified with a certain subspace in Homg(Vr
Oo[0], Vi[0] ® ... ® V^[0]). 

Thus, to define a flat connection on the space of conformal blocks it suf- 
fices to define a flat connection in the trivial vector bundle with the fiber 
HomgiVoolO], Vi[0] ® ... ® Vn[0]) ^ (Vi[0] ® ... ® V^[0] ® V^[0])Q which would 
preserve the subbundle of conformal blocks. Such a connection is obtained 
from the Knizhnik-Zamolodchikov connection on V = Vi[0] ® ... ® V^[0] 

(*+*v)^* E 
j = l...n 

V      3 ^i 

\ 

a v A (8.10) 

/ 

where ft is the standard g-invariant element in g ® g: if x^ xl are dual bases 
in Q with respect to the inner product (, ) then ft — Y^xi ® z1- ^s usual, 
we use the notation ftij = TT; ® ^-(fi), i, j = 1,..., n. 

This connection can be extended to a connection with values in V^V^O] 
with trivial action on the last factor. Furthermore, since this connection 
commutes with the action of g, it also defines a connection on the trivial 
vector bundle with the fiber (Vi[0] ® ... ® Fn[0] ® V^O])5, and it can be 
checked that it preserves the subbundle of conformal blocks (see [15,16]). 

Example 8.7. Let us consider the conformal blocks on a 3-punctured 
sphere: In = {oo}, Out = {zi,^} and assume that the modules Vi are irre- 
ducible: VOQ — I/A,/C, Vi — L^^-i ^2 = L^k- In this case it is easy to check that 
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a section $(2:1,2:2) of the bundle of conformal blocks is flat iff ($(2:1,2:2)) = 
(zi - z2)^-^-^g, where AA - §^^, and g 6 Hom^LA,^® LJ does 
not depend on zi. 

In this case we will use the notation <!i>9(z),z — z\ — Z2 for such a flat 
section; the operators $(2:) are called chiral vertex operators. 

9    Category G™1 as Modular Category 

In this section we recall the construction of a tensor (and in fact, modular 
tensor) structure on the category O™*. This section is again expository; we 
refer the reader to [2-7,17,18] for details and proofs. 

As before, let us assume that X is n + 1-punctured sphere (8.8) and 
n > 1. The moduli space of all such punctured spheres is the configuration 
space 

Xn = {(2:1,..., Zn) G C1!^ ^ Zj}. 

As was discussed above, the space of conformal blocks is a local system 
over this space with the connection given by the KZ equations (8.9). Note 
also that these equations imply that every flat section of this local system 
is invariant under translations (2:1,..., zn) ^ (2:1 + c,..., zn + c) and thus 
consideration of this local system is can be reduced to consideration of a 
local system on X® = {z £ Xn\zi = 0}. Define 

Vn = {(zu...,zn) eW1 zx <Z2<--'<zn}cXn, (9.1) 

Note that V is contractible. 
Now we can formulate the main theorem of this section, which is essen- 

tially due to Moore and Seiberg (see also [4-7]). 

Theorem 9.1. The category O™1 can be endowed with the structure of a 
ribbon tensor category such that: 

(1) If we denote the tensor product in this category by ® (to avoid confu- 
sion with the usual tensor product of vector spaces) then for any n > 1 
and for any choice of representations Vi,..., Vn: VOQ G O™* 

Eom0int (Voo, Vi®... ®Vn) = r(Pn, W), (9.2) 

where W — W(X') Vi,..., VQO) is the local system of conformal blocks 
on n + 1-punctured sphere (8.8), and F stands for the space of global 
flat sections of this local system over Vn defined by (9.1). 

(2) The unit object is 1 = LQ^ 
and the maps V ~ 1®V are constructed as 

in Remark 8.2. 
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(3) The dual object is given by V* = DV, and the maps iy : 1 —t V®V* 
are defined so that iLx k = $ZA, where $p is defined in Example 8.1, i\ 
is the canonical map of Q-modules C —> L\ ® L\. 

(4) The isomorphism 5v ' V -> V** = D(JDF) coincides with canonical 
identification of vector spaces V ~ V** (recall that as a vector space 
DV = V* is the restricted dual to V), and the twist 6 is given by 
0 = e

27rlLo} where LQ is the Sugawara element in the completion ofUg; 
thus, 

o\Lxh=<<***,   *x = K:;r;:z.        m 

Remark. Since 7?n is simply connected, we could just say that we fix some 
particular choice of points zi,..., zn, say, z = (0,1,... ,n — 1) and let 
Homojnt (Foo, Vi ® ... ® Vn) = W{Xi Vi,..., Foo). 

