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Abstract

As first discovered by Choptuik, the black hole threshold in the
space of initial data for general relativity shows both surprising struc-
ture and surprising simplicity. Universality, power-law scaling of the
black hole mass, and scale echoing have given rise to the term “critical
phenomena”. They are explained by the existence of exact solutions
which are attractors within the black hole threshold, that is, attractors
of codimension one in phase space, and which are typically self-similar.
This review gives an introduction to the phenomena, tries to summarize
the essential features of what is happening, and then presents exten-
sions and applications of this basic scenario. Critical phenomena are of
interest particularly for creating surprising structure from simple equa-
tions, and for the light they throw on cosmic censorship. They may
have applications in quantum black holes and astrophysics.
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1 Introduction

In 1987 Christodoulou, who was then (and still is) studying the spheri-
cally symmetric Einstein-scalar model analytically [1-5] suggested to Matt
Choptuik, who was investigating the same system numerically, the follow-
ing question [6]: Consider a generic smooth one-parameter family of initial
data, such that for large values of the parameter p a black hole is formed,
and no black hole is formed for small p. If one makes a bisection search for
the critical value p, where a black hole is just formed, does it have finite or
infinitesimal mass? After developing advanced numerical methods for this
purpose, Choptuik managed to give highly convincing numerical evidence
that the mass is infinitesimal. Moreover he found two totally unexpected
phenomena: The first is the now famous scaling relation

- M~Cp-p), | (1.1)
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for the black hole mass M in the limit p ~ p, (but p > p.), where the
constant <y is the same for all such one-parameter families. (Choptuik found
v ~ 0.37.) The second is the appearance of a highly complicated, scale-
periodic solution for p ~ p,, which is again the same for all initial data as
long as they are near the limit of black hole formation. The logarithmic scale
period of this solution, A ~ 3.44, is a second dimensionless number coming
out of the blue.

Until then most relativists would have assigned numerical work the role
of providing quantitative details of phenomena that were already understood
qualitatively, noticeably in astrophysical applications. Here, numerical rela-
tivity provided an important qualitative input into mathematical relativity
and gave rise to a new research field. Similar phenomena to Choptuik’s re-
sults were quickly found in other systems too, suggesting that they were
limited neither to scalar field matter nor to spherical symmetry. Many
researchers were intrigued by the appearance of a complicated “echoing”
structure, and the two mysterious dimensionless numbers, in the critical
solution. Later it was realized that critical phenomena also provide a nat-
ural route to naked singularities, and this has linked critical phenomena to
the mainstream of research in mathematical relativity. Purely analytical
approaches, however, have not been successful so far, and most of what is
understood in critical phenomena is based on a mixture of analytical and
numerical work. Scale-invariance, universality and power-law behavior sug-
gest the name critical phenomena. A connection with the rénormalisation
group in partial differential equations has been established in hindsight, but
has not yet provided fresh input. The connection with the renormalisation
group in statistical mechanics is even more tenuous, limited to approximate
scale invariance, but not extending to the presence of a statistical ensemble.

In our presentation we combine a phenomenological with a systematic ap-
proach. In order to give the reader not familiar with Choptuik’s work a flavor
of how complicated phenomena arise from innocent-looking PDEs, we de-
scribe his results in some detail, followed by a review of the work of Coleman
and Evans on critical phenomena in perfect fluid collapse, which appeared a
year later. (The important paper of Abrahams and Evans, historically the
first paper after Choptuik’s, is reviewed in the context of non-spherically
symmetric systems.)

After this phenomenological opening, we systematically explain the key
features echoing, universality and scaling in a coherent scenario which has
emerged over time, with key terminology borrowed from dynamical systems
and renormalisation group theory. This picture is partly qualitative, but
has been underpinned by successful semi-analytic calculations of Choptuik’s
(and other) critical solutions and the critical exponent ~y to high precision.
Semi-analytic here means that although an analytic solution is impossible,
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the numerical work solves a simplified problem, for example reducing a PDE
to an ODE. In this context we introduce the relativistic notions of scale-
invariance and scale-periodicity, define the concept of a critical solution, and
sketch the calculation of the critical exponent.

In the following section we present extensions of this basic scenario. This
presentation is again systematic, but to also give the phenomenological point
of view, the section starts with a tabular overview of the matter models in
which critical phenomena have been studied so far. Extensions of the basic
scenario include more realistic matter models, critical phenomena with a
mass gap, the study of the global structure of the critical spacetime itself,
and black holes with charge and mass.

In a final section that could be titled “loose ends”, we group together
approaches to the problem that have failed or are as yet at a more speculative
stage. This section also reviews some detailed work on the quantum aspects
of critical collapse, based on various toy models of semiclassical gravity.

Previous short review papers include Horne [7], Bizon [8] and Gundlach
[9]. Choptuik is preparing a longer review paper [10]. For an interesting
general review of the physics of scale-invariance, see [11].

2 A Look at the Phenomena

2.1 The Spherically Symmetric Scalar Field

The system in which Christodoulou and Choptuik studied gravitational col-
lapse in detail was the spherically symmetric massless, minimally coupled
scalar field. It has the advantage of simplicity, and the scalar radiation
propagating at the speed of light mimics gravitational waves within spheri-
cal symmetry. The Einstein equations are

Gus = 5 (VadVid — 50 Ved V"6 ) (2.1)

and the matter equation is
V.V% =0. (2.2)

Note that the matter equation of motion is contained within the contracted
Bianchi identities. Choptuik chose Schwarzschild-like coordinates

ds? = —a?(r,t) dt? + a*(r,t) dr? + r2 dQ?, (2.3)

where dQ? = df? + sin? 0 dy? is the metric on the unit 2-sphere. This choice
of coordinates is defined by the radius r giving the surface of 2-spheres as
47rr?, and by t being orthogonal to 7. One more condition is required to fix
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the coordinate completely. Choptuik chose o =1 at r = 0, so that ¢ is the
proper time of the central observer.
In the auxiliary variables

a
®=4¢,, = Ed”t’ (2.4)

the wave equation becomes a first-order system,

o= (%H) (2.5)
I, = ;15 (%@) g (2.6)

)

In spherical symmetry there are four algebraically independent components
of the Einstein equations. Of these, one is proportional to derivatives of the
other and can be disregarded. The other three contain only first derivatives
of the metric, namely a4, a, and a,. Choptuik chose to use the equations
giving a, and «, for his numerical scheme, so that only the scalar field is
evolved, but the two metric coefficients are calculated from the matter at
each new time step. (The main advantage of such a numerical scheme is its
stability.) These two equations are

1 a2 -1

~a, + - 27r(T12 + ®2%) = 0, (2.7)
1 1 a? -1
aa’r - Ea’r - 27‘ - 07 (2'8)

and they are, respectively, the Hamiltonian constraint and the slicing con-
dition. These four first-order equations totally describe the system. For
completeness, we also give the remaining Einstein equation,

1
S0t = 2 (12 — ®2). (2.9)

The free data for the system are the two functions II(r) and ®(r). (In
spherical symmetry, there are no physical degrees of freedom in the gravi-
tational field.) Choptuik investigated many one-parameter families of such
data by evolving the data for many values each of the parameter, say p.
Simple examples of such families are ®(r) = 0 and a Gaussian for II(r),
with the parameter p taken to be either the amplitude of the Gaussian,
with the width and center fixed, or the width, with position and amplitude
fixed, or the position, with width and amplitude fixed. It is plausible that
for the amplitude sufficiently small, with width and center fixed, the scalar
field will disperse, and for sufficiently large amplitude will form a black hole,
with similar behavior for many generic parameters. This is difficult to prove
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in generality. Christodoulou showed for the spherically symmetric scalar
field system that data sufficiently weak in a well-defined way evolve to a
Minkowski-like spacetime [3], and that a class of sufficiently strong data
forms a black hole [2].

