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Abstract 

We show that toric geometry can be used rather effectively to trans- 
late a brane configuration to geometry. Roughly speaking the skeletons 
of toric space are identified with the brane configurations. The cases 
where the local geometry involves hypersurfaces in toric varieties (such 
as P2 blown up at more than 3 points) presents a challenge for the 
brane picture. We also find a simple physical explanation of Batyrev's 
construction of mirror pairs of Calabi-Yau manifolds using T-duality. 

1    Introduction 

One of the main new physical insights we have recently gained from string 
theory is that geometric singularities of the internal compactification mani- 
fold encode a great deal of information about quantum field theories. Turn- 
ing things around we can engineer quantum field theories by suitably choos- 
ing singularities under consideration and use them to gain insight into quan- 
tum field theories (see for example [1-6]). This program of studying QFT's 
is called geometric engineering. 

On the other hand there has been another direction of construction of 
field theories involving branes (see for example [7,8]). Some of these cases 
are already known to be equivalent, by T-dualities to the geometrical cases 
(see for example [9-12]). Here we try to extend this dictionary to a more 
general class of theories and in particular to 5 dimensional critical theories 
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constructed by Hanany and Aharony [13] and studied further in [14-16]. 
The approach we follow will also lead to a simple geometric realization of 
the Riemann surface for N = 2 theories appearing in [4,9] through fivebranes 
of type IIA. This is also related to the recent observations made in [14-16] 
1. Even though here we limit ourselves to few examples, the approach we 
take is quite general and can be applied to many other cases. 

The summary of our results is as follows: Toric geometry involves viewing 
manifolds as roughly speaking products of some space with a torus. The only 
non-triviality involves the fact that on some loci certain cycles of tori can 
shrink. Toric geometry is a way to encode this combinatoric data as to which 
cycles shrink where. This constitutes faces of the polytope describing the 
toric spaces. On the other hand vanishing cycles have been known to be 
associated with branes. This connection thus identifies these toric skeletons 
directly with branes of appropriate types! 

Toric geometry, however, can be used in a more general way to get in- 
teresting geometries, namely by going to a higher dimensional space and 
imposing equations. This presents a major challenge for the brane picture 
and it is not clear how to modify the brane story to accommodate this simple 
geometric idea. This is precisely the flexibility that the geometric construc- 
tions enjoy over the brane picture; It would be interesting to try to find a 
way of adapting the brane picture to such cases as well. 

The organization of this paper is as follows: In section two we give a 
very simple overview of toric geometry (intended for physicists unfamiliar 
with it). In section 3 we describe the relation between toric geometry and 
branes of various types. Finally in section 4 we use R —>- 1/R duality in the 
context of toric geometry to give a simple intuitive explanation of Batyrev's 
construction of Calabi-Yau mirror pairs [17] (see also [18]). 

2    Review of Certain Aspects of Toric Geometry 

In this section we review certain aspects of toric geometry, intended mainly 
for physicists unfamiliar with the ideas in toric geometry. We aim to give a 
very simple treatment of the ideas of toric geometry. For a detailed peda- 
gogical review emphasizing other aspects of toric constructions see [19,20]. 

Toroidal compactifications are among the most special classes of com- 
pactifications in string theory. They preserve the maximal amount of sym- 
metry a lower dimensional theory can possibly have starting from a higher 

1We note that the notion of 'grid diagrams' discussed by those authors in this context 
has been well known as a standard construction in toric geometry and was extensively 
discussed and used already in [4]. In this paper we will also relate the physics of the 
situation discussed in [4] to the brane realization of the same theories. 
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dimensional one. For example a d-dimensional torus admits a U(l)d trans- 
lational symmetry. Even though it would be easiest to analyze the physical 
systems under such compactifications, they would typically have too much 
symmetry for many applications of interest in physics. The next best thing in 
physics is compactifications of something that comes close to being toroidal. 
Toric geometry basically studies geometries where there is a U(l)d action, 
as in the Td case, but unlike the toroidal case, the U(l)d action is allowed 
to have fixed points. The basic idea in characterizing such geometries is to 
isolate the fixed point structure and use that to encode the geometry. 

It is best to start with some examples: 
Example i) Consider the complex plane C. This manifold admits a 17(1) 

action 

z -> zexp(iO), (2.1) 

with a fixed point at z = 0. The geometry of the plane can be represented 
by a half-line, corresponding to \z\ above which there is a circle. Moreover 
the circle shrinks at the end of the half-line. 

G- 

Figure 1: Complex plane can be viewed as a half-line with a circle on top, 
which shrinks at the end. 

Example ii) Consider the 2-sphere P1, which can be viewed as the com- 
pactified complex plane z. Again there is a U{1) action, just as above, in 
terms of which the 2-sphere can be represented as an interval times a cir- 
cle, where the circle shrinks at the two ends, corresponding to north and 
south poles of the sphere. The coordinates on the interval can be identified 
with a function of r = \z\. The length of this interval is determined by the 
size of the 2-sphere. More precisely, if the 2-sphere has a metric which is a 
times the standard metric on the 2-sphere, namely the Fubini-Study metric 

M-4-i 1^2 then the coordinate on the interval is given by 

a\z\2 

(i + m 2T1 M 
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which runs from 0 to a. Notice that the origin of the interval is not relevant 
and we can perform a coordinate transformation of the interval by translation 
x -> x + XQ without changing our picture. 

G- -O 

Figure 2:  The 2-sphere can be viewed as an interval with a circle on top, 
where the circle shrinks to zero size at the two ends. 

In various applications it is important to consider in addition a holomor- 
phic line bundles on the 2-sphere. Then the first Chern class ci of the bundle 
is a (1,1) form which can be taken to be the volume element corresponding 
to the Kahler form for the Fubini-Study metric ci = n. In this case, however, 
we will have to use integral a giving integral volume of the sphere because 

L ci =n, (2-3) 

for some integer n and we can identify a = n. If we wish to consider the 
sphere together with the bundle on top it is then convenient to choose the 
interval to go from 0 to n. Such an interval will be called integral. Note 
that the number of holomorphic sections of the bundle is then related to the 
number of integral points on the interval. Thinking of the volume form on 
the 2-sphere as a symplectic form, with x giving the radial direction, the 
number of sections of the bundle is related to the dimension of the Hilbert- 
space, which is the same as the Bohr-Sommerfeld quantization rule for a 
compact phase space. Note that one can identify the holomorphic sections 
in this case with z1 where i = 0,..., n. 