We do not define here the associativity and commutativity isomorphisms, 
referring the reader to the original papers. However, it is necessary to men- 
tion that the construction of the associativity isomorphism 

Rom0int(Lx,k, (Vi®V2)®V3) ~ Hornet(£A,*, Vi®^®^)) (9.4) 

is based on the fact that we can identify each of these spaces with the space 
of conformal blocks on a 4-punctured sphere (see (9.2)). The identifications 
are obtained by considering the asymptotics of the flat sections in different 
asymptotic zones. Therefore, the associtivity morphism is written in terms 
of asymptotics of solutions of the KZ equations in 3 variables. This implies 
the following lemma. 

Lemma 9.2. IfVi, V^, V3 E 0^*, A E P+ are such that on the space of singu- 
lar vectors of weight A in V\ [0] ® V2[0] ® V3 [0] the operators ^12,^23 commute 
then the associativity isomorphism (9.4) is trivial, i.e. coincides with the re- 
striction of the associativity isomorphism for vector spaces Vi[0], V^[0], VafO]. 

As for any MTC, we can use the language of ribbon graphs for rep- 
resenting morphisms in the category O™*; unfortunately, the associativity 
morphism (which is highly non-trivial) "does not show" in the pictures, so 
one must be careful when performing calculations (see [19] for an approach 
allowing to avoid this difficulty). In particular, we can define the "quantum 
dimension" of a module V in the same way as we did for an arbitrary MTC 
in Section 1; we will denote it by dim^V. Note that it has nothing to do 
with the usual dimension of V, which is infinite. 

Example 9.3. The space of morphisms Hom^mt (V^o, Vi®^) coincides with 
the space of chiral vertex operators (see Examples 8.4, 8.7) and can be 
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identified with a subspace in the space of g-homomorphisms: it follows from 
Proposition 8.6 that we have an embedding 

KomointiVoo, Vi®F2) C Hom0(VyO], Vi[0] ® V2[0}) 
(9.5) 

Now we can describe the action of the modular group. Recall the ob- 
ject H defined in Section 1 for any MTC; in our case, it is given by H = 
@xDL\fi<g>L\}k. The following result immediately follows from the gluing 
axiom for conformal blocks. 

Lemma 9.4.   The space 

Eom0int(H,U) = QHom0int{Lx,k,Lx,k®U) (9.6) 
AGC 

is isomorphic to the space of conformal blocks on a torus with one puncture 
to which the representation U is assigned.  (Here C is the alcove (8.1).) 

The following result clarifies the meaning of the action of 6X2 (Z) intro- 
duced in Section 1. 

Theorem 9.5 ([3]). The category O1™* is a modular category in the sense 
of Definition 1.3, and the action of SL2(Z) on Hom^mi(H, U) defined in 
Theorem 1.10 coincides with the natural geometric action of SL2(Z) on the 
space of conformal blocks on a torus. 

This theorem can be proved in the general context of 2-dimensional mod- 
ular functor, using Kirby calculus; see [20] for this approach. In fact, it is 
known that in any modular tensor category we can define an action of the 
mapping class group of any punctured Riemann surface on the appropriate 
space of conformal blocks: this automatically follows from the possibility to 
define the action of 6X2 (Z)- 

9.1    Equivalence of Categories G™* and C(Q,X) 

The following important theorem, which was widely believed for several 
years, was proved by M. Finkelberg in his thesis [8]. 

Theorem 9.6. There exist numbers n(g) such that for k > n(g) the functor 
V i-» V[0] is an equivalence of modular tensor categories O™1 and the reduced 
category C(fl, x) of representations of the quantum group Uqg at root of unity, 
described in Section 3, with x = k + hv. 
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The restriction k > n(g) mentioned in the theorem appears only for 
exceptional root systems (see table in [8]), and for all g, n(g) < 6; thus, this 
theorem is automatically satisfied if k > 6. From now on, we assume that k 
is chosen to satisfy these conditions. 

In particular, this theorem implies that the quantum dimensions of ob- 
jects in both categories coincide: 

dim,, V = dim^ F[0],     q = e^myi. 

Another approach to the construction of an equivalence of these cate- 
gories was initiated by Schechtman and Varchenko, who showed that one 
can identify Verma modules over the quantum group with the homologies 
of certain local systems on the configuration space (see [21]). However, for 
rational values of x this approach requires use of intersection homology (or, 
equivalently, perverse sheaves), which is done in a recent series of papers by 
Schechtman and Finkelberg [22]. 

10    Hermitian Structure on O™1 and Inner Product 
on the Space of Conformal Blocks 

In this section we define a hermitian structure (which is a certain analogue 
of the complex conjugation) on the category O™1 and use it to define an 
inner product on the spaces of morphisms in this category. 

