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Abstract 

As first discovered by Choptuik, the black hole threshold in the 
space of initial data for general relativity shows both surprising struc- 
ture and surprising simplicity. Universality, power-law scaling of the 
black hole mass, and scale echoing have given rise to the term "critical 
phenomena". They are explained by the existence of exact solutions 
which are attractors within the black hole threshold, that is, attractors 
of codimension one in phase space, and which are typically self-similar. 
This review gives an introduction to the phenomena, tries to summarize 
the essential features of what is happening, and then presents exten- 
sions and applications of this basic scenario. Critical phenomena are of 
interest particularly for creating surprising structure from simple equa- 
tions, and for the light they throw on cosmic censorship. They may 
have applications in quantum black holes and astrophysics. 
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1    Introduction 

In 1987 Christodoulou, who was then (and still is) studying the spheri- 
cally symmetric Einstein-scalar model analytically [1-5] suggested to Matt 
Choptuik, who was investigating the same system numerically, the follow- 
ing question [6]: Consider a generic smooth one-parameter family of initial 
data, such that for large values of the parameter p a black hole is formed, 
and no black hole is formed for small p. If one makes a bisection search for 
the critical value p* where a black hole is just formed, does it have finite or 
infinitesimal mass? After developing advanced numerical methods for this 
purpose, Choptuik managed to give highly convincing numerical evidence 
that the mass is infinitesimal. Moreover he found two totally unexpected 
phenomena: The first is the now famous scaling relation 

M-C(p-p*)7, (1.1) 



C. GUNDLACH 

for the black hole mass M in the limit p ~ p* (but p > p*), where the 
constant 7 is the same for all such one-parameter families. (Choptuik found 
7 ~ 0.37.) The second is the appearance of a highly complicated, scale- 
periodic solution for p ~ p*, which is again the same for all initial data as 
long as they are near the limit of black hole formation. The logarithmic scale 
period of this solution, A ~ 3.44, is a second dimensionless number coming 
out of the blue. 

Until then most relativists would have assigned numerical work the role 
of providing quantitative details of phenomena that were already understood 
qualitatively, noticeably in astrophysical applications. Here, numerical rela- 
tivity provided an important qualitative input into mathematical relativity 
and gave rise to a new research field. Similar phenomena to Choptuik's re- 
sults were quickly found in other systems too, suggesting that they were 
limited neither to scalar field matter nor to spherical symmetry. Many 
researchers were intrigued by the appearance of a complicated "echoing" 
structure, and the two mysterious dimensionless numbers, in the critical 
solution. Later it was realized that critical phenomena also provide a nat- 
ural route to naked singularities, and this has linked critical phenomena to 
the mainstream of research in mathematical relativity. Purely analytical 
approaches, however, have not been successful so far, and most of what is 
understood in critical phenomena is based on a mixture of analytical and 
numerical work. Scale-invariance, universality and power-law behavior sug- 
gest the name critical phenomena. A connection with the renormalisation 
group in partial differential equations has been established in hindsight, but 
has not yet provided fresh input. The connection with the renormalisation 
group in statistical mechanics is even more tenuous, limited to approximate 
scale invariance, but not extending to the presence of a statistical ensemble. 

In our presentation we combine a phenomenological with a systematic ap- 
proach. In order to give the reader not familiar with Choptuik's work a flavor 
of how complicated phenomena arise from innocent-looking PDEs, we de- 
scribe his results in some detail, followed by a review of the work of Coleman 
and Evans on critical phenomena in perfect fluid collapse, which appeared a 
year later. (The important paper of Abrahams and Evans, historically the 
first paper after Choptuik's, is reviewed in the context of non-spherically 
symmetric systems.) 

After this phenomenological opening, we systematically explain the key 
features echoing, universality and scaling in a coherent scenario which has 
emerged over time, with key terminology borrowed from dynamical systems 
and renormalisation group theory. This picture is partly qualitative, but 
has been underpinned by successful semi-analytic calculations of Choptuik's 
(and other) critical solutions and the critical exponent 7 to high precision. 
Semi-analytic here means that although an analytic solution is impossible, 
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the numerical work solves a simplified problem, for example reducing a PDE 
to an ODE. In this context we introduce the relativistic notions of scale- 
invariance and scale-periodicity, define the concept of a critical solution, and 
sketch the calculation of the critical exponent. 

In the following section we present extensions of this basic scenario. This 
presentation is again systematic, but to also give the phenomenological point 
of view, the section starts with a tabular overview of the matter models in 
which critical phenomena have been studied so far. Extensions of the basic 
scenario include more realistic matter models, critical phenomena with a 
mass gap, the study of the global structure of the critical spacetime itself, 
and black holes with charge and mass. 

In a final section that could be titled "loose ends", we group together 
approaches to the problem that have failed or are as yet at a more speculative 
stage. This section also reviews some detailed work on the quantum aspects 
of critical collapse, based on various toy models of semiclassical gravity. 

Previous short review papers include Home [7], Bizon [8] and Gundlach 
[9]. Choptuik is preparing a longer review paper [10]. For an interesting 
general review of the physics of scale-invariance, see [11]. 

2    A Look at the Phenomena 

2.1    The Spherically Symmetric Scalar Field 

The system in which Christodoulou and Choptuik studied gravitational col- 
lapse in detail was the spherically symmetric massless, minimally coupled 
scalar field. It has the advantage of simplicity, and the scalar radiation 
propagating at the speed of light mimics gravitational waves within spheri- 
cal symmetry. The Einstein equations are 

Gab = STT (va<t>Vb4> - ^gabVcct>VcA (2.1) 

and the matter equation is 

VaV0</) = 0. (2.2) 

Note that the matter equation of motion is contained within the contracted 
Bianchi identities. Choptuik chose Schwarzschild-like coordinates 

ds2 - -a2(r, t) dt2 + a2(r, t) dr2 + r2 dfi2, (2.3) 

where d£l2 — d62 + sin2 9 dtp2 is the metric on the unit 2-sphere. This choice 
of coordinates is defined by the radius r giving the surface of 2-spheres as 
47rr2, and by t being orthogonal to r. One more condition is required to fix 
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the coordinate completely. Choptuik chose a = 1 at r = 0, so that t is the 
proper time of the central observer. 

In the auxiliary variables 

$ = (/> r,     n - ^it> (2.4) 

the wave equation becomes a first-order system, 

$t = (^n) , (2.5) 

nt = i(^>)   . (2.6) 

In spherical symmetry there are four algebraically independent components 
of the Einstein equations. Of these, one is proportional to derivatives of the 
other and can be disregarded. The other three contain only first derivatives 
of the metric, namely a t, a^ and a>r. Choptuik chose to use the equations 
giving ajr and ajr for his numerical scheme, so that only the scalar field is 
evolved, but the two metric coefficients are calculated from the matter at 
each new time step. (The main advantage of such a numerical scheme is its 
stability.) These two equations are 

-<V + ^f-^ " 27rr(n2 + $2) - 0, (2.7) 
a Zr 

1 1 a2-l ,     x 
-ar a r — = 0, (2.8) 
a a 2r 

and they are, respectively, the Hamiltonian constraint and the slicing con- 
dition. These four first-order equations totally describe the system. For 
completeness, we also give the remaining Einstein equation, 

-a* = 27rr(n2-$2). (2.9) 

The free data for the system are the two functions 11 (r) and $(r). (In 
spherical symmetry, there are no physical degrees of freedom in the gravi- 
tational field.) Choptuik investigated many one-parameter families of such 
data by evolving the data for many values each of the parameter, say p. 
Simple examples of such families are $(r) = 0 and a Gaussian for II(r), 
with the parameter p taken to be either the amplitude of the Gaussian, 
with the width and center fixed, or the width, with position and amplitude 
fixed, or the position, with width and amplitude fixed. It is plausible that 
for the amplitude sufficiently small, with width and center fixed, the scalar 
field will disperse, and for sufficiently large amplitude will form a black hole, 
with similar behavior for many generic parameters. This is difficult to prove 
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in generality. Christodoulou showed for the spherically symmetric scalar 
field system that data sufficiently weak in a well-defined way evolve to a 
Minkowski-like spacetime [3], and that a class of sufficiently strong data 
forms a black hole [2]. 

But what happens in between? Choptuik found that in all families of 
initial data he could make arbitrarily small black holes by fine-tuning the 
parameter p close to the black hole threshold. An important fact is that 
there is nothing visibly special to the black hole threshold. One cannot tell 
that one given data set will form a black hole and another one infinitesimally 
close will not, short of evolving both for a sufficiently long time. Fine-tuning 
is then a heuristic procedure, and effectively proceeds by bisection: Starting 
with two data sets one of which forms a black hole, try a third one in between 
along some one-parameter family linking the two, drop one of the old sets 
and repeat. 

With p closer to p*, the spacetime varies on ever smaller scales. The only 
limit was numerical resolution, and in order to push that limitation further 
away, Choptuik developed special numerical techniques that recursively re- 
fine the numerical grid in spacetime regions where details arise on scales too 
small to be resolved properly. In the end, Choptuik could determine p* up 
to a relative precision of 10_15, and make black holes as small as 10~6 times 
the ADM mass of the spacetime. The power-law scaling (1.1) was obeyed 
from those smallest masses up to black hole masses of, for some families, 
0.9 of the ADM mass, that is, over six orders of magnitude [6]. There were 
no families of initial data which did not show the universal critical solution 
and critical exponent. Choptuik therefore conjectured that 7 is the same for 
all one-parameter families, and that the approximate scaling law holds ever 
better for arbitrarily small p — p*. 

I would suggest reformulating this conjecture in a different manner. Let 
us first consider a finite-dimensional subspace of the space of initial data, 
with coordinates pi on it. The subspace of Gaussian data for both $ and 11 
for example is 6-dimensional. We could choose the amplitudes, centers and 
widths of the two Gaussians as coordinates, but any six smooth functions of 
these could also serve as coordinates. Various one-parameter families only 
serve as probes of this one 6-dimensional space. They indicate that there is 
a smooth hypersurface in this space which divides black hole from non-black 
hole data. Let P(pi) be any smooth coordinate function on the space so that 
P(p-) — 0 is the black hole threshold. Then, for any choice of P{pi), there 
is a second smooth function C(pi) on the space so that the black hole mass 
as a function of the space is given as 

M = e(P)CP^. (2.10) 

In words, the entire unsmoothness at the black hole threshold is captured 
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by the one critical exponent. One can now formally go over from a finite- 
dimensional subspace to the infinite-dimensional space of initial data. Note 
that $ and 11 must be square-integrable for the spacetime to be asymptoti- 
cally flat, and therefore the initial data space has a countable basis. In this 
view, it is difficult to see how different one-parameter families could have 
different values of 7. It also shows that the critical exponent is not an effect 
of a bad parameterization. 

Clearly a collapse spacetime which has ADM mass 1, but settles down 
to a black hole of mass (for example) 10~6 has to show structure on very 
different scales. The same is true for a spacetime which is as close to the 
black hole threshold, but on the other side: the scalar wave contracts until 
curvature values of order 1012 are reached in a spacetime region of size 10_6 

before it starts to disperse. Choptuik found that all near-critical spacetimes, 
for all families of initial data, look the same in an intermediate region, that 
is they approximate one universal spacetime, which is also called the critical 
solution. This spacetime is scale-periodic in the sense that there is a value 
i* of t such that when we shift the origin of t to £*, we have 

Z{r,t) = Z(en\enAt), (2.11) 

for all integer n and for A c^ 3.44, and where Z stands for any one of a, a 
or </) (and therefore also for rll or r$). The accumulation point £* depends 
on the family, but the scale-periodic part of the near-critical solutions does 
not. 