Note that near each of the two ends the geometry is the same as the 
example 1, which is just the statement that near the north pole or the south 
pole we can view the sphere as a patch which is just C. 

Example iii) Our next example is P2. As is well known P2 is the space 
of three complex numbers (^1,^2,^3) not all zero, modulo identifying them 



N. C. LEUNG, C. VAFA 95 

G—e—e—e- -o 
7n z^     z3 

Figure 3: The integral lattice can be used to summarize the information 
about sections of bundle on the sphere. Each point on the lattice corresponds 
to a section of the bundle. 

up to multiplication by a non-zero complex number. In this case we have a 
[/(I)2 action, consisting of the ?7(1)3 action on the phases of the ^, modulo 
the action of the diagonal U(l) which acts trivially on P2. We can consider 
a basis of the U(l)2 action to consist of 

(21,22,23) -* {ziexp(i9),Z2exp(i(j)),z3). (2.4) 

The fixed point of 9 action consists of (0,2:2,23) up to an overall rescaling, 
which gives a P1 parameterized by £2/23. Similarly the fixed point of the (/> 
action is a P1 parameterized by zi/z^. Also if we consider 9 = <f) diagonal 
U(l) we get another fixed point locus being the P1 parameterized by zi/z2. 
Moreover, there are three fixed points where both U(l) actions have fixed 
points (when any pair of ^, Zj = 0) corresponding to the intersection of any 
pair of these P^s. We are interested in viewing P2 as a space having generic 
T2 fibers parametrized by the action of (0, </>) introduced above. We have to 
choose coordinates for a two real dimensional base which is invariant under 
the T2 action. Note that ri = I21/23I and r2 = I22/23I are such coordinates. 
Again we can map it to finite regions by considering appropriate functions 
of 7*1, r2. We thus can represent the P2 according to the figure: 

Figure 4: The toric realization of P2 involves a triangle over each point of 
which there is a 2-torus, which shrinks to a circle at each edge, and where it 
shrinks to a point at each vertex of the triangle. Each edge of the triangle, 
with the circle on top, corresponds to a P1 G P2. 

where this represents the base of the P2. Above each point in the interior 
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of the triangle we have a T2 fiber (5, </>). Let us denote the cycles of this 
torus corresponding to 6, <f> by a, 6 respectively. The T2 fibration degenerates 
near the edges of the triangle, where over one edge a shrinks (corresponding 
to zi = 0), over the other b shrinks (corresponding to Z2 = 0) and over the 
other a + b shrinks (corresponding to z^ = 0). On the vertices of the triangle 
both a and b shrink. For various applications it turns out to be convenient to 
introduce the following construction. One realizes the base of the P2 in R2, 
where we orient each face so that the normal vector to that face corresponds 
to the cycle direction of the fiber Tn which it shrinks. For example for the 
P2 example above we draw the P2 base as follows: 

Figure 5: It is natural to draw the faces of the toric space angled in such a 
way that is normal to the direction of the cycle which vanishes over it. 

Now if we wish to emphasize the bundle structure, all we have to do 
is to choose the vertices to lie on integral points Z2. Given the geometry 
of P2, the angles of all the three edges are fixed and all we can vary is an 
overall size. This is in accord with the fact that line bundles on P2 are 
characterized by the choice of an integer n. In this case the line bundle 
restricted to each of the three P^s will correspond to the number of integral 
points on the interval and is identified with this n. Moreover, the totality of 
the points in the triangle (the integral points in the interior as well as points 
on the boundary) will correspond to the number of holomorphic sections of 
the bundle over P2. In fact if we denote a point in the triangle by (a, 6) we 
associate to this the section zfz^ (note that a + 6<n, a>0 and b > 0). 
The example of P2 with degree 3 bundle is shown below: 

Example iv) We can also describe "blowing up" of P2 at some number 
of generic points n < 3 in a similar manner. What blowing up means in this 
context is to replace a point on P2 by a sphere P1. With no loss of generality 
we can take the point to be at any of the three vertices of the toric triangle 
(by the 51/(3) symmetry of P2). Since blowing up means replacing a point 
by a P1 and that is realized in toric language by an interval, as discussed in 
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Figure 6: The integral toric realization of P2 with a line bundle of degree 
3. All the integral points shown in the figure correspond to sections of that 
bundle. 

example ii), this implies that P2 with one point blown up will be torically 
given by: 

Blown up Sphere 

Figure 7: Blowing up can be realized very easily using toric geometry. Here 
we are drawing the blowing up of P2 at one point (what used to be the top 
vertex of P2) which has the effect of replacing it by a P1 (shown as the top 
interval in the above figure.) The size of the interval is a direct measure of 
the size of the blown up P1. 

where again one can work out what cycle of T2 vanishes over the new P1. 
Note that blowing up, up to three generic points can be realized torically, 
because using S'L(3) symmetry of P2 we can map any three points to the 
three vertices of the triangle above. Beyond three points we can still blow 
up, but that cannot be realized torically for generic points. Only if we choose 
special points which lie at the corner of the toric base can we continue blowing 
up torically. However it is known that the manifold one gets by blowing up 
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more than 3 points on P2 will depend on where the points are chosen. If 
they are done generically, then we get what is called a del-Pezzo surface 
(up to blowing up 8 points) and has a positive first Chern class ci > 0. 
But if the points are not generic, as will be the case in the toric realization 
where we choose more than 3 points to blow up, the manifold we get will 
not have ci > 0. This will prove important for certain comparisons with 
physical realization via 5-branes which we will discuss later in this paper. 
We emphasize that this is a limitation of toric realization of blown up P2 

and not a reflection of any intrinsic problem with the geometry of blown up 
P2. 

Example v) We can now generalize easily to Pn, where we have an n- 
dimensional toroidal fiber Tn over an n-dimensional base, which is identified 
with an n-dimensional simplex. Let us denote a basis of the cycles of Tn 

by ai, ...,an. The simplex has n + 1 boundary faces, over each of which a 
1-cycle of Tn shrinks. These can be taken to correspond to ai,..., an, ^ ai- 

Figure 8: Here we are showing the toric realization of P3 

Each face is an n — 1 dimensional simplex. Two such faces meet over an 
n — 2 dimensional simplex, over which two cycles of the Tn shrink. More 
generally k such faces meet over an n — k dimensional simplex over which k 
cycles of Tn shrink. In particular when n of them meet (which happens at 
n + 1 points) the whole Tn fiber has shrunk. 