10.1    Hermitian Structure 

Recall (see Section 1) that a hermitian structure on a tensor category is 
a system of maps : Hom(V, W) -> Hom(F*, VF*) which satisfies certain 
compatibility conditions (1.22). When the category is defined over C we 
assume that these maps are C-antilinear. Usually, to define such a structure 
we first define a functor which is antiequivalence of categories (i.e., we 
have canonical isomorphisms V ® W ~ W ® V) and then show that we have 
isomorphisms V ~ V*. We can formalize this setup in the following lemma, 
proof of which is trivial. 

Lemma 10.1. LetC be a semisimple ribbon category overC Let us assume 
that we have the following data: 

(1) A functor LJ : C -» C satisfying the following conditions: 

• It is antilinear: for every $ 6 Home, a E C, we have (aQ)^ = 
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• We have functorial isomorphisms VUUJ ^ V**, {V <g) W)" ~ Wu ® 
Vw, (Vu)* ^ (F*)^ and lw ~ 1 compatible with each other in the 
natural way. 

• If a^R are the associativity and commutativity isomorphisms in 
C then a^ = a~1

:R
UJ = i?-1, i.e.  ?i;e /ia^e ^/ie following commu- 

tative diagram 

(y®wr   {Rv>wr)  {W®Vf 

R~ 
wuj®vu)    V",WUJ) V^tSW", 

and similarly for a. 

• If 9 : V —> V is the universal twist in C then 6" = 6~l; similarly, 
if iy : 1 —)- V ® F* and ey : V* ® V -> 1 are £/ie duality maps 
then ify = (1 ® S'1)^*, e^ = eya;*^""1 ® 1). 

^ Isomorphisms X^ ~ X* for all simple objects Xi (which, again, are 
compatible with VU(JJ ~ V**). 

Then the category C can be uniquely endowed with a structure of hermi- 
tian ribbon category: there is a unique functorial isomorphism V^ ~ V* so 
that it is compatible with all the structures of a ribbon category. 

Note that these conditions imply dimF 6 M for every object V; vice 
versa, if we know that dim V E E then we can omit the condition e^ = e 
and replace part (2) by the following condition: 

(2') For every i, we are given non-zero homomorphisms 

fail^XiQX? 

such that tp* = </> (up to identification V™ ~ F** ~ V). 

We have implicitly used this construction when defining the hermitian 
structure on the category of representations of a quantum group in Section 4. 
Now we do the same for the category O1™*. Let u : g —> Q be the q = 1 spe- 
cialization of the antilinear involution defined in Section 4; on the generators 
it is given by 

(j '.ei \-± e^v,    i = 1,... ,r 

/i^/jv,    t = l,...,r (10.1) 

/i (->• —i(;o(/i),     /i € f). 
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We extend it to an involution on g by 

u)(x[n]) = {-l)n(uj{x))[n],    UJ{C) = c. (10.2) 

Obviously, u is an automorphism of Lie algebras. Now, for every V G 
O™1 define V" to be the same set as V but with a different structure of a 

complex vector space and of g-module: if we for v G V we denote by v^ 
the same vector V considred as an element of V^, then we define av^ = 

{av^.xv^ = (u^v^ia G C,x G fl. 
the action of g twisted by CJ. Similarly, for every g-homomorphism 

$ : y —> W between modules in O1™* let <$>" be the same map but con- 
sidered as a homomorphism V1^ -> Wu. Obviously, this operation preserves 
the composition of morphisms. One easily checks that we have canonical 

identifications LQ k ~ Lo,fc> {DV)^ ~ DCV") (since a; commutes with the au- 
tomorphism (I used in the definition of the dual - see beginning of Section 8). 
Also, define the isomorphism V"" ~ V by v ^ Zv, where Z is the central 
element in a completion of UQ which was constructed in Theorem 7.2 of [1]. 

The most difficult part is to prove that u is a tensor functor, i.e. to 
construct isomorphisms (V&W)'^ = WU®VU. To do it, let us return to 
definition of conformal blocks on Riemann surfaces. 

Let A* be a Riemann sphere with n marked points zi,..., zn (see (8.8)) 
and representations Vi,..., Vn, VOQ G O™1 assigned to these points, and let 
$ : Voo -> Vi®...®V^ be a conformal block, i.e. a linear map satisfying 
commutation relations (8.5). 

Theorem 10.2. Let X,® be as above and denote by §" the same $ con- 
sidered as a map V^ -> V^®... ®V^. Then ^ is a conformal block on the 
Riemann surface X^ = CP1 with marked points z/

l = —zi,..., zf
n — — zn, oo, 

local parameters Wi = z^ — w^w^ = 1/w at z'11... ,z'nl oo and representations 

V^,..., V^, V^ assigned to these points. 