This result is sufficiently surprising to formulate it once more in a slightly 
different manner. Let us replace r and t by a pair of auxiliary variables such 
that one of them retains a dimension, while the other is dimensionless. A 
simple example is (after shifting the origin of t to £*) 

^ = -77   r = ~ln(~7)'   t<0' (2-12) 

(As a matter of convention, t has been assumed negative so that it increases 
towards the accumulation point at t = r = 0. Similarly, r has been defined 
so that it increases with increasing t.) Choptuik's observation, expressed in 
these coordinates, is that in any near-critical solution there is a space-time 
region where the fields a, a and </> are well approximated by their values in 
a universal solution, as 

Z(x,r)~Z*(x,r), (2.13) 

where the fields a*, a* and </>* of the critical solution have the property 

Z4X,T + A) = Z4X,T). (2.14) 



8 CRITICAL PHENOMENA IN GRAVITATIONAL COLLAPSE 

The dimensionful constants U and L depend on the one-parameter family of 
solutions, but the dimensionless critical fields a*, a* and <^*, and in particular 
their dimensionless period A, are universal. A slightly supercritical and a 
slightly subcritical solution from the same family (so that L and £* are 
the same) are practically indistinguishable until they have reached a very 
small scale where the one forms an apparent horizon, while the other starts 
dispersing. Not surprisingly, this scale is the same as that of the black hole (if 
one is formed), and so we have for the range Ar of r on which a near-critical 
solution approximates the universal one 

AT ~ 7ln|p — p*| + const (2.15) 

and for the number iV of scaling "echos" that are seen, 

N ~ A^jlnlp-p*] + const. (2.16) 

Note that this holds for both supercritical and subcritical solutions. 
Choptuik's results have been repeated by a number of other authors. 

Gundlach, Price and Pullin [12] could verify the mass scaling law with a 
relatively simple code, due to the fact that it holds even quite far from 
criticality. Garfinkle [13] used the fact that recursive grid refinement in near- 
critical solutions is not required in arbitrary places, but that all refined grids 
are centered on (r = 0,t = £*), in order to simulate a simple kind of mesh 
refinement on a single grid in double null coordinates: u grid lines accumulate 
at u = 0, and v lines at v = 0, with (v = 0:u = 0) chosen to coincide 
with (r = 0,£ = £*). Hamade and Stewart [14] have written a complete 
mesh refinement algorithm based on a double null grid (but coordinates u 
and r), and report even higher resolution than Choptuik. Their coordinate 
choice also allowed them to follow the evolution beyond the formation of an 
apparent horizon. 

2.2    The Spherically Symmetric Perfect Fluid 

The scale-periodicity, or echoing, of the scalar field critical solution was a 
new phenomenon in general relativity, and initial efforts at understanding 
concentrated there. Evans however realized that scale-echoing was only a 
more complicated form of scale-invariance, that the latter was the key to 
the problem, and moreover that it could be expected to arise in a differ- 
ent matter model, namely a perfect fluid. Evans knew that scale-invariant, 
or self-similar, solutions arise in fluid dynamics problems (without gravity) 
when there are two very different scales in the initial problem (for example 
an explosion with high initial density into a thin surrounding fluid [15]), 
and that such solutions play the role of an intermediate asymptotic in the 
intermediate density regime [16]. 
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Evans and Coleman [17] therefore made a perfect fluid ansatz for the 
matter, 

Gab = STT [(p + p)uaub+pgab}, (2.17) 

where ^a is the 4-velocity, p the density and p the pressure. As for the scalar 
field, the matter equations of motion are equivalent to the conservation of 
matter energy-momentum. The only equation of state without an intrinsic 
scale is p = kp, with k a constant. This was desirable in order to allow for 
a scale-invariant solution like that of Choptuik. Evans and Coleman chose 
k — 1/3 because it is the equation of state of radiation (or ultra-relativistic 
hot matter). They made the same coordinate choice in spherical symmetry 
as Choptuik, and evolved one-parameter families of initial data. They found 
a universal intermediate attractor, and power-law scaling of the black hole 
mass, with a universal critical exponent of 7 ~ 0.36. (To anticipate, the 
coincidence of the value with that for the scalar field is now believed to be 
accidental.) The main difference was that the universal solution is not scale- 
periodic but scale-invariant: it has the continuous symmetry (after shifting 
the origin of t to £*) 

Z,(r,t) = Z,(-^)=Z(a;), (2.18) 

where Z now stands for the metric coefficients a and a (as in the scalar field 
case) and the dimensionless matter variables t2p and ur'. We shall discuss 
this symmetry in more detail below. 

Independently, Evans and Coleman made a scale-invariant ansatz for the 
critical solution, which transforms the PDE problem in t and r into an ODE 
problem in the one independent variable x. They then posed a nonlinear 
boundary value problem by demanding regularity at the center x = 0 and 
at the past sound cone x = XQ of the point (t = r = 0), where a generic 
self-similar solution would be singular. The sound cone referred to here and 
below is a characteristic of the matter equations of motion. It is made up 
of the characteristic curves which are also homothetic curves (x = const.). 
The past light cone of (t = r = 0) plays no role in the spherically symmetric 
perfect fluid critical solution because in spherical symmetry there are no 
propagating gravitational degrees of freedom. It does play a role in the 
spherically symmetric scalar field critical solutions however, because there it 
is also characteristic of the scalar field matter. 

The regularity condition at the center x = 0 is local flatness, or a = 1 
in the coordinates (2.3). The regularity condition at x = XQ is the absence 
of a shock wave. I believe that both conditions are equivalent to demanding 
analyticity, and that x = 0 and x = XQ are "regular singular points" of 
the ODE system, although this remains to be shown by a suitable change 
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of variables. The solutions of this boundary value problem form a discrete 
family. 

The simplest solution of the boundary value problem coincides perfectly 
with the intermediate asymptotic that is found in the collapse simulations, 
arising from generic data. It is really this coincidence that justifies the 
boundary value problem posed by Evans and Coleman. At an intuitive level, 
however, one could argue that the critical solution should be smooth because 
it arises as an intermediate asymptotic from smooth initial data. In a con- 
trasting opinion, Carr and Henriksen [18] claim that the perfect fluid critical 
solution should obey a certain global condition (the "particle horizon" and 
the "event horizon" of the spacetime coincide) that can be interpreted as 
the solution being a marginal black hole. In order to impose this condition, 
they need one more free parameter in the space of CSS solutions, and obtain 
it by not imposing analyticity at the past sound cone, where their candidate 
critical solution has a shock. 

Evans and Coleman also suggested that an analysis of the linear per- 
turbations of the critical solution would give an "estimate" of the critical 
exponents. This program was carried out for the k = 1/3 perfect fluid by 
Koike, Hara and Adachi [19] and for other values of k by Maison [20], to 
high precision. 

3    The Basic Scenario 

3.1     Scale-Invariance, Self-Similarity, and Homothety 

The critical solution found by Choptuik [6,21,22] for the spherically sym- 
metric scalar field is scale-periodic, or discretely self-similar (DSS), and the 
critical solution found by Evans and Coleman [17] is scale-invariant, or con- 
tinuously self-similar (CSS). We begin with the continuous symmetry be- 
cause it is simpler. In Newtonian physics, a solution Z is self-similar if it is 
of the form 

Z(x,t) = Z 
L/(*)J 

(3.1) 

If the function /(£) is derived from dimensional considerations alone, one 
speaks of self-similarity of the first kind. An example is f(t) = Vxi for the 
diffusion equation Zj = XZiXX. In more complicated equations, the limit 
of self-similar solutions can be singular, and f(t) may contain additional 
dimensionful constants (which do not appear in the field equation) in terms 
such as {t/L)a, where a, called an anomalous dimension, is not determined 
by dimensional considerations but through the solution of an eigenvalue 
problem [16]. For now, we concentrate on self-similarity of the first kind. 
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A continuous self-similarity of the spacetime in GR corresponds to the 
existence of a homothetic vector field f, defined by the property [23] 

£z9aJb = 2ffa6- (3.2) 

(This is a special type of conformal Killing vector, namely one with constant 
coefficient on the right-hand side. The value of this constant coefficient is 
conventional, and can be set equal to 2 by a constant rescaling of £.) From 
(3.2) it follows that 

^Rabcd — 0) (3-3) 

and therefore 

CtGab = 0, (3.4) 

but the inverse does not hold: the Riemann tensor and the metric need not 
satisfy (3.3) and (3.2) if the Einstein tensor obeys (3.4). If the matter is 
a perfect fluid (2.17) it follows from (3.2), (3.4) and the Einstein equations 
that 

C^ua = -ua,    C^p - -2/9,    £fp = -2p. (3.5) 

Similarly, if the matter is a free scalar field (f) (2.1), it follows that 

C^cf) = ft, (3.6) 

where K, is a constant. 
In coordinates x11 = (r, x1) adapted to the homothety, the metric coeffi- 

cients are of the form 

glu,(T,xi) = e-2Tglu,(x
i), (3.7) 

where the coordinate r is the negative logarithm of a spacetime scale, and 
the remaining three coordinates x1 are dimensionless. In these coordinates, 
the homothetic vector field is 

«=-I- <3-8> 
The minus sign in both equations (3.7) and (3.8) is a convention we have 
chosen so that r increases towards smaller spacetime scales. For the critical 
solutions of gravitational collapse, we shall later choose surfaces of constant 
r to be spacelike (although this is not possible globally), so that r is the 
time coordinate as well as the scale coordinate. Then it is natural that r 
increases towards the future, that is towards smaller scales. 
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As an illustration, the CSS scalar field in these coordinates would be 

<l> = f(x) + KT, (3.9) 

with K a constant. 
The generalization to a discrete self-similarity is obvious in these coordi- 

nates, and was made in [24]: 

g^r.x1) = e"2T^(T,x2),     where    g^r.x1) = g^(T + A,xl).     (3.10) 

The conformal metric g^ does now depend on r, but only in a periodic 
manner. Like the continuous symmetry, the discrete version has a geomet- 
ric formulation [25]: A spacetime is discretely self-similar if there exists a 
discrete diffeomorphism $ and a real constant A such that 

$*gab = e2Agab, (3.11) 

where <fr*gab 1S the pull-back of g^ under the diffeomorphism <£. This is 
our definition of discrete self-similarity (DSS). It can be obtained formally 
from (3.2) by integration along £ over an interval A of the affine parame- 
ter. Nevertheless, the definition is independent of any particular vector field 
£. One simple coordinate transformation that brings the Schwarzschild-like 
coordinates (2.3) into this form, with the periodicity in r equivalent to the 
scaling property (2.11), was given above in Eqn. (2.12), as one easily ver- 
ifies by substitution. The most general ansatz for the massless scalar field 
compatible with DSS is 

^ = /(T,a;i) + «r,    where    /(r,^) = /(r + A,**), (3.12) 

with K a constant. 
It should be stressed here that the coordinate systems adapted to CSS 

(3.7) or DSS (3.10) form large classes, even in spherical symmetry. One can 
fix the surface r = 0 freely, and can introduce any coordinates xl on it. In 
particular, in spherical symmetry, r-surfaces can be chosen to be spacelike, as 
for example defined by (2.3) and (2.12) above, and in this case the coordinate 
system cannot be global (in the example, t < 0). Alternatively, one can find 
global coordinate systems, where r-surfaces must become spacelike at large 
r, as in the coordinates (3.15). Moreover, any such coordinate coordinate 
system can be continuously deformed into one of the same class. 

As an aside, we mention that self-similarity of the second kind in general 
relativity was studied by Carter and Henriksen [26] and Coley [27]. The con- 
nection with the Newtonian definition is that space and time are rescaled 
in different ways.   To make this a covariant notion one needs a preferred 
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timelike congruence. The 4-velocity ua of a perfect fluid is a natural can- 
didate. The metric g^ can then be decomposed into space and time as 
9ab — —^aub + ^a&- The homothetic scaling (3.2) is replaced by 

C^hab = 2hab,    C^Ua = Cua, (3.13) 

with C 7^ 1. This kind of self-similarity has not to date been found in 
critical collapse. In a possible source of confusion, Evans and Coleman [17] 
use the term "self-similarity of the second kind", because they define their 
self-similar coordinate x as x = r/f(t), with f(t) = tn. Nevertheless, the 
spacetime they calculate is homothetic, that is, self-similar of the first kind 
according to the terminology of Carter and Henriksen. The difference is only 
a coordinate transformation: the t of [17] is not proper time at the origin, 
but what would be proper time at infinity if the spacetime was truncated at 
finite radius and matched to an asymptotically flat exterior [28]. 