Example ii') The examples of Pn discussed above cannot be used for 
string compactification as they are not solutions to Einstein's equations (they 
are not Ricci-flat). However they can be part of a local geometry of a 
Calabi-Yau near a singularity. For example consider the case of P1. It 
is known that the cotangent space T*Pl can appear as part of Calabi-Yau 
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compactifications (for example near an Ai singularity of K3). This space 
is also toric. If we denote the coordinates of T*?1 by (z,p) corresponding 
to P1 and the cotangent direction respectively, we can consider two circle 
actions on this space. The first one is the one induced from the action on the 
P1 base to the normal direction (taking into account that pdz is invariant) 

(z,p) -> (exp(z0)2,exp(-i0)p) (2.5) 

and the other circle action is new and acts entirely on the fiber 

(z,p) -> (*,exp(i0)p). (2.6) 

Let the (a, b) cycles of the T2 to correspond to the (6, (/>) actions respectively. 
Then as before we can use \z\ and |p| as defining a base for a T2 fibration, 
with a T2 fiber corresponding to the (0, </>) action. There are three fixed loci 
of this toric action over which an S1 in the fiber shrinks. These correspond 
to z = 0, z = oo and p = 0 (note that the p direction is non-compact and 
so it does not have a point at infinity). At z = 0 the invariant direction 
corresponds to setting 6 = (p. In other words the a — 6-cycle shrinks. At 
p = 0 the 6-cycle shrinks. To find out what the toric action is near z = oo it 
is convenient to change the patch to z = 1/z. Noting that pdz is invariant 
this undergoes a transformation p = —pz2, in terms of which the T2 action 
becomes 

(z,p) -» (exp(-i0)5, exp(z</> + i0)p). (2.7) 

Thus at z = 0, if we set 0 = —0, the action on T*?1 is trivial. In other 
words at z = 0 the cycle a + b shrinks. Thus the base of the toric fibration 
is given by the geometry below: 

Figure 9: The toric realization of the blowing up of Ai singularity in K3. The 
finite interval represents the blown up P1. Note that a half line emanating 
from the interval going to the infinity corresponds to the cotangent bundle 
at that point, which is a copy of the complex plane C. 

Note that the boundary of this figure corresponds from left, to the |p| over 
z — 0, the p = 0 which corresponds to the ^-sphere and is represented by the 
interval, and finally the cotangent direction over z. The lines emanating from 
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the interval corresponding to the z-sphere going to infinity correspond to the 
non-compact cotangent direction over sphere. It is also easy to generalize 
this to when we have an An singularity. The geometry consists of n spheres 
intersecting according to the An Dynkin diagram. The toric geometry is 
summarized as follows: 

Figure 10: Shown in the figure is the blown up singularity ^.3. Note that the 
three finite size intervals in the middle denote the three blown up P^s. Also 
note that the Dynkin diagram of A3 is visibly seen here by the intersection 
of neighboring P^s at a point. 

Note that each P1 is given by an interval in the above figure, and the 
size of the P1 is represented by the size of the interval. In the limit that 
a P1 shrinks, the interval shrinks and we obtain a singular geometry. The 
geometry we have depicted above is a smooth geometry corresponding to 
"blowing up" the An singularity. 

Example iii)' Similar to the above example, a P2 can appear in a Calabi- 
Yau, where there are some extra dimensions. In particular if this is embedded 
in a Calabi-Yau threefold there is a normal direction which corresponds to a 
line bundle on P2. The condition that ci = 0 for the threefold implies that 
the normal bundle is the canonical line bundle (corresponding to (2,0) forms 
on P2), thus cancelling ci for the P2. We will thus now have a 3-dimensional 
local toric geometry, where the extra circle action comes from the rotation 
on the phase of the normal line bundle. Going through the exercise just as 
we did for the case of P1 will give the toric data summarized below: 

A copy of P2 is recognized at the bottom of the above figure and the 
lines over it correspond to the normal direction on P2. If we call the extra 
circle direction c, then the zero section of the normal bundle, which gives a 
copy of P2 corresponds to c being shrunk. Similarly the cycles that vanish 
at the other faces can also be worked out and give the picture above. This 
example can be easily generalized to the case where we have a Pn sitting in 
an n + 1 CY manifold, where again the normal direction to Pn is identified 
with the space of (n, 0) forms on Pn. 
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Figure 11: The toric realization of A/^P2). A copy of P2 is visible as the 
triangle at the bottom. Each half line emanating from any point on it, will 
correspond to the normal direction of P2 in the Calabi-Yau threefold. 

2.1    Toric Varieties 

From the above examples it should be clear how to generalize the notion of 
P71 or normal bundles to them, to a more general class involving manifolds 
which admit toric action [21]. We are interested in manifolds admitting a 
Tn action, with an n-dimensional base. The n-dimensional base will have 
n — 1 dimensional boundary decomposed to various faces where a particular 
S*1 cycle of the fiber shrinks, corresponding to where the Tn action has fixed 
loci. Moreover when k of these faces meet a Tk has shrunk to zero size. The 
data defining the toric variety is precisely how these faces meet and which 
cycles vanish over which face. 

In general toric varieties will have singularities. For example if you con- 
sider the case of ^4m_i space, when we take the m — 1 finite size intervals 
to zero size geometrically we get a singular space. Torically the way to read 
this singularity is rather simple: The two edges that now meet correspond 
to shrinking b — a and b + (m — l)a cycles. Note that the lattice of 1-cycles 
on T2 are not generated by b — a and b + (m — l)a for m > 1. Note that 
this is precisely the case where we have a C2/Zm singularity. If we blow 
up the ra-spheres then it is easy to see that whenever two edges meet the 
vanishing cycles form a basis for the lattice. This turns out to be the gen- 
eral consideration for a non-singular toric variety, namely whenever n faces 
meet we should get a basis for the n dimensional lattice dual to the Tn fiber 
coming from the vanishing cycles on each face. To be more precise, if we 
denote the lattice generated by all one cycles in the Tn fiber by M and we 
denote the sublattice generated by those shrinking one cycles at any face of 
the polytope by MQ. Both M and MQ will have the same rank when the face 
is of zero dimensional, namely a vertex. In this case the quotient M/MQ = G 
will be a finite group of reflexions. Locally the geometry looks like Cn/G 
which is singular at the origin unless M and MQ are the same. In the case 
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of Am-i singularity we have G = Zm. It is not difficult to see that every 
points in a face which is adjacent to a smooth vertex point is also a smooth 
points. Therefore to check smoothness of the toric variety, it is sufficient to 
check only those vertex points. 

