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Abstract 

We study the (2,0) superconformal theories in six dimensions, which 
arise from the low-energy limit of k coincident 5-branes, using their 
discrete light-cone formulation as a superconformal quantum mechan- 
ical sigma model. We analyze the realization of the superconformal 
symmetry in the quantum mechanics, and the realization of primary 
operators. As an example we compute the spectrum of chiral primary 
states in symmetric Spin(5)R representations. To facilitate the analy- 
sis we introduce and briefly discuss a new class of Lorentz non-invariant 
theories, which flow in the IR to the (2,0) superconformal field theories 
but differ from them in the UV. 

1    Introduction 

Last year, a proposal for a light-cone quantization (or DLCQ) of M theory 
in terms of a quantum-mechanical system, called Matrix theory, appeared 

1 oferah@physics.rutgers.edu 
2 berkooz@ias.edu 
3seiberg@ias.edu 



120 LIGHT-CONE DESCRIPTION OF (2,0) ... 

in [1]. The DLCQ (Discrete Light-Cone Quantization [2-5]) interpretation 
of this proposal appeared in [6], and a derivation of the conjecture was 
given in [7]. The idea that the large N Matrix theory provides a light-cone 
Hamiltonian for M theory has passed many tests. However, the status of 
the conjecture that the finite iV theory provides a DLCQ of M theory is less 
clear, since direct comparisons of the low-energy limit of the finite N theory 
with supergravity do not always work [8]. There is no compelling argument 
why a direct comparison with supergravity should work for finite iV, since 
the low-energy limit of a DLCQ of M theory does not have to be equivalent 
to a DLCQ of supergravity [9,10]. 

A simpler arena to analyze this question may be in DLCQ descriptions 
of field theories (see [11] for a review of works on this subject, and [9,12] 
for recent works motivated by Matrix theory). The simplest case of such 
a description is the DLCQ proposed for (2,0) superconformal theories in 
six dimensions (which were discovered in [13,14]). The DLCQ description 
involves a quantum-mechanical sigma model, and it was derived from Matrix 
theory in [15,16]. A generalization of this description to (1,0) theories in six 
dimensions appeared in [17,18], but we will not discuss it here. 

In this paper we begin a detailed exploration of the DLCQ description 
of the Ak_i (2,0) superconformal theories in six dimensions, which arise 
from the low-energy limit of k coincident 5-branes. One motivation for this 
study is the need to better understand the properties of Matrix-like DLCQ 
descriptions. The other motivation is the study of the (2,0) superconformal 
theories in six dimensions, which are the simplest examples of non-trivial field 
theories above four dimensions. They are also interesting for applications to 
Matrix theory (see, e.g., [19]) and to field theory (it was conjectured in [20] 
that these theories may be related to the large N limit of QCD). According 
to a conjecture of [21], they may also be related to M theory on AdSf x S4. 

In section 2 we describe the light-cone (and DLCQ) construction of (2,0) 
field theories, and give a new derivation of it along the lines of [7]. In 
section 3 we analyze how the superconformal algebra looks in the light-cone 
frame, and see how it is realized in the quantum-mechanical description. 
The quantum mechanical description involves a sigma model on a singular 
space, and it seems that we need to resolve the singularities in order to be 
able to make sense of the model. In section 4 we describe such a resolution 
and its interpretation in terms of the space-time theory. In section 5 we 
analyze general properties of superconformal theories in DLCQ. In section 6 
we compute the spectrum of chiral primary operators which are in symmetric 
representations of the Spin(b) R-symmetry, and interpret the chiral primary 
fields in terms of the natural coordinates parametrizing the moduli space of 
these theories. Section 7 includes a detailed analysis of the behavior of 
such chiral primary operators in some simple examples. We briefly outline 
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a procedure to calculate n-point functions. The analysis of other primary 
operators, more complicated OPEs and explicit computations of higher n- 
point functions is left to future work [22]. 

As this paper was being completed, some overlapping results pertaining 
to the (free) theory of a single 5-brane appeared in [23], and a discussion of 
the superalgebra and of the single 5-brane theory appeared also in [24]. For 
a related discussion of the (2,0) theories compactified on tori, see [25]. 

2    The Quantum-Mechanical Light-Cone Descrip- 
tion 

In [15], a quantum-mechanical model was conjectured to give a light-cone 
(or DLCQ) description of the six dimensional field theory corresponding to 
the low-energy theory of k M theory 5-branes. This includes the ^U-i (2,0) 
superconformal theory as well as a decoupled free tensor multiplet. In this 
section we will review this model and its derivations, before going on to using 
it as a description of the spacetime theory in the rest of the paper. 

2.1     A Direct Derivation of the DLCQ Description 

In DLCQ, a light-like coordinate (which we will choose to be x~ = i(a;0— rr1)) 
is compactified on a circle of radius JR, and the time coordinate is taken to 
be x+ = ^(x0 + x1). The compactification of a light-like circle may be 
viewed as a limit of compactifications of near light-like circles, which in turn 
are equivalent (by a Lorentz boost) to compactifications of standard space 
coordinates. The light-like limit is obtained by taking the space-like circle to 
be very small, and looking at the theory of the modes which carry momentum 
around this circle. In general, one must also be careful to keep modes which 
correspond to finite energies in the original theory [7]. In our case this is 
relatively simple since the original theory we are starting with is conformal. 

Thus, in order to obtain a DLCQ of the (2,0) SCFTs we should look at 
their compactification on a circle of radius Rs and take the limit Rs —> 0. 
At energies below the scale l/i?s, the compactified theory is a U(k) five 
dimensional Af = 2 Super Yang-Mills theory, with a coupling constant g^ = 
i?5, which goes to zero in the limit we are interested in. Note that this is very 
different from the behavior of standard field theories, which become strongly 
coupled when compactified on small circles, causing problems in their direct 
analysis in this way [9]. 

After the compactification, the momentum modes around the circle be- 
come instanton-like particles of the SYM theory [26] (namely, particles which 
are charged under the global current J — *(F A F)). Finite energies in the 
original theory translate into very small velocities for these particles. Thus, 
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in the limit Rs -> 0, the theory of iV of these modes, corresponding to a 
DLCQ with momentum P_ = N/R, reduces to a quantum mechanics on 
the moduli space of TV U(k) instantons embedded in IR4, as in [15]. We 
will denote this moduli space by M^.k- For large TV, this gives a light-cone 
description of the uncompactified (2,0) theory. 

This provides an alternative derivation of the light-cone (or DLCQ) de- 
scription of [15]. However, the resulting theory we find here is not obviously 
well-defined, since the moduli space of instantons has singularities corre- 
sponding to small instantons. These singularities are not described just by 
the five dimensional Af — 2 SYM theory, since this description breaks down 
at short distances (the theory is non-renormalizable). Thus, we need to 
add some information on how to regularize the singularities in the instanton 
moduli space. Another apparent problem is that the moduli space we find is 
non-compact (in directions that do not correspond to space-time, in addition 
to the obvious non-compactness of the directions which are identified with 
space-time). This was interpreted in [15] as related to the IR behavior of 
the conformal theory, and this will be exemplified in detail in the following. 

2.2    A Derivation from M Theory with 5-branes 

One possible regularization is provided by the construction of the quantum- 
mechanical model as a limit of a DLCQ description of M theory [1,6] with 
5-branes, as described in [15]. One starts with a complete description of 
M theory in the presence of k 5-branes [27], which is given by a quantum 
mechanical U(N) SQCD theory with 8 (real) supercharges, with one ad- 
joint hypermultiplet and k hypermultiplets in the fundamental representa- 
tion [28]. For finite gauge coupling gQM, this is a non-singular theory which 
is well-defined. The limit in which gravity decouples from the 5-brane theory 
(Mp —> oo) corresponds to the QQM -^ oo limit of the quantum mechani- 
cal gauge theory, in which the Coulomb branch decouples from the Higgs 
branch. All the massive modes decouple in this limit, and the theory of 
the 5-branes is described by a supersymmetric sigma model on the Higgs 
branch of this theory4. It is a well-known fact [29] that this Higgs branch is 
exactly the moduli space of instantons MN^ described above. In fact, the 
gauge theory gives the simplest construction of this moduli space, called the 
ADHM construction. It also provides for us a regularization, in the sense 
that we can, in principle, compute any space-time correlation function in the 
quantum mechanics for finite gqM, and then take the limit QQM —> oo and 
get the correlation functions of the superconformal theory. However, this 
regularization adds many more degrees of freedom than we actually need (in 

4Note that since this is a conformal theory, we do not need to assume that the low- 
energy limit of the DLCQ of M theory is the same as the DLCQ of supergravity. 
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particular, it adds all of eleven dimensional supergravity). We will describe 
in section 4 a different regularization which is more useful for our purposes. 