There is a large body of research on spherically symmetric self-similar 
solutions. A detailed review is [29]. Here we should mention only that 
perfect fluid spherically symmetric self-similar solutions have been examined 
by Bogoyavlenskii [30], Foglizzo and Henriksen [31], Bicknell and Henriksen 
[32] and Ori and Piran [33]. Scalar field spherically symmetric CSS solutions 
were examined by Brady [34]. In these papers, the Einstein equations are 
reduced to an ODE system by the self-similar spherically symmetric ansatz, 
which is then discussed as a dynamical system. It is often difficult to regain 
the spacetime picture from the phase space picture. In particular, it is not 
clear which solution in these classifications is the critical solution found in 
perfect fluid collapse simulations, and constructed through a CSS ansatz, by 
Evans and Coleman [17] (but see [18]). It is also unclear why the scalar field 
DSS critical solution has K = 0 in Eqn. (3.12). 

3.2    Gravity Regularizes Self-Similar Matter 

It is instructive to consider the self-similar solutions of a simple matter field, 
the massless scalar field, in spherical symmetry without gravity. The general 
solution of the spherically symmetric wave equation is of course 

(f>(r,t)=r-1[f(t + r)-g(t-r)], (3.14) 

where f(z) and g(z) are two free functions of one variable ranging from — oo 
to oo. / describes ingoing and g outgoing waves. Regularity at the center 
r = 0 for all t requires f(z) = g(z) for f(z) a smooth function. Physically 
this means that ingoing waves move through the center and become outgoing 
waves. Now we transform to new coordinates x and r defined by 

t = e~T sinx, (3.15) 
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and with range —oo < r < oo, —7r/2 < x < n/2. These coordinates are 
adapted to self-similarity, but unlike the x and r introduced in (2.12) they 
cover all of Minkowski space with the exception of the point (t = r = 0). 
The general solution of the wave equation for t > r can formally be written 
as 

(£(r, t) = (j)(x, r) = (tan x + l)F+ [ln(sin x + cos x) — r] 

— (tana; — l)G+ [ln(sina; — cos a;) — r], (3.16) 

through the substitution f(z)/z = F+(lnz) and g(z)/z = G+(ln^) for z > 0. 
Similarly, we define f(z)/z = F-[ln(-z)] and g(z)/z = G-[ln(—z)] for z < 0 
to cover the sectors \t\ < r and t < —r. Note that F+(z) and F-(z) together 
contain the same information as f(z). 

The condition for regularity at r = 0 for alH > 0 is once more F+ (z) = 
G+(z), but we can now also read off that the condition for continuous self- 
similarity (/> — (j)'\x) translates into i<+ — const., G+ — const.. Discrete 
self-similarity with scale periodicity A, or 0(x, r) = 0(a;, r + A) translates 
into F+(z) = F+(z + A) and G+(z) = G+(z + A). Any self-similar solution 
is singular at t = r unless G+ = 0. Similar conclusions are obtained for 
the sectors |t| < r and t < —r. We conclude that a self-similar solution 
(continuous or discrete) is either zero everywhere, or else it is regular in at 
most one of three places: at the center r = 0 for t 7^ 0, at the past light cone 
t = -r, or at the future light cone t = r. (These three cases correspond to 
F+ = G+ and F_ = G_, F+ = F_ - 0, and G+ = G_ = 0, respectively.) 
We conjecture that other simple matter fields, such as the perfect fluid, show 
similar behavior. 

The presence of gravity changes this singularity structure qualitatively. 
Dimensional analysis applied to the metric (3.7) or (3.10) shows that r = 00 
[the point (t = r = 0)] is now a curvature singularity (unless the self-similar 
spacetime is Minkowski). But elsewhere, the solution can be more regular. 
There is a one-parameter family of exact spherically symmetric scalar field 
solutions found by Roberts [35] that is regular at both the future and past 
light cone of the singularity, not only at one of them. (It is singular at the 
past and future branch of r = 0.) The only solution without gravity with 
this property is 0 = 0. The Roberts solution will be discussed in more detail 
in section 4.6 below. 

Similarly, the scale-invariant or scale-periodic solutions found in near- 
critical collapse simulations are regular at both the past branch of r = 0 and 
the past light cone (or sound cone, in the case of the perfect fluid). Once 
more, in the absence of gravity only the trivial solution has this property. 

I have already argued that the critical solution must be as smooth on the 
past light cone as elsewhere, as it arises from the collapse of generic smooth 
initial data. No lowering of differentiability or other unusual behavior should 
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take place before a curvature singularity arises at the center. As Evans first 
realized, this requirement turns the scale-invariant or scale-periodic ansatz 
into a boundary value problem between the past branch of r = 0 and the 
past sound cone, that is, roughly speaking, between x = 0 and x — 1. 

In the CSS ansatz in spherical symmetry suitable for the perfect fluid, all 
fields depend only on x, and one obtains an ODE boundary value problem. 
In a scale-periodic ansatz in spherical symmetry, such as for the scalar field, 
all fields are periodic in r, and one obtains a 1+1 dimensional hyperbolic 
boundary value problem on a coordinate square, with regularity conditions 
at, say, x = 0 and x = 1, and periodic boundary conditions at r = 0 
and r = A. Well-behaved numerical solutions of these problems have been 
obtained, with numerical evidence that they are locally unique, and they 
agree well with the universal solution that emerges in collapse simulations 
(references are given in the column "Critical solution" of Table 1). It remains 
an open mathematical problem to prove existence and (local) uniqueness of 
the solution defined by regularity at the center and the past light cone. 

One important technical detail should be mentioned here. In the curved 
solutions, the past light cone of the singularity is not in general r = —t, or 
x — 1, but is given by x = XQ, or in the case of scale-periodicity, by x = XO(T), 

with XQ periodic in r and initially unknown. The same problem arises for 
the sound cone. It is convenient to make the coordinate transformation 

x 2ir . 
r, (3.17) 

ZO(T)' A 

so that the sound cone or light cone is by definition at x = 1, while the origin 
is at x = 0, and so that the period in f is now always 27r. In the DSS case 
the periodic function xo(f) and the constant A now appear explicitly in the 
field equations, and they must be solved for as nonlinear eigenvalues. In the 
CSS case, the constant XQ appears, and must be solved for as a nonlinear 
eigenvalue. 

As an example for a DSS ansatz, we give the equations for the spherically 
symmetric massless scalar field in the coordinates (2.12) adapted to self- 
similarity and in a form ready for posing the boundary value problem. (The 
equations of [36] have been adapted to the notation of this review.) We 
introduce the first-order matter variables 

X± = V^r(^±^.Y (3.18) 

which describe ingoing and outgoing waves. It is also useful to replace a by 
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as a dependent variable. In the scalar field wave equation (2.5) we use the 
Einstein equations (2.8) and (2.9) to eliminate a^ and a r, and obtain 

.^-d^r '{[^ a2X2
T X±-X: T 

±D(*^r^). ,3,0, 
\27r dr    )        dr 

The three Einstein equations (2.7,2.8,2.9) become 

x dD o , 

0 = (1 - a2) + a2(X2 + X2) - a2D-\Xl - X2_) 

As suggested by the format of the equations, they can be treated as four 
evolution equations in x and one constraint that is propagated by them. 
The freedom in xo(f) is to be used to make D = 1 at x = 1. Now x = 0 and 
x = 1 resemble "regular singular points", if we are prepared to generalize 
this concept from linear ODEs to nonlinear PDEs. Near x = 0, the four 
evolution equations are clearly of the form dZjdx = regular/^. That x = 1 
is also a regular singular point becomes clearest if we replace D by D — 
(l — D)l(x — l). The "evolution" equation for X+ near x = 1 then takes the 
form dX+jdx — regular/{x — 1), while the other three equations are regular. 

This format of the equations also demonstrates how to restrict from a 
DSS to a CSS ansatz: one simply drops the f-derivatives. The constraint 
then becomes algebraic, and the resulting ODE system can be considered to 
have three rather than four dependent variables. 

Given that the critical solutions are regular at the past branch of r = 
0 and at the past sound cone of the singularity, and that they are self- 
similar, one would expect them to be singular at the future light cone of the 
singularity (because after solving the boundary value problem there is no 
free parameter left in the solution). The real situation is more subtle as we 
shall see in Section 4.6. 

As a final remark, it appears that all critical solutions found so far for 
any matter model, of both type I and type II (see section 4.3 below), do not 
admit a limit G -> 0, so that they are only brought into existence by gravity. 
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Figure 1: The phase space picture for discrete self-similarity. The plane rep- 
resents the critical surface. (In reality this is a hypersurface of co-dimension 
one in an infinite-dimensional space.) The circle (fat unbroken line) is the 
limit cycle representing the critical solution. The thin unbroken curves are 
spacetimes attracted to it. The dashed curves are spacetimes repelled from 
it. There are two families of such curves, labeled by one periodic parameter, 
one forming a black hole, the other dispersing to infinity. Only one member 
of each family is shown. 

3.3    Universality and Scaling 

We have seen that the universal solution arising in critical collapse can be 
constructed semi-analytically from a self-similar ansatz plus regularity con- 
ditions. The fact that it is universal up to fine-tuning of one parameter is 
equivalent to its being an attractor of codimension one. The linearization of 
that statement around the critical solution is that it has exactly one unstable 
mode. 

We now formulate this idea more precisely. For simplicity of notation, 
we limit ourselves to the spherically symmetric CSS case, for example the 
perfect fluid. The DSS case is discussed in [24]. Let Z stand for a set of 
scale-invariant variables of the problem in a first-order formulation. Z(r) 
is an element of the phase space, and Z(r,t) a solution. The self-similar 
solution is of the form Z(r,t) = Z*(—r/t) — Z*(x). [We have chosen the 
Schwarzschild-like coordinates defined in Eqn. (2.3), have shifted the origin 
of t to t = £*, and consider only values t < 0.]    In the echoing region, 



18 CRITICAL PHENOMENA IN GRAVITATIONAL COLLAPSE 

where Z* dominates, we linearize around it. As the background solution is 
r-independent, Z(X,T) = Z*(a;), its linear perturbations can depend on r 
only exponentially (with complex exponent A), that is 

oo 

6Z(x,T)='£tCie
x*Tfi(x), (3.24) 

i=l 

where the Ci are free constants. We can also write this in the more familiar 
space and time coordinates r and t 

r = Lxe-T,    t = -Le-T, (3.25) 

already defined in (2.12) above. To linear order, the solution in the echoing 
region is then of the form 

Z{r,t)^Z*(-rA+Y.Cte){-tT)    '/<(—)• (3-26) 

The coefficients Ci depend in a complicated way on the initial data, and 
hence on p. If Z* is a critical solution, by definition there is exactly one A; 
with positive real part (in fact it is purely real), say Ai. As t -> 0-, all other 
perturbations vanish. In the following we consider this limit, and retain only 
the one growing perturbation. By definition the critical solution corresponds 
to p — p*, so we must have Ci(p*) = 0. Linearizing around p*, we obtain 

JmZM * Z, (-:) + ^(p-p.) (-i)"' A (-;) . (3.27) 

This approximate solution explains why the solution Z* is universal. It 
is now also clear why Eqn. (2.15) holds, that is why we see more of the 
universal solutions (in the DSS case, more "echos") as p is tuned closer to 
p*. At an intuitive level, the picture is of either a limit point (in the CSS 
case), or limit cycle (in the DSS case, as in Fig. 1), in phase space, which is 
in an attractor in the hypersurface separating black hole from no black hole 
data. We shall reconsider this picture below in section 5.1. The universal 
solution is also called the critical solution because it would be revealed up 
to the singularity r = oo if perfect fine-tuning of p would be possible. A 
possible source of confusion here is that the critical solution, because it is 
self-similar, is not asymptotically flat. Nevertheless, it can arise in a region 
up to finite radius as the limiting case of a family of asymptotically flat 
solutions. At large radius, it is matched to an asymptotically flat solution 
which is not universal but depends on the initial data (as does the place of 
matching.) 

The following calculation of the critical exponent from the linear per- 
turbations of the critical solution by dimensional analysis was suggested by 
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Evans and Coleman [17] and carried out by Koike, Hara and Adachi [19] and 
Maison [20]. It was generalized to the discretely self-similar (DSS) case by 
Gundlach [24]. For simplicity of notation we consider again the CSS case. 