2.2    Hypersurfaces in Toric Varieties 

So far we have talked about the manifolds being the toric varieties them- 
selves. However many interesting geometries are not of this type. For exam- 
ple, no compact Ricci-flat manifold is toric-the above examples gave some 
non-compact examples of Ricci-flat manifolds. In order to remedy this, but 
still be close to the nice toric situation one can start with a higher dimen- 
sional toric variety and impose some equations. The simplest set of such 
cases involve degree n + 2 hypersurfaces in Pn"fl manifolds which give rise 
to Calabi-Yau n-folds. We have a polynomial 

WM = 0, (2.8) 

where i runs from 1 to n + 2 and this is a homogeneous equation of degree 
n + 2. Note that we can view W as a section of a line bundle on Pn+1 (of 
degree n + 2); as discussed before it is natural to associate in such cases an 
integral polytope which has in addition the information of the monomials W 
in it. For every point on the integral polytope and its interior we can write 
a monomial deformation for W. What this means is as follows: Consider 
for each point r = (ri, ...,rn+i) in the integral polytope, a monomial zr = 
zil '--^n+i - Then the manifold hypersurface is described by an equation 

£     arzr = 0, (2.9) 
rGpolytope 

for some coefficients ar, where this is a local description of the manifold in a 
patch. In particular shifting the points by an integral shift does not change 
the local geometry (as long as we keep away from z = 0, oo). It is often 
convenient to choose the integral polytope to contain the origin, in which 
case there would exist a monomial deformation corresponding to addition of 
1 to the equation. 

Note that this hypersurface given by W = 0 will not have any toric sym- 
metry, because for a generic choice of W the torus actions is not compatible 
with the equation- i.e. W is not invariant under them. There is, however, 
a degenerate limit of W in which the space does become toric. Consider in 
the homogeneous variables 

W{Zi) = Wo(zi) + ipzw • • • zn+2 = 0. (2.10) 
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The deformation corresponding to Y[ zi m the above homogeneous variables 
gets mapped to the deformation given by 1 in the above patch description 
of the manifold (2.9). Now we consider the limit ip —> oo. In this limit the 
equation for the hypersurface becomes approximately 

11^ = 0. (2.11) 
i 

This consists of the union of the boundary faces of the polytope each of 
which corresponds to Zi = 0. Thus roughly speaking the Calabi-Yau n-fold 
consists of an n dimensional real base over which we have Tn fibers (one 
circle has already shrunk on each face Tn+1 -» Tn). Note that in this limit 
where k faces of the polytope meet the fiber is T71"1"1-^. 

More generally we can obtain a Calabi-Yau space as a hypersurface in 
toric variety by considering what is known as "reflexive polytope" as we will 
explain now. Instead of the standard n + 1 simplex which corresponds to 
Pn+1, we can use arbitrary polytope A in Rn+1 to construct a corresponding 
toric variety P^ which might be singular. Each of the boundary faces of A 
will give a hypersurface in PA which itself is a toric variety of one lower 
dimension. Equivalently we can view it as the zero locus of a section s of 
a line bundle L corresponding to this face. We assume that there are m 
boundary faces and Si = 0 define them, where i = 1,..., m. Then si^ ■ • • sm 

becomes a section of ^^Li. 
Just as in the Pn+1 case, we want to perturb S1S2 • • • sm by a general 

section Wo{z) of ®£L1£z to obtain a smooth hypersurface (or with mild 
singularities): 

W(z) = Wo(z) + #152 • • • sm = 0 (2.12) 

and we will recover the union of the boundary hypersurfaces by taking the 
I/J —> oo limit. Note that since we are considering a hypersurface inside the 
toric variety as zeros of a section, we can again give the toric polytope an 
integral structure compatible with the choice of the line bundle. In order 
for this hypersurface to be Calabi-Yau we need ®™ il^ to be the same as 
the inverse of the canonical line bundle Kpl of P^ in order to cancel the 
Ci. It turns out that this condition can be rephrased in terms of the integral 
polytope A. 

To do that we need to first introduce the idea of dual polytope. For 
any integral polytope A containing the origin as an interior point, its dual 
polytope V is roughly the convex polytope bounded by hyperplanes aiyi + 
^22/2 + ... + anyn = 1 for (ai, a2,..., an) any vertex of A. More precisely the 
dual polytope is defined by 

V = {(yi,...,yn) : x1y1 + X2y2 + - + xnyn < 1    for    (xu ...,xn) <E A}. 
(2.13) 
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For example let A be the poly tope with vertexes (—1,-1),(—1,2) and (2,-1) 
in the plane corresponding to P2 with a degree 3 bundle on it, then its dual 
polytope V is bounded by (1,1), (—1,0) and (0, -1) as shown below: 

Figure 12: Here we are showing the integral reflexive polytope corresponding 
to P2 (denoted by A) and its dual denoted by V. Note that for every face of 
A we get a vertex of V and vice-versa. The origin connected to each vertex 
of V is orthogonal to the corresponding dual face in A. Also note that the 
origin is the only interior integral point. 

In general the dual polytope of an integral polytope may not be integral 
again, when this is the case, A will be called a reflexive polytope. In this case, 
its dual polytope is also a reflexive polytope. For a reflexive polytope, each 
vertex of A will correspond to a boundary face of V and vice versa [17] (this is 
illustrated in the figure for the P2 example above). More generally for every 
k dimensional face of the polytope A there is a dual n — k — 1 dimensional 
face of V. 

In fact A being reflexive is equivalent to Kp^ = 0™^ Li which guar- 
antees the corresponding hypersurface to be Calabi-Yau. The deformation 
which we denoted by si...sm will correspond to the origin for reflexive poly- 
topes. This can be easily seen to be the case for the P2 example discussed 
before and turns out to be a general fact. 