Proof. Follows from the fact that the map f(w) i-> u(f(—w)) is an isomor- 
phism of the algebras of rational functions T(X) ~ F(XU) which were defined 

by (8.3). □ 

For example, if X is the n + 1-punctured sphere (8.8), with zi < z^ < 
• • • < zn, then Xu is again an n 4- 1-punctured sphere (8.8) with punctures 
at oo, —21,..., —zn] thus, the order of punctures on the real line is reversed. 

Recalling that we have identified the space of morphisms VQO —>> Vi®!^ 
in O1™1 with the space of conformal blocks on the sphere with marked points 
0,1, oo (see Theorem 9.1 and remark after it), we immediately deduce from 
Theorem 10.2 the following result: 
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Theorem 10.3. The map $ (->• ^ defined in Theorem 10.2 gives rise to a 
functorial antilinear isomorphism 

Hom0i?t(Vr
0o, Vi&Vz) ^ Hom0int(C V^®^) 

and thus gives rise to an isomorphism (Vi®^)^ — V^®^. 

Example 10.4. Let $ = $96 Homc,me(Voo, ^i®^) (see Example 8.7). 
Then ($s)w = $(^), where 

gw:(Vo0[o}r^v2[or®vl[or 

is defined using the involution u on g. 

Finally, let us fix for every A G C a non-zero homomorphism of g-modules 
ip\ : C -> Lx^L^ such that it is symmetric: ^(1)^ = ¥^(1)- This defines ^ 
uniquely up to a real constant. Define (9^-morphisms (fix : 1 -> Lx^k®L^k 

Proposition 10.5. T/ie functor u and the system of maps (f>\ : 1 -> 
IJX,k®L<xk defined above satisfy the assumptions of Lemma 10.1 and thus 
endow O™1 with the structure of a hermitian category. 

Lemma 10.6. Equivalence of categories C(Q^>C) ~ O™1 constructed in [8] 
(see Theorem 9.6) preserves the hermitian structure. 

Proof. The proof is based on the analysis of formulas defining the equivalence 
of categories in [6]. □ 

Remark 10.7. So far, this definition depends on the normalizations of the 
maps (fix which are defined up to a real constant; however, as in the quan- 
tum group case, the involution defined above can be related with the usual 
compact involution on g, which is much more usual in the physical literature, 
and this allows us to define the inner product up to a positive constant. We 
discuss this in the Appendix. 

10.2    Existence Theorem 

Now that we have defined the structure of a hermitian modular tensor cat- 
egory on O1™1, the general theory developed in Section 2 immediately yields 
the existence of a modular invariant hermitian form on the spaces of mor- 
phisms. We formulate this result as a theorem. As before, we denote 

H = 0 DLXtk®LXtk. (10.3) 
A6C 
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Let us introduce the following notation: 

wr = Hom^jnt (LA,*, L^k®L^k). 

Theorem 10.8. There exists a nondegenerate hermitian form on each of 
the spaces W^ such that the resulting form on the space 

HomointiH.L^) = 0 W£A = 0^ (10.4) 
xec Aec 

is modular invariant. 

Proof. Follows from the fact that O™1 has a structure of modular tensor 
category and constructions of Section 2. □ 

Conjecture 10.9. // we choose the normalizations of the maps (j)\ in the 
definition of the hermitian structure on O™1 (see Proposition 10.5) as in the 
Appendix, then the above defined hermitian form is positive definite. 

This conjecture is quiet parallel (and in fact, equaivalent to) the similar 
conjecture in the setting of the theory of quantum groups (see [1, Conjec- 
ture 7.6]). So far, we have no proof of it except for sfe case where it can be 
checked by direct calculation (see, e.g., 

We will call this form "the inner product", even though, as was noted 
before, we have no proof that this form is positive definite. Note that the 
definition of this inner product depends on the choice of the maps (/)\ : 1 -> 
Lx^&L^ k which were used in the definition of hermitian structure. However, 
the inner product on the space Hom^mt (iJ, L^k) m fact depends only on the 
choice of identification (j)^ and does not depend on the choice of (/)\ for each 
A. Thus, the inner product on this space is defined uniquely up to a constant 
factor. 

Recall that (Theorem 9.1) the spaces W^ = JIom0int(L\^,L^k®Li>,k) 
are identified with spaces of conformal blocks for a 3-punctured sphere; thus, 
the construction above defines an inner product on the spaces of conformal 
blocks on a 3-punctured sphere. 