The solution has the approximate form (3.27) over a range of t. Now we 
extract Cauchy data at one particular value of t within that range, namely 
tp defined by 

dp 
(p-p*)(-tp)-^=e, (3.28) 

where e is some constant <C 1, so that at tp the linear approximation is still 
valid. (The suffix p indicates that tp depends on p.) At sufficiently small — i, 
the linear perturbation has grown so much that the linear approximation 
breaks down. Later on a black hole forms. The crucial point is that we need 
not follow this evolution in detail, nor does it matter at what amplitude e 
we consider the perturbation as becoming non-linear. It is sufficient to note 
that the Cauchy data at t = tp depend on r only in the combination r/ip, 
namely 

Z(r,tp) ~ Z, (-j-) +6 h (-j-^j . (3.29) 

(tp has of course been defined just so that the coefficient of fi in this ex- 
pression is the same for all values of p, namely e.) Furthermore the field 
equations do not have an intrinsic scale. It follows that the solution based 
on those data must be exactly [37] of the form 

zM = /(f'f). (3-30) 
for some function /, throughout, even when the black hole forms and per- 
turbation theory breaks down, and later still after it has settled down and 
the solution no longer depends on t. (This solution holds only for t > tp, 
because in its initial data we have neglected the perturbation modes with 
i > 1, which would be growing, not decaying, towards the past.) Because 
the black hole mass has dimension length, it must be proportional to tp, the 
only length scale in the solution, 

Moctpcx (p-p*)^, (3.31) 

and we have found the critical exponent 7 = l/Ai- 
When the critical solution is DSS, the scaling law is modified. This 

was predicted by [24] and predicted independently and verified in collapse 
simulations by Hod and Piran [38].   On the straight line relating InM to 
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ln(p — p*), a periodic "wiggle" or "fine structure" of small amplitude is 
superimposed: 

InM = 7ln(p - p*) + c + /frlnfr - p#) + c], (3.32) 

with f(z) = f(z+A). The periodic function / is again universal with respect 
to families of initial data, and there is only one parameter c that depends 
on the family of initial data, corresponding to a shift of the wiggly line in 
the ln(p — p*) direction. (No separate adjustment in the InM direction is 
possible.) 

4    Extensions of the Basic Scenario 

4.1 More Matter Models 

Choptuik's results have been confirmed for a variety of other matter models. 
In some of these, qualitatively new phenomena were discovered, and we 
review this body of work by phenomena rather than chronologically or by 
matter models. A presentation by matter models is given in Table 1 for 
completeness. 

An exceptional case is spherically symmetric dust collapse. Here, the 
entire spacetime, the Tolman-Bondi solution, is given in closed form from 
the initial velocity and density profiles. Excluding shell crossing singularities, 
there is a "phase transition" between initial data forming naked singularities 
at the center and data forming black holes. Which of the two happens 
depends only the leading terms in an expansion of the initial data around 
r = 0 [39,40]. One could argue that this fact also makes the matter model 
rather unphysical. 

4.2 CSS and DSS Critical Solutions 

As we have seen, a critical solution is one that sits on the boundary of black 
hole formation, and has exactly one "growing mode", so that it acts as an 
intermediate attractor (Evans). All one-parameter families of initial data 
crossing that boundary are then "funnelled" (Eardley) through that one 
solution. So far, we have seen an example each of a critical solution with 
discrete and with continuous self-similarity.  There may be regular CSS or 

1The critical solution and its perturbations for the massive scalar field are asymptotic 
to those of the massless scalar. 

2The (DSS) critical solution for the real massless scalar field is also the critical solution 
for the complex scalar field. The additional perturbations are all stable [24]. 

3There is also a CSS solution [45], but it has three unstable modes, not only one [37]. 
4The scalar electrodynamics critical solution is again the real scalar field critical solu- 

tion. Its perturbations are those of the complex scalar field. 



C. GUNDLACH 21 

Table 1: An overview of numerical work in critical collapse. Question marks 
denote missing links. 
Matter model Collapse 

simulations 
Critical 
solution 

Perturbations 

Perfect fluid 
- k = 1/3 
- general k 

[17] 
? 

[17] 
[20] 

[19] 
[20] 

Real scalar field 
- massless, min. coupled 
- massive 
- conformally coupled 

[6,21,22] 
[6,41] 
[22] 

[36] 
[42,43]! 
? 

[24] 
[42,43]1 

? 

2-d sigma model 
- complex scalar (K — 0) 
- axion-dilaton (K = 1) 
- scalar-Brans-Dicke (K > 0) 
- general K including K < 0 

[44] 
[46] 
[48] 
? 

[24]2, [45]3 

[46,47] 

[49] 

[24]2, [37]3 

[46] 

[49; 
Scalar electrodynamics [50] [43]4 [43]4 

SU{2) Yang-Mills [51] [52] [52' 
SU(2) Skyrme model [53] [53] [53] 
Axisymmetric vacuum [54,55] ? ? 

DSS solutions with more than one growing mode, but they will not appear in 
Choptuik type fine-tuning. An example for this is provided by the spherically 
symmetric massless complex scalar field. Hirschmann and Eardley [45] found 
a way of constructing a CSS scalar field solution by making the scalar field 
</> complex but limiting it to the ansatz 

(P = e™Tf(x), (4.1) 

with u a real constant and / real. The metric is then homothetic, while the 
scalar field shows a trivial kind of "echoing" in the complex phase. Later, 
they found that this solution has three modes with jReA > 0 [37] and is 
therefore not the critical solution. Gundlach [24] examined complex scalar 
field perturbations around Choptuik's real scalar field critical solution and 
found that only one of them, purely real, has ReX > 0, so that the real scalar 
field critical solution is a critical solution (up to an overall complex phase) 
also for the free complex scalar field. This had been seen already in collapse 
calculations [44]. 

As the symmetry of the critical solution, CSS or DSS, depends on the 
matter model, it is interesting to investigate critical behavior in parameter- 
ized families of matter models. Two such one-parameter families have been 
investigated.   The first one is the spherical perfect fluid with equation of 
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state p = kp for arbitrary k. Maison [20] constructed the regular CSS solu- 
tions and its linear perturbations for a large number of values of k. In each 
case, he found exactly one growing mode, and was therefore able to predict 
the critical exponent. (To my knowledge, these critical exponents have not 
yet been verified in collapse simulations.) As Ori and Piran before [33], he 
found that there are no regular CSS solutions for k > 0.88. There is nothing 
in the equation of state to explain this. In particular, the perfect fluid is 
well behaved up to k < 1. It remains unknown what happens in critical 
collapse for k > 0.88 Black hole formation may begin with a minimum mass. 
(In the absence of a mass scale in the field equations, this mass gap would 
depend on the family.) Alternatively, there may be a DSS critical solution. 
The fact that the k = 1 perfect fluid is equivalent to a massless scalar field, 
which does have a DSS critical solution, hints in this direction. Nevertheless, 
a scalar field solution corresponds to a perfect fluid solution only if 05a is 
everywhere timelike, and this is not true for Choptuik's universal solution. 

The second one-parameter family of matter models was suggested by 
Hirschmann and Eardley [49], who looked for a natural way of introducing 
a non-linear self-interaction for the (complex) scalar field without introduc- 
ing a scale. (We discuss dimensionful coupling constants in the following 
sections.) They investigated the model described by the action 

Note that </> is now complex, and the parameter K is real and dimensionless. 
This is a 2-dimensional sigma model with a target space metric of constant 
curvature (namely K), minimally coupled to gravity. Moreover, for K, > 0 
there are (nontrivial) field redefinitions which make this model equivalent to 
a real massless scalar field minimally coupled to Brans-Dicke gravity, with 
the Brans-Dicke coupling given by 

"™ = -l+h- (4-3) 

In particular, K — 1 (CJBD = —11/8) corresponds to an axion-dilaton system 
arising in string theory [47]. n — 0 is the free complex scalar field coupled to 
Einstein gravity). Hirschmann and Eardley calculated a CSS solution and 
its perturbations and concluded that it is the critical solution for n > 0.0754, 
but has three unstable modes for K < 0.0754. For K < -0.28, it acquires 
even more unstable modes. The positions of the mode frequencies A in the 
complex plane vary continuously with «, and these are just values of K where 
a complex conjugate pair of frequencies crosses the real axis. The results of 
Hirschmann and Eardley confirm and subsume collapse simulation results by 
Liebling and Choptuik [48] for the scalar-Brans-Dicke system, and collapse 
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and perturbative results on the axion-dilaton system by Hamade, Home and 
Stewart [46]. Where the CSS solution fails to be the critical solution, a DSS 
solution takes over. In particular, for K = 0, the free complex scalar field, 
the critical solution is just the real scalar field DSS solution of Choptuik. 

4.3    Black Hole Thresholds with a Mass Gap 

The first models in which critical phenomena were observed did not have 
any length scales in the field equations. Later, models were examined which 
have one such scale. Collapse simulations were carried out for the spheri- 
cally symmetric 517(2) Einstein-Yang-Mills system by Choptuik, Chmaj and 
Bizon [51]. In fine-tuning one-parameter families of data to the black-hole 
threshold, they found two different kinds of critical phenomena, dominated 
by two different critical solutions. Which kind of behavior arises appears to 
depend on the qualitative shape of the initial data. In one kind of behav- 
ior, black hole formation turns on at an infinitesimal mass with the familiar 
power-law scaling, dominated by a DSS critical solution. In the other kind, 
black hole formation turns on at a finite mass, and the critical solution is 
now a static, asymptotically flat solution which had been found before by 
Bartnik and McKinnon [56]. It was also known before that this solution (the 
least massive one of a discrete family) had exactly two unstable perturbation 
modes [57]. The ansatz of Choptuik, Chmaj and Bizon further allowed for 
only one of these unstable modes, with one sign of these leading to collapse 
and the other to dispersion of the solution. The Bartnik-McKinnon solution 
is then a critical solution within this ansatz, in the sense of being an attrac- 
tor of codimension one on the black hole threshold. Choptuik, Chmaj and 
Bizon labelled the two kinds of critical behavior type II and type I respec- 
tively, corresponding to a second- and a first-order phase transition. The 
newly found, type I critical phenomena show a scaling law that is mathe- 
matically similar to the black hole mass scaling observed in type II critical 
phenomena. Let d/dt be the static Killing vector of the critical solution. 
Then the perturbed critical solution is of the form 

Z(r,t) = Z*(r) + --A(p -p*)eXltfi{r) + decaying modes. (4.4) 
CLL/ 

This is similar to Eqn. (3.27), but the growth of the unstable mode is now 
exponential in t, not in Int. We again define a time tp by 

^(p-pOe^sse, (4.5) 

tp 3 

Z(r,ip)~ .Mr)+ 6/1(0, (4-6) 

but now the initial data at tp are 
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so that that the final black hole mass is independent of p — p*. (It is of the 
order of the mass of the static critical solution.) The scaling is only apparent 
in the lifetime of the critical solution, which we can take to be tp. It is 

tp = -— ln(p -p*) + const. (4.7) 

The type I critical solution can also have a discrete symmetry, that is, 
can be periodic in time instead of being static. This behavior was found 
in collapse situations of the massive scalar field by Brady, Chambers and 
Gongalves [41]. Previously, Seidel and Suen [58] had constructed periodic, 
asymptotically flat, spherically symmetric self-gravitating massive scalar 
field solutions they called oscillating soliton stars. By dimensional analy- 
sis, the scalar field mass m sets an overall scale of 1/m (in units G — c — 1). 
For given m, Seidel and Suen found a one-parameter family of such solutions 
with two branches. The more compact solution for a given ADM mass is 
unstable, while the more extended one is stable to spherical perturbations. 
Brady, Chambers and Gongalves (BCG) report that the type I critical solu- 
tions they find are from the unstable branch of the Seidel and Suen solutions. 
Therefore we are seeing a one-parameter family of (type I) critical solutions, 
rather than an isolated critical solution. BCG in fact report that the black 
hole mass gap does depend on the initial data. They find a small wiggle in 
the mass of the critical solution which is periodic in ln(p — p*), and which 
should have the same explanation [24] as that found in the mass of the black 
hole in type II DSS critical behavior. If type I or type II behavior is seen 
appears to depend mainly on the ratio of the length scale of the initial data 
to the length scale 1/m. 