2.3    A Description of the Model 

Let us now give a more concrete description of our theory. As we mentioned, 
the simplest description of the moduli space M.N.k 'IS as the Higgs branch of 
a U(N) gauge theory with 8 supercharges, an adjoint hypermultiplet and k 
fundamental hypermultiplets. Let us denote the scalar components of these 
hypermultiplets by X,X (two complex scalars in the adjoint representation 
of U(N)) and by q^q1 in the N and N representations of U(N) (i = 1, • • • , A;). 
The Higgs branch is parametrized by the values of these fields, subject to 
the constraints enforcing the vanishing of the scalar potential : 

[x,xt] - [it,xt] + Mt _ (^t^) = o (i) 

and 

[X,X]+qiq
i = Oi (2) 

and modded out by the U(N) gauge symmetry. The total (real) dimension 
of this space is 47Vfc + 47V2 - SiV2 - N2 = 4ZVA;, and it is a hyperKahler 
manifold. 

The equations (and gauge symmetry) do not act on 4 decoupled co- 
ordinates which are tr(X),tr(X). Thus, the moduli space decomposes as 
MN,k = H4 x M0

Nk. The decoupled R4 part will give rise to eight non- 
linearly realized supersymmetries, which act by shifting the corresponding 
fermions. It will sometimes be convenient to denote the coordinates of the 
IR4 component by 5, and those of M0

N k by v. 
There is a natural metric on the moduli space, which is the hyperKahler 

metric. From the gauge theory point of view this is the classical metric on 
the Higgs branch, which is not renormalized. On the total space of fields, 
we can define a scalar function 

# = M2 + i<fi2 + m2 + m2, (3) 

given by the sum of the absolute value squared of all scalar fields. The 
restriction of this function to the moduli space defines a scalar function on 
the moduli space, which we will also denote by K. Then, the metric on the 
moduli space is gij = \didjK where i,j label the coordinates of the moduli 
space. Note that the space is scale-invariant. 

The global symmetries of the theory are SU{2)R X SU(2)L X Spin(5) x 
U(k). The first two factors correspond to the rotation symmetries inside 
the 5-brane transverse to the light-cone coordinate, the third factor is the 
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rotations transverse to the 5-brane (or, equivalently, the R-symmetry of the 
Af — (2,0) supersymmetry in spacetime), and the last factor corresponds 
to the gauge symmetry of the (2,0) theory after it is compactified on a 
circle. The supercharges in the quantum mechanics are in the (2,1,4,1) 
representation of this group, so that SU(2)R X Spin(5) is the R-symmetry 
of the quantum mechanics. The fields described above are in the following 
representations : 

U{N)   SU(2)R   SU(2)L   Spin(5)    U(k) 
XH     N2 2 2 11 
@x      N2 1 2 4 1 
qn       N 2 1 Ik 
</>,       N 1 1 4 k, 

(4) 

where XH denotes the scalars in the adjoint hypermultiplets {X and X), qu 
denote the scalars in the fundamental hypermultiplets (q and q), ®x are the 
fermionic partners of X, X, ipq are the fermionic partners of #, q, and all the 
fields obey appropriate reality conditions. The bosonic coordinates are all 
neutral under the Spin(5), while the fermionic coordinates are all in the 4 
representation. The other global symmetries act on the moduli space in a 
non-trivial way (except for SU(2)R they commute with supersymmetry). 

3    The Superconformal Algebra in Spacetime and 
in the Quantum Mechanics 

3.1    Bosonic Components in the Spacetime Algebra 

The bosonic part of the superconformal algebra in six dimensions includes 
the 50(6,2) conformal algebra 

[Map, M7s] = -i{r]a<yMps + VpsMa7 - rjasMp7 - r]MMa5), (5) 

where a,/3 = (),■•■ ,7, r?Q^ = diag(-l, I6, -1). 
The components Mij of this algebra (i,j — 0, • • • , 5) are identified with 

the usual Lorentz generators, while the other components are related to the 
standard conformal generators by 

Pi = Mel + M7l;        Ki = M6i - M7i\        D = M67. (6) 

Here Pi is the translation generator, Ki generates special conformal trans- 
formations and D generates dilatations. With these identifications, (5) leads 
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to the usual conformal algebra 

[Mij,Pk] = -i{rhkPj - VjkPfr, [Mij,Kk] = -i{VikKj - rfjkKi); 
(7) 

[Mij,Mkl] = -irnkMji ±permutations; [M^-, D] = 0; [D, Ki] = iKf, 
(8) 

[D, Pi] - -iPii [Pi, Kj] = -2»JWii + 2*»7y£>.     (9) 

Our description of this theory in discrete light cone quantization sees only 
a sector of the theory with fixed P_ = PQ — PI = N/R. Thus, in the quantum 
mechanical description we should only be able to see those elements of the 
superconformal algebra that commute with P_. These include the Galilean 
generators M^, Pi, H = P+ — PQ + Pi and V* = Moi - Mu (where now 
i, j = 2,3,4,5). Two other elements of the conformal algebra also commute 
with P_: they are K- — KQ — Ki and T = D — MQI. T has a natural 
interpretation as a dilatation followed by a boost in the xl direction, which 
is needed to cancel the effect of the dilatation on P_. 

The non-zero commutation relations of these elements are : 

[Mij,Pk] = -iiVikPj - VjkPi);    [My, Vib] = -i{VikVj - ijjkVi); 
(10) 

[P^Vj] =-iTHjP-; [T,Pd = -iPi;    [T,Vi\ = iV1;     [Pi,K-] = 2iVi; 
(11) 

[H,Vi\ =-2iPi;     [H,K-] = -4iT;    [T,H] = -2iH;     [T,K-} = 2iK-. 
(12) 

Note the explicit appearance of P_ in the commutation relations as a 
central term. The analysis of the bosonic part of the superconformal algebra 
does not depend on the dimension of space-time, and we expect to find the 
same algebra (10) in a DLCQ description of any conformal theory. Of course, 
the fermionic part described below will depend strongly on the fact that we 
are in 5 + 1 dimensions. 

3.2    Fermionic Components of the Superconformal Algebra 

The (2,0) superconformal algebra in six dimensions includes 32 fermionic 
generators, which are all 50(6,2) spinors of the same chirality (say, 8S) and 
are a fundamental 4 of Sp(2) ~ Spin(5). Their commutation relation is of 
the form 

{Ql Qjp} = Jij(^PUMw + 5a0R^, (13) 

where J is the anti-symmetric form of Sp(2), R is the charge of the Sp(2) 
current, and T^ =■ ^,TP]. 
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s i i     r+s = r+s - o 
s -i i     r-s = f+s = o 
Q -i -i    r-g = f-Q = o 
Q i -i   r+Q = f-Q = o. 
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It will be convenient to decompose the Q operators according to their 
charges under the 50(1,1) symmetries rotating x^^x1 and a;6, a;7, or, equiv- 
alently, according to the eigenvalues of r0r1 and r6r7 in the spinor repre- 
sentation of S'0(6,2). Defining 

r± = i(r0±r1);     f± = ^(r6±r7), (u) 

the decomposition into eigenstates Q, Q, S and S satisfies 

(15) 

Then, the commutation relations (13) are schematically of the form (ne- 
glecting the R charge contributions, and without writing down the indices, 
which follow from the symmetries): 

{Q,Q}~tf;       {Q,Q}~Pu       {Q,Q}~P-; 

{Q,5}~Moi + Mii;        '{Q,S}~Vi; 

{Q, S} ~ Mfi - T;        {Q, S} ~ M^ - (MQI + £>); (16) 

{S,S} ~ K_;        {5,5} - Kx        {5,5} - K+, 

where we have decomposed the 50(4) generators Mij into SU(2)R genera- 
tors Mfjj and SU(2)L generators Mfj. 

3.3    Identification of the Bosonic Elements in the Quantum 
Mechanics 

Let us now try to identify the algebra (10) in our quantum mechanical de- 
scription. This description includes four variables x1 which are free and de- 
coupled, corresponding to the center of mass position. The other (4iV£; — 4) 
variables vk are coordinates on a non-trivial hyperKahler manifold. The 
metric on the target space of the quantum mechanical sigma model is of the 
form gij = \didjK where the function K was described in the previous sec- 
tion (the inverse metric will be denoted by gk\ gklgij = Sj). We will denote 
all iNk coordinates by the collective name xl = {xj,vk}. The conjugate 
momenta to these variables will be denoted by Xl^t (flLj.*,^] = -iSj). Their 
action on wave functions is the same as a derivative, 11^ ~ — idx JX' 
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The identification of the Galilean subalgebra of the superconformal al- 
gebra is mostly straightforward. The operator H is just the Hamiltonian of 
the quantum mechanical sigma model 

H = —(^II^ILy- + gklUvkUvi) + fermions. (17) 

Note that we chose the Hamiltonian to be explicitly proportional to R/N. 
This is the natural scaling for the interpretation of this Hamiltonian as the 
DLCQ of a space-time theory, since then H = P+ = (P-2 + M2)/P_ = 
R(Pi + M2)/N. The natural scaling for the quantum-mechanical sigma- 
model Hamiltonian does not include this factor of R/N. However, since the 
sigma model is scale invariant, the two conventions differ only by rescaling 
all coordinates and momenta by yjR/N. In particular, correlation functions 

in the sigma model will be functions of J ^ • x, and not of x and R/N 
separately. 