To define an inner product on other Riemann surfaces with marked 
points, we use the gluing, which allows us to represent the space of con- 
formal blocks assigned to a Riemann surface as a sum of tensor products 
of the 3-point conformal blocks. Once we choose such a representation, we 
define the norm by the rule ||$i ® $2II = ||$i|| " II$2II- 

However, it is not clear why this inner product is well-defined. Even for 
the conformal blocks on a sphere with 3 punctures, we have so far defined the 
inner product not for all 3-punctured spheres but only for some contractible 
subspace V in the moduli space. For other Riemann surfaces, it is even more 
complicated, since there are different ways to cut a surface in trinions. For 
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example, there are different ways to represent a torus with one puncture as 
a result of gluing together two holes of a three-punctured sphere. Each of 
these ways gives an identification of the space of conformal blocks with the 

space ©AGC^A^ (see Lemma 9.4), and different identifications give rise to 
the action of the modular group on this space - cf. Theorem 9.5. 

Now we come to the main result of our paper: 

Theorem 10.10. There exists an inner product on the spaces of conformal 

blocks on arbitrary Riemann surface whihc is preserved by the natural flat 
connection on the space of conformal blocks. 

It is easy to see that Conjecture 10.9 implies positive definitedness of this 
inner product on arbitrary Riemann surface. 

Proof It follows from the general result of Moore and Seiberg (see [2, Section 
5]) that it suffices to define such an inner product on the sphere with n 
punctures and on the torus with one puncture. Moreover, to define the latter 
inner products it suffices to check that the commutativity and associativity 
morphisms, as well as the action of the modular group, are unitary with 
respect to the inner product defined on W^. But we have proved that in 
any modular tensor category, the inner product defined in Section 2 satisfies 
these conditions (see Theorems 2.4, 2.5). □ 

This theorem is very important for Conformal Field Theory, since ex- 
istence of such an inner product is one of the axioms of CFT; thus, The- 
orem 10.10 claims that this axiom is satisfied in the WZW model. To the 
best of my knowledge, this has not been proven in general case so far. We 
refer the reader to the paper [23] for review of known results and explicit 
constructions related to the inner products in higher genera. 

Another important corollary of the equivalence of categories discussed in 
Theorem 9.6 and results of Section 5 is the following theorem. 

Theorem 10.11. Letg — £[n. Consider the category O™1 with K — K+khy 

for some K, k G Z+. Consider the space of conformal blocks on a torus 
with one puncture to which the representation L^^^^i^v^fi = n(A: — 1)OJI 

is assigned (here ui is the first fundamental weight). Then the action of 
SL2(1J) on this space in some basis is given by formulas (5.8); in particular, 
it is written in terms of special values of Macdonald's polynomials at roots 

of unity. 

This theorem also gives the action of 6X2 (Z) on the affine Jack poly- 
nomials, introduced in [24]. In this paper, for every if, k € Z+, A E CK = 
{A e P+\(\,6V) < K} we defined a function JA)K(/i,n,r),/i G f),u G C,r G 
C,/m r > 0 (see definition in [24, Section 8]) which we called the (normal- 
ized) affine Jack polynomial; this name can be misleading, since they are 
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not polynomials but rather theta-functions, but it was chosen since they are 
natural generalizations of Jack polynomials. We proved that for g = £ln, 
J\,K cai1 be calculated as suitable renormalized traces of intertwining opera- 
tors for the corresponding affine Lie algebra, and that the space spanned by 
J\,K (with fixed if, A;) is invariant under the action of 5L2(Z). Now, using 
the previous results, we can calculate this action for g = sln. 

Theorem 10.12. In the assumptions of the previous theorem, let J\,K be 
the normalized affine Jack polynomials as in [24, Section 8].  Then 

JxMh^T + !) = g(A+^'A+^)-fc^)/r\ 
•        fh (h,h)      lv       v^ (10.5) 

T AT T 

where q = e7™/*, x = K + nk, Sx^ is given by formula (5.8) in [1] and 
j = -K{k-l){n-l)/2x. 

Proof. Since JX^K are (up to a renormalization) the traces of the intertwining 

operators for sln, the action of the modular group on these polynomials is up 
to simple renormalization the same as the action on the space of intertwiners, 
or, equivalently, on the space of conformal blocks. Combining it with the 
previous theorem, we get formulas (10.4). The factor r--7 appears in the 
formula because the the tori ET = C/Z + rZ is, of course, isomorphic to 
E_i/T, but the local parameters around zero, inherited from C, are different 
in these two realizations. The factor r--7 accounts for the dependence of the 
space of conformal blocks on the choice of local parameter. □ 

11    Explicit Formulas 

Our next goal is to give as explicit formulas as possible for this inner product. 
First, let us introduce some notations. 