One point in the results of BCG is worth expanding on. In the critical 
phenomena that were first observed, with an isolated critical solution, only 
one number's worth of information, namely the separation p—p* of the initial 
data from the black hole threshold, survives to the late stages of the time 
evolution. This is true for both type I and type II critical phenomena. In 
type II phenomena, p—p* determines the black hole mass, while in both type 
I and II it also determines the lifetime of the critical solution (the number of 
echos). Recall that our definition of a critical solution is one that has exactly 
one unstable perturbation mode, with a black hole formed for one sign of the 
unstable mode, but not for the other. This definition does not exclude an 
n-dimensional family of critical solutions. Each solution in the family would 
then have n marginal modes leading to neighboring critical solutions, as 
well as the one unstable mode, n + 1 numbers' worth of information would 
survive from the initial data, and the mass gap in type I, or the critical 
exponent for the black hole mass in type II, for example, would depend on 
the initial data through n parameters.  In other words, universality would 
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exist in diminished form. The results of BCG are an example of a one- 
parameter family of type I critical solutions. Recently, Brodbeck et al. [59] 
have shown, under the assumption of linearization stability, that there is 
a one-parameter family of stationary, rotating solutions beginning at the 
(spherically symmetric) Bartnik-McKinnon solution. This could turn out to 
be a second one-parameter family of type I critical solutions, provided that 
the Bartnik-McKinnon solution does not have any unstable modes outside 
spherical symmetry (which has not yet been investigated) [60]. 

Bizoh and Chmaj have studied type I critical collapse of an SU(2) Skyrme 
model coupled to gravity, which in spherical symmetry with a hedgehog 
ansatz is characterized by one field F(r,t) and one dimensionless coupling 
constant a. Initial data jF(r) ~ tanh(r/p), F(r) = 0 surprisingly form 
black holes for both large and small values of the parameter p, while for 
an intermediate range of p the endpoint is a stable static solution called 
a skyrmion. (If F was a scalar field, one would expect only one critical 
point on this family.) The ultimate reason for this behavior is the presence 
of a conserved integer "baryon number" in the matter model. Both phase 
transitions along this one-parameter family are dominated by a type I critical 
solution, that is a different skyrmion which has one unstable mode. In 
particular, an intermediate time regime of critical collapse evolutions agrees 
well with an ansatz of the form (4.4), where Z*, fi and A were obtained 
independently. It is interesting to note that the type I critical solution is 
singular in the limit a —> 0, which is equivalent to G —)> 0, because the 
known type II critical solutions for any matter model also do not have a 
weak gravity limit. 

Apparently, type I critical phenomena can arise even without the pres- 
ence of a scale in the field equations. A family of exact spherically symmetric, 
static, asymptotically flat solutions of vacuum Brans-Dicke gravity given by 
van Putten was found by Choptuik, Hirschmann and Liebling [61] to sit at 
the black hole-threshold and to have exactly one growing mode. This family 
has two parameters, one of which is an arbitrary overall scale. 

4.4    Approximate Self-Similarity and Universality Classes 

As we have seen, the presence of a length scale in the field equations can 
give rise to static (or oscillating) asymptotically flat critical solutions and 
a mass gap at the black hole threshold. Depending on the initial data, 
this scale can also become asymptotically irrelevant as a self-similar solution 
reaches ever smaller spacetime scales. This behavior was already noticed by 
Choptuik in the collapse of a massive scalar field, or one with a potential 
term generally [6] and confirmed by Brady, Chambers and Gongalves [41]. 
It was also seen in the spherically symmetric EYM system [51]. In order 
to capture the notion of an asymptotically self-similar solution, one may set 
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the arbitrary scale L in the definition (2.12) of r to the scale of the field 
equations, here 1/ra. 

Introducing suitable dimensionless first-order variables Z (such as a, a, 
0, r(f)^r and r</>?£ for the spherically symmetric scalar field), one can write the 
field equations as a first order system 

F(Z,Z,x,Z^e-T)=0. (4.8) 

Every appearance of m gives rise to an appearance of e~r. If the field 
equations contain only positive integer powers of ra, one can make an ansatz 
for the critical solution of the form 

oo 

Z*(x,T) = Y/e-nTZn(x), (4.9) 

where each Zn(x) is calculated recursively from the preceding ones. For large 
enough r (on spacetime scales small enough, close enough to the singularity), 
this infinite series is expected to converge. A similar ansatz can be made for 
the linear perturbations of Z*, and solved again recursively. Fortunately, one 
can calculate the leading order background term ZQ on its own, and obtain 
the exact echoing period A in the process (in the case of DSS). Similarly, 
one can calculate the leading order perturbation term on the basis of ZQ 

alone, and obtain the exact value of the critical exponent 7 in the process. 
This procedure was carried out by Gundlach [52] for the Einstein-Yang- 
Mills system, and by Gundlach and Martin-Garcia [43] for massless scalar 
electrodynamics. Both systems have a single scale 1/e (in units c = G = 1), 
where e is the gauge coupling constant. 

The leading order term ZQ in the expansion of the self-similar critical 
solution Z* obeys the equation 

F(Z(hZ()iX,Zo,r,0)=0. (4.10) 

Clearly, the critical solution is independent of the overall scale LQ. By a 
similar argument, so are its perturbations, and therefore the critical exponent 
7. Therefore, all systems with a single length scale LQ in the field equations 
are in one universality class [42,43]. The massive scalar field, for any value 
of m, or massless scalar electrodynamics, for any value of e, are in the same 
universality class as the massless scalar field. This notion of universality 
classes is fundamentally the same as in statistical mechanics. 

If there are several scales LQ, LI, L2 etc. present in the problem, a 
possible approach is to set the arbitrary scale in (2.12) equal to one of them, 
say LQ, and define the dimensionless constants k = Li/Lo from the others. 
The size of the universality classes depends on where the k appear in the 
field equations.   If a particular Li appears in the field equations only in 
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positive integer powers, the corresponding Zj appears only multiplied by e_r, 
and will be irrelevant in the scaling limit. All values of this ^ therefore 
belong to the same universality class. As an example, adding a quartic self- 
interaction A</>4 to the massive scalar field, for example, gives rise to the 
dimensionless number A/ra2, but its value is an irrelevant (in the language 
of renormalisation group theory) parameter. All self-interacting scalar fields 
are in fact in the same universality class. Contrary to the statement in [43], 
I would now conjecture that massive scalar electrodynamics, for any values 
of e and ra, forms a single universality class in type II critical phenomena. 
Examples of dimensionless parameters which do change the universality class 
are the k of the perfect fluid, the K, of the 2-dimensional sigma model, or a 
conformal coupling of the scalar field. 

4.5    Beyond Spherical Symmetry 

Every aspect of the basic scenario: CSS and DSS, universality and scaling 
applies directly to a critical solution that is not spherically symmetric, but 
all the models we have described are spherically symmetric. There are only 
two exceptions to date: a numerical investigation of critical collapse in ax- 
isymmetric pure gravity [54], and a study of the nonspherical perturbations 
the perfect fluid critical solution [62]. They correspond to two related ques- 
tions in going beyond spherical symmetry. Are there critical phenomena 
in gravitational collapse far from spherical symmetry? And: are the critical 
phenomena in the known spherically symmetric examples destroyed by small 
deviations from spherical symmetry? 

4.5.1     Axisymmetric Gravitational Waves 

The paper of Abrahams and Evans [54] was the first paper on critical col- 
lapse to be published after Choptuik's PRL, but it remains the only one to 
investigate a non-spherically symmetric situation, and therefore also the only 
one to investigate critical phenomena in the collapse of gravitational waves 
in vacuum. Because of its importance, we summarize its contents here with 
some technical detail. 

The physical situation under consideration is axisymmetric vacuum grav- 
ity. The numerical scheme uses a 3+1 split of the spacetime. The ansatz for 
the spacetime metric is 

dsz = -az dtz 

>/3(rfr + f dt)2 + r2c2i/3(rf0 + ^ ^2 + c-^/3r2 8in2 £ ^2 

0 
+ 04 

.11) 
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parameterized by the lapse a, shift components /3r and /3d, and two inde- 
pendent coefficients (ft and rj in the 3-metric. All are functions of r, t and 
6. The fact that dr2 and r2 d92 are multiplied by the same coefficient is 
called quasi-isotropic spatial gauge. The variables for a first-order-in-time 
version of the Einstein equations are completed by the three independent 
components of the extrinsic curvature, K^ K^, and K^. In order to obtain 
initial data obeying the constraints, rj and KQ are given as free data, while 
the remaining components of the initial data, namely 0, K^ and K$, are 
determined by solving the Hamiltonian constraint and the two independent 
components of the momentum constraint respectively. There are five initial 
data variables, and three gauge variables. Four of the five initial data vari- 
ables, namely 77, KQ, K^, and K^, are updated from one time step to the 
next via evolutioi). equations. As many variables as possible, namely </> and 
the three gauge variables a, f3r and fi6', are obtained at each new time step 
by solving elliptic equations. These elliptic equations are the Hamiltonian 
constraint for 0, the gauge condition of maximal slicing {Kil = 0) for a, and 
the gauge conditions gee = r2grr and gre — 0 for /3r and (3° (quasi-isotropic 
gauge). 

For definiteness, the two free functions, rj and KQ, in the initial data were 
chosen to have the same functional form they would have in a linearized 
gravitational wave with pure [l — 2, m = 0) angular dependence. Of course, 
depending on the overall amplitude of rj and KQ, the other functions in the 
initial data will deviate more or less from their linearized values, as the non- 
linear initial value problem is solved exactly. In axisymmetry, only one of 
the two degrees of freedom of gravitational waves exists. In order to keep 
their numerical grid as small as possible, Abrahams and Evans chose the 
pseudo-linear waves to be purely ingoing. (In nonlinear general relativity, 
no exact notion of ingoing and outgoing waves exists, but this ansatz means 
that the wave is initially ingoing in the low-amplitude limit.) This ansatz 
(pseudo-linear, ingoing, / = 2), reduced the freedom in the initial data to 
one free function of advanced time, I^2\v). A suitably peaked function was 
chosen. 

Limited numerical resolution (numerical grids are now two-dimensional, 
not one-dimensional as in spherical symmetry) allowed Abrahams and Evans 
to find black holes with masses only down to 0.2 of the ADM mass. Even 
this far from criticality, they found power-law scaling of the black hole mass, 
with a critical exponent 7 ~ 0.36. Determining the black hole mass is 
not trivial, and was done from the apparent horizon surface area, and the 
frequencies of the lowest quasi-normal modes of the black hole. There was 
tentative evidence for scale echoing in the time evolution, with A ~ 0.6, 
with about three echos seen. This corresponds to a scale range of about one 
order of magnitude. By a lucky coincidence, A is much smaller than in all 
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other examples, so that several echos could be seen without adaptive mesh 
refinement. The paper states that the function 77 has the echoing property 
r/(eAr, eAt) = r)(r, t). If the spacetime is DSS in the sense defined above, the 
same echoing property is expected to hold also for a, </>, f3r and r~lf3e, as 
one sees by applying the coordinate transformation (2.12) to (4.11). 

In a subsequent paper [55], universality of the critical solution, echoing 
period and critical exponent was demonstrated through the evolution of a 
second family of initial data, one in which 77 = 0 at the initial time. In this 
family, black hole masses down to 0.06 of the ADM mass were achieved. 
Further work on critical collapse far away from spherical symmetry would 
be desirable, but appears to be held up by numerical difficulty. 

4.5.2     Perturbing Around Sphericity 

A different, and technically simpler, approach is to take a known critical 
solution in spherical symmetry, and perturb it using nonspherical pertur- 
bations. Addressing this perturbative question, Gundlach [62] has studied 
the generic non-spherical perturbations around the critical solution found by 
Evans and Coleman [17] for the P — \p perfect fluid in spherical symmetry. 
He finds that there is exactly one spherical perturbation mode that grows 
towards the singularity (confirming the previous results [19,20]). He finds 
no growing nonspherical modes at all. 

The main significance of this result, even though it is only perturbative, 
is to establish one critical solution that really has only one unstable per- 
turbation mode within the full phase space. As the critical solution itself 
has a naked singularity (see Section 4.6), this means that there is, for this 
matter model, a set of initial data of codimension one in the full phase space 
of general relativity that forms a naked singularity. In hindsight, this re- 
sult also fully justifies the attention that critical phenomena gravitational 
collapse have won as a "natural" route to naked singularities. 