These constructions can be generalized to the case of varieties defined by 
more equations. Our discussions can be easily generalized to these cases as 
well. We will leave this to the reader. 

2.3    The Dual Toric Constructions 

If A is a reflexive polytope then V is also reflexive. Therefore it defines 
another toric variety Py and the zero of a general section WQ of Kp will 
be Calabi-Yau. This construction is proposed by Batyrev to obtain the 
mirror of Calabi-Yau hypersurface in PA-  Again we can take the limit as 
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?// -> oo of 

W'(z) = W^W + ^1*2 ■ ■ • *m' = 0, (2.14) 

to obtain the union of the boundary faces of V and each such face corre- 
sponds to some ti = 0. 

In the limit of ip and ip' —> oo, the geometries of the Calabi-Yau hyper- 
surfaces are described by the boundary of A and V. Each boundary face of 
A will correspond to a vertex in V and vice versa. This is a manifestation 
of the R —> l/R duality of tori as we will see later in this paper. 

2.4    Open Toric Varieties and their Dual 

As in our earlier discussions, we are also interested in non-compact cases 
such as iV(P2), as they can form a local piece of a Calabi-Yau threefold. 
Instead of just one space like JV^PA), we can also have a union of several 
toric varieties intersecting each other along toric subvarities. Examples of 
this kind include the blown up of An singularity where n P1 intersecting 
each other in a linear manner as we already discussed. A large number of 
such examples has been considered in [4]. 

One can extend the definition of duality for open toric varieties as well. 
We first look at the dual polytope similar to the global case. Put the ori- 
gin inside the polytope A and consider all the rays emanating from the 
origin and orthogonal to each face. If the boundary face is defined by 
aixi + ... + anxn = c, then the corresponding ray will pass through the 
point (ai, ...,0^). If the polytope has m faces then the collection of rays 
is characterized by m integral points (ai,...,an). For example for the An 

case discussed before we get the collection of (n + 2) points in Z2 given by 
[(-1,1), (0,1), (1,1),..., (n, 1)]. Similarly for A/^P2) we get the four points 
[(1,1,1), (0,-1,1), (-1,0,1), (0,0,1)] Note that the last entry in all these 
cases is 1. This reflects the fact that if we fix the normal direction circle, 
to shrink at a given point, as we go from one face to another, which circle 
shrinks gets modified only by addition with a circle describing the compact 
pieces. Thus the data of the dual object given by rays will contain the same 
information as a collection of points in a 1 dimensional lower integral lat- 
tice consisting of m integral points. For the case of An this will give us 
[(—1), (0), (1),..., (n)] which consists of n + 2 integral points along the line. 
Similarly for the A^P2) case we get the points [(1,1), (0, -1), (-1,0), (0,0)]. 
Note that these are exactly the same points defining the dual polytope for 
P2 together with the interior point (0,0). 
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3    Branes and Toric Geometry 

There are some examples known where geometry can be replaced with a 
configuration of branes. These include M-theory with An singularity which 
correspond to n D6 branes of type IIA [22] type IIA/B over an An singularity 
which corresponds to type IIB/A with n-NS 5-branes of type IIA/B [10], type 
IIA/B over a conifold, which is equivalent to 2 intersecting NS 5 branes [23] 
(see also [24,25]). It is natural to try to extend this dictionary to other 
singularities of geometry (see for example for one such extension), and as 
it turns out toric geometry is the right language for this purpose. In fact 
those geometries which are locally a toric space, can be realized via branes. 
However as we have mentioned before, and will see below again, not all ge- 
ometries have toric realization. In particular, in order to see some interesting 
geometries we have to consider hypersurfaces (or complete intersections) in 
a higher dimensional toric variety. In such cases in general there is no known 
way to associate a configuration of branes. Thus it appears that in geometry 
we have a more general approach in engineering physical systems. 

We have seen that toric geometries are essentially trivial except for the 
fact that on some loci some circles shrink. The shrinking circles are a source 
of charge of branes and so these loci are naturally identified with branes of 
appropriate type. This is the basic link between toric geometry and branes. 

3.1    M-theory on S1 and D6 Branes 

Let us consider the simple example of the Ai singularity T*P1. As noted 
above M-theory on this space is equivalent to type IIA with 2 units of D6 
branes. To see this note that the KK monopoles of M-theory on a circle 
being equivalent to D6 branes means that if we consider a supersymmetric 
geometry in which the circle of M-theory shrinks to zero size at some loci, 
we obtain the D6 branes. Consider the toric geometry above and identify 
the S'1 circle of M-theory with the 9 action on T*?1 discussed in example 
ii'). If we consider modding out this space by the circle action 

T*?1/^, (3.1) 

where the SQ denotes the circle action associated with the 6 direction, we 
obtain a 3-dimensional geometry which we can identify with the type IIA 
space. Moreover the points on the geometry where the SQ has zero size, 
correspond to DQ branes. These are the points where the a cycle vanishes 
and from the toric diagram it is clear that this happens only at two points 
on the ends of the interval representing the P1. Similarly for M-theory on 
the An geometry we find it is equivalent to type IIA in the presence of n + 1 
DQ branes, where the n + 1 points correspond to the n + 1 end points of the 
n compact P^s represented by the n-intervals in the toric diagram. 
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3.2    M-theory on T2 and (p,q) 5-branes 

Above we have considered M-theory on S1. Let us now consider M-theory 
on T2. This theory is equivalent to type IIB on S'1. There are two cycles on 
the T2, and the Kaluza-Klein monopoles associated to the (p, q) cycle of the 
T2 corresponds to (p, q) 5-branes of type IIB (transverse to the compactified 
S1 of type IIB). 

This relation allows us to realize the local geometry of Calabi-Yau three- 
folds which have toric realization in terms of type IIB (p, q) 5-branes. Such 
geometries will have a compact T2 action corresponding to the 4-dimensional 
compact local model, which we can mod out, and just as in the above ex- 
ample realize them in terms of (p, q) 5-branes. For example let us consider 
M-theory on the Calabi-Yau threefold with a small P2. Then the local model 
is as in example iii') above. Considering modding out by the T2 action cor- 
responding to the two finite circle actions on the P2. Let iV(P2) denote 
the P2 with the normal bundle on top of it, and consider the 4-dimensional 
space 

N{P2)/T2, (3.2) 

where the T2 denotes the lift of the action from the one on P2. This 4- 
dimensional space is trivial except for the loci where a circle action of T2 

has fixed points-This happens when the a and b cycle vanish and from the 
diagram in Fig. 11 we see that this occurs on the subspace shown below 
(with the corresponding shrinking cycle (a, b) indicated). Note that when 
two faces in Fig. 11 meet, any combination of vanishing cycles on either side 
vanishes on the intersection. 