The momenta Pi and boosts Vi act only on the center of mass coordinates, 
so we can identify them with 

^ = 11**;        V£ = P-£i. (18) 

The rotations M^ generate an 50(4) c^ SU(2)R X SU(2)L global symmetry 
in the quantum mechanics, which acts in a rather complicated way on the 
sigma model coordinates. These operators satisfy the commutation relations 
(10). 

Next, we should identify the operators T and K-. For this we note that 
(using (10)) we may identify if, ^T and \K- with generators of an 50(1,2) 
algebra. We can identify this algebra with the conformal algebra of the 
quantum mechanical theory5, generated by St = ei + e2t + e^t2. In the case 
at hand, we may explicitly write these as 

T = -(I^'^H^ - 2iNk) = -\gij{^iuxj + Uxi^i) K2U   dxl   x ) Ay   ydxl   x x dxi1 

K   =-l-P a*™™. (19) 
4   ~y   dxtdxi' 

up to additional fermionic terms. The expressions above are meaningful only 
away from the singularities of the manifold, where additional contributions 
may be localized. In the conformal quantum mechanics, these operators 
obey the commutation relations (10). Note that K- vanishes only at the 
origin of the moduli space (x = 0). 

5Using the same conventions as (5) and (6) for the conformal algebra of the quantum 
mechanics, H ~ (PO)QM, T ~ 2DQM and K- ~ 4(KO)QM. 
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Obviously, these identifications are meant to be relevant only at some 
specific time, say t = 0. The operators may then be evolved in time in the 
usual way, by the equation 0(t) = e'ltHO(0)e~ltH. For instance, Vi(t) ^ 
P-x* + 2mii. Note that we expect to find H = P+ = ((P;)2 + M2)/P_, so 
we may identify the second (^-dependent) part of H with M2 in spacetime 
(which is a Casimir operator of the Lorentz algebra but not of the conformal 
algebra). 

3.4    Identification of the Fermionic Operators in the Quan- 
tum Mechanics 

It is easy to identify also most of the operators described in §3.2 in the 
quantum mechanical description. The charges of the Sp(2) R-currents in 
spacetime may be identified with the Sp(2) R-charges of the quantum me- 
chanics, which involve only the fermions. Using the commutation relations 
(16) it is easy to check that Q, Q and S commute with P_, while S does not, 
so we do not expect to identify S in the quantum mechanical description. 

The operators Q and Q are simply the spacetime supersymmetry gener- 
ators. The Q's are the generators which are linearly realized in the quantum 
mechanics as the 8 supercharges of the quantum mechanics. Schematically 
they are of the form Q% ~ y/R/NQl

aIlx^, where we divided the target space 

coordinates into SU(2)R doublets. Q is non-linearly realized in the quan- 
tum mechanics, and schematically it is given by Q% ~ 2yfPl(dc£, where 0" 
is the superpartner of x1 (denoted by tr(0x) above). Q is in the (1, 2,4,1) 
representation of the global symmetry, while Q and S are in the (2,1,4,1) 
representation. 

The superconformal generator S may be identified in the quantum me- 
chanics (up to a constant) with the other fermionic generator of the quan- 
tum mechanical superconformal algebra. Schematically, it is given by S% ~ 
y/PZQ^—r. It is easy to check that with these identifications, the commuta- 

tion relations (16) are obeyed. The Q's and S"s form doublets of the S,0(1,2) 
algebra mentioned above ([T, Q] iQ, [T, S) ~ iS, [K-,Q] iS, [H, S] ~ 
-iQ,[K-,S] = [H,Q] = 0). 

To summarize, we have found that our quantum mechanical sigma model 
is actually a superconformal sigma model. This is consistent with the fact 
that the R-symmetry group is SU(2)R X Spin(5), which is one of the possible 
R-symmetries for superconformal quantum mechanics [30]. The supercon- 
formal algebra of the quantum mechanical theory includes the generators 
H — P-t-, T, if-, Q and S of the space-time superconformal algebra, all of 
which commute with P_.   The other generators which commute with P_ 
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are realized either as charges of the SU(2)R X SU(2)L X 50(5) global sym- 
metries, or (in the case of P;, Vi and Q) as simple operators acting on the 
decoupled free fields corresponding to the center of mass position. 

4    Resolution of the singularities 

4.1    The need for the resolution 

It is natural to organize the states of the space-time superconformal the- 
ory into representations of the superconformal algebra. The representations 
which appear in physical theories include primary states, which are annihi- 
lated by all the special conformal generators K^ and S (we will elaborate 
more on this in section 5). Since we identified K- with the special conformal 
generator of the quantum mechanical theory, such states will correspond to 
primary states in the quantum mechanics6, which are annihilated by K-. 

From the form of K- given above, it is clear that such a state must be 
concentrated completely at the origin of moduli space. Other local operators, 
obtained by acting with P and Q on the primary operator, will also be 
concentrated there. The fact that local operators in space-time correspond 
to states in the quantum mechanics which are localized at the origin of 
the moduli space had been anticipated by L. Susskind [31] based on the 
following intuitive picture. We are interested in local operators in space- 
time, which are a disturbance only in a very small region of space-time. Thus, 
their wave function should certainly be localized in the quantum mechanical 
variables which correspond to space-time positions. These arise from the X 
fields in the gauge theory description. The other variables in the quantum 
mechanics, arising from the q fields, are associated with the instanton size. 
Large instantons are not expected to correspond to local operators, so we 
expect states corresponding to local operators to be localized at q = q — 0. 

Using the algebra, one can arrive at the same conclusion in another way. 
The way to obtain a local operator in space-time is to create a disturbance 
in a compact region of space-time and then shrink it using the dilatation 
operator. The corresponding action in the quantum mechanics will be to 
shrink all the support of any wave function to the origin. 

There is one obvious wave function of this type, which is just Jj; fi{xl)i but 
since the origin is very singular it is hard to say if there are not more states 
that are "hidden inside the singularities." Thus, we would like to be able 
to resolve the singularities and deal with a smooth manifold. Luckily, there 
exists a simple resolution of the space which makes it completely smooth. 

States that are not primary in space-time may also appear as primary in the quantum 
mechanics, since the 0 + 1 dimensional superconformal algebra is smaller. 
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In this section we will describe this resolution and its physical interpretation 
in space-time. 

As described in section 2, the space MN^ 
ls the Higgs branch of a gauge 

theory with 8 supercharges, which is the space of X's and g's subject to (1) 
and (2) and modded out by the gauge group. This space is singular whenever 
the gauge group is not completely broken, since then there are additional 
massless fields in the gauge theory. From the point of view of the instanton 
moduli space these singularities correspond to small instantons. By adding 
a Fayet-Iliopoulos term to the gauge theory, we can force the gauge group 
to be completely broken at all points on the Higgs branch, and then the 
Higgs branch is no longer singular. The Fayet-Iliopoulos parameter consists 
of 3 real scalars, which are a triplet of SU(2)R. They appear on the right 
side of the equations (1) and (2). By an SU(2)R transformation we can 
always choose just one of these scalars to be non-zero. The Higgs branch of 
the theory, which is the deformed moduli space MN,k, is then given by the 
space of X's and g's subject to the equations 

[X,Xt] - [X,JT] + ml - (tf^iq1) - (IN (20) 

and 

[X,X] + qie = 0, (21) 

modded out by the gauge group, where ( is some non-zero real number and 
IN is the N x N unit matrix. 

From the mathematical viewpoint turning on £ is a compactification of 
the small-instanton region of the moduli space. This compactification was 
used in [32] to compute partition functions of A/" = 4 4D gauge theories, and 
in [33] to compute the cohomology of M]sf,k- It has no known interpretation 
in terms of instantons, but it is natural in the context of their generalization 
to stable sheaves in algebraic geometry. 

4.2    Spacetime Interpretation of the Resolution 

What is the physical interpretation of the parameter £ in the space-time 
theory ? We can discuss this question within the theory of the 5-branes alone, 
or we can do so within the U(N) quantum mechanics corresponding to the 
full M theory with the 5-branes, which flows in the IR (on one of its branches) 
to the 5-brane theory. We will use the latter, more general, description. 
Apriori, not every deformation of the quantum mechanics corresponds to 
a change in the theory in space-time, as the space-time interpretation may 
collapse. We do not expect this, however, to happen in our case. 

Strictly speaking, the deformation by £ lifts the Coulomb branch, which 
corresponds to 0-branes moving away from the longitudinal 5-brane. It does 
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so, however, in a very limited way. Unlike its pronounced effect on the origin 
of the Higgs branch and of the Coulomb branch, its effect far out along the 
Coulomb branch is merely an addition of a constant to the DLCQ Hamilto- 
nian. As such, it changes the dynamics there only by an insignificant phase. 
We therefore still expect to have, for example, bound states corresponding 
to gravitons [34]. We have not lost the space-time interpretation, and the 
deformation by £ should have such an interpretation. 