4.6    Critical Phenomena and Naked Singularities 

Choptuik's result have an obvious bearing on the issue of cosmic censorship. 
(For a general review of cosmic censorship, see [63].) As we shall see in this 
section, the critical spacetime has a naked singularity. This spacetime can 
be approximated arbitrarily well up to fine-tuning of a generic parameter. 
A region of arbitrarily high curvature is seen from infinity as fine-tuning 
is improved. Critical collapse provides a set of smooth initial data from 
which a naked singularity is formed. In spite of news to the contrary, it 
violates neither the letter nor the spirit of cosmic censorship because this 
set is of measure zero. Nevertheless it comes closer than would have been 
imagined possible before the work of Choptuik. First of all, the set of data 
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is of codimension one, certainly in the space of spherical asymptotically 
flat data, and apparently [62] also in the space of all asymptotically flat 
data. This means that one can fine-tune any generic parameter, whichever 
comes to hand, as long as it parameterizes a smooth curve in the space of 
initial data. Secondly, critical phenomena seem to be generic with respect to 
matter models, including realistic matter models with intrinsic scales. For a 
hypothetical experiment to create a Planck-sized black hole in the laboratory 
through a strong explosion, this would mean that one could fine-tune any one 
design parameter of the bomb to the black hole threshold, without requiring 
much control over its detailed effects on the explosion. 

The metric of the critical spacetime is of the form e~2r times a regular 
metric. From this general form alone, one can conclude that r = oo is a 
curvature singularity, where Riemann and Ricci invariants blow up like e4r, 
and which is at finite proper time from regular points. The Weyl tensor 
with index position Cabcd 'ls conformally invariant, so that components with 
this index position remain finite as r -> oo. In this property it resembles 
the initial singularity in Penrose's Weyl tensor conjecture rather than the 
final singularity in generic gravitational collapse. This type of singularity is 
called "conformally compactifiable" [64] or "isotropic" [65]. Is the singular- 
ity naked, and is it timelike, null or a "point"? The answer to these ques- 
tions remains confused, partly because of coordinate complications, partly 
because of the difficulty of investigating the singular behavior of solutions 
numerically. 

Choptuik's, and Evans and Coleman's, numerical codes were limited to 
the region t < 0, in the Schwarzschild-like coordinates (2.3), with the ori- 
gin of t adjusted so that the singularity is at t = 0. Evans and Coleman 
conjectured that the singularity is shrouded in an infinite redshift based on 
the fact that a grows as a small power of r at constant t. This is directly 
related to the fact that a goes to a constant aoo > 1 as r —> oo at con- 
stant t, as one can see from the Einstein equation (2.8). This in turn means 
simply that the critical spacetime is not asymptotically flat, but asymptot- 
ically conical at spacelike infinity, with the Hawking mass proportional to 
r. Hamade and Stewart [14] evolved near-critical scalar field spacetimes on 
a double null grid, which allowed them to follow the time evolution up to 
close to the future light cone of the singularity. They found evidence that 
this light cone is not preceded by an apparent horizon, that it is not itself a 
(null) curvature singularity, and that there is only a finite redshift along out- 
going null geodesies slightly preceding it. (All spherically symmetric critical 
spacetimes appear to be qualitatively alike as far as the singularity structure 
is concerned, so that what we say about one is likely to hold for the others.) 

Hirschmann and Eardley [45] were the first to continue a critical solution 
itself right up to the future light cone. They examined a CSS complex scalar 
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field solution that they had constructed as a nonlinear ODE boundary value 
problem, as discussed in Section 3.2. (This particular one is not a proper 
critical solution, but that should not matter for the global structure.) They 
continued the ODE evolution in the self-similar coordinate x through the 
coordinate singularity at t = 0 up to the future light cone by introducing 
a new self-similarity coordinate x. The self-similar ansatz reduces the field 
equations to an ODE system. The past and future light cones are regular 
singular points of the system, at x = xi and x = X2. At these "points" one 
of the two independent solutions is regular and one singular. The boundary 
value problem that originally defines the critical solution corresponds to 
completely suppressing the singular solution at x = xi (the past light cone). 
The solution can be continued through this point up to x — X2- There it is 
a mixture of the regular and the singular solution. 

We now state this more mathematically. The ansatz of Hirschmann and 
Eardley for the self-similar complex scalar field is (we slightly adapt their 
notation) 

</)(£, r) = f{x)eiuT,    a = a(x),    a = a(x), (4.12) 

with u) a real constant. Near the future light cone they find that / is ap- 
proximately of the form 

f(x) ~ CYeg(x) + (x- x2)^
+1^+^Csing(x), (4.13) 

with CTQg(x) and Csing(x) regular at x = £2, and e a small positive constant. 
The singular part of the scalar field oscillates an infinite number of times as 
x —>> £2, but with decaying amplitude. This means that the scalar field (f) is 
just differentiable, and that therefore the stress tensor is just continuous. It 
is crucial that spacetime is not flat, or else e would vanish. For this in turn 
it is crucial that the regular part Creg of the solution does not vanish, as one 
sees from the field equations. 

The only other case in which the critical solution has been continued up 
to the future light cone is Choptuik's real scalar field solution [24]. Let X+ 

and X- be the ingoing and outgoing wave degrees of freedom respectively 
defined in (3.18). At the future light cone x = X2 the solution has the form 

X-(x,T)~f-(x,T), (4.14) 

X+(rr,r) ~ /+(a;,r) + (x - ^2)7sing(^,r - Clns), (4.15) 

where C is a positive real constant, /_, /+ and /Sing are regular real functions 
with period A in their second argument, and e is a small positive real con- 
stant. (We have again simplified the original notation.) Again, the singular 
part of the solution oscillates an infinite number of times but with decaying 
amplitude. Gundlach concludes that the scalar field, the metric coefficients, 



32 CRITICAL PHENOMENA IN GRAVITATIONAL COLLAPSE 

all their first derivatives, and the Riemann tensor exist, but that is as far 
as differentiability goes. (Not all second derivatives of the metric exist, but 
enough to construct the Riemann tensor.) If either of the regular parts /_ 
or /+ vanished, spacetime would be flat, e would vanish, and the scalar field 
itself would be singular. In this sense, gravity regularizes the self-similar 
matter field ansatz. In the critical solution, it does this perfectly at the past 
lightcone, but only partly at the future lightcone. Perhaps significantly, 
spacetime is almost flat at the future horizon in both the examples, in the 
sense that the Hawking mass divided by r is a very small number, as small 
as 10-6 (but not zero according to numerical work by Home [66]) in the 
spacetime of Hirschmann and Eardley. 

In summary, the future light cone (or Cauchy horizon) of these two crit- 
ical spacetimes is not a curvature singularity, but it is singular in the sense 
that differentiability is lower than elsewhere in the solution. Locally, one 
can continue the solution through the future light cone to an almost flat 
spacetime (the solution is of course not unique). It is not clear, however, if 
such a continuation can have a regular center r = 0 (for t > 0), although this 
seems to have been assumed by some authors. A priori, one should expect 
a conical singularity, with a (small) defect angle at r = 0. 

The results just discussed were hampered by the fact that they are inves- 
tigations of singular spacetimes that are only known in numerical form, with 
a limited precision. As an exact toy model we consider an exact spherically 
symmetric, CSS solution for massless real scalar field that was apparently 
first discovered by Roberts [35] and then re-discovered in the context of crit- 
ical collapse by Brady [67] and Oshiro et al. [68]. We use the notation of 
Oshiro et al. The solution can be given in double null coordinates as 

ds2 = -dudv + r2{u,v)(m2, (4.16) 

r2(u, v) = - [(1 - V
2)v2 - 2vu + u2] , (4.17) 

with p a constant parameter. (Units G = c = 1.) Two important curvature 
indicators, the Ricci scalar and the Hawking mass, are 

* = ^r,   M = -V- (4-19) 

The center r — 0 has two branches, u = (1 + p)v in the past of u = v = 0, 
and u = (1 - p)v in the future. For 0 < p < 1 these are timelike curvature 
singularities. The singularities have negative mass, and the Hawking mass 
is negative in the past and future light cones. One can cut these regions out 
and replace them by Minkowski space, not smoothly of course, but without 
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Figure 2: The global structure of spherically symmetric critical spacetimes. 
One dimension in spherical symmetry has been suppressed. 

creating a 5-function in the stress-energy tensor. The resulting spacetime 
resembles the critical spacetimes arising in gravitational collapse in some 
respects: it is self-similar, has a regular center r = 0 at the past of the 
curvature singularity u — v — 0 and is continuous at the past light cone. It 
is also continuous at the future light cone, and the future branch of r = 0 is 
again regular. 

It is interesting to compare this with the genuine critical solutions that 
arise as attractors in critical collapse. They are as regular as the Roberts 
solution (analytic) at the past r = 0, more regular (analytic versus continu- 
ous) at the past light cone, as regular (continuous) at the future light cone 
and, it is to be feared, less regular at the future branch of r = 0: In contrary 
to previous claims [9,45] there may be no continuation through the future 
sound or light cone that does not have a conical singularity at the future 
branch of r = 0. The global structure still needs to be clarified for all known 
critical solutions. 

In summary, the critical spacetimes that arise asymptotically in the fine- 
tuning of gravitational collapse to the black-hole threshold have a curvature 
singularity that is visible at infinity with a finite redshift. The Cauchy 
horizon of the singularity is mildly singular (low differentiability), but the 
curvature is finite there. It is unclear at present if the singularity is timelike 
or if there exists a continuation beyond the Cauchy horizon with a regular 
center, so that the singularity is limited, loosely speaking, to a point. Fur- 
ther work should be able to clarify this. In any case, the singularity is naked 
and the critical solutions therefore provide counter-examples to some for- 
mulations of cosmic censorship which state that naked singularities cannot 
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arise from smooth initial data in reasonable matter models. It is now clear 
that one must refine this to state that there is no open ball of smooth initial 
for naked singularities. Recent analytic work by Christodoulou also comes 
to this conclusion [5]. The global structure of spherically symmetric critical 
solutions is summarized in Fig. 2. 

4.7    Black Hole Charge and Angular Momentum 

Given the scaling power law for the black hole mass in critical collapse, one 
would like to know what happens if one takes a generic one-parameter family 
of initial data with both electric charge and angular momentum (for suitable 
matter), and fine-tunes the parameter p to the black hole threshold. Does 
the mass still show power-law scaling? What happens to the dimensionless 
ratios L/M2 and Q/M, with L the black hole angular momentum and Q its 
electric charge? Tentative answers to both questions have been given using 
perturbations around spherically symmetric uncharged collapse. 

4.7.1     Charge 

Gundlach and Martm-Garcia [43] have studied scalar massless electrody- 
namics in spherical symmetry. Clearly, the real scalar field critical solution 
of Choptuik is a solution of this system too. Less obviously, it remains a 
critical solution within massless (and in fact, massive) scalar electrodynam- 
ics in the sense that it still has only one growing perturbation mode within 
the enlarged solution space. Some of its perturbations carry electric charge, 
but as they are all decaying, electric charge is a subdominant effect. The 
charge of the black hole in the critical limit is dominated by the most slowly 
decaying of the charged modes. From this analysis, a universal power-law 
scaling of the black hole charge 

Q~(P-P*)S (4.20) 

was predicted. The predicted value 5 ~ 0.88 of the critical exponent (in 
scalar electrodynamics) was subsequently verified in collapse simulations by 
Hod and Piran [50]. (The mass scales with 7 ~ 0.37 as for the uncharged 
scalar field.) General considerations using dimensional analysis led Gundlach 
and Martin-Garcia to the general prediction that the two critical exponents 
are always related, for any matter model, by the inequality 

6 > 27. (4.21) 

This has not yet been verified in any other matter model. 
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4.7.2    Angular Momentum 

Gundlach's results on non-spherically symmetric perturbations around 
spherical critical collapse of a perfect fluid [62] allow for initial data, and 
therefore black holes, with infinitesimal angular momentum. All nonspheri- 
cal perturbations decrease towards the singularity. The situation is therefore 
similar to scalar electrodynamics versus the real scalar field. The critical 
solution of the more special model (here, the strictly spherically symmetric 
fluid) is still a critical solution within the more general model (a slightly non- 
spherical and slowly rotating fluid). In particular, axial perturbations (also 
called odd-parity perturbations) with angular dependence I = 1 will deter- 
mine the angular momentum of the black hole produced in slightly super- 
critical collapse. Using a perturbation analysis similar to that of Gundlach 
and Martin-Garcia [43], Gundlach [69] has derived the angular momentum 
scaling 

L = Re (A + iB)(p-p*r+i»], (4.22) 

where A and B are family-dependent constants, and the complex critical 
exponent /J, + iu is universal. For p — p/3, he predicts the values of /i and 
UJ. In the special of axisymmetry, this result reduces to 

L = LZ = (p -p#)Mcos[ci;ln(p -p*) + c], (4.23) 

which is rather surprising. The explanation is of course that near the black 
hole threshold the initial data, including the initial angular momentum, are 
totally forgotten, while the oscillating angular momentum of the black hole 
is a subdominant effect. These results have not yet been tested against 
numerical collapse simulations. 