But what happens in between? Choptuik found that in all families of
initial data he could make arbitrarily small black holes by fine-tuning the
parameter p close to the black hole threshold. An important fact is that
there is nothing visibly special to the black hole threshold. One cannot tell
that one given data set will form a black hole and another one infinitesimally
close will not, short of evolving both for a sufficiently long time. Fine-tuning
is then a heuristic procedure, and effectively proceeds by bisection: Starting
with two data sets one of which forms a black hole, try a third one in between
along some one-parameter family linking the two, drop one of the old sets
and repeat.

With p closer to p4, the spacetime varies on ever smaller scales. The only
limit was numerical resolution, and in order to push that limitation further
away, Choptuik developed special numerical techniques that recursively re-
fine the numerical grid in spacetime regions where details arise on scales too
small to be resolved properly. In the end, Choptuik could determine p, up
to a relative precision of 10715, and make black holes as small as 107 times
the ADM mass of the spacetime. The power-law scaling (1.1) was obeyed
from those smallest masses up to black hole masses of, for some families,
0.9 of the ADM mass, that is, over six orders of magnitude [6]. There were
no families of initial data which did not show the universal critical solution
and critical exponent. Choptuik therefore conjectured that - is the same for
all one-parameter families, and that the approximate scaling law holds ever
better for arbitrarily small p — p..

I would suggest reformulating this conjecture in a different manner. Let
us first consider a finite-dimensional subspace of the space of initial data,
with coordinates p; on it. The subspace of Gaussian data for both ¢ and II
for example is 6-dimensional. We could choose the amplitudes, centers and
widths of the two Gaussians as coordinates, but any six smooth functions of
these could also serve as coordinates. Various one-parameter families only
serve as probes of this one 6-dimensional space. They indicate that there is
a smooth hypersurface in this space which divides black hole from non-black
hole data. Let P(p;) be any smooth coordinate function on the space so that
P(p;) = 0 is the black hole threshold. Then, for any choice of P(p;), there
is a second smooth function C(p;) on the space so that the black hole mass
as a function of the space is given as

M = 6(P)CP". (2.10)

In words, the entire unsmoothness at the black hole threshold is captured
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by the one critical exponent. One can now formally go over from a finite-
dimensional subspace to the infinite-dimensional space of initial data. Note
that ® and II must be square-integrable for the spacetime to be asymptoti-
cally flat, and therefore the initial data space has a countable basis. In this
view, it is difficult to see how different one-parameter families could have
different values of 7. It also shows that the critical exponent is not an effect
of a bad parameterization.

Clearly a collapse spacetime which has ADM mass 1, but settles down
to a black hole of mass (for example) 10~¢ has to show structure on very
different scales. The same is true for a spacetime which is as close to the
black hole threshold, but on the other side: the scalar wave contracts until
curvature values of order 10'? are reached in a spacetime region of size 105
before it starts to disperse. Choptuik found that all near-critical spacetimes,
for all families of initial data, look the same in an intermediate region, that
is they approximate one universal spacetime, which is also called the critical
solution. This spacetime is scale-periodic in the sense that there is a value
t.« of ¢t such that when we shift the origin of ¢ to ¢., we have

Z(r,t) = Z (e"r,e™t), (2.11)

for all integer n and for A ~ 3.44, and where Z stands for any one of a, «
or ¢ (and therefore also for rII or r®). The accumulation point ¢, depends
on the family, but the scale-periodic part of the near-critical solutions does
not.

This result is sufficiently surprising to formulate it once more in a slightly
different manner. Let us replace r and ¢ by a pair of auxiliary variables such
that one of them retains a dimension, while the other is dimensionless. A
simple example is (after shifting the origin of ¢ to t,)

x=—§, r=—In (-%) t < 0. (2.12)

(As a matter of convention, ¢ has been assumed negative so that it increases
towards the accumulation point at ¢ = r = 0. Similarly, 7 has been defined
so that it increases with increasing ¢.) Choptuik’s observation, expressed in
these coordinates, is that in any near-critical solution there is a space-time
region where the fields a, @ and ¢ are well approximated by their values in
a universal solution, as

Z(z,7) >~ Zy(z,T), (2.13)
where the fields a,, o, and ¢, of the critical solution have the property

Zi(z, 7+ A) = Zi(z,7). (2.14)
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The dimensionful constants ¢, and L depend on the one-parameter family of
solutions, but the dimensionless critical fields a., @, and ¢4, and in particular
their dimensionless period A, are universal. A slightly supercritical and a
slightly subcritical solution from the same family (so that L and ¢, are
the same) are practically indistinguishable until they have reached a very
small scale where the one forms an apparent horizon, while the other starts
dispersing. Not surprisingly, this scale is the same as that of the black hole (if
one is formed), and so we have for the range A7 of 7 on which a near-critical
solution approximates the universal one

AT ~ yln|p — p,| + const (2.15)
and for the number N of scaling “echos” that are seen,
N ~ A~ yln|p — p.| + const. (2.16)

Note that this holds for both supercritical and subcritical solutions.

Choptuik’s results have been repeated by a number of other authors.
Gundlach, Price and Pullin [12] could verify the mass scaling law with a
relatively simple code, due to the fact that it holds even quite far from
criticality. Garfinkle [13] used the fact that recursive grid refinement in near-
critical solutions is not required in arbitrary places, but that all refined grids
are centered on (r = 0,¢ = t,), in order to simulate a simple kind of mesh
refinement on a single grid in double null coordinates: u grid lines accumulate
at u = 0, and v lines at v = 0, with (v = 0,u = 0) chosen to coincide
with (r = 0,t = ¢,). Hamadé and Stewart [14] have written a complete
mesh refinement algorithm based on a double null grid (but coordinates u
and ), and report even higher resolution than Choptuik. Their coordinate
choice also allowed them to follow the evolution beyond the formation of an
apparent horizon.