We will argue that the space-time interpretation of the parameter £ is 
that of turning on a constant 3-form field C in M theory. This field is 
not gauge invariant, and can be gauged away in the absence of 5-branes. 
However, in the presence of a 5-brane, gauge transformations of the C field 
in the bulk act also on the self-dual 3-form field strength H living on the 
5-brane, and the gauge invariant (self-dual) field on the 5-brane is actually 
(H — C) [35]. Thus, by a gauge transformation we can turn the 3-form 
field C in the bulk into a constant (self-dual) 3-form field strength H on 
the 5-brane. The component of the H field that we turn on is iJ+ij, where 
the z, j indices are in the non-compact directions of the 5-brane and the + 
index is the DLCQ time direction. In most of the analysis below we will use 
this gauge freedom and discuss the space-time theory with an if-field turned 
on (we can only do this explicitly for the case of a single 5-brane, but this 
should not change our results). 

To get the precise coupling we can follow the procedure of [7]. We will 
do so with some detail. At the first step we are interested in going from 
M theory on an almost light-like circle, which we will denote by M, to M 
theory on a space-like circle with radius Rs, a configuration which we will 
denote by Ms (we will label quantities in Ms by a subscript s). We will then 
go to the M system by an appropriate rescaling. 

In the original M system, on a light-like circle, we wish to set H+ij to 
some non-zero value. The DLCQ Hamiltonian is of the general form 

^^Gl'fi)' (22) 

for some function F. This form is determined on dimensional grounds, and 
by the requirement that the DLCQ Hamiltonian be covariant under longi- 
tudinal boosts. Under a longitudinal boost the dynamical quantities change 
according to their MQI quantum numbers, but we also change the value of R. 
The quantity H+ij/R remains invariant under such a boost, and, therefore, 
it is the correct one to enter the function F. The factors of Mv are then 
fixed by dimensionality. Our final goal is to go over to the M system in a 
way that preserves the physics, as encoded by F. 

Next, as in [7], we make the circle slightly space-like and then boost 
the system to the configuration Ms, in which M theory is compactified on a 
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spatial circle with radius Rs. When we deform the circle to be slightly space- 
like we do not change H and preserve the fact that H-ij = 0. The reason we 
must do this is that the self-duality condition on the 3-form field H implies 
that the physical components of H+ij transform as a triplet of SU(2)R (and 
a singlet of SU(2)L), while those oiH-ij transform as a triplet under SU(2)L 

(and a singlet of SU(2)R)
7. This is true irrespectively of details of the circle 

on which we compactify. As our deformation has (by construction) only 
SU(2)R quantum numbers, we need to maintain that iJ-zj = 0. 

Now, when we go to the Ms system after the boost, we find that 

Hs,+i3 = ~RH+iii Hs,-ij = 0, (23) 

and that the Hamiltonian is now of the form 

(Po)s = RsM?F(^^). (24) 
\Mp' RSM£ 

In order to go to M, we now want to rescale time and distances such 
that the energy of the physical processes we are interested in remains fixed, 
and the relevant physics remains the same. This criterion determines that, 
in going to M, we need to keep the arguments of the function F fixed. In [7] 

this determined the scaling jf- = -£*-. Here it also determines the relation 

Once we are in the M system, and have determined all the quantities in 
this system, we can go over to the IIA description (which is valid since the 
radius Rs of the space-like circle in this system is small) and write down the 
Lagrangian for the 0-branes. H+ij may now be interpreted as a non-zero 
field strength on the 4-brane, with a specific chirality8. Such a field enters 
the Lagrangian of the DO-branes as a FI term. This can be seen in several 
ways. For instance, a computation in the free conformal field theory of the 
0-4 strings shows that a field strength shifts the mass of the 0-4 strings in 
the same way that a FI term does. 

A more intuitive way is to perform a gauge transformation on the bulk 
fields in the string theory, such that the constant field strength F on the 
D4-brane becomes a constant NS B-field in the bulk (this is similar to the 

7Recall that we decomposed the 50(4) rotation symmetry of the 5-brane transverse to 
the light-cone direction into SU(2)R X SU(2)L. 

8When we wrap the 5-brane on a circle of radius i^s in the x1 direction to get a D4- 
brane [35], the 4 + 1 dimensional field strength on the D4-brane is Fij = RsHiij. 
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inverse of the gauge transformation we used above to turn C into H). The 
low-energy action of D-branes does not contain just the trF2 term, but rather 
tr(F — B)2, where B is the pullback of the space-time NS 2-form field to 
the D-brane worldvolume. If we start with the action for a wrapped 2-brane 
and T-dualize to go to the action of O-branes, this becomes a term of the 
form tr[\X^ Xy) — -S^)2, and again we see that some of the components of 
the B field appear as a FI term. 

Going back to the quantum mechanical Lagrangian for the DO-branes in 
the M system, we find that it is of the schematic form (suppressing indices) 

;*2+*■**('*•*!+iM- (26) 

Using the relation to the original M-theory variables [7] 

U X = [jr) 2jt> M
P
R

 = MlRs (27) Ls 

and 

H+    _  Hs^   _   H+ 

one obtains 

J?SM4      R8M$      RMf 

^2+RMK[X^]+MI) 

(28) 

2 

(29) 

TT 

Thus, we identify the Fayet-Iliopoulos term ^ with jfiffi, or more gener- IMS' 
-j"!.^    in thp snpirp-t.iTYip A/T t.Vipnrv that, TAZP arp rlp«rrihinor" ally with ^^J-, in the space-time M theory that we are describing9. 

Note that our identification of the Fayet-Iliopoulos term with the C+ij 
field in space-time is completely general, and can be used even in the absence 
of any 5-branes. Of course, in such a case this field may locally be completely 
gauged away. This is consistent with the fact that in the absence of any 
charged matter (<y's), the Fayet-Iliopoulos term only contributes a constant 
to the Hamiltonian, which does not change the dynamics. In the presence of 
5-branes and the constant C-field, we find that particles with longitudinal 
momentum are attracted to the 5-branes, since the minimal energy away 
from the 5-branes (where q = 0) is |C|2, while inside the 5-branes it is zero 
(for configurations satisfying (20) and (21)). 

9This was recently noted also in [36-38]. 
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4.3    New Lorentz Non-Invariant Theories 

In the previous subsection we described the role of the FI term in the full 
theory of M theory with k 5-branes, described by the U(N) gauge quantum 
mechanics. However, in this paper we are actually interested in taking Mp —> 
oo, in order to decouple the (2,0) field theory on the 5-brane from the bulk. 
Since, as mentioned above and described in more detail below, we would 
like to use £ as a UV cutoff for the quantum mechanical sigma model that 
we obtain, we would like to take this limit such that the FI term remains 
fixed. However, since we found above that ( ~ ;RM6 > we need to take C+ij oc 

M^ ->> oo in this limit. Thus, the deformed quantum mechanical theory 

(the sigma model on the deformed moduli space MN,k) describes in space- 
time the theory of k 5-branes as Mp -+ oo, with a C-field which also goes 
to infinity as C oc Mp. Obviously, such a limit is not accessible from the 
low-energy supergravity theory (for a single 5-brane we can translate the 
C field into an H field whose energy density is very large in Planck units), 
but in principle it exists in M theory, and our DLCQ description provides a 
construction of the resulting theory. 

The resulting theory is not equivalent to the (2,0) field theory, as one 
clearly sees from the fact that its DLCQ description is quite different (obvi- 
ously, it is not Lorentz invariant, since we explicitly broke the SU(2)R which 
was part of the space-time Lorentz group). Many of the UV properties of the 
resulting theory will be different from those of the (2,0) theory (as one can 
compute explicitly using the quantum mechanics), but it will still flow to the 
(2,0) theory in the IR. This may be deduced from the fact that the change 
induced by the FI term is particularly important near the origin of the Higgs 
branch, and is less important far along the flat directions (thus, the long dis- 
tance behavior of the new theory is governed by the (2, 0) fixed point). This 
also shows that it is incorrect to think of this theory as a mere change of the 
vacuum of the (2,0) field theory, as this would not modify the theory in the 
UV. Instead, one can think of this as a change in the short-distance (UV) 
properties of this theory which does not change its long-distance properties. 

To summarize, our construction naturally implies the existence of a new 
class of Lorentz non-invariant theories, whose UV properties are very dif- 
ferent from those of the standard field theories (the theory is not Lorentz 
invariant nor scale invariant in the UV)10. Even though we have not encoun- 
tered such theories before, and we do not seem to be able to access any of 
their properties through the low-energy supergravity theory11, the preceding 

10Note that these theories are not Lorentz invariant but still have 16 supercharges. They 
are similar in this sense to the theories recently discussed in [36]. 

11 For k = 1 and for values of C (or H) that are small in Planck units, it should be 
possible to explicitly compute the effect of turning on this field also directly in space- 
time [24,35,39]. However, it is not known how to do this for k > 1, and in any case we are 
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construction is (up to possible subtleties of the large N limit) a complete 
calculable definition of these theories. 

4.4    C as an Ultra-Violet Cutoff 

As an ultra-violet cutoff £ appears in the theory in a familiar and straight- 
forward way. ( has negative mass dimension (—2), so taking £ to be small 
is equivalent to going to large time differences. When analyzing the theory 
with finite (, we will usually be interested only in the long-time behavior 
of correlation functions. At long times the quantum mechanical theory will 
flow to a superconformal theory, which will contain the information about 
the superconformal theory in space-time. 