Traschen [70] has drawn attention to a different possible connection be- 
tween critical phenomena and black hole charge. Consider the equation of 
motion for a massive charged scalar test field on a fixed charged black hole 
background. (The test field is coupled via V + ieA, but its back-reaction on 
both the metric and the Maxwell field is neglected.) In the limit Q = M for 
the background black hole, and near the horizon this linear equation has a 
scale-invariance not present in non-extremal black holes because the surface 
gravity, which otherwise sets a scale, vanishes. The equation therefore ad- 
mits self-similar solutions. Traschen suggests these are DSS, but there is no 
argument why either a CSS or a DSS solution should play a special role. 
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5    More Speculative Aspects 

5.1    The Renormalisation Group as a Time Evolution 

It has been pointed out by Argyres [71], Koike, Hara and Adachi [19] and 
others that the time evolution near the critical solution can be considered as 
a renormalisation group flow on the space of initial data. The calculation of 
the critical exponent in section 3.3 is in fact mathematically identical with 
that of the critical exponent governing the correlation length near the critical 
point in statistical mechanics [72], if one identifies the time evolution in the 
time coordinate r and spatial coordinate x with the renormalisation group 
flow. 

For simple parabolic or hyperbolic differential equations, a discrete renor- 
malisation (semi)group acting on their solutions has been defined in the fol- 
lowing way [73]. Evolve initial data over a certain finite time interval, then 
rescale the final data in a certain way. Solutions which are fixed points 
under this transformation are scale-invariant, and may be attractors. In 
the context of the spherically symmetric scalar field described in section 2.1 
this prescription takes the following form. Take free data </>o(r) = (f)(to,r), 
Tlo(r) =n(to,r). Evolve them from time to to time ti = e~A(to—<*)+£*. Ob- 
tain new data </>i(r) = (f)(ti,e~Ar) and Ili(r) = e-An(£i, e~Ar). One can in- 
troduce new coordinates and fields such that the renormalisation transforma- 
tion becomes a simple time evolution without any explicit rescaling. For the 
scalar field model, this form of the transformation is simply ZQ(X) = Z(TQ, X) 

to Zi(x) = Z(TQ + A,X), where Z stands for the fields </> and rll. The coor- 
dinates x and r replace r and t. 

While this approach looks promising, its application to general relativity 
has not yet been achieved. In general relativity as in other field theories or 
in dynamical systems, a solution is determined (at least locally) by an initial 
data set. (In general relativity, a solution is a spacetime, and the initial data 
are the first and second fundamental forms of a spacelike hypersurface, plus 
suitable matter variables.) A crucial distinctive feature of general relativity, 
however, is that a solution does not correspond to a unique trajectory in the 
space of initial data. This is because a spacetime can be sliced in different 
ways, and on each slice one can have different coordinate systems. Infinitesi- 
mally, this slicing and coordinate freedom is parameterized by the lapse and 
shift. They can be set freely, independently of the initial data, and they 
influence only the coordinates on the spacetime, not the spacetime itself. 

What coordinates should one use then when describing a time evolution 
in GR as a renormalisation group transformation on the space of initial data? 
For a given self-similar spacetime, there are preferred coordinates adapted 
to the symmetry and defined by Eqn. (3.10). These are far from unique. 
Nevertheless, one can choose one of them, and then extend this choice of 
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coordinates to linear perturbations around the self-similar solution. In this 
linear regime, one really obtains a time evolution such that a phase space 
diagram of the type of Fig. 1 makes sense: On the limit cycle, the same 
Cauchy data, expressed in the same space coordinates, return periodically. 
(The overall scale decreases in each period, and is suppressed in Fig. 1.) 
Hara, Koike and Adachi [42] have used these coordinates in numerical work 
in order to find the spectrum of perturbations of the critical solution by 
evolving a generic perturbation in time, and peeling off the individual modes 
in the order of decreasing growth rate ("Lyapunov analysis"). 

Far away from the critical solution, no preferred gauge choice is known. 
We are then faced with the general question: Given initial data in general 
relativity, is there a prescription for the lapse and shift, such that, if these 
are in fact data for a self-similar solution, the resulting time evolution ac- 
tively drives the metric to the special form (3.10) that explicitly displays 
the self-similarity? If such a prescription existed, one could try to find the 
non-linear critical solution itself as a fixed point of a renormalisation group 
transformation, as described by Bricmont and Kupiainen [74] for simple 
PDEs. Dolan's [75] description of a RG flow as a Hamiltonian flow may be 
useful in making the identification. 

An incomplete answer to this question has been provided by Garfinkle 
[13]. His gauge conditions are 

^L = ^N2K,    AT^O, (5.1) 

where iV is the lapse, N1 the shift, and K the trace of the extrinsic curvature. 
Garfinkle now introduces the "scale-invariant" variables 

kk = N2hik,    Kik = N-\Kik - Khik),    ui = (InAT)^ (5.2) 

iV will turn out to absorb the overall spacetime scale. The introduction 
of Ui has the purpose of extracting the scale-invariant information from TV. 
Garfinkle gives an autonomous system of equations for these degrees of free- 
dom (Kik is traceless) alone. The trace K missing from this set is obtained 
by solving the Hamiltonian constraint for NK. The remaining degree of 
freedom, iV, is evolved in time by Eqn. (5.1), but is not an active part of 
the autonomous system. If NK is periodic in t, we can write the spacetime 
metric in the form 

ds2 = e2Ct (-AT2 dt2 + hik dx1 dxk\ , (5.3) 

where the constant C = l(NK), while N ~ exp | J{NK - {NK)) dt, with 
() the ^-average. The constant C can be set equal to 1 by a rescaling of the 
coordinate t. In the notation of this review, t is then the scale coordinate r. 
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The Einstein equations have now been split into an autonomous scale- 
invariant part (hik,Kik) and a scale variable {N) which is driven passively 
by the scale-invariant part. When the scale-invariant variables are periodic 
in t (independent oft), the spacetime is discretely (periodically) self-similar. 
It seems unlikely, however, that the converse holds: If we begin with data 
taken on an arbitrary hypersurface in a self-similar spacetime, Garfinkle's 
evolution will not make his scale-invariant variables periodic in t. This should 
happen only if the initial data have been collected on the "right" initial 
hypersurface. What is required is a gauge prescription that actively drives 
the time evolution towards a slicing that makes the scale-invariant variables 
periodic. 

Fixing the shift to be zero also poses a problem. In spherically symmet- 
ric homothetic spacetimes the homothetic vector becomes spacelike (inward 
pointing) at large radius on any spacelike slice. In Garfinkle's ansatz the 
homothetic vector, if one exists, is identified with d/dt, but with zero shift 
d/dt is orthogonal to the hypersurfaces and therefore timelike, unlike the 
homothetic vector in the known examples of critical spacetimes. It seems 
necessary to allow for and prescribe a shift if Garfinkle's scheme is to be 
consistent. In this context it may be relevant that in the split between the 
scale-invariant and scale part of the Einstein equations, the latter accounts 
only for one degree of freedom. This seems to indicate that any such split is 
tied to a slicing of spacetime. 

Garfinkle suggests that a dynamical explanation of critical phenomena 
would consist in finding a mechanism of "dissipation" that drives the scale- 
invariant system towards a fixed point or a limit cycle. One should keep in 
mind, however, that the limit cycle has at least one unstable mode, or else 
naked singularities would be generic. 

5.2    Analytic Approaches 

A number of authors have attempted to explain critical collapse with the 
help of analytic solutions. The one-parameter family of exact self-similar 
real massless scalar field solutions first discovered by Roberts [35] has al- 
ready been presented in section 4.6. It has been discussed in the context of 
critical collapse by Brady [67] and Oshiro et al. [68], and later Wang and 
Oliveira [76] and Burko [77]. The original, analytic, Roberts solution is cut 
and pasted to obtain a new solution which has a regular center r = 0 and 
which is asymptotically flat. Solutions from this family with p > 1 can 
be considered as black holes, and to leading order around the critical value 
p = 1, their mass is M ~ {p -p*)1//2. The pitfall in this approach is that 
only perturbations within the self-similar family are considered. But the 
p = 1 solution has many growing perturbations which are spherically sym- 
metric (but not self-similar), and is therefore not a critical solution.   This 
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was already clear from the collapse simulations at the black hole threshold, 
but recently Frolov [78] has taken the trouble to calculate its perturbation 
spectrum explicitly (within spherical symmetry). The perturbations can be 
calculated analytically, and their spectrum is continuous, filling a sector of 
the complex plane, with ReX < 1. Soda and Hirata [79] generalize the 
Roberts solution to higher spacetime dimensions and calculate formal criti- 
cal exponents. Oliveira and Cheb-Terrab [80] generalize the Roberts solution 
to the conformally coupled scalar field. 

Also in the context of critical phenomena in gravitational collapse, Koike 
and Mishima [81] consider a two-parameter family of solutions with a thin 
shell and an outgoing null fluid, and formally derive a "critical exponent", 
but there is no indication that these are critical solutions in the sense of 
having exactly one unstable mode. Husain [82] and Husain, Martinez and 
Nunez [83] find perfect fluid "solutions" by giving a metric and reading off 
the resulting stress-energy tensor. The same authors [84] consider another 
scalar field exact solution (spherically symmetric with a conformal Killing 
vector, but not homothetic) and obtain a formal critical exponent of 1/2. 

Peleg and Steif [85] have analyzed the collapse of thin dust shells in 24-1 
dimensional gravity with and without a cosmological constant. There is a 
critical value of the shell's mass as a function of its radius and position. The 
black hole mass scales with a critical exponent of 1/2. By analogy with the 
Roberts solution, it is likely that in extending this mini-superspace model to 
a more general one, it would reveal itself not be an attractor of codimension 
one. 

Chiba and Soda [86] have noticed that a conformal transformation trans- 
forms Brans-Dicke gravity without matter into general relativity with a 
massless, minimally coupled scalar field. They transform the Choptuik so- 
lution from this so-called Einstein frame back to the physical, or Jordan, 
frame, and obtain a critical exponent for the formation of black holes in 
Brans-Dicke gravity that depends on the Brans-Dicke coupling parameter. 
The physical significance of this is doubtful in the absence of matter, as LJ is 
defined in the Einstein frame only through the coupling of gravity to matter. 
[In the Einstein frame, all matter is minimally coupled to the Einstein metric 
times the conformal factor exp(a; + l)1/2^.] Oliveira [87] transforms not the 
Choptuik but the Roberts solution. 

Other authors have employed analytic approximations to the actual 
Choptuik solution. Pullin [88] has suggested describing critical collapse ap- 
proximately as a perturbation of the Schwarzschild spacetime. Price and 
Pullin [89] have approximated the Choptuik solution by two flat space solu- 
tions of the scalar wave equation that are matched at a "transition edge" at 
constant self-similarity coordinate x. The nonlinearity of the gravitational 
field comes in through the matching procedure, and its details are claimed 
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to provide an estimate of the echoing period A. While the insights of this 
paper are qualitative, some of its ideas reappear in the construction [36] of 
the Choptuik solution as a 1+1 dimensional boundary value problem. 

In summary, purely analytic approaches have remained surprisingly un- 
successful in dealing with critical collapse. 