2.2 The Spherically Symmetric Perfect Fluid

The scale-periodicity, or echoing, of the scalar field critical solution was a
new phenomenon in general relativity, and initial efforts at understanding
concentrated there. Evans however realized that scale-echoing was only a
more complicated form of scale-invariance, that the latter was the key to
the problem, and moreover that it could be expected to arise in a differ-
ent matter model, namely a perfect fluid. Evans knew that scale-invariant,
or self-similar, solutions arise in fluid dynamics problems (without gravity)
when there are two very different scales in the initial problem (for example
an explosion with high initial density into a thin surrounding fluid [15]),
and that such solutions play the role of an intermediate asymptotic in the
intermediate density regime [16].
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Evans and Coleman [17] therefore made a perfect fluid ansatz for the
matter,

Gap =87 [(p + p)uaus + pgab] : (2.17)

where u? is the 4-velocity, p the density and p the pressure. As for the scalar
field, the matter equations of motion are equivalent to the conservation of
matter energy-momentum. The only equation of state without an intrinsic
scale is p = kp, with k£ a constant. This was desirable in order to allow for
a scale-invariant solution like that of Choptuik. Evans and Coleman chose
k = 1/3 because it is the equation of state of radiation (or ultra-relativistic
hot matter). They made the same coordinate choice in spherical symmetry
as Choptuik, and evolved one-parameter families of initial data. They found
a universal intermediate attractor, and power-law scaling of the black hole
mass, with a universal critical exponent of v ~ 0.36. (To anticipate, the
coincidence of the value with that for the scalar field is now believed to be
accidental.) The main difference was that the universal solution is not scale-
periodic but scale-invariant: it has the continuous symmetry (after shifting
the origin of ¢ to t.)

Zo(rt) = Z4 (—g) = Z(2), (2.18)

where Z now stands for the metric coefficients a and « (as in the scalar field
case) and the dimensionless matter variables t2p and u". We shall discuss
this symmetry in more detail below.

Independently, Evans and Coleman made a scale-invariant ansatz for the
critical solution, which transforms the PDE problem in ¢ and r into an ODE
problem in the one independent variable z. They then posed a nonlinear
boundary value problem by demanding regularity at the center z = 0 and
at the past sound cone z = z¢ of the point (¢ = r = 0), where a generic
self-similar solution would be singular. The sound cone referred to here and
below is a characteristic of the matter equations of motion. It is made up
of the characteristic curves which are also homothetic curves (z = const.).
The past light cone of (¢t = r = 0) plays no role in the spherically symmetric
perfect fluid critical solution because in spherical symmetry there are no
propagating gravitational degrees of freedom. It does play a role in the
spherically symmetric scalar field critical solutions however, because there it
is also characteristic of the scalar field matter.

The regularity condition at the center = 0 is local flatness, or a = 1
in the coordinates (2.3). The regularity condition at z = z¢ is the absence
of a shock wave. I believe that both conditions are equivalent to demanding
analyticity, and that z = 0 and = = z( are “regular singular points” of
the ODE system, although this remains to be shown by a suitable change
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of variables. The solutions of this boundary value problem form a discrete
family. :
The simplest solution of the boundary value problem coincides perfectly
with the intermediate asymptotic that is found in the collapse simulations,
arising from generic data. It is really this coincidence that justifies the
boundary value problem posed by Evans and Coleman. At an intuitive level,
however, one could argue that the critical solution should be smooth because
it arises as an intermediate asymptotic from smooth initial data. In a con-
trasting opinion, Carr and Henriksen [18] claim that the perfect fluid critical
solution should obey a certain global condition (the “particle horizon” and
the “event horizon” of the spacetime coincide) that can be interpreted as
the solution being a marginal black hole. In order to impose this condition,
they need one more free parameter in the space of CSS solutions, and obtain
it by not imposing analyticity at the past sound cone, where their candidate
critical solution has a shock.

Evans and Coleman also suggested that an analysis of the linear per-
turbations of the critical solution would give an “estimate” of the critical
exponents. This program was carried out for the k¥ = 1/3 perfect fluid by
Koike, Hara and Adachi [19] and for other values of k£ by Maison [20], to
high precision.

3 The Basic Scenario

3.1 Scale-Invariance, Self-Similarity, and Homothety

The critical solution found by Choptuik [6, 21, 22] for the spherically sym-
metric scalar field is scale-periodic, or discretely self-similar (DSS), and the
critical solution found by Evans and Coleman [17] is scale-invariant, or con-
tinuously self-similar (CSS). We begin with the continuous symmetry be-
cause it is simpler. In Newtonian physics, a solution Z is self-similar if it is
of the form '
Z(;t)—Z[‘f] (3.1)
i F®l |
If the function f(t) is derived from dimensional considerations alone, one
speaks: of self-similarity of the first kind. An example is f(t) = VAt for the
diffusion equation Z; = AZ ;. In more complicated equations, the limit
of self-similar. solutions can be singular, and f(¢) may contain additional
dimensionful constants (which do not appear in the field equation) in terms
such as (t/L)%, where o, called an anomalous dimension, is not determined
by dimensional considerations but through the solution of an eigenvalue
problem [16]. For now, we concentrate on self-similarity of the first kind.
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A continuous self-similarity of the spacetime in GR corresponds to the
existence of a homothetic vector field ¢, defined by the property [23]

Legab = 2gap- (3.2)

(This is a special type of conformal Killing vector, namely one with constant
coefficient on the right-hand side. The value of this constant coefficient is
conventional, and can be set equal to 2 by a constant rescaling of £.) From
(3.2) it follows that

ﬁgRabcd = O, (3.3)
and therefore
£€Gab = O, (3-4)

but the inverse does not hold: the Riemann tensor and the metric need not
satisfy (3.3) and (3.2) if the Einstein tensor obeys (3.4). If the matter is
a perfect fluid (2.17) it follows from (3.2), (3.4) and the Einstein equations
that

Leu® = —u®, Lep=—2p, Lep=—2p. (3.5)
Similarly, if the matter is a free scalar field ¢ (2.1), it follows that
Lep =k, (3.6)

where & is a constant.
In coordinates z# = (,z*) adapted to the homothety, the metric coeffi-
cients are of the form

guu(Ta xi) = e_Qrg;w (mz), (.3'7)

where the coordinate 7 is the negative logarithm of a spacetime scale, and
the remaining three coordinates z* are dimensionless. In these coordinates,
the homothetic vector field is

0
€= 5 (3.8)
The minus sign in both equations (3.7) and (3.8) is a convention we have
chosen so that 7 increases towards smaller spacetime scales. For the critical
solutions of gravitational collapse, we shall later choose surfaces of constant
7 to be spacelike (although this is not possible globally), so that 7 is the
time coordinate as well as the scale coordinate. Then it is natural that 7

increases towards the future, that is towards smaller scales.
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As an illustration, the CSS scalar field in these coordinates would be

¢ = f(z) +x, (3.9)

with k a constant.