The procedure of extracting n-point functions from the theory with the 
cut-off is standard. The key point is that we are interested in the behavior 
only as t —> oo. By appropriate wave-function renormalization we will ex- 
tract the quantities that remain finite as we take the UV cut-off to infinity 
or, equivalently, flow to the IR12. All other quantities, with a non-trivial 
dependence on the cut-off, will be interpreted as artifacts of the cut-off. 

Let us briefly demonstrate this standard procedure for 2 and 3-point 
functions. The x dependence of wave functions can always be chosen to 
be through the combination x/y/(. Then, the time dependence will always 
appear through the combination (/Rt. Given a wave function (f)i(x/y/Q), we 
can expand its 2-point function as 

<0i(t)|0i(O)) - a\Jzj)    + higher order terms in ^ (30) 

where d is the dimension of </>i in the quantum mechanics (which, as described 
above, is proportional to T). We then define a renormalized operator by 
(j>i —> (C/jR)"~da_1/2</>i. This wave function renormalization is performed 
such that the coefficient of the identity operator in the 2-point function is 
exactly A-. The terms of higher order in j will have powers of £ in them, 
and are, therefore, cut-off artifacts. 

For any choice of generic wave functions (pi and fo with the same quan- 
tum numbers (under global symmetries), the large-t behavior of the 2-point 
function is dominated by the conformal state of lowest dimension with the 
same quantum numbers, i.e, the two point functions (<&(£) |<M0)), i = 1,2 
decay (for large t) with the same power of t. From these two functions, 
however, we can extract a state that corresponds to an operator with higher 

interested in large values of C (or H) in Planck units, when the low-energy description is 
no longer valid. 

12 A similar normalization of wave functions to cancel the dependence on a cutoff which 
is a FI term appears in [40]. 
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dimension by taking a linear combination 03 such that the large-t behavior 
of (03CO|</>3(O)) now falls off with a higher power of j. One again needs to 
rescale this operator such that the leading contribution does not depend on 
£, and interpret all remaining £ dependence as a cut-off artifact. 03 can 
now serve as a representative for the next-to-leading operator with the same 
quantum numbers, as far as the large-t behavior is concerned. 

Next, let us go over to the 3-point functions. Taking some 3 operators 
^1,2,3 and calculating their 3-point function, one obtains an expansion (before 
the wave function renormalization) for ('0i(^i)/02(^2),03(O)) of the form 

/    >   \ di+ds— 6,2 /   /■   \ ^2+^3—^1  / /■ \ d\+d2—dz 

\m)       {m)       Km^))        +-'     (31) 

where (• • •) denotes higher order terms in £/i2i. After the wave function 
renormalization, the £ dependence disappears from the leading term, which 
becomes the 3-point function of the operators. Subleading terms are, as 
before, cut-off artifacts. 

To conclude, the definition of the states in the conformal field theory, 
i.e. when £ = 0, is as the Hilbert space of states on the resolved target 
space MNIIO modulo a relation. The relation is that two such elements 
in the Hilbert space are equivalent if the leading j dependence of all their 
correlation functions are the same. After this identification, we can translate 
the finite-C wave functions to the conformal states by the procedure described 
above. 

An example of this is the following. Let us consider the real axis, and the 
evolution of functions by the heat equation. Upon Fourier transform, the 
long time behavior of the wave function is governed by the Taylor expansion 
of the Fourier transform around the origin P = 0, f(p) — ao + aip + ^a2£>2 + 
• • •. The equivalence class of the state with the least dimension contains all 
the states with ao / 0, the equivalence class of the state with the next-to- 
leading dimension is given by functions with ao = 0, a\ / 0, etc. 

We cannot do such a computation explicitly in our case, as the space 
is quite complicated. However, the general structure will be the same. 
The Fourier transform will be replaced by the spectral representation of 
the Schrodinger equation. The relevant components of the spectrum will 
be either normalizable discrete zeros or a continuum component that goes 
down to zero. Two functions will give the same state in the conformal limit 
if their behavior at eigenvalues close to zero is the same. 

We will not analyze the general equivalence relation any further, as we 
will be interested in a special class of operators and states that are easier to 
control, which correspond to chiral primary fields. In order to analyze these, 
we need to understand better the supersymmetries of the resolved model. 
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4.5    Supersymmetries and Forms in Quantum Mechanical 
Sigma Models 

After the resolution of the singularities, we have a quantum mechanical 
sigma model with 8 supercharges on a smooth (though non-compact) man- 
ifold. The theory after the resolution is no longer superconformal. In this 
subsection we describe a convenient description of the fermionic variables 
and supersymmetries of such models in terms of forms on the target space. 

Let us begin by assuming that we have a quantum mechanical supersym- 
metric sigma model with two supercharges (or one complex supercharge Q) 
on a manifold M. Then, it is well known [41] that the states of the sigma 
model may be identified with forms on A4, and one of the supercharges may 
be identified with the exterior derivative operator d acting on these forms. 
The SUSY algebra acts as [Q,a;z] = O1 (where 6l is a complex fermion), and 
the fermionic zero modes obey {{9l)^9^} = gli where g is the metric on the 
space. We can choose the vacuum such that 6j\Q) — 0, and then we can 
identify the fermion creation operators (O1)^ with forms dx1, and the annihi- 
lation operators 9l with *dxl*. This allows us to translate any state in the 
quantum mechanics into a form on the target space. The SUSY generator 
Q ~ 9ldi + Tl-k(x)9i9j9l may then be identified with the exterior derivative 

operator d on the space (the other SUSY generator corresponds to d^ = *d*). 
Thus, the space of states which are annihilated by Q is translated into the 
space of closed forms on the target space M.. 

The J\f = 2 SUSY algebra includes a U(1)R symmetry, which Q and all 
the fermionic fields are charged under. The identification above means that 
the U(1)R charge of a state is equal to the degree of the corresponding form, 
up to a constant shift (the U(1)R charge of a p-form state is p — ^dim(M)). 

In our case we actually have 8 (real) supercharges, and the R symmetry is 
SU{2)RxSpin(5). The SU(2)R is broken by C to U(l)c. Choosing an Af = 2 
subalgebra includes a choice of a U(1)R symmetry in 17(1)^ x Spin(b). Since 
we want a U(1)R symmetry that does not act on the bosonic coordinates, 
we should choose U(1)R C Spin(5), and it seems that the unique consistent 
choice of a U(1)R is to use the U(l) which appears in the maximal subgroup 
of Spin(5) ~ Sp{2) which is SU(2) x U(l). In particular, the 4 of Spin(5) 
decomposes as 2i + 2_i, so with this choice of U(1)R we are assured that all 
the fermionic coordinates will have charge ±1, as required for the realization 
of the SUSY algebra described above. This choice is also required to ensure 
that the fermions transform as the tangent bundle of the manifold, as needed 
for their identification with forms. 

After this choice of an J\f = 2 subalgebra of the quantum mechanical 
supersymmetry, one of the Q operators with charge (+1) under the U(1)R 

symmetry will be the J\f — 2 supersymmetry generator, which may be iden- 
tified with the exterior derivative operator d (its conjugate is identified with 
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eft). The other components of Q correspond to other differential operators 
on M, of degrees ±1. 

5    Representations of the Conformal Algebra and 
Correlators in DLCQ 

5.1    Representations   of  the   Superconformal   Algebra   in 
DLCQ 

The interesting representations of the conformal group for physical applica- 
tions are representations containing a primary field $. The action of the 
conformal generators on such a field is given by 

[Pfl,$(x)}=idfl$(x) 

[MM„, $(x)] = [iixudv - x^) + S^]$(x) 

[DM^)]=i(d + xl/dl/)^(x) (32) 

[K^ ®{x)} = HOr2^ - 2xflx'/dl/ - 2xfld) + 2a;I'£/u/]$(a;), 

and, in particular, [ifM, $(0)] =0. d is called the dimension of the field $, 
and S^j, are the usual spin representations of the Lorentz group. 

In the usual construction of representations of the conformal group, D is 
diagonalized. The primary field (at x = 0) is annihilated by the generators 
Kfj, of the conformal group which lower the dimension d, while the action of 
the other conformal generators on the primary field gives us the full confor- 
mal block. In particular, the fields fall into representations of the Lorentz 
group and of any other global symmetry, and the generators of these groups 
commute with D. For the superconformal group the story is similar, with 
the S generators of the superconformal group annihilating primary states, 
while the supersymmetry generators Q raise the value of d and generate the 
conformal block. 