Figure 13: The brane realization of iV(P2) in Calabi-Yau threefold. All 
that has happened is that we have replaced the toric skeletons with the 
corresponding (p, q) 5-branes. 

We thus interpret this as a type IIB geometry with the above diagram 
giving the configuration of (p, q) 5-branes (where one extra S1 has an ar- 
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bitrary size on the type IIB side). This is exactly the geometry proposed 
in [13,16] for a critical theory dual to the P2 shrinking in the Calabi-Yau. 
Here we have explained this duality. Moreover for every geometry proposed 
in [13] we can write down the geometric analog. 

Note that the condition of (p, q) charge conservation in [13] gets mapped 
to the condition of ci = 0 for the local 3-fold. At each vertex, using the 
SX(2, Z) symmetry, we can bring the local configuration to the standard 
basis (1,0) and (0,1) in Z2 together with an external leg with label (p,q). 
For iV(P2) to be Calabi-Yau, as a line bundle over P2, it must be K~l, i.e., 
the tensor product of the three line bundles corresponding to the three edges 
of the standard 2 simplex. Now the origin is given by the intersection of the 
two edges zi = 0 and Z2 = 0. Therefore the T2 action on the fiber over the 
origin is given by p -> exp(-i0 — i(f))p as in iii). Hence the projection of this 
fiber to the (x,y) plane is the half line corresponding to the label (—1, —1) 
which is the same as the (p, q) charge conservation. 

In fact for the models in [13] the angles at which the 5-branes intersected 
was related to the (p, q) charge. Basically (at r = i) the (p, q) 5-brane was 
placed along the (p, q) direction. As we have said before this is very natural 
from toric geometry view point as well. This is a beautiful interplay between 
branes and toric geometry. 

This dictionary we have found between geometry and branes will explain 
some of the issues which were puzzling in [13,16]: It was observed there 
that when one tries to construct the brane version of the critical theory in 
5 dimensions corresponding to P2 blown up at more than 3 points one gets 
certain puzzles. One finds that the external lines become parallel or intere- 
secting (for more than 5 points blown up) in such cases. This in particular 
prevents their interpretation as a critical 5 dimensional theory. This is puz- 
zling because P2 blown up at up to 8 points should lead to critical theory 
[26-29]. Even though the case with parallel external lines appear less harm- 
ful than the one with intersecting external lines, some puzzles were raised 
even for this case in [16]. Note that this would limit the number of blow up 
points to 3, if we were to realize it torically. 

In order to resolve this puzzle let us translate the condition of parallel 
external lines to geometry: If two parallel external lines bound an interval 
in the toric polytope, then the ci evaluated on the P1 which is represented 
by the interval is zero. To see this, without loss of generality we can denote 
the 5-brane charges on one end of the interval to consist of (—1,1) and (0,1) 
internal line 5-branes meeting the (—1,0) external 5-brane, and the other 
end the (0,1), (1,1) 5-brane meeting the (—1,0) external 5-brane which is 
parallel to the other external line. However the 2-dimensional complex piece 
of this geometry is exactly the same as the one we already studied, and the 
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geometry of P1 in PA is locally the same as T*Pl. This implies that 

CI(PA) = 0, (3.3) L 
as is well known for the T^P1 geometry. Similarly when external parallel 
lines intersect, one can show this implies that CI(PA) integrated over the 
middle P1 is negative. 

Figure 14: When we have parallel external lines the geometry in the neigh- 
borhood of the middle P1 in the 2-complex dimensional base, is essentially 
that ofT*?1. 

However a submanifold can be shrunk within a background geometry if 
and only if its normal bundle is negative by Grauert's criterion [30]. When 
the background is a Calabi-Yau, that is ci = 0, then this is equivalent to 
the submanifold having ci strictly positive2. This means that even though 
these geometries make sense locally they cannot be shrunk to zero at finite 
distance in moduli. In other words they do not lead to conformal theories 
in 5 dimensions. 

As mentioned before and reviewed above, the fact that with more than 
3 points blown up P2 cannot be realized torically is mathematically well 
known. However as noted before even between 3 and 8 points blown up P2 

can shrink in a Calabi-Yau, and can be realized in a higher dimensional toric 
variety when we impose equations. We are just learning that the brane real- 
ization of quantum field theories appear to be more limited than geometric 
engineering approach. Or turning it around, we should try to understand 
what is the brane analog of going to higher dimensions in geometry and im- 
posing equations to decrease the dimension back down. There are some hints 
how this may be possible: In particular there is a simple brane realization of 
P2 with 9 points blown up in terms of F-theory background, which involves 
(p, q) 7-branes compactified on a P1 x S1 [26,27,31]  (see [32] for an extensive 

We would like to thank D. Morrison for a discussion on this point. 
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study of BPS states in this case). However, one should keep in mind that 
the main question is not whether a given geometry has a brane realization 
or not, but more importantly whether it has a useful brane realization. In 
the above brane realization one reverts to the geometric picture of M-theory 
on P2 with up to 8 points blown up to extract physical results [31,32] (such 
as BPS spectrum). Another (and perhaps more useful) brane realization in 
this case may be to consider a knotted configuration of (p, q) 5-branes and 
(p, q) 7-branes piercing through them (perhaps corresponding to blowing up 
points inside the P2 triangle). It should be interesting to study such cases. 

3.3    M-theory on T3 and (p,q,r) 4-branes 

There are many extensions of the above toric construction. We will limit 
ourselves just to one more example, though we believe our approach can be 
used in many different contexts. 

Consider M-theory on T3. Then we have the SX(3) symmetry as part 
of the [/-duality group. The KK monopoles will now be labeled by a vector 
(p,q,r) and will correspond to a 4-brane in the 7-dimensional geometry. 
From the type IIB perspective this corresponds to compactification on T2 

where we consider a (p, q) 5-brane wrapped around one of the circles and 
bound to a KK monopole of charge r around that circle. There is also a type 
IIA description of the same object: It corresponds to compactification on T2 

with r units of D6 brane wrapped around T2 and bound to KK monopoles 
of charge (p, q) on T2. 