The generalization to a discrete self-similarity is obvious in these coordi-
nates, and was made in [24]:

9w (T, :cz) = e'QTQW(T, a;i), where gy, (7, x’) = G (7 + A,xi). (3.10)

The conformal metric g,, does now depend on 7, but only in a periodic
manner. Like the continuous symmetry, the discrete version has a geomet-
ric formulation [25]: A spacetime is discretely self-similar if there exists a
discrete diffeomorphism ® and a real constant A such that

B*gop = €22 gap, (3.11)

where ®*g,p is the pull-back of gqp under the diffeomorphism ®. This is
our definition of discrete self-similarity (DSS). It can be obtained formally
from (3.2) by integration along & over an interval A of the affine parame-
ter. Nevertheless, the definition is independent of any particular vector field
&. One simple coordinate transformation that brings the Schwarzschild-like
coordinates (2.3) into this form, with the periodicity in 7 equivalent to the
scaling property (2.11), was given above in Eqn. (2.12), as one easily ver-
ifies by substitution. The most general ansatz for the massless scalar field

compatible with DSS is
¢ = f(, :r:’) + k7, where f(, a:’) =f(r+ A,wi), (3.12)

with K a constant.

It should be stressed here that the coordinate systems adapted to CSS
(3.7) or DSS (3.10) form large classes, even in spherical symmetry. One can
fix the surface 7 = 0 freely, and can introduce any coordinates z* on it. In
particular, in spherical symmetry, 7-surfaces can be chosen to be spacelike, as
for example defined by (2.3) and (2.12) above, and in this case the coordinate
system cannot be global (in the example, ¢t < 0). Alternatively, one can find
global coordinate systems, where 7-surfaces must become spacelike at large
r, as in the coordinates (3.15). Moreover, any such coordinate coordinate
system can be continuously deformed into one of the same class.

As an aside, we mention that self-similarity of the second kind in general
relativity was studied by Carter and Henriksen [26] and Coley [27]. The con-
nection with the Newtonian definition is that space and time are rescaled
in different ways. To make this a covariant notion one needs a preferred
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timelike congruence. The 4-velocity u® of a perfect fluid is a natural can-
didate. The metric g,; can then be decomposed into space and time as
Gab = —UgUp + hgp. The homothetic scaling (3.2) is replaced by

ﬁ{hab = 2hab, £§ua = Cua, (313)

with C # 1. This kind of self-similarity has not to date been found in
critical collapse. In a possible source of confusion, Evans and Coleman [17]
use the term “self-similarity of the second kind”, because they define their
self-similar coordinate z as © = r/f(t), with f(¢) = t". Nevertheless, the
spacetime they calculate is homothetic, that is, self-similar of the first kind
according to the terminology of Carter and Henriksen. The difference is only
a coordinate transformation: the ¢ of [17] is not proper time at the origin,
but what would be proper time at infinity if the spacetime was truncated at
finite radius and matched to an asymptotically flat exterior [28].

There is a large body of research on spherically symmetric self-similar
solutions. A detailed review is [29]. Here we should mention only that
perfect fluid spherically symmetric self-similar solutions have been examined
by Bogoyavlenskii [30], Foglizzo and Henriksen [31], Bicknell and Henriksen
[32] and Ori and Piran [33]. Scalar field spherically symmetric CSS solutions
were examined by Brady [34]. In these papers, the Einstein equations are
reduced to an ODE system by the self-similar spherically symmetric ansatz,
which is then discussed as a dynamical system. It is often difficult to regain
the spacetime picture from the phase space picture. In particular, it is not
clear which solution in these classifications is the critical solution found in
perfect fluid collapse simulations, and constructed through a CSS ansatz, by
Evans and Coleman [17] (but see [18]). It is also unclear why the scalar field
DSS critical solution has k = 0 in Eqn. (3.12).

3.2 Gravity Regularizes Self-Similar Matter

It is instructive to consider the self-similar solutions of a simple matter field,
the massless scalar field, in spherical symmetry without gravity. The general
solution of the spherically symmetric wave equation is of course

$(rt) =r~H[f(t+7) —g(t —7)], (3.14)

where f(z) and g(z) are two free functions of one variable ranging from —oo
to oo. f describes ingoing and g outgoing waves. Regularity at the center
r = 0 for all ¢ requires f(z) = g(z) for f(z) a smooth function. Physically
this means that ingoing waves move through the center and become outgoing
waves. Now we transform to new coordinates z and 7 defined by

r=e "’ cosz, t=e "sinz, (3.15)
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and with range —00 < 7 < 00, —7/2 < z < 7/2. These coordinates are
adapted to self-similarity, but unlike the z and 7 introduced in (2.12) they
cover all of Minkowski space with the exception of the point (t = r = 0).
The general solution of the wave equation for ¢ > r can formally be written
as

¢(r,t) = ¢(z,7) = (tanz + 1) Fy [In(sinz + cos z) — 7]
— (tanz — 1)G4 [In(sinz — cos z) — 7], (3.16)

through the substitution f(z)/z = Fy(Inz) and g(z)/z = G4 (Inz) for z > 0.
Similarly, we define f(z)/z = F_[In(—z)] and g(z)/z = G-[In(—=z)] for z < 0
to cover the sectors |t| < r and t < —r. Note that F; (z) and F_(z) together
contain the same information as f(z).

The condition for regularity at » = 0 for all ¢ > 0 is once more F; (z) =
G4 (z), but we can now also read off that the condition for continuous self-
similarity ¢ = ¢(z) translates into Fy = const., G4 = const.. Discrete
self-similarity with scale periodicity A, or ¢(z,7) = ¢(z, 7 + A) translates
into F(z) = Fy(z+ A) and G4 (z) = G4(2+ A). Any self-similar solution
is singular at ¢ = r unless G4 = 0. Similar conclusions are obtained for
the sectors |[t| < r and t < —r. We conclude that a self-similar solution
(continuous or discrete) is either zero everywhere, or else it is regular in at
most one of three places: at the center » = 0 for ¢ # 0, at the past light cone
t = —r, or at the future light cone ¢t = r. (These three cases correspond to
F.,=Gyand F. =G_, F, = F_ =0, and G+ = G_ = 0, respectively.)
We conjecture that other simple matter fields, such as the perfect fluid, show
similar behavior.

The presence of gravity changes this singularity structure qualitatively.
Dimensional analysis applied to the metric (3.7) or (3.10) shows that 7 = oo
[the point (£ = r = 0)] is now a curvature singularity (unless the self-similar
spacetime is Minkowski). But elsewhere, the solution can be more regular.
There is a one-parameter family of exact spherically symmetric scalar field
solutions found by Roberts [35] that is regular at both the future and past
light cone of the singularity, not only at one of them. (It is singular at the
past and future branch of r = 0.) The only solution without gravity with
this property is ¢ = 0. The Roberts solution will be discussed in more detail
in section 4.6 below.