In the discrete light-cone quantization, the representation structure is 
different since we are looking only at a sector with a particular eigenvalue 
of P-. In particular, this sector may include a particular momentum mode 
of all the fields of the conformal block described above. Since, as discussed 
above, D does not commute with P_, we cannot diagonalize D, and instead 
we diagonalize T — D — MQI. We will call the eigenvalue of T (divided by 
i) the "DLCQ dimension" of a field, and denote it by to- We also do not see 
full representations of the Lorentz group, but only of the part of the group 
that commutes with P_, as described above. In particular, for the (2,0) 
superconformal theories in six dimensions, we will sort the states according 
to the eigenvalue of T and the SU(2)R X SU(2)L X Spin(5) representation. 
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As before, we will look for states which are annihilated by the generators 
of the conformal group which lower the "DLCQ dimension" of a field. These 
generators are K-, Vi and S. Given such a state, we can form its full 
conformal block by acting on it with the other superconformal generators. 
The generators Q and the SU(2)R X SU(2)L X Spin(5) charges commute 
with T, and generate states with the same "DLCQ dimension." The other 
operators Q, Pi and i?, raise the "DLCQ dimension" of a field, and generate 
various descendants of a primary field. 

As an example let us analyze the free tensor multiplet. It contains five 
scalar fields, in the (1, 5) representation of S,0(5,1) x Spm(5), one fermion 
field in the (4,4) representation and one self-dual 3-form field strength in 
the (10,1) representation. Since these are all free fields, their dimensions are 
d — 2, 5/2 and 3 respectively. The full representation of the superconformal 
algebra is completed by additional operations with Q and P on these fields. 

In DLCQ, we can easily compute the T-eigenvalues and SU(2)R x SU(2)L 

xSpin(b) representations of all of these fields. The 5 scalars all have a 
"DLCQ dimension" to = 2, and are in the (1,1,5) representation. The 
fermions split according to their MQI ~ r0r1 eigenvalue, into a (1,2,4) 
representation with to = 2 and a (2,1,4) representation with to = 3. The 
Dirac equation for a free fermion of momentum P_ = N/R allows us to 
express the to = 3 components as derivatives (descendants) of the to = 2 
components. The tensor field splits into a (1,3,1) with to = 2, a (2,2,1) 
with to = 3 and a (3,1,1) with to = 4. The to = 3 and to = 4 states are again 
descendants, in the DLCQ, of the to = 2 states. The to = 2 states of the 
tensor multiplet form an irreducible representation of the Clifford algebra of 
the Q operators. Generally, to generate all the states we will need to also 
use the SU(2)R x SU{2)L x Spin(b) charges. 

A special class of primary fields is the class of chiral primary fields. These 
are representations of the superconformal group that contain null states. We 
will discuss here only chiral primary fields for which some combination of su- 
percharges Q acting on the primary states in the representation (states with 
the minimal dimension) vanishes. We will further restrict ourselves to rep- 
resentations whose primary fields are Lorentz scalars. The superconformal 
algebra may be used to derive a bound on the dimension of primary fields, 
given their R-symmetry representation, which is exactly saturated for chiral 
primary fields. The free tensor multiplet described above is the simplest case 
of a chiral primary field. 

We will not derive here the general equation for the dimension of chiral 
primary fields [42,43], but only a special case that will be useful in the 
following. The (2,0) superconformal algebra in six dimensions contains as a 
subalgebra the (1,0) superconformal algebra. The R-symmetry of the (1,0) 
algebra is SU(2), and this SU(2) may be chosen to be either of the two 



140 LIGHT-CONE DESCRIPTION OF (2,0) ... 

SU(2) factors in the maximal subgroup SU(2) x SU(2) C Spin(5)R of the 
R-symmetry group of the (2,0) algebra. The (1,0) superconformal algebra 
may be used to show that the bound on the dimension of a primary scalar 
field in the 2j + 1 dimensional representation of the SU(2) R-symmetry 
is d > 4j, and it is saturated only for chiral primary fields of the (1,0) 
superconformal group. The 5 representation of Spin(5) decomposes into 
(2,2) + (1,1) of 577(2) x 577(2), so we find that the bound on a scalar 
field in the 5 representation is at least d > 2 (since obviously a primary 
field of the (2,0) algebra is also a primary field of the (1,0) theory). In 
this case this bound is actually the maximal one, as the example of the 
free tensor multiplet demonstrates. Similarly, one can easily show that the 
dimension of a primary scalar field in the n-th symmetric product of 5's 
obeys d > 2n, since its decomposition into 577(2) x 577(2) representations 
includes (n +1, n +1), and a field which saturates this bound is necessarily a 
chiral primary field (since it is a chiral primary field of the (1,0) subalgebra). 

5.2    2-point Functions of Primary Operators in DLCQ 

The correlation functions of scalar primary fields are strongly constrained 
by the conformal algebra. Their 2-point functions are of the form 

<*!(*)*<«»> = j^yu, (33) 

and their 3-point functions are of the form 

  Cijk (34) 
[(^i2)2](di+^"dfc)/2[(a;i3)2](di+dfc"^)/2[(a;23)2](dife+^"di)/2 ' 

where di is the dimension of $i and Xij = xi — Xj. 
In the DLCQ, we are not studying the operators $, but rather their 

momentum modes 
r27rR 

$N(x\x+)=  /       dx-e-iNx /R<£>(x\x+
:x-). (35) 

Jo 
We are interested in computing things like the 2-point function of these mo- 
mentum modes, /Ar(£z,£+) = ($]v(x

2,^+)$iv(0)). The remaining conformal 
symmetry (which commutes with P_) is still enough to determine this up 
to a constant. The rotation symmetries require fN(x\x+) = fN((x1')2,x+). 
The action of T then requires /Ar(xz, x+) = , L(j/Ar((^)2/x+). Since the op- 

erator (35) is an eigenstate of T, and T is the same algebra element for every 
A7", d does not depend on N. Then, the action of K- uniquely determines 

(SJ^.z+JcMO)) a     Le_mxty/4Rx+^ (36) 
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In particular, we can determine the dimension of primary operators in 
the DLCQ without having to go to large values of N. For higher n-point 
functions we may have to go to large N to get exact results in the space-time 
theory. 

6    Primary States and Correlation Functions from 
the Quantum Mechanics 

The remaining obstacle to calculating dimensions and correlation functions 
is the precise identification between states in space-time and states in the 
quantum mechanics. As explained in section 4, states of the conformal field 
theory in space-time (without the cutoff) are realized in the quantum me- 
chanics as equivalence classes in the Hilbert space of the sigma model on the 
resolved space MN^- We defined these equivalence classes using the long 
time evolution of wave functions, but actually computing the equivalences 
is quite complicated, and we will do it for some simple examples below. 

6.1    Identifying Chiral Primary Operators in the Quantum 
Mechanics 

As described above, any primary operator in the quantum mechanics must 
be annihilated by K-. Chiral primary operators (of the space-time theory) 
are also annihilated by some of the spacetime SUSY generators (in addition 
to being annihilated by K-). As described above, the states that are anni- 
hilated by one particular Q, which generates (together with Qt) an Af = 2 
subalgebra, correspond to closed forms on the target space. We will focus 
here on this particular type of chiral primary states. 

For our purposes, we are interested in states that are annihilated by Q 
and are also concentrated at the origin of the moduli space. Since there is 
an obvious scaling symmetry of the target space (for £ = 0), we can scale 
any state which has compact support (namely, it vanishes sufficiently fast 
on the boundary at infinity of the manifold) so that it is concentrated at 
the origin of moduli space. Thus, the chiral primary operators of an Af = 2 
super conformal sigma model are given by the cohomology with compact sup- 
port (sometimes denoted by H(M.N,kidMN:k)) of the target space (which, 
in our case, is the instanton moduli space MN^)- Note that we can also use 
the Af = 2 quantum mechanical super conformal algebra to learn about the 
dimensions of chiral primary operators. The Af = 2 supersymmetry algebra 
contains a U(1)R symmetry, and the superconformal algebra gives a bound 
on the dimensions of primary operators, T > |i?|, with equality only for 
chiral primary operators (we normalize the R-charge of Q to be one, and 
T ~ 2DQM as described above). 
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The justification for identifying states differing by an exact form is the 
following. Adding an exact form to a state certainly changes the state, and 
also, for instance, its 2-point functions. This can be identified with adding 
the commutator of Q with some operator to our primary state. However, 
such an exact form will always have a higher "DLCQ dimension," because it 
will not saturate the bound relating the dimension to the R-charge. Thus, 
its correlation functions will decay faster in time, and the long-time behavior 
will not depend on such additions of exact forms. The large-time correlation 
functions depend only on the cohomology, which is the reason why we can 
identify the cohomology with (a subgroup of) the chiral primary states. 

In our case we actually have 8 supersymmetry generators, and we are 
looking for states that are annihilated by some combination of the super- 
symmetry generators. The simplest way to look for chiral primary operators 
is to take an J\f = 2 subalgebra of the Af = 8 SUSY algebra. Given such 
a choice of an J\f = 2 SUSY generator Q, the states annihilated by Q will 
correspond, as described above, to the cohomology with compact support of 
MN,k- Obviously, a primary state that is annihilated by the M = 2 SUSY 
generator corresponds to a chiral primary operator, since this generator is a 
combination of the J\f = 8 SUSY generators. 