For every g-homomorphism g : Vi —> V2 ® V3 denote by g0 : V2 —> 
Vi ® V3 the image of gu (see (10.1)) under the canonical isomorphism 
Homg(V1*,V3* ® ^2*) — Homg(V2, Vi ® Vg) (as before, we assume that we 
have chosen identifications Vu ~ V*). In a similar way, for every O™*- 
homomorphism $ : Vi -> V^Va we define $0 by (<$>9)0 = ^0) (See Exam- 
ple 8.7 for notations). 

Now we can rewrite the definition of ||$||2 given in Section 2 in the 
following form: 

Lemma 11.1. Let $ G Hom0mt(Vi, V^Vs).  Then 
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m\2 = 
(dim* V1 dimx F2 dim,, V3) V*     M 

(11.1) 

Proof. Recalling the definition (2.2) of the inner product and Example 10.4, 
we see that it suffices to prove the following lemma: 

Lemma 11.2. 
DV, y DV, 

This Lemma follows from the fact that on the space (V^O]®^]®^])5 

the operators fii2 and ^23 commute and thus, according to Corollary 9.2, 
the associativity isomorphism is trivial. □ 

Let us additionally assume that Vi, V2, V3 are irreducible: Vi = L\^, V2 = 
L^kiVz — L^k- Denote by ^ composition of homomorphisms $,$0 : ^ — 
($<8>1)$0 E JIom0int(V2i (V2®V3)®DVs). It follows from the definition of the 
associativity isomorphism in O™1 that \I/ can be considered as a flat section 
of the bundle of conformal blocks W(X, Vi), where X is CP1 with the marked 
points 0, zi, Z2, 00 and representations V2, V3, DVs, V2 assigned to these points 
respectively. This flat section is uniquely defined by the following condition: 
if we denote by (\I/(zi, 22)) the corresponding correlation function then it has 
the following asymptotic as zi/22 —► 0: if $ = $9 then 

Theorem 11.3. In the notations above, we have the following identity of 
Q-homomorphisms L^ —¥ L^ ® Z^ ® L*: 
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2 v = /dim L^LAW   ^   (Z1 _,2)2A,(^(,1),2))) 

\       aimqL\       )      zi,z2->i 
(11.2) 

where {„ : C —> L^ ® L* 25 £/ie canonical map of Q-modules. 

Proof. It follows from the existence of the associativity isomorphism that ^ 
can be rewritten as the sum 

= A 

H 

+ Z 
7W=0 

(11.3) 

for some A G C and some intertwiners in the boxes that are left blank. 
Substituting this in the expression for ||$||2 given in Lemma 11.1, we see 
that 

m1 = dimgZ^ dinigZ^ 

dimg L\ 

1/2 

A. (11.4) 

As was mentioned before, coefficients in the right hand side of (11.3) 
are related with asymptotic expansion of (\I>) as zi —> Z2 (this is how the 
associativity morphism is defined). More precisely, the first term in (11.3) 
gives the asymptotics A{zi — Z2)~2Au Idj^ ®V, where i,, : C —> L^ ® L* 
is the canonical embedding and all other terms have highest term of the 
asymptotics (zi — ^2)~2Al'+A7r- Since A^ > 0 for TT ^ 0, these terms give 
zero contribution to the limit, and therefore 

lim   (*! - Z2)2^^{Z1,Z2)) = AIdL^ ®iv. 
Zi,Z2->l 

D 

Thus, the calculation of the norm reduces to computation of the limit 
(11.2). Since the asymptotics of {&) in the limit \z2\ > \zi\ is known, this is 
equivalent to calculation of Drinfeld's associator. Note that this shows that 
the structure of Lx^ as a module over g is not important here; in particular, 
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this inner product can be as well calculated for x ^ <Q>, and the answer 
is a meromorphic function of x, which may have poles or zeroes only at 
rational points. Since there are integral formulas for the solutions of the 
KZ equations, the answer can be always written in terms of asymptotics 
of some integrals. In the case of g = s^ these asymptotics reduce to the 
Selberg integrals and are given by certain products of F-functions (see [10]). 
For arbitrary Lie algebras, the inner product can also be written in terms 
of integrals of Selberg type, but in general can not be reduced to gamma- 
functions. 

Remark. In the case where all the spaces of conformal blocks are zero or one 
dimensional (as happens for 512), formula (11.2) (in different form) for the 
inner product was suggested by Moore and Seiberg (see [3, Exercise 6.6]). 