Similarly, the scale-invariant or scale-periodic solutions found in near-
critical collapse simulations are regular at both the past branch of r = 0 and
the past light cone (or sound cone, in the case of the perfect fluid). Once
more, in the absence of gravity only the trivial solution has this property.

I have already argued that the critical solution must be as smooth on the
past light cone as elsewhere, as it arises from the collapse of generic smooth
initial data. No lowering of differentiability or other unusual behavior should
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take place before a curvature singularity arises at the center. As Evans first
realized, this requirement turns the scale-invariant or scale-periodic ansatz
into a boundary value problem between the past branch of = 0 and the
past sound cone, that is, roughly speaking, between z = 0 and z = 1.

In the CSS ansatz in spherical symmetry suitable for the perfect fluid, all
fields depend only on z, and one obtains an ODE boundary value problem.
In a scale-periodic ansatz in spherical symmetry, such as for the scalar field,
all fields are periodic in 7, and one obtains a 1+1 dimensional hyperbolic
boundary value problem on a coordinate square, with regularity conditions
at, say, £ = 0 and x = 1, and periodic boundary conditions at 7 = 0
and 7 = A. Well-behaved numerical solutions of these problems have been
obtained, with numerical evidence that they are locally unique, and they
agree well with the universal solution that emerges in collapse simulations
(references are given in the column “Critical solution” of Table 1). It remains
an open mathematical problem to prove existence and (local) uniqueness of
the solution defined by regularity at the center and the past light cone.

One important technical detail should be mentioned here. In the curved
solutions, the past light cone of the singularity is not in general r = —¢, or
z =1, but is given by z = zg, or in the case of scale-periodicity, by x = z((7),
with z( periodic in 7 and initially unknown. The same problem arises for
the sound cone. It is convenient to make the coordinate transformation

T 27
, T=—T, 3.17
P (3.17)

v A

so that the sound cone or light cone is by definition at £ = 1, while the origin
is at £ = 0, and so that the period in 7 is now always 27. In the DSS case
the periodic function z((7) and the constant A now appear explicitly in the
field equations, and they must be solved for as nonlinear eigenvalues. In the
CSS case, the constant z( appears, and must be solved for as a nonlinear
eigenvalue.

As an example for a DSS ansatz, we give the equations for the spherically
symmetric massless scalar field in the coordinates (2.12) adapted to self-
similarity and in a form ready for posing the boundary value problem. (The
equations of [36] have been adapted to the notation of this review.) We
introduce the first-order matter variables

Xi =V2nr (ﬁ + %) , (3.18)

a

which describe ingoing and outgoing waves. It is also useful to replace a by

A
D= (1 - -—dln‘“’) iy s (3.19)

2 dT a
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as a dependent variable. In the scalar field wave equation (2.5) we use the
Einstein equations (2.8) and (2.9) to eliminate a and ¢, and obtain

X
za *—@1xD)! { [1(1 —a?) - aQX;] Xy — X<

0% 2
A dlnze) !Xy
ﬂ:D<%— Ch__) = (320

The three Einstein equations (2.7,2.8,2.9) become

Tda 1 1
T 0D
boz =2 (5.22)

0=(1-d®)+a®(X}+X2)-a’D71 (X3 - X2)
(A dlnmo)_128a

) as (3.23)

As suggested by the format of the equations, they can be treated as four
evolution equations in Z and one constraint that is propagated by them.
The freedom in z¢(7) is to be used to make D =1 at Z = 1. Now Z = 0 and
Z = 1 resemble “regular singular points”, if we are prepared to generalize
this concept from linear ODEs to nonlinear PDEs. Near Z = 0, the four
evolution equations are clearly of the form 0Z/9% = regular/Z. That T =1
is also a regular singular point becomes clearest if we replace D by D =
(1=D)/(z —1). The “evolution” equation for X near Z = 1 then takes the
form 0X /0% = regular/(Z — 1), while the other three equations are regular.

This format of the equations also demonstrates how to restrict from a
DSS to a CSS ansatz: one simply drops the 7-derivatives. The constraint
then becomes algebraic, and the resulting ODE system can be considered to
have three rather than four dependent variables.

Given that the critical solutions are regular at the past branch of r =
0 and at the past sound cone of the singularity, and that they are self-
similar, one would expect them to be singular at the future light cone of the
singularity (because after solving the boundary value problem there is no
free parameter left in the solution). The real situation is more subtle as we
shall see in Section 4.6.

As a final remark, it appears that all critical solutions found so far for
any matter model, of both type I and type II (see section 4.3 below), do not
admit a limit G — 0, so that they are only brought into existence by gravity.
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Figure 1: The phase space picture for discrete self-similarity. The plane rep-
resents the critical surface. (In reality this is a hypersurface of co-dimension
one in an infinite-dimensional space.) The circle (fat unbroken line) is the
limit cycle representing the critical solution. The thin unbroken curves are
spacetimes attracted to it. The dashed curves are spacetimes repelled from
it. There are two families of such curves, labeled by one periodic parameter,
one forming a black hole, the other dispersing to infinity. Only one member
of each family is shown.

3.3 Universality and Scaling

We have seen that the universal solution arising in critical collapse can be
constructed semi-analytically from a self-similar ansatz plus regularity con-
ditions. The fact that it is universal up to fine-tuning of one parameter is
equivalent to its being an attractor of codimension one. The linearization of
that statement around the critical solution is that it has exactly one unstable
mode.

We now formulate this idea more precisely. For simplicity of notation,
we limit ourselves to the spherically symmetric CSS case, for example the
perfect fluid. The DSS case is discussed in [24]. Let Z stand for a set of
scale-invariant variables of the problem in a first-order formulation. Z(r)
is an element of the phase space, and Z(r,t) a solution. The self-similar
solution is of the form Z(r,t) = Z.(—r/t) = Z.(z). [We have chosen the
Schwarzschild-like coordinates defined in Eqn. (2.3), have shifted the origin
of t to t = t., and consider only values ¢ < 0.] In the echoing region,
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where Z, dominates, we linearize around it. As the background solution is
7-independent, Z(z,7) = Z.(z), its linear perturbations can depend on 7
only exponentially (with complex exponent \), that is

8Z(z,7) = i C; N7 fi(x), (3.24)
=1

where the C; are free constants. We can also write this in the more familiar
space and time coordinates r and ¢

r=Lze™ ", t=-—Le ", (3.25)

already defined in (2.12) above. To linear order, the solution in the echoing
region is then of the form

Z(rt) = Zi (—g) + ij: Ci(p) (‘%) B fi (—g) : (3.26)