However, the converse is not necessarily true. There could be represen- 
tations which are chiral primaries of the J\f = 8 algebra but which do not 
include any chiral primaries of the N = 2 subalgebra. A chiral primary of the 
J\f = 8 superconformal algebra, in some representation of SU{2)R X Spin(5) 
and with some "DLCQ dimension" to, includes states of different ^7(1)^ 
charge13. If the representation includes a state with R = to, this state will 
be a chiral representation also of the J\f — 2 subalgebra, and we will find it in 
the cohomology. On the other hand, if the highest U(1)R charge appearing 
in the decomposition is lower than this bound, the decomposition of this 
M = 8 representation into M = 2 representations will not include any chiral 
primary operators, so we will not find a representative of this state in the 
cohomology. For scalars in space-time, which are hence SrC/(2)^ singlets, it 
is easy to check that the only Spin(5) representations which obey this con- 
dition are the totally symmetric (traceless in each pair of indices) products 
of 5's. Thus, only chiral primary operators in totally symmetric (traceless) 
representations will correspond to the cohomology with compact support of 
A4N,k' Other chiral primary operators will be annihilated by other linear 
combinations of Q's, and we leave their analysis to future work [22]. 

Note that the derivation above proves that the bound on the dimension 
of primary operators in the quantum mechanics which are singlets of SU(2)R 

and which are in the n-symmetric traceless representation of Spin(5) is T > 

13to is determined in terms of the SU(2)R X Spin(5) representation by the Af 
superconformal algebra. 
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2n. Using the relation to the space-time theory, it also shows that the bound 
on the dimension of scalar primary operators in (2,0) six dimensional SCFTs 
in the same representation of Spin(5)R is d > 2n, with equality exactly for 
chiral primary operators, as we found above by using a (1,0) subalgebra. 
This is a special case of the general correspondence between R-symmetry 
representations and dimensions of primary operators. 

6.2     Computation of the Cohomology 

Now that we have resolved the singularities, the computation of the coho- 
mology with compact support of the resolved space MN^U becomes a well- 
defined mathematical problem. An algorithm for computing the homology 
using Morse theory was given in [33], and an explicit formula appears in [44] 
(a different proof will appear in [45]). After translating the formula from ho- 
mology to cohomology with compact support by the usual duality, it states 
that a generating function for the dimension ap^ of Hp(MN,k)U is 

nnr • = 2^ a>p+2NkMV(lN • (37) 
=1:7=1 H        N,p 

Let us begin by interpreting this result for N = 1. In this case, we find 
a one dimensional cohomology for p = 2k + 2, 2k + 4, • ■ • , Ak. Using the 
relation between the i?-charge in the J\f = 2 superconformal algebra and 
the degree of the form (which is R = p — ^dim(MN,k) — P ~ 2Nk), this 
implies the existence of A/" = 2 superconformal chiral primary states with 
R = 2,4, • ■ • ,2k. As described above, this implies the existence of states with 
to = 2,4, • • ■ , 2k, where the state with to = 2n is in a Spin(b) representation 
corresponding to the n'th symmetric (traceless) product of 5's. Note that 
an important consistency check on this procedure is that (37) never predicts 
states with negative dimension (or even states whose dimension is smaller 
than 2). 

The states we found for N = 1 have a natural interpretation as the 
coordinates on the moduli space of the space-time theory, which is IR /S^. 
At a generic point on the moduli space, the low-energy field content is k 
tensor multiplets, each including 5 scalars (f)la: i = 1, • • • , 5, a = 1, • • • , k, 
which are the natural local coordinates on the moduli space. It is natural to 
look at (globally well-defined) functions on the moduli space which are the 
symmetric products of these scalar fields. The symmetric products of more 
than k fields are determined by the symmetric products with less fields15. 

14iTp(.Mjv,fc), the space of p-forms in the cohomology, is isomorphic to H4Nk-P{MN,k), 
which is the space of (4iVA; — p)-cycles in the homology. 

15Note that even the symmetric products with k fields or less are not completely inde- 
pendent. 
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We find that for iV = 1 we have exactly one state corresponding to the 
momentum one component of each such symmetric product (of k fields or 
less), and no other state in a symmetric Spin(5) representation. We will 
denote the operator in the /-symmetric product of 5's by ui. A special 
case is ui which has dimension 2, and is, therefore, a free field (this can 
be proven by using the superconformal algebra). This is exactly the free 
decoupled tensor multiplet, whose scalars correspond to the center of mass 
position of the k 5-branes. 

Given this field content, we would expect to have states for arbitrary iV 
of the form Yli(uii)Ni where (ui)n is the n-momentum mode of u^ 1 <li < k, 
the Spin(5) representations are multiplied symmetrically16, and ^ Ni — N. 
It is easy to compute the contribution of these states to the generating func- 
tion (37), with each such state appearing at a value of p corresponding to a 
"DLCQ dimension" to — J2i 2^, and we find that it is exactly equal to (37). 
Thus, it seems that all chiral primary states in symmetric Spin(b) repre- 
sentations are of this form. Specifically, the only chiral primary operators 
in symmetric (traceless) representations of Spin(5) are products of the ui 
fields, and a product of j ui fields appears for the first time at momentum 
N = j. Note that apriori we do not know at which momentum a particular 
field will first appear. Since our computation of the spectrum of chiral pri- 
mary operators in symmetric representations is valid for all values of iV, it is 
valid also in the large iV limit, which corresponds to a light-cone description 
of the uncompactified six dimensional theory. 

For k = 1 this result was described already in [18], from a slightly dif- 
ferent point of view. In this case the theory is free, and the states we find 
here correspond exactly to the chiral primary states of the conformal theory 
of a free tensor field. In particular, from the analysis of the free field theory 
we find that all the chiral primary states are in totally symmetric (traceless) 
representations (since anti-symmetric products vanish), so our construction 
gives us all the chiral primary states in this case. 

7    Some Simple Examples 

7.1    States and Correlation Functions for N = 1 k = 1 

In this section we will give some concrete examples of the general construc- 
tion of chiral primary states described in the previous section. The simplest 

16Note that there are no singularities in symmetric products of chiral primary fields in 
symmetric representations, since the dimension of the product is equal to the sum of the 
dimensions of the fields. Generally, this would not be true, so there is no chiral ring for 
(2, 0) superconformal theories. 
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example is N = 1 k = 1. The theories with A: = 1 (corresponding to U(l)- 
instantons, which are pointlike) are always expected to be free. The case 
AT = 1 is particularly simple, since the instanton moduli space in this case 
is just IR4. In this case the deformation by ( has no effect, and we can 
do all our computations without it. Still, it is worthwhile to analyze this 
case in some detail, both because it is the simplest case, and because the 
moduli space always includes a decoupled IR4 factor, and the behavior of the 
states in this IR4 component will generally be very similar to the behavior 
for N = 1 k = 1. 

Using the formula (37), we find that in this case there is only one form in 
the cohomology with compact support, with degree 4. It is dual to the only 
element in the homology, which is the point. An element of this cohomology 
may be chosen to be / = f(xl

:x
2,xs^x4:)dxl A dx2 A_dx3 A dx4 for any 

function / which has compact support and obeys JR4 / 7^ 0. Then, it is 
easy to explicitly check that this state is in the cohomology with compact 
support, namely that df = 0 and that there is no g with compact support 
such that / = dg. As described above, to get the actual chiral primary state 
we have to scale this state to the origin, so that it is annihilated by K- 
(which in this case is proportional to |^|2). The resulting state is thus 

F = Y[ ^{x^dx1 A dx2 A dx3 A dxA, (38) 
i 

up to a normalization constant which we will determine by computing the 
2-point function below17. According to the general arguments above, this 
state represents one of the scalar fields of the free tensor multiplet ui with 
one unit of longitudinal momentum. 

It is very simple in this case to find the other states with to = 2 in the 
free tensor multiplet, since they may be generated by acting with Q on the 
state we found. In this case the Q are just the fermionic partners of the 
K4 coordinates, which in the form language correspond to dx1 and *dxl* (in 
fact, this is true for all values of N and A;). Acting with these operators on 
the state we found, we find 16 states, of the form J^ S(x'1) times any number 
of dxl's. 

The Spin(5) currents act only on the fermions, and not on the coordinates 
of the moduli space. As described above, we have already chosen a U(1)R C 
Spin(5) such that its charge corresponds (up to a shift by 2ArA:) to the 
degree of a form. There is an 517(2) C Spin(5) which commutes with this 
U(1)R, and the decomposition of the adjoint 10 representation of Spin(5) 
into 5(7(2) x i7(l)^ representations is 32 + lo + 3o + 3_2. The IQ component 

17Note that here we choose a different convention than in §4.4, in which the wave function 
depends on x and not on x/y/C,. Of course, after the wave function normalization we will 
get the same results. 
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of the Spin(5) charge is just the U(1)R generator, which may be written as 
gijdx1 * dxi*. The 3o components generate the SU(2) C 5pm(5), and may 
be written as gij(Jaykdxl *dxk*: where Ja are the three covariantly constant 
complex structures of the manifold. The 82 components are represented as 
a multiplication by the three Kahler forms, each of which is a (1,1) form 
with respect to one of the 3 covariantly constant complex structures of the 
manifold. In our example of N — 1 k = 1, they may be chosen to be 
dx1 A dx2 + dx3 A dxA, dxl A dx3 — dx1 A dx^ and dx1 A dx^ + dx2 A dx3. The 
3_2 generators are the conjugates of these (by the star operation). 