5.3 Astrophysical Applications? 

Any real world application of critical phenomena would require that critical 
phenomena are not an artifact of the simple matter models that have been 
studied so far, and that they are not an artifact of spherical symmetry. At 
present this seems a reasonable hypothesis. Critical collapse still requires 
a kind of fine-tuning of initial data that does not seem to arise naturally 
in the astrophysical world. Niemeyer and Jedamzik [90] have suggested a 
scenario that gives rise to such fine-tuning. In the early universe, quan- 
tum fluctuations of the metric and matter can be important, for example 
providing the seeds of galaxy formation. If they are large enough, these 
fluctuations may even collapse immediately, giving rise to what is called 
primordial black holes. Large quantum fluctuations are exponentially more 
unlikely than small ones, P(5) ~ exp-<52, where 5 is the density contrast 
of the fluctuation. One would therefore expect the spectrum of primordial 
black holes to be sharply peaked at the minimal 5 that leads to black hole 
formation. That is the required fine-tuning. In the presence of fine-tuning, 
the black hole mass is much smaller than the initial mass of the collapsing 
object, here the density fluctuation. In consequence, the peak of the primor- 
dial black hole spectrum might be expected to be at exponentially smaller 
values of the black hole mass than expected naively. 

5.4 Critical Collapse in Semiclassical Gravity 

As we have seen in the last section, critical phenomena may provide a nat- 
ural route from everyday scale down to much smaller scales, perhaps down 
to the Planck scale. Various authors have investigated the relationship of 
Choptuik's critical phenomena to quantum black holes. It is widely believed 
that black holes should emit thermal quantum radiation, from considera- 
tions of quantum field theory on a fixed Schwarzschild background on the 
one hand, and from the purely classical three laws of black hole mechanics 
on the other (see [91] for a review). But there is no complete model of the 
back-reaction of the radiation on the black hole, which should be shrinking. 
In particular, it is unknown what happens at the endpoint of evaporation, 
when full quantum gravity should become important. It is debated in par- 
ticular if the information that has fallen into the black hole is eventually 
recovered in the evaporation process or lost. 



C. GUNDLACH 41 

To study these issues, various 2-dimensional toy models of gravity cou- 
pled to scalar field matter have been suggested which are more or less directly 
linked to a spherically symmetric 4-dimensional situation (see [92] for a re- 
view). In two space-time dimensions, the quantum expectation value of the 
matter stress tensor can be determined from the trace anomaly alone, to- 
gether with the reasonable requirement that the quantum stress tensor is 
conserved. Furthermore, quantizing the matter scalar field(s) / but leaving 
the metric classical can be formally justified in the limit of many such matter 
fields. The two-dimensional gravity used is not the two-dimensional version 
of Einstein gravity but of a scalar-tensor theory of gravity, e^, where </> is 
called the dilaton, in the 2-dimensional toy model plays essentially the role of 
r in 4 spacetime dimensions. There seems to be no preferred 2-dimensional 
toy model, with arbitrariness both in the quantum stress tensor and in the 
choice of the classical part of the model. In order to obtain a resemblance of 
spherical symmetry, a reflecting boundary condition is imposed at a timelike 
curve in the 2-dimensional spacetime. This plays the role of the curve r = 0 
in a 2-dimensional reduction of the spherically symmetric 4-dimensional the- 
ory. 

How does one naively expect a model of semiclassical gravity to behave 
when the initial data are fine-tuned to the black hole threshold? First of all, 
until the fine-tuning is taken so far that curvatures on the Planck scale are 
reached during the time evolution, universality and scaling should persist, 
simply because the theory must approximate classical general relativity. Ap- 
proaching the Planck scale from above, one would expect to be able to write 
down a critical solution that is the classical critical solution asymptotically 
at large scales, through an ansatz of the form 

oo 

Zt(x,T) = J2enTZn(x), (5.4) 
71=0 

where the scale L in r = — ln(—t/L) is now the Planck length. This ansatz 
would recursively solve a semiclassical field equation, where powers of er (in 
coordinates x and r) signal the appearances of quantum terms. Note that 
this is exactly the ansatz (4.9), but with the opposite sign in the exponent, 
so that the higher order terms now become negligible as r —> — oo, that is 
away from the singularity on large scales. On the Planck scale itself, this 
ansatz would not converge, and self-similarity would break down. 

Addressing the question from the side of classical general relativity, Chiba 
and Siino [93] write down their own 2-dimensional toy model, and add a 
quantum stress tensor that is determined by the trace anomaly and stress- 
energy conservation. They note that the quantum stress tensor diverges at 
r = 0. This means that the additional quantum terms in the field equations 
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carry powers not only of eT, but instead of r-1 = x~leT. Hence no self- 
similar ansatz can be regular at the center r = 0 (x = 0) even before the 
singularity appears at r = oo. They conclude that quantum gravity effects 
preclude critical phenomena on all scales, even far from the Planck scale. 
More plausibly, their result indicates that this 2-dimensional toy model does 
not capture essential physics. 

At this point, Ayal and Piran [94] make an ad-hoc modification to the 
semiclassical equations. They modify the quantum stress tensor by a func- 
tion which interpolates between 1 at large r, and r2/Lp at small r. The 
stress tensor would only be conserved if this function was a constant. The 
authors justify this modification by pointing out that violation of energy 
conservation takes place only at the Planck scale. It takes place, however, 
not only where the solution varies dynamically on the Planck scale, but at 
all times in a Planck-sized world tube around the center r = 0, even before 
the solution itself reaches the Planck scale dynamically. This introduces a 
non-geometric, background structure, effect at the world-line r = 0. With 
this modification, Ayal and Piran obtain results in agreement with our ex- 
pectations set out above. For far supercritical initial data, black formation 
and subsequent evaporation are observed. With fine-tuning, as long as the 
solution stays away from the Planck scale, critical solution phenomena in- 
cluding the Choptuik universal solution and critical exponent are observed. 
(The exponent is measured as 0.409, indicating a limited accuracy of the 
numerical method.) In an intermediate regime, the quantum effects increase 
the critical value of the parameters p. This is interpreted as the initial data 
partly evaporating while they are trying to form a black hole. 

Researchers coming from the quantum field theory side seem to favor a 
model (the RST model) in which ad hoc "counter terms" have been added to 
make it soluble. The matter is a conformally rather than minimally coupled 
scalar field. The field equations are trivial up to an ODE for a timelike curve 
on which reflecting boundary conditions are imposed. The world line of this 
"moving mirror" is not clearly related to r in a 4-dimensional spherically 
symmetric model, but seems to correspond to a finite r rather than r = 0. 
This may explain why the problem of a diverging quantum stress tensor is 
not encountered. Strominger and Thorlacius [95] find a critical exponent 
of 1/2, but their 2-dimensional situation differs from the 4-dimensional one 
in many aspects. Classically (without quantum terms) any ingoing matter 
pulse, however weak, forms a black hole. With the quantum terms, matter 
must be thrown in sufficiently rapidly to counteract evaporation in order 
to form a black hole. The initial data to be fine-tuned are replaced by the 
infalling energy flux. There is a threshold value of the energy flux for black 
hole formation, which is known in closed form. (Recall this is a soluble 
system.) The mass of the black hole is defined as the total energy it absorbs 
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during its lifetime. This black hole mass is given by 

M=(T)\ (5.5) 

where S is the difference between the peak value of the flux and the thresh- 
old value, and a is the quadratic order coefficient in a Taylor expansion in 
advanced time of the flux around its peak. There is universality with respect 
to different shapes of the infalling flux in the sense that only the zeroth and 
second order Taylor coefficients matter. 

Peleg, Bose and Parker [96] study the so-called CGHS 2-dimensional 
model. This (non-soluble) model does allow for a study of critical phenom- 
ena with quantum effects turned off. Again, numerical work is limited to 
integrating an ODE for the mirror world line. Numerically, the authors find 
black hole mass scaling with a critical exponent of 7 ^ 0.53. They find 
the critical solution and the critical solution to be universal with respect to 
families of initial data. Turning on quantum effects, the scaling persists to 
a point, but the curve of InM versus ln(p — p*) then turns smoothly over 
to a horizontal line. Surprisingly, the value of the mass gap is not universal 
but depends on the family of initial data. While this is the most "satisfac- 
tory" result among those discussed here from the classical point of view, one 
should keep in mind that all these results are based on mere toy models of 
quantum gravity. 

6    Summary and Conclusions 

When one fine-tunes a one-parameter family of initial data to get close 
enough to the black hole threshold, the details of the initial data are com- 
pletely forgotten in a spacetime region, and all near-critical time evolutions 
look the same there. The only information remembered from the initial data 
is how close one is to the threshold. Either there is a mass gap (type I behav- 
ior), or black hole formation starts at infinitesimal mass (type II behavior). 
In type I, the universal critical solution is time-independent, or periodic in 
time, and the better the fine-tuning, the longer it persists. In type II, the 
universal critical solution is scale-invariant or scale-periodic, and the better 
the fine-tuning, the smaller the black hole mass, according to the famous 
formula Eqn. (1.1). 

Both types of behavior arise because there is a solution which sits at 
the black hole-threshold, and which is an intermediate attractor. The basin 
of attraction is (at least locally) the black hole threshold itself, pictured 
as a hypersurface of codimension one that bisects phase space. Only the 
one perturbation mode pointing out of that surface is unstable. Depending 
on its sign, the solution tips over towards forming a black hole or towards 
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dispersion. In the words of Eardley, all one-parameter families of data trying 
to cross the black hole threshold are funneled through a single time evolution. 
If the critical solution is time-independent, its linear perturbations grow or 
decrease exponentially in time. If it is scale-invariant, they grow or decrease 
exponentially with the logarithm of scale. The power-law scaling of the black 
hole mass follows by a clever application of dimensional analysis. Although 
the mathematical foundations of this approach remain doubtful at present, 
it allows precise numerical calculation of the critical solution and the critical 
exponent, with good agreement with numerical "experiment". 

The importance of type II behavior lies in providing a natural route from 
large to very small scales, with possible applications to astrophysics and 
quantum gravity. Natural here means that the phenomena persist for many 
simple matter models, without counterexample so far, and, apparently, even 
beyond spherical symmetry. As far as any generic parameter in the initial 
data provides some handle on the amplitude of the one unstable mode, fine- 
tuning any one generic parameter creates the phenomena. Moreover, scaling 
and echoing are seen already quite far from the threshold in practice. 

Clearly, more numerical work will be useful to further establish the gen- 
erality of the mechanism, or to find a counter-example instead. In partic- 
ular, future research should include highly non-spherical situations, initial 
data with angular momentum and electric charge, and matter models with a 
large number of internal degrees of freedom (for example, collisionless matter 
instead of a perfect fluid). Going beyond spherical symmetry, or including 
collisionless matter, will certainly pose formidable numerical challenges. 

The fundamental mathematical question in the field is why so many 
matter models (in fact, all models investigated to date) admit a critical 
solution, that is, an attractor of codimension one at the black hole threshold. 
If the existence of a critical solution is really a generic feature, then there 
should be at least an intuitive argument, and perhaps a mathematical proof, 
for this important fact. While it is at present unclear if all matter models 
admit a self-similar solution with exactly one unstable mode(a type II critical 
solution), no reasonable matter model can admit a self-similar solution with 
no unstable modes, or naked singularities would be endemic in nature. Again 
one wonders if there is a general argument or proof for this fact. Progress in 
understanding general relativity as a dynamical system (in the presence of 
the slicing freedom) may be a crucial step on the way towards these proofs, 
and might also contribute to the study of singularities in general relativity. 

In the future, we can expect new phenomena based on continuous fami- 
lies of critical solutions. In numerical investigations we may also come across 
solutions on the black hole threshold with two or more unstable modes, al- 
though as a matter of terminology I would not call these "critical" solutions, 
because they would not "naturally" arise in collapse simulations.   Critical 
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solutions so far were scale-periodic or scale-invariant (type II), or static or 
periodic in time (type I). Are solutions conceivable which have neither of 
these symmetries, but which are still critical solutions in the essential sense 
of being attractors inside the black hole threshold? 

Numerical relativity has opened up a new research field in classical gen- 
eral relativity, critical phenomena in gravitational collapse. The interplay 
between numerical and analytic work in this new field is still continuing 
strongly. While its surprising features have captured the attention of many 
researchers in the GR community, it has also thrown some light on the out- 
standing problem of mathematical relativity, cosmic censorship. 

I would like to thank A. Abrahams, P. Bizon, B. Carr, A. Coley, S. 
Jhingan and particularly A. Kendall for helpful comments on the draft paper. 
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