The coefficients C; depend in a complicated way on the initial data, and
hence on p. If Z, is a critical solution, by definition there is exactly one \;
with positive real part (in fact it is purely real), say A\1. As ¢t — 07, all other
perturbations vanish. In the following we consider this limit, and retain only
the one growing perturbation. By definition the critical solution corresponds
to p = ps, so we must have C1(p.«) = 0. Linearizing around p,, we obtain

lim Z(r,1) =~ 7, (=7) + ‘%(p —p) (—%) ' (-9). @

This approximate solution explains why the solution Z, is universal. It
is now also clear why Eqn. (2.15) holds, that is why we see more of the
universal solutions (in the DSS case, more “echos”) as p is tuned closer to
ps. At an intuitive level, the picture is of either a limit point (in the CSS
case), or limit cycle (in the DSS case, as in Fig. 1), in phase space, which is
in an attractor in the hypersurface separating black hole from no black hole
data. We shall reconsider this picture below in section 5.1. The universal
solution is also called the critical solution because it would be revealed up
to the singularity 7 = oo if perfect fine-tuning of p would be possible. A
possible source of confusion here is that the critical solution, because it is
self-similar, is not asymptotically flat. Nevertheless, it can arise in a region
up to finite radius as the limiting case of a family of asymptotically flat
solutions. At large radius, it is matched to an asymptotically flat solution
which is not universal but depends on the initial data (as does the place of
matching.)

The following calculation of the critical exponent from the linear per-
turbations of the critical solution by dimensional analysis was suggested by
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Evans and Coleman [17] and carried out by Koike, Hara and Adachi [19] and

Maison [20]. It was generalized to the discretely self-similar (DSS) case by

Gundlach [24]. For simplicity of notation we consider again the CSS case.
The solution has the approximate form (3.27) over a range of t. Now we

extract Cauchy data at one particular value of ¢ within that range, namely
tp defined by

R o-p) () M = (3.28)
where € is some constant < 1, so that at ¢, the linear approximation is still
valid. (The suffix p indicates that ¢, depends on p.) At sufficiently small —¢,
the linear perturbation has grown so much that the linear approximation
breaks down. Later on a black hole forms. The crucial point is that we need
not follow this evolution in detail, nor does it matter at what amplitude e
we consider the perturbation as becoming non-linear. It is sufficient to note
that the Cauchy data at ¢ = ¢, depend on r only in the combination r/t,,
namely

Z(r,t,) ~ Z, (—-’l) tefy —1) . (3.29)
tp tp

(tp has of course been defined just so that the coefficient of f; in this ex-

pression is the same for all values of p, namely e.) Furthermore the field

equations do not have an intrinsic scale. It follows that the solution based

on those data must be ezactly [37] of the form

Z(r,t)=f ({— ti) : (3.30)
p Up

for some function f, throughout, even when the black hole forms and per-
turbation theory breaks down, and later still after it has settled down and
the solution no longer depends on ¢. (This solution holds only for ¢ > ¢,
because in its initial data we have neglected the perturbation modes with
i > 1, which would be growing, not decaying, towards the past.) Because
the black hole mass has dimension length, it must be proportional to ¢,, the
only length scale in the solution,

Mty o (p—pa) T, (3.31)

and we have found the critical exponent v = 1/A;.

When the critical solution is DSS, the scaling law is modified. This
was predicted by [24] and predicted independently and verified in collapse
simulations by Hod and Piran [38]. On the straight line relating In M to
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In(p — p«), a periodic “wiggle” or “fine structure” of small amplitude is
superimposed:

InM =vIn(p —ps) + ¢+ flyIn(p — ps) + ], (3.32)

with f(z) = f(z+A). The periodic function f is again universal with respect
to families of initial data, and there is only one parameter ¢ that depends
on the family of initial data, corresponding to a shift of the wiggly line in
the In(p — p«) direction. (No separate adjustment in the In M direction is
possible.)

4 Extensions of the Basic Scenario

4.1 More Matter Models

Choptuik’s results have been confirmed for a variety of other matter models.
In some of these, qualitatively new phenomena were discovered, and we
review this body of work by phenomena rather than chronologically or by
matter models. A presentation by matter models is given in Table 1 for
completeness.

An exceptional case is spherically symmetric dust collapse. Here, the
entire spacetime, the Tolman-Bondi solution, is given in closed form from
the initial velocity and density profiles. Excluding shell crossing singularities,
there is a “phase transition” between initial data forming naked singularities
at the center and data forming black holes. Which of the two happens
depends only the leading terms in an expansion of the initial data around
r =0 [39,40]. One could argue that this fact also makes the matter model
rather unphysical.

4.2 CSS and DSS Critical Solutions

As we have seen, a critical solution is one that sits on the boundary of black
hole formation, and has exactly one “growing mode”, so that it acts as an
intermediate attractor (Evans). All one-parameter families of initial data
crossing that boundary are then “funnelled” (Eardley) through that one
solution. So far, we have seen an example each of a critical solution with
discrete and with continuous self-similarity. There may be regular CSS or

1The critical solution and its perturbations for the massive scalar field are asymptotic
to those of the massless scalar.

*The (DSS) critical solution for the real massless scalar field is also the critical solution
for the complex scalar field. The additional perturbations are all stable [24].

3There is also a CSS solution [45], but it has three unstable modes, not only one [37].

4The scalar electrodynamics critical solution is again the real scalar field critical solu-
tion. Its perturbations are those of the complex scalar field.
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Table 1: An overview of numerical work in critical collapse. Question marks
denote missing links.

Matter model Collapse Critical Perturbations
simulations | solution

Perfect fluid

—k=1/3 [17] [17] [19]

— general k ? [20] [20]

Real scalar field

— massless, min. coupled [6,21,22] [36] [24]

~ massive [6,41] [42,43]' | [42,43]"

— conformally coupled [22] ? ?

2-d sigma model

— complex scalar (k = 0) [44] [24)2, [45)® | [24), [37)

— axion-dilaton (k = 1) [46] [46,47] [46]

— scalar-Brans-Dicke (k > 0) | [48]

— general x includingk <0 | ? [49 [49]

Scalar electrodynamics 50 [43]* [43]*

SU(2) Yang-Mills 51 52] [52]

SU(2) Skyrme model [53 53 (53]

Axisymmetric vacuum [54, 55] ? ?

DSS solutions with more than one growing mode, but they will not appear in
Choptuik type fine-tuning. An example for this is provided by the spherically
symmetric massless complex scalar field. Hirschmann and Eardley [45] found
a way of constructing a CSS scalar field solution by making the scalar field
¢ complex but limiting it to the ansatz

¢ = e f(z), (4.1)

with w a real constant and f real. The metric is then homothetic, while the
scalar field shows a trivial kind of “echoing” in the complex phase. Later,
they found that this solution has three modes with ReA > 0 [37] and is
therefore not the critical solution. Gundlach [24] examined complex scalar
field perturbations around Choptuik’s real scalar field critical solution and
found that only one of them, purely real, has ReX > 0, so that the real scalar
field critical solution is a critical solution (up to an overall complex phase)
also for the free complex scalar field. This had been seen already in collapse
calculations [44].