Now just as a simple application, consider M-theory on a local singularity 
of a Calabi-Yau 4-fold, yielding an N = 2 system in 3 dimensions.3. For 
example consider P3 shrinking inside a Calabi-Yau 4-fold, (similar shrinking 
spaces can be considered and some are equivalent to the models considered 
in [13]) Then the local model is the canonical bundle over P3 which we denote 
by 7V(P3). Then just as in the case of P2 considered above we can realize the 
geometry of the toric polytope in terms of the (p, g, r) 4-brane intersecting 
in a particular geometry in 3-dimensions. Moreover the intersection angles 
are exactly dictated by the toric data, just as in the P2 case. The figure of 
intersections look as follows. 

Reduction of such cases to 2 dimensions and local mirror symmetry in 
such cases has been recently considered in [6]. 

3These theories typically have super potentials generated. Here we will not worry about 
whether there are such terms generated or not, and simply consider the "classical theory". 
In fact for a shrinking P3 considered here there is a superpotential generated [33]. 
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Figure 15: The brane realization of P3. In addition to the 4 faces of the 
tetrahedron corresponding to certain (p, q, r) 4-branes, there are 6 external 
4-branes ending on each of the 6-edges of the tetrahedron. 

4    Intuitive Explanation of Mirror Symmetry 

One of the most important applications of toric geometry has been to mir- 
ror symmetry. In fact starting with the work of Batyrev [17] the mirror 
symmetry conjecture has been made quite systematic using toric geometry. 
Many attempts have gone into proving mirror symmetry using this struc- 
ture [34-36]. The basic idea being that the toric geometry means we have 
tori as fibers and R —> 1/R duality symmetry of each circle should give rise 
to a simple description of mirror symmetry. Unfortunately none of these 
approaches have been made complete. An exception to these cases involve 
orbifolds for which mirror symmetry have already been rigorously proven to 
follow from R -> 1/R symmetry [37]. Here we follow the same spirit of argu- 
ment and find some intuitive explanation of mirror symmetry again reducing 
it to R —> 1/R. Our approach will not be rigorous, but we believe it makes 
mirror symmetry very plausible and intuitive. In particular we find a sim- 
ple explanation of Batyrev's construction for mirror pairs. We believe our 
approach can be generalized to (0,2) sigma models without much difficulty. 

We divide our discussion into two parts. One involving the global case, 
where we consider compact Calabi-Yau manifolds realized as hypersurfaces 
in toric geometry and the second one involving what is called 'local mirror 
symmetry' [2,4]. This latter one is the one of most interest in 'solving' the 
N = 2 gauge theories in 4 dimensions. The intuitive explanation that we 
will find for this case makes the toric construction as simply related to the 
geometry of the N = 2 curves as the one recently found in [8] but the geome- 
try appears to be distinct from it. However, just as was the case for P2 with 
more than 3 points blown up where we cannot just use a local toric model 
to realize all such models. In general we need to apply mirror symmetry in 
situations as in the global case where we need a higher dimensional space 
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with some equations imposed. Again finding a brane analog for such cases 
is challenging. Many such cases were addressed geometrically in [2] and are 
a special limit of the global case considered below. 

4.1    Global Case 

Let us start with an example: Consider Pn+1 with degree n + 2 polynomial. 
As discussed before this gives rise to a Calabi-Yau n-fold. At a particular 
singular complex structure limit this Calabi-Yau becomes toric and is iden- 
tified with the boundary of the n + 1 dimensional polytope. There are n + 2 
faces, over each of which we have a Tn fiber (one of the circles have already 
shrunk by restricting to the boundary). Now, if we perform T-duality for 
each circle of T71 replacing it by 1/i?, we should get a mirror Calabi-Yau. 
However, note that where k faces meet the Tn shrinks to Tn~fc and which 
rpn-k we ge£ depends on which faces meet. Applying T-duality on such loci 
leads to the following picture: not only it restores the shrunk circles to big 
circles, but makes them more dominant than the finite size circles. In order 
to get a better picture, let us assume the zero size circles have finite size e 
and at the end we let e —> 0. Moreover let us change the Kahler class of the 
Calabi-Yau so that all the lengths are rescaled by the large factor 1/e. Now 
the cycles which were finite size become of order of 1/e and the ones which 
were shrinking become finite size. Now we apply the T-duality. In this case 
all the finite size circles shrink and all the ones which were previously finite 
size become of size one. One gets a new space which in fact by definition is 
the boundary of the dual polytope! Note that the construction of the dual 
polytope where there is a Poincare duality on the boundary of polytope is 
now interpreted very physically as the exchange between the regions where 
the circles were small with regions where the circles are big. 

Note that in the original manifold we have taken both the Kahler and 
complex structures large. Mirror transform will tell us that we should land 
on the mirror manifold which is again corresponding to the large complex 
class and Kahler class. This is consistent with the fact that in order to 
get the boundary of the dual polytope as the mirror, we are at the large 
complex structure of the mirror which is mirror to the large Kahler class of 
the original manifold. It is no accident that we had to take the large Kahler 
structure of the original manifold to get a simple description of the mirror 
as a degenerate toric manifold. 

At the large Kahler and complex structure limit, we can also identify, up 
to first order, the Kahler moduli of the original manifold with the complex 
moduli of its mirror and vice versa in more detail. This would give a realiza- 
tion of the monomial-divisor mirror map as proposed in [38]. The arguments 
we give are parallel to those recently given in [14-16] in connection with the 
M-theory realization of N = 2 gauge systems in 4 dimensions. 
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Let us illustrate how this works: Suppose that X is the Calabi-Yau hy- 
persurface defined by W (z) = 0 inside a toric variety PA with A a reflexive 
poly tope as in section 2.2. We consider Kahler metric on X which comes 
from restriction of Kahler metric on PA- Each boundary face of A will de- 
termine a line bundle whose curvature is a closed two form on PA- Suitable 
positive combination of them will give us general toric Kahler metric on PA- 

Explicit description of these Kahler forms are given in [39]. In general co- 
homology classes of these Kahler forms could be dependent. For example 
in the case of K3 surface in P3, there is only one such Kahler form up to 
scaling factor. 