12    Example: Q = s^ 

In this section we give explicit formulas for the norms of vertex operators 
for $[2. As was noted in the end of the last section, it suffices to calculate 
these norms for x £ Q. This can be done using integral formulas for the 
solutions, given by Schechtman and Varchenko [9]. Moreover, in this case the 
asymptotics of the integrals can be calculated explicitly, using the Selberg 
integral, and the answer is written in terms of F-functions (see [10]). This 
can be used to find the matrices which relate asymptotics of solutions in 
different asymptotic zones. Fortunately, this work has already been done by 
Varchenko in [10], in which there is a construction of equivalence of categories 

O™* andiJepflforsfc. 
In this section we only consider g = s^- We identify the Cartan subal- 

gebra with C so that a >-» 1, where a is the positive root; thus, P ^ ^Z. 
Let us assume that we are given K G C\Q, and we let x = K+2. Let O^ 

be the category of highest-weight modules of level K over 5^ as in [4]. It is 
known that this category is semisimple, and simple objects in this category 
are precisely irreducible modules LX^K, which for x £ Q coincide with Weyl 
(induced) modules: L\jk = VA^A G P+ ~ ^Z+. The same constructions 
as before define on this category a structure of a ribbon category, which 
is hermitian for K G M. Note that since we assumed >^ ^ Q, we have 
an isomorphism Home^(Vi, V^&Vs) ~ HomS[2(Vi[0], V^[0] ® V^O]) (compare 
with (9.5)). Thus, this category could be described without any reference to 
affine Lie algebra at all, just in terms of finite-dimensional representations 
of SI2 and Knizhnik-Zamolodchikov equation, as was done in [25,26]. 

For every triple j, ji, J2 G ^Z+ such that lii-^l < j < ji+J2,j+ji+J2 G 
Z there exists a unique up to a constant s^-morphism gjU2 : Vj -> Vjl ® V^2, 

and corresponding C^-morphism $^1J2 = $^    . 
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Let us for simplicity consider the case j — ji,J2 = k for some j, k. Then 
we can fix normalization of gj   by fixing some vector of weight zero u £ Vk 

and requiring that gJ- vj = Vj ® u + ..., where Vj is a highest weight vector 
inVj. 

The main result of this section, which can be obtained by the use of 
explicit formulas in [10], is the following theorem: 

Theorem 12.1. Let K G M \ Q.   Then: 

k 112 
ll^ll2 = elk x) TT ^ + 1 + ^2i + l + i]2 (      . 

where the constant c(k, x) does no^ depend on j and 

[s] = r(-^ + lJ. (12.2) 

Since [x] is well-defined and non-zero for a; 7^ nx, n = 1,2,.. we see 
that for x ^ Q the norm ||$-?. || is well-defined and non-zero. One can 
also easily check that if K E Z+,j,k < K/2 (this last condition ensures 
that Lj^K^Lk^K are integrable) then \\^3- || is well-defined and non-zero iff 
k <2j < K — k, which is exactly the condition for the space of intertwiners 
KomQint^j^jLj^K^Lk^) to be non-zero. 

Note also that as x —> 00, formula (12.7) coincides (up to a constant) 
with the Macdonald's inner product identity (5.7) for sfe (with q = 1). 

This theorem justifies the following conjecture, which is a natural gener- 
alization of the Macdonald's inner product identities to affine root systems. 
Let g = sin, k e Z+, x e M \ Q. For A G P+, choose $A G Uomo^V, V®U), 
where V = Vx+(k-i)p9*-hv,U = Vn(k_1)uJu>(_hv so that $(v) = v ® WQ + ..., 
where v is a highest-weight vector in V and UQ E f7[0] is some fixed zero- 
weight vector. This is the natural affine analogue of the intertwiners $A used 
in the quantum group case to obtain Macdonald's polynomials (see [1, Sec- 
tion 5 and references therein]); as before, one can show that Homo^^, V®U) 
is one-dimensional and thus the condition <&\(v) = v ® UQ + ... uniquely 
defines $A- The intertwiners &\ were used in [24] to construct an affine 
analogue of Jack's polynomials. 

As before, OK has a natural structure of a hermitian category and thus 
we have an inner product on the spaces of morphisms. 

Conjecture 12.2 (Affine inner product identities). Let g = sln,x E 
R \ Q, and let $A • V -> V®U be as above.  Then: 

" " -^'"^n^A+^-^^x+M-d •   (12'3) 
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where the constant c{k, x) does not depend on A. 

In the case Q = 5I2 this conjecture coincides with the statement of The- 
orem 12.1. 

This formula is indeed a natural analogue of Macdonald's inner product 
identity (5.7) for the following reason: if we write weights for g in the form 
A = A + fcAo where AQ is dual to the central element c, and denote p = 
p + /ivAo then the right hand side of (12.9) is exactly the regularization of 
the meaningless expression 

nn (a, A + kp) + i 

obtained by replacing products of the form HSo ^+7 Wl^ F{x). 
This conjecture is closely related to the expressions given by Gaw§dzki 

et al in [11,12,23]. In these papers they suggest a construction of the inner 
product on the spaces of conformal blocks based on the fact that these spaces 
are the state spaces of the quantum Chern-Simons theory. The inner product 
is obtained by regularization of certain infinite-dimensional integrals, and the 
final answer is given by a finite-dimensional integral of the following type 

/ 
Jck 

M2, 
/c* 

where u is the differential form which appears in the integral formulas of 
Schechtman and Varchenko (up to x \-t — x). 