As the symmetry of the critical solution, CSS or DSS, depends on the
matter model, it is interesting to investigate critical behavior in parameter-
ized families of matter models. Two such one-parameter families have been
investigated. The first one is the spherical perfect fluid with equation of
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state p = kp for arbitrary k. Maison [20] constructed the regular CSS solu-
tions and its linear perturbations for a large number of values of k. In each
case, he found exactly one growing mode, and was therefore able to predict
the critical exponent. (To my knowledge, these critical exponents have not
yet been verified in collapse simulations.) As Ori and Piran before [33], he
found that there are no regular CSS solutions for £ > 0.88. There is nothing
in the equation of state to explain this. In particular, the perfect fluid is
well behaved up to k¥ < 1. It remains unknown what happens in critical
collapse for £ > 0.88 Black hole formation may begin with a minimum mass.
(In the absence of a mass scale in the field equations, this mass gap would
depend on the family.) Alternatively, there may be a DSS critical solution.
The fact that the &k = 1 perfect fluid is equivalent to a massless scalar field,
which does have a DSS critical solution, hints in this direction. Nevertheless,
a scalar field solution corresponds to a perfect fluid solution only if ¢, is
everywhere timelike, and this is not true for Choptuik’s universal solution.

The second one-parameter family of matter models was suggested by
Hirschmann and Eardley [49], who looked for a natural way of introducing
a non-linear self-interaction for the (complex) scalar field without introduc-
ing a scale. (We discuss dimensionful coupling constants in the following
sections.) They investigated the model described by the action

o) @

Note that ¢ is now complex, and the parameter k is real and dimensionless.
This is a 2-dimensional sigma model with a target space metric of constant
curvature (namely k), minimally coupled to gravity. Moreover, for £ > 0
there are (nontrivial) field redefinitions which make this model equivalent to
a real massless scalar field minimally coupled to Brans-Dicke gravity, with
the Brans-Dicke coupling given by

3 1
=—=4 —. 4.3
WD = —5 + o (4.3)
In particular, k = 1 (wpp = —11/8) corresponds to an axion-dilaton system

arising in string theory [47]. k¥ = 0 is the free complex scalar field coupled to
Einstein gravity). Hirschmann and Eardley calculated a CSS solution and
its perturbations and concluded that it is the critical solution for x > 0.0754,
but has three unstable modes for x < 0.0754. For x < —0.28, it acquires
even more unstable modes. The positions of the mode frequencies A in the
complex plane vary continuously with «, and these are just values of k where
a complex conjugate pair of frequencies crosses the real axis. The results of
Hirschmann and Eardley confirm and subsume collapse simulation results by
Liebling and Choptuik [48] for the scalar-Brans-Dicke system, and collapse
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and perturbative results on the axion-dilaton system by Hamadé, Horne and
Stewart [46]. Where the CSS solution fails to be the critical solution, a DSS
solution takes over. In particular, for k = 0, the free complex scalar field,
the critical solution is just the real scalar field DSS solution of Choptuik.

4.3 Black Hole Thresholds with a Mass Gap

The first models in which critical phenomena were observed did not have
any length scales in the field equations. Later, models were examined which
have one such scale. Collapse simulations were carried out for the spheri-
cally symmetric SU(2) Einstein-Yang-Mills system by Choptuik, Chmaj and
Bizon [51]. In fine-tuning one-parameter families of data to the black-hole
threshold, they found two different kinds of critical phenomena, dominated
by two different critical solutions. Which kind of behavior arises appears to
depend on the qualitative shape of the initial data. In one kind of behav-
ior, black hole formation turns on at an infinitesimal mass with the familiar
power-law scaling, dominated by a DSS critical solution. In the other kind,
black hole formation turns on at a finite mass, and the critical solution is
now a static, asymptotically flat solution which had been found before by
Bartnik and McKinnon [56]. It was also known before that this solution (the
least massive one of a discrete family) had exactly two unstable perturbation
modes [57]. The ansatz of Choptuik, Chmaj and Bizon further allowed for
only one of these unstable modes, with one sign of these leading to collapse
and the other to dispersion of the solution. The Bartnik-McKinnon solution
is then a critical solution within this ansatz, in the sense of being an attrac-
tor of codimension one on the black hole threshold. Choptuik, Chmaj and
Bizon labelled the two kinds of critical behavior type II and type I respec-
tively, corresponding to a second- and a first-order phase transition. The
newly found, type I critical phenomena show a scaling law that is mathe-
matically similar to the black hole mass scaling observed in type II critical
phenomena. Let 0/9¢ be the static Killing vector of the critical solution.
Then the perturbed critical solution is of the form

a0y
dp

This is similar to Eqn. (3.27), but the growth of the unstable mode is now
exponential in ¢, not in Int. We again define a time ¢, by

%(p )t = (4.5)

but now the initial data at tp are

Z(rty) = Zu (1) + € f1(r), (4.6)

Z(r,t) = Zi(r) + (p — ps)eMf1(r) + decaying modes. (4.4)
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so that that the final black hole mass is independent of p — p.. (It is of the
order of the mass of the static critical solution.) The scaling is only apparent
in the lifetime of the critical solution, which we can take to be t,. It is

1
tp = N In(p — p«) + const. (4.7

The type I critical solution can also have a discrete symmetry, that is,
can be periodic in time instead of being static. This behavior was found
in collapse situations of the massive scalar field by Brady, Chambers and
Gongalves [41]. Previously, Seidel and Suen [58] had constructed periodic,
asymptotically flat, spherically symmetric self-gravitating massive scalar
field solutions they called oscillating soliton stars. By dimensional analy-
sis, the scalar field mass m sets an overall scale of 1/m (in units G = ¢ =1).
For given m, Seidel and Suen found a one-parameter family of such solutions
with two branches. The more compact solution for a given ADM mass is
unstable, while the more extended one is stable to spherical perturbations.
Brady, Chambers and Gongalves (BCG) report that the type I critical solu-
tions they find are from the unstable branch of the Seidel and Suen solutions.
Therefore we are seeing a one-parameter family of (type I) critical solutions,
rather than an isolated critical solution. BCG in fact report that the black
hole mass gap does depend on the initial data. They find a small wiggle in
the mass of the critical solution which is periodic in In(p — p«), and which
should have the same explanation [24] as that found in the mass of the black
hole in type II DSS critical behavior. If type I or type II behavior is seen
appears to depend mainly on the ratio of the length scale of the initial data
to the length scale 1/m.