The SU(2)R and SU(2)L currents are more complicated, since they act 
also on the bosonic coordinates, and they correspond to geometrical sym- 
metries of the manifold. Obviously they commute with U(1)R, SO they do 
not change the degree of a form. SU(2)R acts only on the bosonic coordi- 
nates and not on the fermionic coordinates, and in the simple case of N = 1 
k = 1, it is a subgroup of the SO (A) rotation symmetry of IR4, generated by 
(xl-^j — xi -Tpi). SU(2)L is slightly more complicated, since it acts also on 
the fermions - its generators are similarly a subgroup of SO (4) but with an 
action also on the forms and not only on their coefficient function. 

Using these symmetry generators, it is easy to check that the 16 states 
we found above are in the (5,1) -I- (4, 2) + (1, 3) representation of Spin(5) x 
SU(2)L, and singlets of SU(2)R. This is also clear since the Q generators 
are in the (1,2,4) of SU(2)R X SU(2)L X Spm(5), and the 16 states are 
generated by zero modes in this representation. 

Other states in the superconformal representation of the free tensor mul- 
tiplet may be generated by acting with the other space-time superconformal 
generators on the state we found. In this case the only operators which do 
not vanish when acting on F of (38) are P;, H and Q, leading to various 
derivatives of the delta function (all the states we describe here are eigen- 
states of T). The operator Pi acts by shifting xl. Thus, it is clear that an 
insertion of an operator at a position XQ is described by exchanging 5(x) 
above with S(x — XQ). 

Next, let us compute the 2-point functions of the chiral primary states 
that we found. For instance, for the state F described above, the 2-point 
function will be given by fU4(elHtF(xi)) A *-F(x2), or explicitly 

(Fi(xut)F(x2,0)) = fdix[eiRtWdxl^5*{x-x1)}84{x-x2), (39) 

where we denote S4:(x) = Ylt=i ^{xl)' The time evolution in this case is very 
simple, and we find 

(FHXl,t)F(x2,0)) = -^-^e-^i-^i*. (40) 
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Up to normalization constants, this is exactly the expected result for a chi- 
ral primary operator of dimension 2, as described in section 5. The other 
16 states described above all have the same 2-point functions with their 
conjugate states, while all off-diagonal 2-point functions vanish. 

7.2    States and Correlation Functions for N = l,k = 2 and 
iV = 2,£; = l 

The next simplest example is either A/' = l,/c = 2orA7' = 2,A; = l. In both 
of these cases the moduli space is of the form IR4 x R4/^, which we will 
parametrize by coordinates xl and v1 respectively, though the interpretation 
of the states is quite different in the two cases18. In either case, the parameter 
£ is the usual blowup parameter for the IR4/^ singularity. 

The formula (37) predicts two cohomology elements, one which is an 8- 
form and one which is a 6-form. We will denote the corresponding states by 
Fs and FQ. The 8-form is similar to the 4-form described in the previous sub- 
section, and we may construct the corresponding chiral primary state even 
in the limit £ —» 0. The corresponding form is 5A(x)S4i(v) Ylidx1 JT\dv^. 
Again, we can translate this state in space using the Pj, giving S4:(x — 
XQ)8

A
(V) Ylidx1 Ylj;dv^. We can also translate the state in time using the 

evolution operator H in the quantum mechanics, which is simply given by 
H = f (0jf. + <%). This turns the state into 

Fs{x^t) „ ^e-((^-4)2+(^)2)/2iitt Hdx'lldv^ (41) 
i j 

up to (jR-dependent) constants which we will ignore throughout. 
It is again easy to compute 2-point functions of this state, and we find 

(i;,
8

t(si,t1)f8(x2,*2)> 

J ii*2 

or  \    -i(xi-x'2)V2fl(ti-t2) (40) 

Up to constants, this is exactly what we expect to find for a primary operator 
of dimension d = 4. In the case N — 2, k = 1 we identify this operator with 
(1^)2, or equivalently [(^i)i]2, while in the case iV = 1,A; = 2 we identify 
this operator with (142)1- As above, we can also describe descendants of this 
state, fill out the Spin(5) representations, etc. 

18As described in §3.3, the normalization we use for the Hamiltonian is also different in 
the two cases. In this section we will use the normalization of the iV = 2, k = 1 case. 
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Next, let us describe the 6-form state i^. After we blow up the IR4/Z2 
singularity, there is a non-trivial homology cycle corresponding to the blown 
up CP1, and a corresponding cohomology 2-form. In this special case, we 
can choose a representative of the cohomology which is annihilated not only 
by d but also by eft = *<i*, restricted to the v coordinates of the moduli space, 
and we will denote it by ^ = [^(v^ijdv1 A dv^. This form is concentrated 
near the blown-up singularity, and in the ( —>► 0 limit gives a state that will 
be concentrated at the singularity. The 6-form state that we find corresponds 
toF6 = S4(x)YlidiiAJr2. 

It is easy to compute the time evolution of this state, since ^ is anni- 
hilated by the Hamiltonian of the v coordinates19. Thus, the evolution will 
be the same as for iV — 1, k = 1, with a trivial evolution in the v space. As 
before, this is consistent with this state having dimension 2, and we identify 
this state with (1*1)2 for iV = 2, k = 1 and with (^1)1 for N = 1, k = 2. 
The analysis of the descendants of this state is exactly as in the case of 
TV = 1, k — 1 described above. 

Note that in the computations described in this section, we found 2-point 
functions that did not depend on £, and agreed exactly with our general 
predictions, described in §5.2. This depended on choosing particular repre- 
sentatives from each cohomology class. Generally, as described above, there 
will be ("-dependence and also different cohomology representatives will give 
different 2-point functions. But, the long time behavior will not depend on 
this. 

7.3     Comments on General n-point Functions 

In the previous sections we described the identification of some of the states 
in the quantum mechanics corresponding to the space-time theory for P_ = 
N/R. These states are the momentum N modes of some of the primary 
fields, (f)(x+,x\P- = N/R)\0}. As described above, it is simple to compute 
2-point functions of fields using these states20. 

Obviously, we are also interested in computing higher n-point functions. 
We will briefly outline here a procedure for such a computation, although 
the details remain to be worked out [22]. In the space-time theory, we would 
like to compute an n-point function of the form 

((f)l(xi,ti)(j)2(x2i *2) ' ' ■ 0n(^n, *n))- (43) 

19In the form language, H ~ dd* + d*d. 
20In some cases the primary field we find is the non-singular part of a product of / other 

primary fields, as detailed in §6.2, and then this 2-point function is also a special case of 
a 2Z-pomt function, in which / operators are at one point and I at another. 
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In DLCQ, the object that we may try and calculate is of the form 

foOri.s+.P-,! = |) •••^(4,4,P_,„ = ^)). (44) 

To simplify the discussion we will limit ourselves to correlation functions in 
which the operators with positive P_ appear at smaller values of x+ than the 
operators with negative P_. The prototypical problem is then to construct 
a state of the form 

4n{4^t,P-,i = ^)M*i4,P-a = §)l0)' (45) 
with fci,fc2 > 0, which can then be used to compute 3-point or 4-point 
functions21. 

The state (45) has longitudinal momentum P_ = (fci+A^/i?, so it should 
appear in the quantum mechanics in the 7V-instanton moduli space (where 
N = ki + ki). Without loss of generality we can assume that x^ < xf. We 
start by constructing the state ^(x^x^P-^ — fa/R)]®). This is a state 
in the quantum mechanics on the moduli space of ^2 instantons. At DLCQ 
time x^ it is localized (as described above) at the origin of the Higgs branch, 
and at some point X2 in the center of mass coordinates. We can propagate 
this state in the quantum mechanics (using the Hamiltonian) up to the time 
xf. Generally the state will spread on the Higgs branch. Next, we would like 
to transfer this state to the quantum mechanics on the N instanton moduli 
space, and to add the operator </>i. 

This can be done in the following way. Within the ki + £2 instanton 
moduli space we can focus on a submanifold W where ki of the instantons 
have shrunk to zero size at some point x\. The submanifold W is roughly 
the moduli space of £2 instantons. These are the remaining instantons which 
can be in an arbitrary instanton configuration. The space transverse to W is 
(locally) roughly the moduli space of ki instantons, as going away from this 
space corresponds to the ki instantons growing to a finite size (or moving 
around). On W we can put the wave function that we obtained above from 
the propagation of the ^2 state on the k2 instanton moduli space. We can 
multiply this by a wave function on the transverse space which is the wave 
function that corresponds to the operator (pi. Since </>i is a local operator, 
this wave function is also localized on W (which is the origin of the ki 
instanton moduli space).   The resulting state corresponds to (45) at time 

Once we have such a state we can propagate it in time, and then either 
calculate its overlap with some state in the iV instanton moduli space to 

21 Note that this state generally includes operators at different "DLCQ time" a:+. This 
should be understood as involving a time evolution of these states (using the Hamiltonian) 
to the same x^. 
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obtain, say, a 3-point function, or we can again embed it into an instanton 
moduli space of higher instanton number and calculate a higher n-point 
function. 
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