In the R -> 1/R duality, before we scale the Kahler class by the global 
factor 1/e, if we take the Kahler metric to be one which is dominated by 
one of the boundary faces of A, then in the mirror, the corresponding face 
will become a vertex of V. As noted before any integral point in the mirror 
reflexive polytope V will correspond to a monomial which is in fact a section s 
oiKp1 and which can be used to deform the complex structure of the mirror. 
Let yi with i = l,...,n denote the coordinates of the mirror toric variety. 
Then as noted the deformation corresponding to the origin of V corresponds 
to the monomial 1. On the other hand let (ai, ...an) denote a vertex on V. 
To that we can associate the monomial deformation on the mirror of the 
form y^1 ...y^71. Now let us consider the limit in complex deformation of the 
mirror in which these two terms have large coefficients. Then the equation 
defining the manifold in the mirror is effectively dominated by 

a + (3ya
l\..y^=0, (4.1) 

for some a, /?. Notice that some of a^'s can be negative and setting a goes to 
infinity gives the singular Calabi-Yau corresponding to the union of bound- 
ary faces of V. Now when we deform the complex structure away from 
this singular point using the monomial deformation by r/J1...!/^. then the 
manifold becomes dominated in this limit by 

Vi'-Vn71 = const. (4.2) 

Given that in our derivation of mirror symmetry this vertex was associated 
to a face of the original polytope A we would expect that this large complex 
structure limit should be mirror to large Kahler class limit for this particular 
divisor. But in this limit the manifold is dominated by that face, whose real 
section corresponds to 

/ v OiiXi const. (4.3) 

As far as mirror symmetry is concerned the base of the geometry for the 
manifold and the mirror are identified, thus Xi should be related to real part 
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of m. In fact comparing (4.2) with (4.3) we see that the natural identification 
of 

Vi = eXi (4.4) 

will make (4.3) and (4.2) identical. We have thus found a simple physical 
explanation of the divisor/monomial mirror map. In other words the com- 
plex deformation mirror to the Kahler deformation controlling the size of a 
divisor is the coefficient of the monomial associated to the vertex mirror to 
the divisor. 

4.2    Local Case 

Now consider a local toric model of Calabi-Yau, such as N(Pn). We wish 
to find its mirror, i.e. a geometry whose complex structure is mirror to 
the Kahler class of N(Pn). We can try to repeat an argument similar to 
the above as in the global case, but we will try to take a short cut. This 
arises because some of the data in the original manifold is not necessary in 
defining it. In fact this was already reflected in our discussion of the dual 
object associated in these cases. 

The data characterizing the Kahler geometry of the model in these non- 
compact cases is concentrated on the subspace of polytope of dimension 
n — 1. For example for Ak this will be k + 2 points which is also related to 
the fact that we found that the natural dual object in this case will consist 
of k + 2 successive points on an integral lattice in one dimension. In the case 
of the iV(P2) this is a one dimensional graph together with three external 
lines, which constitute the (p, q) 5-branes, together with the S1 fibers on 
top. In other words the data of the local geometry can be reconstructed by 
a 1-dimensional singular object consisting of SP^s meeting along a triangle 
and with 3 half P^s coming out from the vertices: 

Figure 16: The toric realization of iV(P2) is captured by three spheres in- 
tersecting each other as well as three external half-spheres as shown. The 
elliptic curve is visible in the picture as the fattened triangle in the middle. 
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More generally this gives the n — 1 complex dimensional object which 
is a T71-1 toric fiber over an n — 1 dimensional collection of faces. We now 
apply mirror symmetry to this situation by acting on the T71-1 fibers with 
R -> 1/R. We can trust this action away from the singular points where 
the curves meet. Note that in the case of iV(P2) we get a Riemann surface 
and the endpoint of the external lines get mapped to a point on the surface 
(because the circle infinitely big is mapped to a tiny circle). So we obtain 
an elliptic curve with 3 punctures. 

To write the local complex geometry of the mirror we can use quite 
generally exactly the same idea as in the global case. Namely consider the 
set of integral points which will be m points in a lattice of dimension n. 
Recall that these are in one to one correspondence with rays orthogonal to 
faces. Consider the complex space 

Y, CrV?-vZl=0, (4.5) 
r=(ai,...an)Espace of rays 

which gives a space of complex dimension n — 1 as expected above. To make 
this application of mirror symmetry more intuitive again we can extend the 
analog of R -> 1/R duality face by face. Namely recall that the original 
polytope is characterized by the projections of its faces onto an n real di- 
mensional space which consists of n — 1 dimensional skeletons. Consider one 
such face of the skeleton. This will be bounded by two n dimensional faces 
of the original polytope which are associated with two monomials yi1...ynn 

and yi-.-yfy1. Now if we consider the limit of Kahler classes where a partic- 
ular n — 1 dimensional skeleton is large. This will be mirror to the complex 
deformation where the two monomials have large complex coefficients. In 
this limit the equation for the mirror gets dominated by 

ay?...yF+l3yh
lK..yk=0, (4.6) 

which gives 

yi1~6l...y£n~6n = const. (4.7) 

Again as in the global case since the R —> 1/R does not act on the real part 
this should also give the real part of the space which is the skeleton. If we 
identify y* = exp^) we obtain the equation of the skeleton 

y^(flz - bi)xi = const, (4.8) 
i 

as expected. Just as an example if we consider the iV(P2) case we get (using 
the definition of the rays discussed in section 2) 

a + byi+cy2 + = 0, (4.9) 
2/12/2 
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as the local model for the mirror manifold. Another example involves fibering 
An spaces over P1 (the generalization of which to many examples was already 
considered in detail in [4] and the complex moduli including the coupling can 
be viewed as the radius dependence of the 5 dimensional critical theories 
compactified on a circle [40]). In this case we get the figure 

Figure 17: The toric realization of SU(n) gauge theory produces a 'visi- 
ble' genus n — 1 Riemann surface as its skeleton. The short direction of 
the 'ladder' in the above figure corresponds to a P1 and the long direction 
corresponds to the blown up of an An-i space. 

Here we see the N = 2 Riemann surface very visibly as the skeleton of 
the toric graph. Similar observations have been recently made in connection 
with the M-theory approach [14-16]. 

We would like to thank S. Katz, P. Mayr and S.-T. Yau for valuable 
discussions. 

The research of C.V. was supported in part by NSF grant PHY-92-18167. 
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