One point in the results of BCG is worth expanding on. In the critical
phenomena that were first observed, with an isolated critical solution, only
one number’s worth of information, namely the separation p—p, of the initial
data from the black hole threshold, survives to the late stages of the time
evolution. This is true for both type I and type II critical phenomena. In
type II phenomena, p—p. determines the black hole mass, while in both type
I and II it also determines the lifetime of the critical solution (the number of
echos). Recall that our definition of a critical solution is one that has exactly
one unstable perturbation mode, with a black hole formed for one sign of the
unstable mode, but not for the other. This definition does not exclude an
n-dimensional family of critical solutions. Each solution in the family would
then have n marginal modes leading to neighboring critical solutions, as
well as the one unstable mode. n + 1 numbers’ worth of information would
survive from the initial data, and the mass gap in type I, or the critical
exponent for the black hole mass in type II, for example, would depend on
the initial data through n parameters. In other words, universality would
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exist in diminished form. The results of BCG are an example of a one-
parameter family of type I critical solutions. Recently, Brodbeck et al. [59]
have shown, under the assumption of linearization stability, that there is
a one-parameter family of stationary, rotating solutions beginning at the
(spherically symmetric) Bartnik-McKinnon solution. This could turn out to
be a second one-parameter family of type I critical solutions, provided that
the Bartnik-McKinnon solution does not have any unstable modes outside
spherical symmetry (which has not yet been investigated) [60].

Bizori and Chmaj have studied type I critical collapse of an SU(2) Skyrme
model coupled to gravity, which in spherical symmetry with a hedgehog
ansatz is characterized by one field F(r,t) and one dimensionless coupling
constant c. Initial data F(r) ~ tanh(r/p), F(r) = 0 surprisingly form
black holes for both large and small values of the parameter p, while for
an intermediate range of p the endpoint is a stable static solution called
a skyrmion. (If F was a scalar field, one would expect only one critical
point on this family.) The ultimate reason for this behavior is the presence
of a conserved integer “baryon number” in the matter model. Both phase
transitions along this one-parameter family are dominated by a type I critical
solution, that is a different skyrmion which has one unstable mode. In
particular, an intermediate time regime of critical collapse evolutions agrees
well with an ansatz of the form (4.4), where Z,, f; and A were obtained
independently. It is interesting to note that the type I critical solution is
singular in the limit o — 0, which is equivalent to G — 0, because the
known type II critical solutions for any matter model also do not have a
weak gravity limit.

Apparently, type I critical phenomena can arise even without the pres-
ence of a scale in the field equations. A family of exact spherically symmetric,
static, asymptotically flat solutions of vacuum Brans-Dicke gravity given by
van Putten was found by Choptuik, Hirschmann and Liebling [61] to sit at
the black hole-threshold and to have exactly one growing mode. This family
has two parameters, one of which is an arbitrary overall scale.

4.4 Approximate Self-Similarity and Universality Classes

As we have seen, the presence of a length scale in the field equations can
give rise to static (or oscillating) asymptotically flat critical solutions and
a mass gap at the black hole threshold. Depending on the initial data,
this scale can also become asymptotically irrelevant as a self-similar solution
reaches ever smaller spacetime scales. This behavior was already noticed by
Choptuik in the collapse of a massive scalar field, or one with a potential
term generally [6] and confirmed by Brady, Chambers and Gongalves [41].
It was also seen in the spherically symmetric EYM system [51]. In order
to capture the notion of an asymptotically self-similar solution, one may set
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the arbitrary scale L in the definition (2.12) of 7 to the scale of the field
equations, here 1/m.

Introducing suitable dimensionless first-order variables Z (such as a, «,
¢, r¢ and r¢; for the spherically symmetric scalar field), one can write the
field equations as a first order system

F(Z,%Z4,Zre7) =0. (4.8)

Every appearance of m gives rise to an appearance of e~7. If the field
equations contain only positive integer powers of m, one can make an ansatz
for the critical solution of the form

o0

Zu(z,m) =) e Zy(x), (4.9)

n=0

where each Z,(z) is calculated recursively from the preceding ones. For large
enough 7 (on spacetime scales small enough, close enough to the singularity),
this infinite series is expected to converge. A similar ansatz can be made for
the linear perturbations of Z,, and solved again recursively. Fortunately, one
can calculate the leading order background term Zj on its own, and obtain
the exact echoing period A in the process (in the case of DSS). Similarly,
one can calculate the leading order perturbation term on the basis of Zj
alone, and obtain the exact value of the critical exponent 7 in the process.
This procedure was carried out by Gundlach [52] for the Einstein-Yang-
Mills system, and by Gundlach and Martin-Garcia [43] for massless scalar
electrodynamics. Both systems have a single scale 1/e (in units ¢ = G = 1),
where e is the gauge coupling constant.

The leading order term Z; in the expansion of the self-similar critical
solution Z, obeys the equation

F(Zy, Zo 2, Zo,r,0) = 0. (4.10)

Clearly, the critical solution is independent of the overall scale Ly. By a
similar argument, so are its perturbations, and therefore the critical exponent
. Therefore, all systems with a single length scale Lg in the field equations
are in one universality class [42,43]. The massive scalar field, for any value
of m, or massless scalar electrodynamics, for any value of e, are in the same
universality class as the massless scalar field. This notion of universality
classes is fundamentally the same as in statistical mechanics.

If there are several scales Lo, L1, Lo etc. present in the problem, a
possible approach is to set the arbitrary scale in (2.12) equal to one of them,
say Lo, and define the dimensionless constants I; = L;/Lq from the others.
The size of the universality classes depends on where the [; appear in the
field equations. If a particular L; appears in the field equations only in
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positive integer powers, the corresponding /; appears only multiplied by e,
and will be irrelevant in the scaling limit. All values of this I; therefore
belong to the same universality class. As an example, adding a quartic self-
interaction A¢* to the massive scalar field, for example, gives rise to the
dimensionless number A/m?2, but its value is an irrelevant (in the language
of renormalisation group theory) parameter. All self-interacting scalar fields
are in fact in the same universality class. Contrary to the statement in [43],
I would now conjecture that massive scalar electrodynamics, for any values
of e and m, forms a single universality class in type II critical phenomena.
Examples of dimensionless parameters which do change the universality class
are the k of the perfect fluid, the x of the 2-dimensional sigma model, or a
conformal coupling of the scalar field.

4.5 Beyond Spherical Symmetry

Every aspect of the basic scenario: CSS and DSS, universality and scaling
applies directly to a critical solution that is not spherically symmetric, but
all the models we have described are spherically symmetric. There are only
two exceptions to date: a numerical investigation of critical collapse in ax-
isymmetric pure gravity [54], and a study of the nonspherical perturbations
the perfect fluid critical solution [62]. They correspond to two related ques-
tions in going beyond spherical symmetry. Are there critical phenomena
in gravitational collapse far from spherical symmetry? And: are the critical
phenomena in the known spherically symmetric examples destroyed by small
deviations from spherical symmetry?

4.5.1 Axisymmetric Gravitational Waves

The paper of Abrahams and Evans [54] was the first paper on critical col-
lapse to be published after Choptuik’s PRL, but it remains the only one to
investigate a non-spherically symmetric situation, and therefore also the only