There are reasons to believe that in the case g = 5I2 integrals of these type 
can be calculated explicitly (see [27] for a simplest example of computation of 
this type), and the answer can be expressed in terms of F-functions similarly 
to the Selberg integral. We expect that this procedure would yield the same 
answer as the one given by formula (12.7) above. 

Appendix 

Here we give another description of the hermitian structure on (9^, based 
on compact involution of g. This construction is parallel to the one for Uqg 
(see Section 7). 

Let (jjc be the compact involution on fl, i.e. an antilinear Lie algebra au- 
tomorphism given on the generators by uc(ei) = —fi^c(fi) = —ei,u)c{h) — 
—h. Let us extend it to an involution on g by letting uc(x[n]) = cc;c(x)[n], 
UJC(C) — c (Warning: this is different from the standard compact 
involution on g!). We define VUc,§Uc similar to above. Note that for any 
A, l/juk — £A*,/C? and thus, from complete reducibility, we have VUc ~ DV 
for any V G C^, though these isomorphisms are not canonical. 
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For any X as in the beginning of Section 8, let X be the following col- 
lection of data: 

(1) The curve X which is the same curve as X but with the opposite 
complex structure (thus, if / is a meromorphic function on X then / 
is a meromorphic function on X). 

(2) The marked points Zi are the same as for X. 

(3) The new local parameters are wi (here we consider Wi as holomorphic 
function on X vanishing at Zi). 

Example. Let X be the Riemann sphere (8.8). Then X is isomorphic to 
CP1 with global parameter w, marked points ^,00 and local parameters 
Zi — w, l/w respectively. 

Assume that we are given X as before and we have representations Vi 
assigned to the marked points. Let $ G W(X] Vi, V2,..., Vn) be a conformal 
block, i.e. a map 

®InVi -> ®OutVi 

which commutes with the action of the algebra F of meromorphic Q-valued 
functions on X (see Definition 8.1). 

Let us denote by $Uc the same map considered as a map 

Lemma A.l.  The mapping $ *-» ^^ is an involutive isomorphism 
W(X;Vl,...,Vn)^W(X;V?*,...,VZ°). 

Proof. This is obvious from the fact that f(z) i-» ujc(f(z)) identifies the 
algebras F of meromorphic functions on X and X. □ 

In particular, if X is the Riemann sphere (8.8) then <f>Wc will be a con- 
formal block on the sphere with marked points ^1,..., zn. This shows that 
we have a natural isomorphism (V®W)Uc ~ V^&W^0. 

Now we can define the hermitian structure on O™* similarly to the defi- 
nitions before (see Lemma 10.1); the only non-trivial part is that we define 
isomorphisms (V®W)Uc ~ W^&V"0 to be given by the composition of the 
natural isomorphism (V^W)^ ^ V^&W"0 and the commutativity mor- 
phism Pe71"1^/^ where P is the transposition. Also, we define the maps 
0A : 1 -> LX}k®Lu

x
c

k by 0A(1) - e^iA^A^ ® v^k + ..., where AA is defined 
by (9.3). 

Lemma A.2. So defined the functor UJC satisfies all the conditions of 
Lemma 10.1 and thus gives rise to a hermitian structure on O™1. 
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In fact, it turns out that this hermitian strucutre is equivalent to the one 
described in Section 10. As in the classical case, this relies on the existence 
of an analogue of the longest element of Weyl group. 

For every module V G O™* define the map 

fi = woe"^iLo : V -> V, (A.l) 

where WQ is the longest element of Weyl group for g, which acts on every 
finite-dimensional representation of g (see, e.g. [6, (19.4)]); thus, it also acts 
on every module in O™*. Its ^-analogue (which we denoted also by 0) was 
discussed in Section 7. 

One can easily check that 

UJ(X) — fi  1(jjc(x)£l — (JOC(VL  
lxQ),    x G 0 

n2 = ze-2niL° (A'2) 

where Z — WQ was discussed in Section 7. Recall that Z is a central 
element which acts by ±1 in any irreducible g-module and satisfies Z\v®w — 
Zy®Z'w\ thus, it also acts by constant in any simple g-module from category 
O™1 and satisfies Zv^w = ZV®ZW, Z2 = 1. 

Thus, for every representation V € O™1, the map O : V —>■ V, considered 
as a map V1^ -)■ FWc, is an isomorphism of g-modules; similarly, we can 
identify § = n*1 $w« fi. 
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